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Abstract—For several models of random constraint satis-
faction problems, it was conjectured by physicists and later
proved that a sharp satisfiability transition occurs. In the
unsatisfiable regime, it is natural to consider the problem of
max-satisfiability: violating the least number of constraints. This
is a combinatorial optimization problem on the random energy
landscape defined by the problem instance. In the bounded
density regime, a very precise estimate of the max-sat value
was obtained by Achlioptas, Naor, and Peres (2007), but it is not
sharp enough to indicate the nature of the energy landscape.
Later work (Sen, 2016; Panchenko, 2016) shows that for very
large but bounded density, the max-sat value approaches the
mean-field (complete graph) limit: this is conjectured to have
an “FRSB” structure where near-optimal configurations form
clusters within clusters, in an ultrametric hierarchy of infinite
depth inside the discrete cube. A stronger form of FRSB was
shown in several recent works to have algorithmic implications
(again, in complete graphs). Consequently we find it of interest
to understand how the model transitions from 1RSB near
the satisfiability threshold, to (conjecturally) FRSB at large
density. In this paper we show that in the random regular NAE-
SAT model, the 1RSB description breaks down by a certain
threshold density that we estimate rather precisely. This is
proved by an explicit perturbation in the 2RSB parameter
space. The choice of perturbation is inspired by the “bug
proliferation” mechanism proposed by physicists (Montanari
and Ricci-Tersenghi, 2003; Krzakala, Pagnani, and Weigt,
2004), corresponding roughly to a percolation-like threshold
for a subgraph of dependent variables.
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I. INTRODUCTION

A random constraint satisfaction problem (random

CSP), broadly construed, is any problem specified by N
variables subject to M random constraints. We shall consider

a prototypical example, random regular k-NAE-SAT, where

an instance GN involves N binary variables xi ∈ {0, 1},
subject to M = Nα random constraints such that each con-

straint involves a subset of k variables (the formal definition

is below). In the satisfiable regime 0 ≤ α ≤ αsat, with

high probability the solution space is a nonempty (random)

subset S(GN ) ⊆ {0, 1}N . It is predicted by physicists [1] to

undergo a precise series of sharp structural transitions as α
increases between zero and αsat. Several of these predictions

have now been supported by rigorous results: for example,

we point to works on solution geometry [2]–[4], the exact

satisfiability threshold αsat [5]–[7], the number of solutions

[8], and associated inference problems [9]. In particular it is

known that αsat = 2k−1 ln 2−O(1).
In this paper we consider the unsatisfiable regime α >

αsat, where with high probability the solution space S(GN ) is

empty. It then becomes natural to study the max-satisfiable
value (or ground state energy)

emin(GN ) ≡ min
1

N
min

{
H (x) : x ∈ {0, 1}N

}
,

H (x) ≡ #
{

constraints violated by x
}
.

In the computer science literature on this problem, much

attention has focused on strong refutation [10]: is there an

efficiently computable bound ealg(GN ) such that ealg(GN ) ≤
emin(GN ) for any GN , and ealg(GN ) ≥ αNδ with high

probability (with δ a positive constant) for random GN?

In the regime where the clause density α = αN diverges
in N , an easy union bound gives

emin(GN ) =
(1− oN (1))αN

2k−1
.

This allows a simple phrasing of an even more stringent ver-

sion of strong refutation: is there an efficiently computable

bound ealg(GN ) ≤ emin(GN ) (again, for any GN ) such that

ealg(GN ) =
(1 + oN (1))αN

2k−1

with high probability for random GN? For the closely related

problem of random k-SAT, an efficient spectral algorithm of

this type exists above αN ≈ Nk/2−1 [11] (and extended by

[12]). On the other hand, within a large family of convex

programming algorithms (as defined by the sum-of-squares
hierarchy) it has been shown that many problems of this

kind (including random k-SAT, and random k-NAE-SAT for

k even) are solvable in subexponential but not polynomial

time for 1� αN � Nk/2−1 [13]–[16].

In the regime where α does not diverge with N , very

strong bounds on emin(GN ) are given by [17], as we will

review below. However, the bounds are not quite precise
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enough to give information about the nature of the energy

landscape. More recent results in the spin glass literature

[18], [19] show that for α very large (roughly, Ω(64k))
the max-sat value approaches the mean-field (complete

graph) limit, which is given by a Parisi-type variational

formula [20] (in the physics literature see [21], [22]). The

solution of the mean-field variational formula is conjectured

to be “full replica symmetry breaking” (FRSB), e.g. by

analogy with the zero-temperature Sherrington–Kirkpatrick

model [23]. A stronger version of FRSB has been shown

in several recent works (in mean-field settings) to have

algorithmic implications [24]–[26]. By contrast, results near

the satisfiability threshold [7], [8] are consistent only with

“one-step replica symmetry breaking” (1RSB). This is to

say that as α increases from αsat to ∞, the model must

transition from 1RSB to FRSB; and one may even speculate

further on whether the Nk/2−1 threshold in the algorithmic

literature relates to a transition in the type of FRSB.

In this paper we study a phenomenon which is proposed

in the physics literature as the first transition beyond αsat

in the type of RSB. It is predicted to occur at an explicit

value αGa [27], [28] (termed the Gardner transition, after

[29]) — by a mechanism of bug proliferation, which we

describe below. A simple consequence of this prediction is

that the ground state energy would coincide with the 1RSB

value e1RSB up to αGa, but not thereafter. Our main result is

a rigorous upper bound on this transition:

Theorem 1.1: For all k ≥ k0 (where k0 is an absolute

constant), if GN is an instance of random regular k-NAE-SAT

on N variables subject to Nα constraints (Definition 1.2),

and E is expectation over GN , then the quantity

lim inf
N→∞

{
E[emin(GN )]− e1RSB(α)

}
(1)

is well-defined and nonnegative for all αsat ≤ α ≤ 4k/k. It is

strictly positive for all αGa ≤ α ≤ 4k/k where αGa 
 4k/k3.

The formal characterizations of e1RSB(α) and αGa appear

below in Propositions 7.2 and 8.1.

We will see soon (§II) that the ground state energy is

naturally parametrized as

emin =
α(1− pmax)

2k−1

for 0 ≤ pmax ≤ 1. The first assertion of the theorem,

the nonnegativity of (1), improves on the best previous

upper bound on pmax by a factor 1 − Ω(x) where the

correction Ω(x) reflects the typical sizes of clusters of near-

max-satisfiable configurations. We give the basic intuition

for this correction in §III, and show in (12) that in the

regime 2kk2 �k α �k 4k/k we expect a correction

x ≥ Ω(1/d1/2). In the full version of the paper we state

a more precise bound for all αsat ≤ α ≤ 4k/k.

The result relies on an abstract “interpolation bound”

proved in [8], which was adapted from a combination

of prior works [30]–[34]. Its main consequence, for our

purpose, is stated in Proposition 9.1 below; it involves an

optimization over parameters 0 ≤ y1 ≤ y2 and over a

large space of probability measures Q. We prove Theo-

rem 1.1 by direct analysis of the bound in a specific region

of (y1, y2, Q). This seems to bear some resemblance to

approaches of [23], [35], although only at a high level.

Our explicit choice of perturbation is based on the “bug

proliferation” mechanism proposed by physicists [27], [28],

which we detail in the introductory section below. We leave

as an open question to prove the matching lower bound,

i.e., to show that limN E[emin(GN )] = e1RSB(α) for all

αsat ≤ α ≤ αGa.

In the remainder of this introductory section we present

some guiding heuristics for this model, leading to the formal

definitions of e1RSB(α) and αGa. Our discussion is based

primarily on [17], together with the two papers from the

physics literature that describe the bug proliferation mecha-

nism: of the latter, one studies a similar model as here for

k = 3, 4 [27], while the other studies the q-coloring model

[28]. We will focus on the combinatorial intuition for k-

NAE-SAT which simplifies when k is large. At the end of

this section we outline the proof of Theorem 1.1. Before

proceeding further, we formally define the model:

Definition 1.2 (random regular NAE-SAT): Let d, k be

positive integers, and assume N is a positive integer such

that M = Nd/k is also integer. A random d-regular k-
NAE-SAT instance on N variables is encoded by a random

bipartite graph GN . The vertex set of GN is partitioned into

V = {v1, . . . , vN} (variables) and F = {a1, . . . , aM} (con-

straints or clauses). The two sets V, F are joined by a set E
of random edges, generated according to the “configuration

model”: give d half-edges to each v ∈ V , give k half-edges

to each a ∈ F , then take a uniformly random matching

between the V -incident and F -incident half-edges to form a

total of Nd =Mk edges. Note that the sampling procedure

can result in multi-edges, so GN is more precisely a multi-

graph. Finally, assign to each e ∈ E an independent label

Le sampled uniformly from {0, 1}. We denote the instance

as GN = (V, F,E,L). For e ∈ E we write v(e) for the

incident variable, and a(e) for the incident clause. We write

∇̂e ≡ δa(e) \ e
= {edges incident to e through a clause} ,

∇̇e ≡ δv(e) \ e
= {edges incident to e through a variable} .

For any variable v ∈ V we write δv for the ordered d-

tuple of edges incident to v, and ∂v for the ordered d-tuple

of clauses (a(e))e∈δv . For any clause a ∈ F we write δa
for the ordered k-tuple of edges incident to a, and ∂a for

the ordered k-tuple of variables (v(e))d∈δa. If a ∈ F and

v ∈ V are neighbors joined by a single edge e (as will most

often be the case) then we write e ≡ (av). Given a variable

assignment x ∈ {0, 1}N , a clause a ∈ F is violated if and
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only if the k-tuple (Le⊕xv(e))e∈δa is all equal (all 0 entries

or all 1 entries). A solution of GN is a variable assignment

x ∈ {0, 1}N that violates no clauses.

Definition 1.3 (energy lanscape, max-satisfiable value):
Given an instance GN generated as in Definition 1.2, its

energy landscape or Hamiltonian is simply the total count

of violated clauses: for x ∈ {0, 1}N ,

HN (x) ≡
∑
a∈F

Ha(x) , (2)

Ha(x) ≡ 1

{
#
{
e ∈ δa : Le ⊕ xv(e) = 1

}
∈ {0, k}

}
.

Note that HN is a random function on {0, 1}N determined

by the instance GN . The solutions of GN are precisely the

zeroes of HN . The max-satisfiable value (ground state
energy) of GN is

emin(GN ) ≡ Emin(GN )

N

≡ 1

N
min

{
HN (x) : x ∈ {0, 1}N

}
.

Note that 0 ≤ emin(GN ) ≤ α ≡ d/k, and emin(GN ) is

positive if and only if GN has no proper solutions. Let

α(1− p•(α))
2k

≡ e•(α) ≡ lim inf
N→∞

E[emin(GN )]

≤ lim sup
N→∞

E[emin(GN )] ≡ e•(α) ≡ α(1− p•(α))
2k

.

(If the two sides are equal we write e�(α) ≡ e•(α) = e•(α).)
We also write “αmax(p) ≤ α” to mean that p•(α′) < p for

all α′ > α, and similarly “αmax(p) ≥ α” to mean that

p•(α′) > p for all α′ < α.

Remark 1.4: Physicists predict that a broad family of

random CSPs (including (NAE-)SAT, proper coloring, and

independent set) exhibit qualitatively similar phase diagrams

( [1] and refs. therein). The existing rigorous literature has

proved different aspects of these predictions in different

models, including for at least six closely related variants

of the model specified in Definition 1.2: namely, random

regular k-NAE-SAT, random k-NAE-SAT, random regular k-

SAT, random k-SAT, random regular k-hypergraph bicolor-

ing, random k-hypergraph bicoloring. Throughout this intro-

duction, to simplify the discussion we will (nonrigorously)

transfer all existing results to the setting of random regular

k-NAE-SAT. It is not unreasonable to expect that a result

proved in any of the other models can be reproved in random

regular k-NAE-SAT, which is mathematically the simplest of

all the six. Certainly, however, none of our formal results

relies on this assumption.

To explain the basic intuitions underlying this paper, in §II
we review the first moment bound of [17] in the setting of

random regular k-NAE-SAT. We then explain in §III why

the first moment bound is loose, and a rough heuristic

correction. In §IV we explain that when α is not too large

the heuristic correction is a reasonable approximation, but

it should fail beyond some threshold α 
 4k/k3. In §V
and §VI we explain the more refined heuristic provided

by the 1RSB combinatorial framework. This leads to the

formal definitions of e1RSB(α) and αGa, in §VII and §VIII

respectively. Finally, in §IX we state the interpolation bound

and describe the proof approach.

II. FIRST MOMENT BOUND

Throughout this paper we write fn,k 
 gn,k to indicate

that C−1 ≤ fn,k/gn,k ≤ C for a constant C not depending

on n, k. We write f �k g to indicate that limk→∞ f/g = 0.

We parametrize

c ≡ α

2k−1 ln 2
, e ≡ α(1− p)

2k−1
. (3)

To explain the above parametrization of e, consider an

instance GN of d-regular random k-NAE-SAT, and let

HN be its Hamiltonian defined by (2) above. For any

fixed x ∈ {0, 1}N , the number of constraints that it

violates is distributed as HN (x) ∼ Bin(M, 1/2k−1), so

EHN (x)/N = α/2k−1. Therefore it is certainly the case

that E[emin(GN )] ≤ α/2k−1, so it is natural to parametrize

energies as in (3). Now, following [17], for any given energy

level 0 ≤ e ≤ α, and any 0 < η ≤ 1, we can consider

Xe,η =
∑

x∈{0,1}N
1

{
HN (x)

N
≤ e

}
ηHN (x)

ηNe

≥ #

{
x ∈ {0, 1}N :

HN (x)

N
≤ e

}
≡ Ye . (4)

If E is expectation over the random instance GN , then

EXe,η ≤ E

∑
x∈{0,1}N

ηHN (x)

ηNe =
2N

ηNe

{
1− 2

2k
+
2η

2k

}Nα

= exp

{
N fη(α, e)

}
. (5)

If α, e are fixed, a stationary point of f as a function of η is

given by

η = η(α, e) =
e(2k−1 − 1)

α− e

=
(1− p)(2k−1 − 1)

2k−1 − (1− p)
≡ η(p) . (6)

Setting fη(p)(α, e) = 0 gives α = αubd(p) ≡ c(p) · 2k−1 ln 2
where

c(p) ≤ 1

p + (1− p) ln(1− p)
. (7)

Note that c(p) is strictly decreasing with respect to p, since

d

dp
1

c(p)
= ln

2k−1 − (1− p)
(2k−1 − 1)(1− p)

> 0 .
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We have c(p) ↑ ∞ as p ↓ 0, and

c(1) =
1

−2k−1 ln(1− 1/2k−1)
= 1−Θ(2−k) .

Therefore the inverse function is well-defined for all α ≥
c(1)2k−1 ln 2, and we denote it as

elbd(α) ≡ α(1− pubd(α))

2k−1
≡ (αubd)

−1(α) . (8)

Since fη is decreasing in α, we conclude that fη(p)(α, e) < 0
for all α > αubd(p). For any such α, Markov’s inequality

gives that P(Ye > 0) ≤ EYe ≤ EXe,η is exponentially small

with respect to N . We can summarize the above as

Lemma 2.1: If GN is random regular k-NAE-SAT on N
variables subject to Nα constraints, then

lim inf
N→∞

E[emin(GN )]

= lim inf
N→∞

E

[
min

{
e ≥ 0 : Ye > 0

}]
≥ elbd(α) (9)

as defined by (8). (In the shorthand of Definition 1.2, we

have e•(α) ≥ elbd(α).)
Lemma 2.1 is the first moment bound from [17], trans-

ferred to the setting of regular NAE-SAT. Recalling (3), if c
is large then the expression (8) for pubd can be approximated

by

1

c
= g(pubd) = pubd + (1− pubd) ln(1− pubd)

=
(pubd)

2

2

{
1 +O(pubd)

}
,

so that pubd = (2/c)1/2 + O(1/c). We point out that [17]

studies the more difficult model of random k-SAT, and their

main result is a much more challenging lower bound, which

is done by the second moment method. Translating their full

result to our model would give

αubd(p)
{
1 +O

(
k

2k/2

)}
≤ αmax(p) ≤ αubd(p) . (10)

We will not seek to rigorously prove the lower bound in (10),

since we expect it to be easier than the lower bound already

achieved by [17]. The more interesting open problem is to

establish that e1RSB(α) is tight for α ≤ αGa.

III. CLUSTERING OF NEAR-MAX-SATISFIABLE

CONFIGURATIONS

We next describe the intuition for why the first moment

bound (9) cannot be exactly sharp. Suppose for the sake

of argument that it is. Let e = elbd and η = η(pubd)
as above. Any x ∈ {0, 1}N that contributes to Xe,η will

be max-satisfiable, so it certainly must satisfy the weaker

condition of being locally max-satisfiable, in the sense that

flipping any single variable xv cannot decrease the number

of violated constraints. Explicitly, let F0 be the number of

clauses incident to v which are satisfied only if xv = 0:

F0 = #

{
e ∈ δv : #

{
g ∈ ∇̂(e) such that

Le ⊕ Lg ⊕ xv(g) = 1

}
= k − 1

}
,

and similarly F1. The spin xv = 0 is locally max-satisfiable

if and only if F0 ≥ F1. Let Xe,η(x, �0, �1) denote the con-

tribution to Xe,η from configurations x with (xv, F0, F1) =
(x, �0, �1). By taking expectation only over the edge labels

Le around the clauses neighboring v, we find

E

{
Xe,η(0, �0, �1)

}
= CN1{�0 ≥ �1}

(
d

�0, �1

)

×
(
1− 4

2k

)d−�0−�1( 2

2k

)�0(2η
2k

)�1

(11)

where CN is a factor not depending on �0, �1, and for any

a1 + . . .+ at ≤ b we abbreviate(
b

a1, . . . , at

)
=

b!

a1! · · · at!(b− a1 − . . .− at)!
.

Summing (11) over �0 ≥ �1, we find that the total expected

contribution to Xe,η from configurations with xv = 0 is

E

{
Xe,η(xv = 0)

}

= CN

∑
0≤�≤d

(
d

�

)(
1− 4

2k

)d−�(
2(1 + η)

2k

)�

Pη,�

where

Pη,� = P

(
Bin

(
�,

η

1 + η

)
≤ �

2

)
.

Simply using the crude bound 1/2 ≤ Pη,� ≤ 1 gives

E

{
Xe,η(xv = 0)

}

 CN

(
1− 4

2k
+
2(1 + η)

2k

)d

.

Now note that if F0 = F1 then variable v is free, meaning

that flipping xv alone does not change the total number of

violated constraints. Summing (11) over �0 = �1 = �/2 gives

E

{
Xe,η(xv = 0, v is free)

}

= CN

∑
� even

(
d

�

)(
1− 4

2k

)d−�(
4η1/2

2k

)�

P�

where P� = P(Bin(�, 1/2) = �/2) 
 1/�1/2. Now assume

that c is large, so p is small and we see from (6) that η 
 1.

Without the factor P�, the above sum is dominated by � 

dη1/2/2k 
 d/2k. Accounting for P� results in

E

{
Xe,η(xv = 0, v is free)

}


 CN

(d/2k)1/2

(
1− 4

2k
+
4η1/2

2k

)d

.
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(A more careful version of this calculation appears in the

full version of the paper.) This would suggest the typical

fraction of variables that are free is something like

πf 
 E[Xe,η(xv = 0, v is free)]

E[Xe,η(xv = 0)]


 1

(d/2k)1/2

(
1− 4

2k
+
4η1/2

2k

)d

÷
(
1− 4

2k
+
2(1 + η)

2k

)d

=
1

(d/2k)1/2

(
1− 2(1− η1/2)2/2k

1− 4/2k + 2(1 + η)/2k

)d

,

If we assume that k2 �k c �k 2k/k, then the above

simplifies to

πf 
 1

(d/2k)1/2

(
1− 2

2kc

[
1 +O

(
1

c1/2

)])d

=
1

(d/2k)1/2
exp

{
− d

2k−1c

[
1 +O

(
1

c1/2

)]}


 1

d1/2
.

Suppose the configuration x has order N/d1/2 free variables.

Suppose for simplicity that they do not interact, meaning

that flipping any subset of free variables does not change
the total number of violated constraints. We will examine

the validity of this supposition in §IV, but we simply grant it

for now. This would mean that for a typical max-satisfiable

configuration x we can find at least 2Nπf nearby configu-

rations x′ with HN (x) = HN (x
′). But this would mean

EXe,η ≥ 2Nπf , in contradiction with our choice of e = elbd

and η = η(pubd) which ensures that EXe,η is exponentially

small in N . This suggests that elbd (or equivalently its inverse

αubd) cannot be tight bounds; our main theorem verifies this

by establishing the lower bound e•(α) > elbd(α). The above

calculation suggests that exp{N fη(α, e)} overestimates the

typical value of Xe,η by at least a factor 2Nπf where πf 

1/d1/2, which suggests, in the regime k2 �k c �k 2k/k
(equivalently 2kk2 �k α� 4k/k), that

αmax(p) ≤
{
1− Ω

(
1

d1/2

)}
αubd(p) . (12)

In the full version of the paper, we prove a rigorous bound

which covers the full regime αsat ≤ α ≤ 4k/k, and agrees

with (12) for k2 �k c �k 2
k/k. In fact in this regime we

conjecture the estimate Ω(1/d1/2) to be tight.

IV. PERCOLATION OF DEPENDENT FREE VARIABLES

We now revisit the above assumption that the free vari-

ables do not interact. Take a clause a with no incident multi-

edges (as will be the case for most clauses), and suppose it

neighbors two free variables v �= w. If the values of Lau⊕xu

for u ∈ ∂a \ {v, w} are all 0 or all 1, then xv and xw

are linked, meaning they cannot both be arbitrarily flipped

without increasing the number of violated constraints. For a

free variable v, the number of linked free variables w sharing

a clause with v is (on average, heuristically)

r =

{
(d− 1)(k − 1)

}
× πf × 1

2k−2

 d1/2k

2k
, (13)

where the factor (d− 1)(k − 1) accounts for the branching

factor of the underlying graph GN . We view the process

of linked free variables as a dependent percolation on GN

spreading at rate r given by (13). As long as the rate is

small, corresponding to d�k 4
k/k2 or

α�k
4k

k3
,

we would expect the percolation to be subcritical, in the

sense that the free subgraph — the subgraph of GN induced

by free variables and linking clauses — is mostly a forest
of Õ(1)-sized trees. Moreover, roughly a (1− r)-fraction of

free variables should be isolated (not linked to any other

frees), so for small r it is a reasonable approximation to

assume that none of the free variables interact.

As we detail in §V below, in the context of the cur-

rent problem, the 1RSB framework is simply a convenient

combinatorial model for the free subgraph, which captures

the effect of free variables on the total energy in a well-

organized manner. It yields the prediction that the limiting

ground state energy is exactly e1RSB(α), where e1RSB(α)
is an explicit function defined below in Proposition 7.2.

The threshold αGa, given formally by Proposition 8.1, is

an explicit prediction of the exact percolation threshold for

the 1RSB combinatorial model. The derivation of e1RSB(α)
relies crucially on the assumption that the free subgraph is
essentially a forest, which should not be the case beyond

αGa. This is the basic intuition for our main result which

verifies that e1RSB(α) is indeed incorrect beyond αGa.

We remark that it is a much more challenging problem

to obtain a sharper estimate of the asymptotic ground state

energy in the regime α > αGa. The main result that we

know of was obtained for the random k-SAT model [19] (see

also [18]) by comparison with mean-field limits [21], [22];

from the discussion in [19] the estimate requires roughly

α ≥ Ω(64k). A related result was obtained for the max-

cut problem by [36], for random graphs of large degree.

It remains a difficult challenge to understand the regime

between the mean-field (i.e., complete graph) limits and αGa.

Having laid out the basic intuitions for the model, we next

proceed to define the 1RSB combinatorial framework. We

emphasize that the 1RSB model itself is a heuristic, which

plays no formal role in the proof of our main result. We

introduce it because it is the quickest way to motivate the

exact definitions of e1RSB and αGa. We point to [37] for

an introductory account and further references on the 1RSB

framework.
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V. COMBINATORIAL MODEL OF NEAR-MAX-SATISFIABLE

CLUSTERS

Following our earlier discussion, we now restrict attention

to the subspace Q(GN ) ⊆ {0, 1}N of configurations that are

locally max-satisfiable. Define a graph on vertex set Q by

putting an edge between x and x′ if and only if they differ in

a single coordinate and HN (x) = HN (x
′). A (locally max-

satisfiable) cluster is any subset ω ⊆ Q that constitutes

a maximal connected component in that graph. The 1RSB

heuristic models a cluster as follows:

Definition 5.1 (warning configurations): Suppose GN =
(V, F,E,L) is any d-regular k-NAE-SAT problem instance.

A warning configuration on GN is an element w ∈
{0, 1, f}2E which assigns a pair we ≡ (ẇe, ŵe) to each edge

e ∈ E, satisfying conditions that we now specify. We take

the convention throughout that x⊕ f ≡ f. Define

�x(ŵ1, . . . , ŵd−1) ≡ #

{
1 ≤ i ≤ d− 1 : ŵi = x

}
.

Then w is a valid warning configuration if and only if it

satisfies variable relations

ẇe = ẆP
(

ŵg : g ∈ ∇̇(e)
)

(14)

=

⎧⎪⎨
⎪⎩

0 �0(ŵg : g ∈ ∇̇(e)) > �1(ŵg : g ∈ ∇̇(e)) ,
1 �0(ŵg : g ∈ ∇̇(e)) < �1(ŵg : g ∈ ∇̇(e)) ,
f �0(ŵg : g ∈ ∇̇(e)) = �1(ŵg : g ∈ ∇̇(e)) ,

as well as clause relations

ŵe = ŴP
(

ẇg : g ∈ ∇̂(e)
)

(15)

=

⎧⎪⎨
⎪⎩

0 Lg ⊕ ẇg = Le ⊕ 1 for all g ∈ ∇̂(e) ,
1 Lg ⊕ ẇg = Le ⊕ 0 for all g ∈ ∇̂(e) ,
f otherwise ,

for all e ∈ E. We may write ŴP ≡ ŴPk−1 and ẆP ≡ ẆPd−1

to emphasize the number of arguments. Given w let

y ≡ y(w) ≡
(

ẆPd(ŵe : e ∈ δv)

)
v∈V

∈ {0, 1, f}N .

If #{v ∈ V : yv = f} ≤ N/k2 then we say that w is

near-frozen.

Under the 1RSB heuristic, there is essentially a bijective

correspondence{
locally max-satisfiable

clusters ω ⊆ Q ⊆ {0, 1}N
}

(16)

↔
{

near-frozen warning

configurations w ∈ {0, 1, f}2E
}

between clusters ω and near-frozen warning configurations

w. A loose characterization of the correspondence is that y ≡
y(w) encodes the smallest subcube of {0, 1}N containing ω:

yv ∈ {0, 1} if and only if xv = yv for all x ∈ ω, and yv = f

if and only if xv takes both values {0, 1}. A more precise

interpretation is that

ẇe = variable-to-clause warning along e
= locally optimal choice within ω

of xv(e) in absence of edge e,

ŵe = clause-to-variable warning along e
= locally optimal choice within ω

of xv(e) “in absence of” edges ∇̇(e),
where f means that both spins {0, 1} are locally optimal.

Under this interpretation, the ẇ, ŵ must then satisfy lo-

cal consistency relations, which are the so-called warning
propagation (WP) equations (15) and (14). The near-frozen

restriction rules out configurations such as w = f2E (all

messages f) which we do not expect to correspond to any

actual cluster.

VI. TREE FORMULA FOR THE MAX-SATISFIABLE VALUE

To give an explicit calculation, let τ = (V ′, F ′, E′) be

a finite bipartite tree (representing an O(1)-sized subgraph

of GN ) with variables at its leaves. Say τ has a frozen
boundary, in the sense that ẇe ∈ {0, 1} is fixed at every leaf

edge e. By applying the maps ŴP, ẆP recursively inwards

from the leaves, we see that there is exactly one valid

warning configuration w on τ that is consistent with the

boundary condition. Let Emin(τ) be the minimum number

of clauses violated by any configuration x ∈ {0, 1}V ′
with

xv(e) = ẇe at the leaves. We next explain that Emin(τ)
can be computed by a simple dynamic-programming-type

method.

Let E′′ be the set of non-leaf edges of τ . For any e ∈ E′′

we let τ̂e be the component containing a(e) in τ \ ∇̇(e),
and let τ̇e be the component containing v(e) in τ \ e. Let

Êe = Emin(τ̂e) and Ėe = Emin(τ̇e). If V ′′ denotes the non-

leaf variables of τ , around any v ∈ V ′′ we have

Emin(τ) = ϕ̇(ŵδv) +
∑
e∈δv

Êe , (17)

ϕ̇(ŵδv) ≡ min

{
�0(ŵδv), �1(ŵδv)

}
.

Similarly, around any clause a ∈ F ′, we have

Emin(τ) = ϕ̂(L⊕ ẇδa) +
∑
e∈δa

Ėe , (18)

ϕ̂(L⊕ ẇδa) ≡ 1

{
ŴPk(L⊕ ẇδa) �= f

}
.

We sometimes write ϕ̇ ≡ ϕ̇d and ϕ̂ ≡ ϕ̂k to emphasize the

number of arguments. Finally, for any e ∈ E′′ we have

Emin(τ) = ϕ̄(we) + Ėe + Êe , (19)

ϕ̄(we) ≡ 1

{
ẇe ⊕ ŵe = 1

}
.
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By summing over the internal vertices and subtracting over

the internal edges, we arrive at∑
v∈V ′′

ϕ̇(ŵδv) +
∑
a∈F ′

ϕ̂(L⊕ ẇδa)−
∑
e∈E′′

ϕ̄(we)

=

(
#V ′′ +#F ′ −#E′′

)
Emin(τ) = Emin(τ) , (20)

where the last equality uses that τ is a tree. Thus the max-

satisfiable value of a tree with frozen boundary is a sum of

local functionals ϕ̇, ϕ̂, ϕ̄ of the warning configuration.

The 1RSB heuristic further assumes that for near-frozen

warning configurations, the entire graph GN = (V, F,E,L)
can essentially be carved into trees with frozen boundaries.

(In reality, even in the regime where free variables do not

percolate, a typical warning configuration may contain a

bounded number of small cycles of free warnings which

do not admit a tree decomposition. However these few

cycles should only affect the number of violated clauses

by O(1), so can be ignored in the heuristic analysis.)

Then, by summing (20) over the components of the tree

decomposition, we conclude that w corresponds to a cluster

ω ⊆ {0, 1}N at energy level

Emin(ω;GN ) ≡ min

{
HN (x) : x ∈ ω

}
= ϕ(w)

≡
∑
v∈V

ϕ̇(ŵδv) +
∑
a∈F

ϕ̂(L⊕ ẇδa)−
∑
e∈E

ϕ̄(we) . (21)

This is the main advantage of the w encoding; it allows us

to read off Emin(ω;GN ) as a sum of local terms.

VII. EXPLICIT 1RSB PREDICTION

Going back to the bijection (16), we can take a parameter

y ≥ 0 and consider

Z(y) =
∑
ω

exp

{
− yEmin(ω;GN )

}

=
∑

w

exp

{
− yϕ(w)

}
(22)

where the first sum goes over clusters, while the second

sum goes over near-frozen warning configurations. The cor-

responding probability measure on warning configurations

is given by

μy(w) =
exp{−yϕ(w)}

Z(y)
. (23)

This is sometimes called the survey propagation or SPy

model, and can be viewed as a refinement of the reweighting

ηHN (x) discussed in §II. The “lifting” from ηHN (x) to

e−yϕ(w) represents one level of replica symmetry breaking.

The 1RSB solution to the original model is given by the

replica symmetric solution to the “lifted” model (23). This

sometimes goes by the name of survey propagation (SP). In

particular, the 1RSB (SP) equations are simply the replica
symmetric or belief propagation (BP) equations for the

lifted model. They can be defined as a pair of mappings

on the space

M≡
{

probability measures q on {0, 1, f}
satisfying q(0) = q(1)

}
. (24)

The clause survey propagation takes q̇ ∈M and outputs

[ṠPy(q̇)](ŵ) =
∑

ẇ

1

{
ŵ = ŴPk−1(ẇ)

} k−1∏
i=1

q̇(ẇi) , (25)

where the sum goes over ẇ ∈ {0, 1, f}k−1, and ṠPy(q̇) is a

probability measure on {0, 1, f}, and in fact ṠPy(q̇) ∈ M.

The variable survey propagation takes q̂ ∈M and outputs

[ŜPy(q̂)](ẇ) (26)

=
1

ż

∑
ŵ

1

{
ẇ = ẆPd−1(ŵ)

} ∏d−1
i=1 q̂(ŵi)

exp{yϕ̇d−1(ŵ)} ,

where the sum is over ŵ ∈ {0, 1, f}d−1, and ż is the

normalization such that ŜPy(q̂) ∈M. Let SPy ≡ ŜPy ◦ ṠPy .

Now, recalling (3), we hereafter restrict consideration to

parameters y ≥ 0 satisfying

γ ≡ 2c

(
1− 1

ey/2

)2


 1 . (27)

Note γ 
 cmin{1, y2}. If c is large then (27) forces y 

1/c1/2. If c 
 1 then it only forces that y ≥ Ω(1). Define

M• ≡
{
q ∈M : q(f) ≤ 1

k2

}
, (28)

Mγ ≡
{
q ∈M• : q(f) 
 2−kγ/2

(max{cke−y/2, 1})1/2
}
. (29)

We prove the following result on fixed points of the SPy

recursion:

Proposition 7.1 (proved in full version): Suppose α =
c2k−1 ln 2 with αsat ≤ α ≤ 4k/k, and suppose y ≥ 0
satisfies (27). Then in the set M• there is a unique q̇y
satisfying the fixed-point equation q̇y = SPy(q̇y). It must

further lie in the smaller domain Mγ .

Let q̇ = q̇y be as given by Proposition 7.1, and denote q̂ ≡
q̂y ≡ ṠPy(q̇y). Recall the local functionals ϕ̇, ϕ̂, ϕ̄ from

(17), (18), (19). We can define three probability measures

— ν̇y over ŵ ∈ {0, 1, f}d, ν̂y over ẇ ∈ {0, 1, f}k, and lastly

ν̄y over w = (ẇ, ŵ) ∈ {0, 1, f}2 — as follows:

ν̇y(ŵ) =
1

ży(q̂)
exp

{
− yϕ̇d(ŵ)

} d∏
i=1

q̂(ŵi) , (30)

ν̂y(ẇ) =
1

ẑy(q̇)
exp

{
− yϕ̂k(ẇ)

} k∏
i=1

q̇(ẇi) , (31)

ν̄y(w) =
1

z̄y(q̇, q̂)
exp

{
− ϕ̄(ẇ, ŵ)

}
q̇(ẇ)q̂(ŵ) . (32)
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Under the SP heuristic, the local marginals of the measure

(23) are approximately given by the ν: for instance,

μy

(
w ∈ {0, 1, f}2E : ŵδv = ŵ

)
≈ ν̇y(ŵ) .

The corresponding energy level can be obtained by averag-

ing (21) with respect to the ν: this gives

e(y) =
∑

ŵ

ϕ̇d(ŵ)ν̇y(ŵ) + α
∑

ẇ

ϕ̂k(ẇ)ν̂y(ẇ)

− d
∑

w

ϕ̄(w)ν̄y(w) . (33)

The SP heuristic further predicts that N−1 lnZ(y) converges

(for a suitable range of y) to the replica symmetric formula,

F(y) = ln ży(q̂) + α

{
ln ẑy(q̇)− k ln z̄y(q̇, q̂)

}
, (34)

where ży , ẑy , and z̄y are the normalizing constants from (30),

(31), and (32). Now, returning to (22), suppose that we had

an “energetic complexity function” function Σ such that

Ye ≡ #

{
w : ϕ(w) ≈ Ne

}
≈ EYe ≈ exp

{
NΣ(e)

}

where the interpretation for Σ(e) < 0 is that EYe is

exponentially small with respect to N so Ye = 0 whp. Then

we would expect

exp

{
NF(y)

}
≈ Z(y)

≈ exp

{
N max

e

{
Σ(e)− ye : Σ(e) ≥ 0

}}
,

that is to say, given Σ we can obtain F by taking the

Legendre dual. Of course, we are in the opposite situation:

we already obtained explicit expressions (33) and (34) for

e(y) and F(y), but we do not know Σ. We therefore formally

define the energetic complexity function as S(y) = F(y)+
ye(y). (While the informal complexity Σ is a function of e,

the formal complexity S is a function of y.) Recall (27) and

let

Γ(y) ≡ c

(
1− 1 + y

ey

)
. (35)

It is straightforward to verify that γ(y)/2 ≤ Γ(y) ≤ γ(y)
for all y ≥ 0; see Figure 1a. For small y (corresponding, via

(27), to large c) we have

Γ(y) = γ(y)

{
1−O(y)

}
.

For y ≥ Ω(1) (corresponding, via (27), to c 
 1) we have

instead

2Γ(y) = γ(y)

{
1 +O(e−y/2)

}
.

The following proposition formally defines the 1RSB for-

mula.

Proposition 7.2 (proved in full version): Suppose k ≥
k0 and αsat ≤ α ≤ 4k/k; and denote c = α/(2k−1 ln 2).
Then, on the range of y satisfying (27), the function S(y) =
F(y)+ye(y) is smooth and strictly decreasing, with a unique

root y� = y�(α). With Γ(y) as defined by (35), this root

satisfies the estimate

Γ(y�) = 1 +O

(
1

eΩ(k)

)
. (36)

The 1RSB ground state energy can be defined as

e1RSB(α) ≡ e(y�(α)) (37)

= − inf
{
F(y)

y
: y ≥ 0 , y satisfies (27)

}

(the equivalence of the last two quantities will be proved).

0 5 10

0

1

2

(a) γ(y)/2 ≤ Γ(y) ≤ γ(y) for all y ≥ 0.
Γ(y�)

.
= 1 for both RS and 1RSB solutions (36).

1 30

1

2

(b) Upper curve: γ(y�) as a function of c ≥ 1.
Lower curve: exp(−y�) as a function of c ≥ 1.

Figure 1: Approximate parameters of the 1RSB solution. At
clause density α = c2k−1 ln 2, the max-satisfiable value is

e = α(1− p)/2k−1 where 1− p .
= η

.
= e−y is given

approximately by the lower curve in panel (B). At this precision
it is consistent with the replica symmetric (RS) solution (cf. the
estimate of [17]). A more precise comparison between RS and

1RSB is given in the full version of the paper.

To show that S is decreasing in y, we will in fact show that

S′(y) = ye′(y) = −yF′′(y) < 0. In the full version of the

paper, we also review the physical interpretation of F′′(y).
We remark that the estimate (36) is a rather lossy approxi-

mation of e1RSB(α). In fact, on its own it does not carry more
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information than the first moment [17] bound: observe from

(6) that η = η(p) = (1− p)[1+O(p/2k)]. Substituting into

(7) gives

1

c(p)
=

(
1− η + η ln η

){
1 +O

(
1

eΩ(k)

)}

=

(
1− 1 + y

ey

){
1 +O

(
1

eΩ(k)

)}
, (38)

simply by taking y = − ln η. Thus more care is needed

to obtain a comparison such as (12) with the first moment.

Towards this end, let us comment briefly on what Proposi-

tion 7.2 implies for q̇(f). Recall from Proposition 7.1 that

q̇ = q̇y ∈Mγ , meaning (see (29)) that

q̇(f) 
 2−kγ/2

(max{cke−y/2, 1})1/2


 1

2kγ/2

(
min

{
ey/2min{1, y2}

k
, 1

})1/2

≤ O

(
1

2kγ/2

)

for γ = γ(y). It follows from (27) that cke−y/2 = O(1) if

and only if y ≥ 2 ln k−O(1). For such y� ≥ 2 ln k−O(1),
the estimate (36) implies

c = Γ(y�)

(
1− 1 + y�

ey�

)−1

= 1− O(ln k)

k2
,

meaning α is only slightly above the satisfiability threshold.

In this regime

kγ(y�)

2
=

kγ(y�)

2Γ(y�)
Γ(y�)

= k

{
1 +O

(
1

ey�/2

)}{
1 +O

(
1

eΩ(k)

)}
= k +O(1) ,

so q̇(f) 
 2−k. This is consistent with estimates slightly

below the satisfiability threshold obtained by [7].

We now discuss y ≤ 2 ln k + O(1). In general, for any

fixed c the value Γ(y) is strictly increasing in y, therefore

y� must be roughly decreasing with c (modulo the error

in the estimate (36)). The ratio γ(y)/Γ(y) is a function of

y alone, and is increasing in y. Therefore, as c increases,

γ(y�)
.
= γ(y�)/Γ(y�) decreases smoothly, from γ

.
= 2 to

γ
.
= 1 (Figure 1b). For Ω(1/k2) ≤ y ≤ 2 ln k + O(1) we

have q̇(f) = kO(1)/2kγ/2, which is roughly increasing as

c decreases if we ignore the kO(1) factor. Finally, if y =
O(1/k2) then

kγ(y�)

2
=

kγ(y�)

2Γ(y�)
Γ(y�)

=
k

2

{
1 +O(y)

}{
1 +O

(
1

eΩ(k)

)}
=

k

2
+O(1) ,

so in this regime we have

q̇(f) 
 y

(2kk)1/2

 1

(2kck)1/2

 1

d1/2
, (39)

which matches with (12).

VIII. EXPLICIT GARDNER THRESHOLD

We now describe the exact predicted threshold αGa for the

stability of the 1RSB solution. Recall the loose calculation

(13) of the branching rate of linked frees. One can refine

this by considering the rate of “bug proliferation” [27], [28]

in the warning model: if a warning incoming to a vertex is

changed, it may change an outgoing warning, and one can

calculate the branching rate of this process. Explicitly, let(
ẇai : 2 ≤ a ≤ d, 2 ≤ i ≤ k

)

≡ (ẇj)1≤j≤b ≡ ẇ1:b ∈ {0, 1, f}b

where we have abused notation and made the identification

ẇai ≡ ẇ(a−2)(k−1)+(i−1). Recall the mappings ẆP and ŴP
defined in (14) and (15). Define ŵa ≡ ŴP(ẇa,2, . . . , ẇa,k)
for each 2 ≤ a ≤ d, and then let

WP(ẇ1:b) ≡ ẆP(ŵ2, . . . , ŵd)
ϕ(ẇ1:b) ≡ ϕ̇(ŵ2, . . . , ŵd)

Let q̇y be as given by Proposition 7.1. Then, for v̇, ṙ, ẇ, ṡ ∈
{0, 1, f}, let

Bv̇ṙ,ẇṡ (40)

≡

∑
ẇ◦

1

{
v̇ = WP(ẇ, ẇ2:b)
ṙ = WP(ṡ, ẇ2:b)

}
q̇y(ẇ)

∏b
i=2 q̇y(ẇi)

exp{yϕ(ṡ, ẇ2:b)}
∑
ẇ1:b

1

{
v̇ = WP(ẇ1:b)

} ∏b
i=1 q̇y(ẇi)

exp{yϕ(ẇ1:b)}

.

This defines a 9×9 matrix B, which is the stability matrix
for our model. We let B �= be the 6× 6 submatrix with row

and column indices in {(ẇ, ṡ) : ẇ �= ṡ}, and let λ ≡ λy(α)
be the largest eigenvalue of B�=. The physics literature [27],

[28] proposes that the 1RSB solution is correct as long as

bλy(α) (a refinement of (13)) is less than one at y = y�(α).
We extract its large-k behavior in the following:

Proposition 8.1 (proved in full version): The Gardner
threshold αGa can be formally defined as

αGa ≡ sup

{
α ≤ 4k

k
: bλy�(α)(α) ≤ 1

}
,

where y�(α) is the root given by Proposition 7.1. The large-

k behavior is given by αGa 
 4k/k3.

IX. INTERPOLATION BOUND

As mentioned before, our proof of Theorem 1.1 is based

on a general interpolation upper bound, in the spirit of [30]–

[34]. The precise bound that we use, as we now describe, is

a generalization of a similar result in [8]. Let Ω be the space

of probability measures on {0, 1, f}. We write ρ for elements
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of Ω, and Q for probability measures over Ω. Similarly as

above, we will abuse notation and write(
ẇai : 1 ≤ a ≤ d, 2 ≤ i ≤ k

)
≡ (ẇj)1≤j≤D ≡ ẇ1:D

where D ≡ d(k − 1). Let ŵa ≡ ŴP(ẇa,2, . . . , ẇa,k) and

ϕ(ẇ1:D) ≡ ϕ̇d(ŵ1, . . . , ŵd). Define

G(y1, y2, Q) (41)

=

∫ {∑
ẇ1:k

∏k
j=1 ρj(ẇj)

exp(y2ϕ̂(ẇ1:k))

}y1/y2 k∏
j=1

dQ(ρj) ,

W(y1, y2, Q) (42)

=

∫ { ∑
ẇ1:D

∏D
i=1 ρi(ẇi)

exp(y2ϕ(ẇ1:D))

}y1/y2 D∏
i=1

dQ(ρi) .

For 0 ≤ y1 ≤ y2, the zero-temperature 2RSB functional
is defined by

Φ2RSB(y1, y2, Q) ≡ 1

y1
lnW(y1, y2, Q)

− α(k − 1)

y1
lnG(y1, y2, Q) . (43)

A heuristic derivation of Φ2RSB is presented in more detail

in the full version of the paper, but we briefly describe it

here. For simplicity assume α ≡ d/k is an integer, and

let GN be an instance of random d-regular k-NAE-SAT on

N variables. Remove α(k − 1) clauses and their incident

edges at random, and call the resulting graph GN+1/2: it is

still a k-NAE-SAT instance on N variables, but is no longer

d-regular since some variables have open “slots” (missing

edges). Then introduce a new variable v ≡ vN+1, together

with d new clauses. For each new clause, add one new edge

connecting the clause to v, and k− 1 new edges connecting

the clause to the open “slots” in GN+1/2. Then the resulting

graph GN+1 is an instance of random d-regular k-NAE-SAT

on N + 1 variables. For β ≥ 0 we can consider

μβ(x) ≡
exp{−βHN+1/2(x)}

ZN+1/2(β)
(44)

where ZN+1/2(β) is the normalizing constant that makes

μβ a probability measure over x ∈ {0, 1}N . The structure

of μβ is not known. However, by analogy with other

models [38]–[42], a natural simplifying assumption is that it

has a hierarchichal (ultrametric) structure with Poisson–

Dirichlet weights on each level of the hierarchy. This means

that the �-point marginals of μβ , for bounded �, converge

in the large-N limit to an explicit form: for a two-level

hierarchy,

μβ(x1, . . . , x�) ≈
∑
s,t≥1

νst

�∏
i=1

wst,i(xi) , (45)

where the wst,i are sampled recursively as follows. Let

P0 ≡ P be the space of probability measures over {0, 1},

and for r ≥ 1 let Pr be the space of probability measures

over Pr−1. Let Qβ ∈ P2. Let (rs,i)s,i be i.i.d. samples

from law Qβ . For each i and each s, let (wst,i)t≥1 be a

sequence of i.i.d. samples from rs,i. Note rs,i ∈ P1 so

wst,i ∈ P . Independently, (νst)s,t≥1 are random weights

sampled from the law of a Ruelle probability cascade
(RPC) with parameters 0 < m1 < m2 < 1 — a two-level

version of the standard Poisson–Dirichlet process (see [43,

Ch. 2] and the full version of this paper). Under assumption

(45), and taking β →∞ with miβ → yi, one has

lim
β→∞

1

β
ln

ZN (β)

ZN+1/2(β)
≈ α(k − 1)

y1
lnG(y1, y2, Q) ,

lim
β→∞

1

β
ln

ZN+1(β)

ZN+1/2(β)
≈ 1

y1
lnW(y1, y2, Q) ,

where Q is a probability measure over Ω, obtained as a

projection of Qβ . The basic idea is as follows: a.

1) Project w ∈ P to w ∈ {0, 1, f} where {w near 10}
maps to w = 0, {w near 11} maps to w = 1, and the

remaining w ∈ P map to w = f. Denote this mapping

π : P → {0, 1, f}.
2) Project r ∈ P1 to ρ ∈ Ω via the pushforward, ρ(w) =

(π�r)(w) = r(π−1(w)).
3) Project Qβ ∈ P2 to a probability measure Q over

Ω via another pushforward, Q = (π�)�Qβ = Qβ ◦
(π�)

−1.

The details are given in the full version of the paper. Com-

bining the above relations gives the heuristic approximation

− e� = lim
β→∞

1

Nβ
lnZN (β)

= lim
β→∞

1

β
ln

ZN+1(β)

ZN (β)
= Φ2RSB(y1, y2, Q) .

The following proposition shows that one side of the ap-

proximation can be made rigorous:

Proposition 9.1 (proved in full version): For any param-

eters 0 ≤ y1 ≤ y2 and any probability measure Q over

Ω, we have a corresponding zero-temperature 2RSB bound

−e• ≤ Φ2RSB(y1, y2, Q).

The detailed heuristic derivation of Φ2RSB, as well as the

proof of Proposition 9.1, are given in the full version of

the paper. There are two simple ways in which Φ2RSB can

degenerate: I.

1) The probability measure Q is fully supported on a

single element ρ ∈ Ω. In this case Φ2RSB(y1, y2, Q)
depends only on y2 and ρ, so we can define

Φ2RSB(y1, y2, Q) ≡ Φ1RSB(y2, ρ).
2) The probability measure Q decomposes as Q =

ρ0Q0+ρ1Q1+ρfQf where each Qẇ is fully supported

on the single element 1ẇ ∈ Ω. In this case we have

Φ2RSB(y1, y2, Q) = Φ1RSB(y1, ρ).
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Let q̇y be the solution of Proposition 7.1, and define

Q2 ≡ Q2,y ≡
∑

ẇ∈{0,1,f}
q̇y(ẇ)Qẇ (46)

where each Qẇ is the unit mass on 1ẇ ∈ Ω. One can verify

by straightforward algebraic manipulations that

Φ1RSB(y, q̇y) =
F(y)

y
.

Thus an immediate consequence of Proposition 9.1 is that

−e• is upper bounded by

Φ2RSB(y, y,Q2,y) = Φ1RSB(y, q̇y) =
F(y)

y
, (47)

throughout the range of y where q̇y is defined. It has been

observed in the physics literature [27], [28] that linearizing

the stationarity equations for the functional Φ2RSB (equiva-

lently, the 2RSB cavity equations)

∂Φ2RSB(y1, y2, Q)

∂Q
= 0

around Q = Q2 gives rise to the stability matrix B �=
introduced in §VIII. To prove Theorem 1.1, we show that

an explicit perturbation of (y, y,Q2) decreases the value

of Φ2RSB as soon as the top eigenvalue of B �= exceeds

1/b. While the physics literature certainly hints that this

would be the case, to our knowledge this rigorous connection

between the Gardner eigenvalue and the stability of the

2RSB functional has not been previously established.

FULL VERSION

The full version of this paper is arXiv:1904.08891.
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“Information-theoretic thresholds from the cavity method,”
Adv. Math., vol. 333, pp. 694–795, 2018. [Online]. Available:
https://doi.org/10.1016/j.aim.2018.05.029

[10] U. Feige, “Relations between average case complexity
and approximation complexity,” in Proc. 34th STOC.
ACM, New York, 2002, pp. 534–543. [Online]. Available:
https://doi.org/10.1145/509907.509985

[11] A. Coja-Oghlan, A. Goerdt, and A. Lanka, “Strong refutation
heuristics for random k-SAT,” Combin. Probab. Comput.,
vol. 16, no. 1, pp. 5–28, 2007. [Online]. Available:
https://doi.org/10.1017/S096354830600784X

[12] S. R. Allen, R. O’Donnell, and D. Witmer, “How to refute a
random CSP,” in Proc. 56th FOCS. IEEE, 2015, pp. 689–
708.

[13] D. Grigoriev, “Linear lower bound on degrees of
Positivstellensatz calculus proofs for the parity,” Theoret.
Comput. Sci., vol. 259, no. 1-2, pp. 613–622, 2001. [Online].
Available: https://doi.org/10.1016/S0304-3975(00)00157-2

[14] G. Schoenebeck, “Linear level Lasserre lower bounds for
certain k-CSPs,” in Proc. 49th FOCS. IEEE, 2008, pp. 593–
602.

[15] P. Raghavendra, S. Rao, and T. Schramm, “Strongly refuting
random CSPs below the spectral threshold,” in Proc. 49th
STOC. ACM, New York, 2017, pp. 121–131.

[16] P. K. Kothari, R. Mori, R. O’Donnell, and D. Witmer, “Sum
of squares lower bounds for refuting any CSP,” in Proc. 49th
STOC. ACM, 2017, pp. 132–145.

[17] D. Achlioptas, A. Naor, and Y. Peres, “On the maximum
satisfiability of random formulas,” J. ACM, vol. 54, no. 2,
2007. [Online]. Available: https://doi.org/10.1145/1219092.
1219098

[18] S. Sen, “Optimization on sparse random hypergraphs and
spin glasses,” Random Structures Algorithms, vol. 53,
no. 3, pp. 504–536, 2018. [Online]. Available: https:
//doi.org/10.1002/rsa.20774

[19] D. Panchenko, “On the k-SAT model with large number of
clauses,” Random Struct. Algor., vol. 52, no. 3, pp. 536–542,
2018. [Online]. Available: https://doi.org/10.1002/rsa.20748

1415



[20] A. Auffinger and W.-K. Chen, “Parisi formula for the ground
state energy in the mixed p-spin model,” Ann. Probab.,
vol. 45, no. 6B, pp. 4617–4631, 2017. [Online]. Available:
https://doi.org/10.1214/16-AOP1173

[21] L. Leuzzi and G. Parisi, “The k-SAT problem in a simple
limit,” J. Stat. Phys., vol. 103, no. 5-6, pp. 679–695, 2001.

[22] A. Crisanti, L. Leuzzi, and G. Parisi, “The 3-SAT problem
with large number of clauses in the ∞-replica symmetry
breaking scheme,” J. Phys. A, vol. 35, no. 3, p. 481, 2002.

[23] A. Auffinger, W.-K. Chen, and Q. Zeng, “The SK model
is full-step replica symmetry breaking at zero temperature,”
arXiv:1703.06872, 2017.

[24] L. Addario-Berry and P. Maillard, “The algorithmic hard-
ness threshold for continuous random energy models,”
arXiv:1810.05129, 2018.

[25] E. Subag, “Following the ground-states of full-RSB spherical
spin glasses,” arXiv:1812.04588, 2018.

[26] A. Montanari, “Optimization of the Sherrington–Kirkpatrick
Hamiltonian,” arXiv:1812.10897, 2018.

[27] A. Montanari and F. Ricci-Tersenghi, “On the nature of
the low-temperature phase in discontinuous mean-field spin
glasses,” Eur. Phys. J. B, vol. 33, no. 3, pp. 339–346, 2003.

[28] F. Krzakala, A. Pagnani, and M. Weigt, “Threshold values,
stability analysis, and high-q asymptotics for the coloring
problem on random graphs,” Phys. Rev. E, vol. 70, no. 4,
p. 046705, 2004.

[29] E. Gardner, “Spin glasses with p-spin interactions,” Nucl.
Phys. B, vol. 257, pp. 747–765, 1985.

[30] F. Guerra and F. L. Toninelli, “The thermodynamic limit
in mean field spin glass models,” Comm. Math. Phys.,
vol. 230, no. 1, pp. 71–79, 2002. [Online]. Available:
https://doi.org/10.1007/s00220-002-0699-y

[31] F. Guerra, “Broken replica symmetry bounds in the
mean field spin glass model,” Comm. Math. Phys.,
vol. 233, no. 1, pp. 1–12, 2003. [Online]. Available:
https://doi.org/10.1007/s00220-002-0773-5

[32] D. Panchenko and M. Talagrand, “Bounds for diluted mean-
fields spin glass models,” Probab. Theory Related Fields,
vol. 130, no. 3, pp. 319–336, 2004. [Online]. Available:
https://doi.org/10.1007/s00440-004-0342-2

[33] M. Bayati, D. Gamarnik, and P. Tetali, “Combinatorial
approach to the interpolation method and scaling limits
in sparse random graphs,” Ann. Probab., vol. 41, no. 6,
pp. 4080–4115, 2013. [Online]. Available: https://doi.org/10.
1214/12-AOP816

[34] D. Gamarnik, “Right-convergence of sparse random graphs,”
Probab. Theory Related Fields, vol. 160, no. 1-2, pp.
253–278, 2014. [Online]. Available: https://doi.org/10.1007/
s00440-013-0528-6

[35] A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang,
and T. Kapetanopoulos, “Charting the replica symmetric
phase,” Comm. Math. Phys., vol. 359, no. 2, pp. 603–
698, 2018. [Online]. Available: https://doi.org/10.1007/
s00220-018-3096-x

[36] A. Dembo, A. Montanari, and S. Sen, “Extremal cuts
of sparse random graphs,” Ann. Probab., vol. 45, no. 2,
pp. 1190–1217, 2017. [Online]. Available: https://doi.org/10.
1214/15-AOP1084
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