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Abstract—We give the first construction of three-round
non-malleable commitments from the almost minimal as-
sumption of injective one-way functions. Combined with the
lower bound of Pass (TCC 2013), our result is almost the best
possible w.r.t. standard polynomial-time hardness assump-
tions (at least w.r.t. black-box reductions). Our results rely
on a novel technique which we call bidirectional Goldreich-
Levin extraction.

Along the way, we also obtain the first rewind secure
delayed-input witness indistinguishable (WI) proofs from
only injective one-way functions. We also obtain the first
construction of an ε-extractable commitment scheme from
injective one-way functions. We believe both of these to be
of independent interest. In particular, as a direct corollary
of our rewind secure WI construction, we are able to obtain
a construction of 3-round promise zero-knowledge from only
injective one-way functions.

Keywords-cryptographic protocols, non-malleable commit-
ments, Goldreich-Levin Decoding.

I. INTRODUCTION

The notion of non-malleability is central in crypto-

graphic protocol design. Its objective is to protect against

a man-in-the-middle (MIM) attacker that has the power

to intercept messages and transform them in order to

harm the security in other instantiations of the protocol.

Commitment is often used as the paragon example for

non-malleable primitives because of its ability to almost

“universally” secure higher-level protocols against MIM

attacks.

Commitments allow one party, called the commit-

ter, to probabilistically map a message m into a string,

Com(m; r), which can be then sent to another party,

called the receiver. In the statistically binding variant, the

string Com(m; r) should be binding, in that it cannot

be later “opened" into a message m′ �= m. It should

also be hiding, meaning that for any pair of messages,

m,m′, the distributions Com(m; r) and Com(m′; r′) are

computationally indistinguishable.

A commitment scheme is said to be non-malleable
[DDN91] if for every message m, no MIM adversary,

intercepting a commitment Com(m; r) and modifying

it at will, is able to efficiently generate a commitment

Com(m̃; r̃) to a related message m̃. Interest in non-

malleable commitments is motivated both by the central

role that they play in securing protocols under composi-

tion (see for example [CLOS02], [LPV09]) and by the

unfortunate reality that many widely used commitment

schemes are actually highly malleable. Indeed, man-in-the-

middle (MIM) attacks occur quite naturally when multiple

concurrent executions of protocols are allowed, and can be

quite devastating.

Beyond protocol composition, non-malleable commit-

ments play a crucial role in designing round efficient

secure multi-party computation (see [KOS03], [Wee10],

[Goy11], or more recently, [BGJ+18], [HHPV18]), au-

thentication schemes [NSS06], as well as a host of

other non-malleable primitives (e.g., coin flipping, zero-

knowledge, etc.), and even applications as diverse as

position based cryptography [CGMO09]. Beyond cryp-

tography, techniques from non-malleable commitments

have found applications in designing non-malleable ex-

tractor and codes [CGL16], which in turn were used

to obtain a breakthrough in constructing non-malleable

extractors [CZ16]. Techniques from non-malleable com-

mitments (and non-malleable zero-knowledge) have also

found applications in the realm of hardness amplification:

in particular in disproving a “dream version” of Yao’s XOR

lemma [DJMW12].

The last five years have seen significant progress

in understanding the necessity for interaction in non-

malleable commitments, in terms of the concrete number

of messages required. In particular, Goyal, Richelson,

Rosen and Vald [GRRV14] constructed four round non-

malleable commitments based on the existence of one-way

functions (OWF). Goyal, Pandey and Richelson [GPR16]

constructed three round non-malleable commitments us-

ing quasi-polynomially hard injective one-way functions.

Khurana [Khu17] constructed three round non-malleable

commitments by relying on the decisional Diffie-Hellman

(DDH) assumption. Pass [Pas13] showed an impossibility

for non-malleable commitments using 2 rounds of com-

munication, via a black-box reduction to any “standard”

intractability assumption. Recently beautiful works have

been able to bypass this lower bound using sub-exponential

DDH [KS17], and, using time-locked puzzles [LPS17].

Our question: The lower bound of Pass implies that if

one relies on standard polynomial-time hardness assump-

tions, three rounds is the best possible for non-malleable

commitments (at least w.r.t. black-box reductions). The

state of art for three or more rounds is represented by sev-

eral incomparable works: 4 round using injective one-way

functions [GRRV14], 3 rounds using quasi-polynomial
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one-way functions [GPR16], and, 3 rounds using the DDH

assumption [Khu17]. In this context, the last remaining

natural question is: what is the minimal cryptographic
hardness assumption required for constructing 3-round
non-malleable commitments?

A. Our Results.

Our main result is the following

Theorem 1. There exists a construction of three-round
non-malleable commitments from injective one-way func-
tions.

Note that OWF are necessary to construct commit-

ment schemes. In conjunction with the lower bound of

Pass, the above theorem completely settles the question

of assumptions and round complexity of non-malleable

commitments w.r.t. standard polynomial time hardness

assumptions (modulo OWF vs injective OWF).

Our key technical tool is a construction of a 3-

round ε-extractable commitment scheme from injective

one-way functions. Our scheme does not suffer from

“over-extraction", or, “under-extraction". Very roughly, this

means that if the committer is committing to ⊥, the extrac-

tor must not output a valid value, and vice-versa (please

see the next Section for details). Our scheme features an

extractor which, for any ε, extracts the committed value

with probability at least 1−ε by running in time poly(1/ε).
We stress that the protocol, however, does not fix a specific

value of ε. Our scheme is secure as per the specific

definition given in Section II. The only previous such

construction was due to Jain et al [JKKR17] and relied

on specific number theoretic assumptions (namely either

DDH or QR residuosity). Our techniques are essentially

unrelated to those used in [JKKR17]. In particular, we

introduce what we call bidirectional Goldreich-Levin style
extraction. Very roughly, this allows both sides of the

security proof (i.e., when the committer is corrupt as

well as when the receiver is corrupt) to rely on inverting

the injective one-way function by using inner products

produced by the corrupted party. We believe this to be

of independent interest.

A crucial building block we construct and use in our

work is that of a delayed-input rewind secure witness-

indistinguishable (WI) proof in 3-rounds from injective

one-way functions. Very informally, this means that the WI

property holds even if the prover is rewound and forced

to prove multiple different statements all with a fixed first

round message. The delayed-input property requires the

prover and the verifier to have access to the input (i.e.,

the statement, and, in case of the prover, the witness)

only in the last round. To our knowledge, the problem

of rewind secure WI first appeared in [GRRV14] where it

was bypassed by constructing a “weakly" rewind secure

scheme where the WI property is guaranteed to hold only

with probability 1− δ (where δ is noticeable). Goyal et al

[GRRV14] designed an additional secret sharing technique

to ensure that this was enough for their purposes. The issue

of rewind security for delayed input WI has continued

to arise in subsequent works [COSV16b], [COSV17a],

[COSV17b] where it was bypassed using different (and

sophisticated) techniques. Very recently, the first construc-

tion of a delayed input rewind secure WI was given by

Badrinarayanan et al [BGJ+18] by relying on the DDH

assumption 1. No such construction has been from any

general assumption in any polynomial number of rounds

even in the setting where the prover is rewound only once.

We prove the following theorem.

Theorem 2. Assuming injective one way functions, for
every (polynomial) rewinding parameter B, there exists a
three round delayed-input witness-indistinguishable argu-
ment system with B-rewinding security.

We also note our non-malleable commitments, and,

ε-extractable commitments also have the delayed input

property (i.e., the committer requires the input string only

in the last round). This property is sometimes useful

while using such commitment schemes in designing larger

protocol such as secure multi-party computation.

As a direct consequence of the above theorem, we

are able to get a construction of 3-round promise zero-

knowledge (ZK) using injective one-way functions. The

notion of promise ZK was introduced by Badrinarayanan

et. al [BGJ+18] who presented a construction based on the

DDH assumption. The source of the DDH assumption was

their usage of rewind secure WI based on DDH. Promise

ZK is a weakening of zero-knowledge which was used by

Badrinarayanan et al in constructing the first 4 round MPC

from polynomial time hardness assumptions.

Corollary 2.1. Assuming injective one way functions,
there exists a construction of promise zero-knowledge
proofs in 3-rounds.

Subsequent Work: Our construction of delayed-input

rewind secure WI was recently used by Choudhuri, Goyal,

and, Jain [CGJ18] to obtain a construction 4-round MPC

from only injective one-way functions and oblivious

transfer. All previous constructions relied either on sub-

exponential hardness assumptions, or, specific number the-

oretic assumptions [ACJ17], [BGJ+18], [HHPV18]. Four

rounds of interaction are necessary for MPC w.r.t. black-

box simulation.

B. Technical Overview

Our main technical tool is the construction of a 3-round

extractable commitment scheme for injective one-way

functions which does not suffer from “over-extraction",

or, “under-extraction". Very roughly, this means that if

the committer is committing to ⊥, the extractor must not

1An earlier ePrint version of [BGJ+18] claimed a construction of
delayed input rewind secure WI from only injective OWFs. However
the construction was subsequently revised to use DDH.
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output a valid value, and vice-versa. Consider the com-

monly used three round extractable commitment scheme

where the committer C uses XOR secret sharing to break

the secret into two shares (called a pair of shares). C
prepares k such pair of shares and commits for each of

them. The receiver R then chooses one share from each

pair at random in the second round. The selected shares are

then decommitted in the final round. Indeed this scheme is

extractable since the extractor can recover both the shares

for at least one pair. However this scheme suffers from

over-extraction. Say a cheating committer C∗ prepares the

pairs such that not every pair leads to the same secret

(and hence the committed string is ⊥). Even in this case,

the extractor may still extract and output a valid value.

This problem can be solved by using a zero-knowledge

proof of consistency which would then require an ad-

ditional round. We refer to the extractable commitment

schemes which suffer from overextraction or underextrac-

tion as weakly extractable commitment schemes. Weakly

extractable commitment are not sufficient for our purposes

since they lead to subtle “selective ⊥" attacks as far as

mauling attacks are concerned.

We highlight our main ideas by going through various

attempts to build such a scheme. Our commitment scheme

is delayed input and the message is only required by C in

the last round. Assume for simplicity that the message to

be committed to is a single bit. Furthermore, assume that

C does not simply sample and commit a random input

bit in the last round. That is, there exists a bit m s.t. C
commits to m with probability at least 1

2 + ε (where ε is

noticeable in the security parameter) across the different

rewound executions by the extractor.

Background on the Goldreich-Levin Theorem: Here

we give an informal overview of the influential Goldreich-

Levin theorem [GL89] which is relevant to the following

discussion. An expanded background and formal details

can be found in Section II-C. The main result in [GL89]

shows that every one-way function has a hardcore pred-

icate. The core of their proof is the “prediction implies

inversion” lemma, which shows roughly that if an algo-

rithm can, given f(x), predict random inner products of

x with probability at least 1/2 + ε (where ε is noticeable

in the security parameter), then this prediction algorithm

can be used to invert f and recover x. We refer to this

inversion algorithm as the Goldreich-Levin algorithm.

The Goldreich-Levin algorithm queries the inner prod-

uct on correlated strings coming from a special distribu-

tion. The strings are generated as follows. First sample

uniform strings r1, . . . , rk ∈ {0, 1}λ (where λ denotes

the security parameter). For a subset S ⊂ {1, . . . , k} we

let rS :=
⊕

i∈S ri. Given S and i ∈ {1, . . . , λ} we let

rS,i := rS ⊕ ei where ei is the i−th unit vector. Now we

define GL(r1, . . . , rk) to be the following set:{
rS,i ∈ {0, 1}λ : ∅ �= S ⊂ {1, . . . , k}, i ∈ {1, . . . , λ}}.
We refer to the strings in this set as GL queries. Notice

that the number of GL queries is exponential in k. k is

required to be only logarithmic assuming ε is noticeable

in the security parameter. The value of k and hence the

number of GL queries depends upon the value of ε.
The Goldreich-Levin algorithm requires the output of

the prediction algorithm on all GL queries, and, is guar-

anteed to output x with noticeably probability. The set

of queries in GL(r1, . . . , rk) is not uniform. However,

Goldreich and Levin [GL89] were able to exploit the fact

that the queries are pairwise independent.
The Starting Protocol: Our starting point is the fol-

lowing basic non-interactive commitment scheme based on

any injective OWF f . The committer C samples random

strings x, r, and, sends f(x), 〈x, r〉 ⊕m as a commitment

to the bit m. To make this commitment scheme extractable,

we modify it and let the receiver R choose r. Hence, C
sends f(x) in the first round, R responds with r, and,

C sends 〈x, r〉 ⊕ m in the last round. It can be shown

that this scheme is extractable. The extractor Ext can

rewind C and get the inner products for multiple strings

(r1, r2, . . . ). Ext can simply guess the bit m (or go over

both possibility for m) and recover the inner products

(〈x1, r〉, 〈x2, r〉, . . . ). If indeed C was committing to m
at least with probability 1

2 + ε, each of the inner products

is correct with probability at least 1
2 + ε. Then, by using

the Goldreich-Levin algorithm, Ext can now recover x
and hence recover the committed bit.

The hiding of this protocol is however unclear. Indeed,

this protocol is unlikely to satisfy the hiding property since

a cheating receiver R∗, given f(x), maybe able to guess

〈x, r〉 for a specific string r even possibly with probability

1. By using this string r in the second round, R∗ would

be able to recover the committed bit.
Bidirectional Goldreich-Levin: Suppose we could

construct a single protocol which satisfies the following

two properties:

1) If C is corrupt, it is possible for Ext to choose

r. This would allow for successful extraction as

explained before.

2) If R is corrupt, its however possible for the inverter

Inv to choose r instead. Recall that our proof of

hiding would work by constructing an inverter for

the OWF f (given an adversary adv to break the

hiding property). In that case, it would be possible

for Inv to recover x as well by using the Goldreich-

Levin algorithm. Inv would take f(x) externally and

would simply give a random bit b to adv in place of

〈x, r〉 ⊕m. advwould now respond with a guess for

the message m which would then allow the inverter

to recover a guess for 〈x, r〉. Indeed, if Inv could

control r and adv guesses the message correct with

probability at least 1
2 + ε, Inv could rewind adv to

recover several guesses (〈x1, r〉, 〈x2, r〉, . . . ) each

correct with probability at least 1
2 + ε. Inv could

then run the Goldreich-Levin algorithm to recover x
thus contradicting the security of f .
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Indeed, the question now is about designing a protocol

where r could be controlled by Ext as well as Inv.

Using Coin Flipping: A natural next idea is to try

coin flipping to generate r. Consider the following pro-

tocol. C sends f(x) and Com(r) where x, r are sampled

uniformly and Com is a non-interactive perfectly binding

commitment scheme. The receiver R responds with a

uniform r′. Finally, C opens r and sends 〈x, r⊕ r′〉 ⊕m.

The extraction continue to work in this case since Ext can

simply rewind C to learn r, and, continue to learn inner

products on strings (r1, r2, . . . ) of its choice simply by

sending (r1 ⊕ r′, r2 ⊕ r′, . . . ) in the second round.

The proof of hiding still remains unclear however.

Indeed, Inv can rewind R and commit to a fresh

random string r. However, Inv has no control over

r′ chosen by R (which may be different in different

rewinds). Hence, the inverter can recover the inner prod-

ucts (〈x1, r〉, 〈x2, r〉, . . . ) for random strings (r1, r2, . . . )
which are beyond its control. However recall that in order

to be successful, the Goldreich-Levin algorithm needs to

get inner products for carefully chosen strings which are

correlated with each other.

A plausible solution here would be to use a two-sided

simulatable coin flipping which would allow Inv to fully

control the strings (r1, r2, . . . ) by controlling the outcome

of the coin flipping protocol. However, this would require

an additional round of interaction.

Committing Several Strings in the First Round: We

now consider the following protocol. C sends f(x) and

Com(r1), . . . ,Com(r�) where x, r1, . . . , r� are sampled

uniformly. R responds with r′ as before. Finally, C
chooses a random i ∈ [�], opens Com(ri), and, sends

〈x, ri ⊕ r′〉 ⊕m.

The extraction can still be made to work by relying on

the fact that � is polynomial in the security parameter.

The extractor runs the protocol once. Suppose C chooses

to open ri, i ∈ [�] in the third round. Now Ext starts

rewinding C and focuses only on transcripts where C
chooses to open the same string ri in the third round. If

C does not choose ri, Ext simply rewinds and tries again

with a fresh r′. This would allow Ext to follow the same

strategy as in the previous case where C was committing

to a single r in the first round.

Now consider the following strategy for Inv.

Inv takes f(x) as an external input and prepares

Com(r1), . . . ,Com(r�) honestly. It completes the

execution till the second round using these values and

receives r′. Inv then prepares a guess for 〈x, r′〉. Now

execute the third round multiple times by rewinding

adv and opening r1, . . . , r� respectively. In each

rewind, Inv simply sends a random bit in place of

〈x, ri⊕r′〉⊕m. The response of adv would allow Inv to

obtain guesses for 〈x, r1 ⊕ r′〉, . . . , 〈x, r� ⊕ r′〉. If its

guess for 〈x, r′〉 is correct, Inv can now obtained guesses

for 〈x, r1〉, . . . , 〈x, r�〉. Now since Inv has complete over

the choice of r1, . . . , r�, this allows Inv to execute the

Goldreich-Levin algorithm on the GL queries and recover

x to arrive at a contradiction.

While it seems like we are making progress, we now

run into the following problem. Suppose advpredicts the

bit committed bit with probability 1
2 + ε. The number of

GL queries � required for the Goldreich-Levin algorithm

to succeed would depend upon ε. Note that ε is unknown

during the protocol execution, and hence, its unclear how

many strings C must commit to in the first round (i.e., no

fixed polynomial � would suffice). Our inverter indeed is

given ε as input and hence can decide how many strings

to commit to. However the inverter cannot freely decide

the number of committed strings since � is fixed by the

protocol description.

Using Implicit Representation of GL Queries: We

now observe the following. The � GL queries can ac-

tually be implicitly represented by a much smaller set

of string from which all GL queries can be generated

(see the background on Goldreich-Levin above). Our next

idea is to only commit to a fixed polynomial number of

strings (r1, . . . , rλ) in the first round (in fact, any super-

logarithmic number of strings will suffice). In the last

round, C sends a string r sampled uniformly from the set

GL(r1, . . . , rλ), and, proves using a 3 round WI protocol

that r is indeed in this set (more on the WI protocol later).

This now allows the inverter Inv to rewind adv and

issue any (unbounded) polynomial number of queries

where the polynomial is not a priori fixed by the protocol.

This would allow Inv to overcome the previous issue and

handle any noticeable ε.
However the problem now occurs in extraction. The

size of the set GL(r1, . . . , rλ) is now super-polynomial.

Hence, the string r which C chooses in the last round can

no longer be predicted with noticeable probability. If the

extractor “focusses" on a single r, it could potentially start

running in super-polynomial time.

Using Unbounded Polynomial Commitments: Our

next idea to use a special commitment scheme which

allows the committer to attempt to commit to any value

N ∈ 2λ. However, the committer will only be successful

in committing to N with probability approximately 1
N ,

and, otherwise the committed value will be 1. R would

not know what the committed value is (including whether

it is to 1 or not), but, the committer will. We construct

such a commitment scheme in Section III-A.

Now consider the following protocol. C, in additional to

committing to (r1, . . . , rλ), also samples a random N ∈
[2λ] and attempts to commit to N using the unbounded

polynomial commitment scheme. If C is successful in

committing to N , define k = 
log(N)�, and, k = 1 if

C instead commits to 1. In the lat round, C would prove

(in WI) that the given string s, in fact, belongs to the set

GL(r1, . . . , rk). Thus, while C commits to (r1, . . . , rλ),
the number of strings which are “active" is determined by

the value inside unbounded polynomial commitment.

The proof of extraction now starts to work. W.h.p, C∗
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is only able to commit to N s.t. N is polynomial in the

security paramter λ. Thus, the number of active strings k
is logarithmic, and hence, the space of possibilities for r
in the last round is bounded by a polynomial. This again

allows the extractor to focus on a specific r in order to

extract x.

The proof of hiding seems to work as well (at least

at a high level). Given ε, Inv computes the number of

required GL queries and hence the number of active strings

k. It sets N = 2k. Note that N is still guaranteed to be

a polynomial. Inv now attempts to commit to N and

simply tries again by rewinding R if it is unsuccessful.

By trying approximately N times in expectation, Inv will

be successful and hence will now be able to get the inner

product guesses on sufficient number of strings to be able

run the Goldreich-Levin algorithm.

Using Rewind Secure WI: Given the above ideas,

the proof of hiding still unfortunately does not work

because of a technical issue arising from the pairwise

independence requirement in the Goldreich-Levin theorem.

The pairwise independence requirement seems to translate

to, very roughly, “pairwise independence of the views"

in our setting (with a fixed first message). Indeed, our

protocol is only computational and such a property would

not hold for an unbounded adversary. We are able to work

with a computational notion of pairwise independence

which still allows for the Goldreich-Levin style probability

analysis to go through. However, this notion requires

the following. Even given last round messages from two

different executions with the same first message (i.e.,

two different executions resulting from rewinding adv),

adv cannot distinguish if the two queries are of the form

(rS,i, rT,i), or, (rS,i, rT,j) with i �= j.

Observe that the last round messages from two different

executions of our protocol would also contain two different

last messages of the WI protocol (with the same first

message). In such a setting, all bets regarding the security

of the WI protocol are off. To solve this problem, we use

a delayed input rewind secure WI one which guarantees

witness indistinguishability even if the prover is rewound

and forced to prove multiple statements with the same

first message. To achieve our computational equivalent of

pairwise independence, security under a single rewinding

turns out to be enough. As mentioned before, getting such

a construction in any number of rounds from injective one-

way functions (or from any general assumption) has been

an open problem. We resolve problem by constructing a

3-round delayed input rewind secure WI from injective

one-way functions for any (polynomial) B s.t. the security

holds even if the prover is rewound B times. Our protocol

is additionally a proof of knowledge as well. Our key

technique relies on using “two-layers" of MPC in the head

technique of Ishai et. al [IKOS07] along with a careful

combinatorial analysis. More details are given in Section

III-B.

Finally, we note that for WI to provide any meaningful

guarantees, there must exist at least two witness for the

statement being proven. Towards that end, very roughly,

we actually run two parallel copies of the building blocks

(including the implicit commitments to the GL queries,

and, the unbounded polynomial commitment) discussed so

far. We are able to use the two copies in conjunction with

a careful hybrid argument to achieve our computational

equivalent of the pairwise independence property.

Going to Non-Malleable Commitments: The basic

protocol from GPR is non-malleable against a synchro-

nizing adversary. However non-malleability fails against

a sequential adversary (which completes the left session

before starting the right session), essentially because their

scheme is not extractable. By composing their protocol

with our three round ε−extractable commitment scheme

in parallel, we obtain non-malleability against a sequential

adversary due to the extraction properties of our additional

scheme. The key point is that ε−extractability suffices for

proving non-malleability since extraction is used against

a MIM with a known mauling advantage, say δ. Thus,

ε can be chosen as a function of δ. The synchronizing

non-malleability of our composed scheme follows from

the observation (made implicitly in [GPR16]), that the

synchronizing non-malleability of the basic GPR scheme

holds even when it is run in parallel with a (malleable)

commitment scheme as long as the additional scheme

satisfies an enhanced form of hiding security, known as

once rewindable hiding. Fortunately, we show that our

construction satisfies this extra property. While this is our

overall strategy, we run into a technical issue related to

our exact definition of ε-extractable commitments which

does not seem sufficient to obtain the standard definition of

non-malleability w.r.t. commitment. We resolve this issue

by relying on a careful combinatorial analysis presented

in Section VII.

Related works: Given their foundational role in cryp-

tography and beyond, a large body of literature has been

dedicated to studying how efficiently non-malleable com-

mitments can be constructed under different assumptions.

A long line of work studies the round complexity of

non-malleable commitments [DDN91], [Bar02], [PR05b],

[PR05a], [LP09], [PPV08], [PW10], [Wee10], [Goy11],

[LP11], [GLOV12], [GRRV14], [GPR16], [COSV16a],

[COSV16b], [GKS16], [KS17], [LPS17], [Khu17]. A

lower bound of Pass [Pas13], [KS17] showed the

impossibility of two-round non-malleable commitment

proven secure w.r.t. a black-box reduction to any “stan-

dard" polynomial-time intractability reduction. Thus, three

rounds are necessary to get non-malleable commitments

from standard polynomial-time hardness assumptions (at

least w.r.t. black-box reduction). However the questions of

obtaining three round non-malleable commitments from

minimal assumptions has remained opened. Relevant to

our work, Goyal, Pandey and Richelson [GPR16] gave a 3-

round construction of non-malleable commitment scheme

from injective one-way functions w.r.t. so called synchro-
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nizing adversaries who keep the left and the right execution

“in sync". That is, the adversary finishes the i-th round on

both the left and the right before beginning the (i+ 1)-th
round in either execution. A construction against general

adversaries was also presented albeit assuming quasi-poly

hard injective one-way functions. Khurana [Khu17] was

able to obtain a three round construction against gen-

eral adversaries using the incomparable DDH assumption

even obtaining the stronger notion of concurrent non-

malleability. In this paper, our primary goal is to obtain

three round non-malleable commitments from minimal (or

almost minimal) assumptions.

II. PRELIMINARIES

Throughout, we let λ denote the security parameter, and

we write negl(λ) for functions which tend to zero faster

than λ−c for any constant c. For probability distributions

X and Y, we write X ≈c Y if X and Y are computationally

indistinguishable: i.e. if for all PPT distinguishers D,∣∣∣Prx←X

(
D(x) = 1

)− Pry←Y

(
D(y) = 1

)∣∣∣ = negl(λ).

A. Non-Malleable Commitments, and, ε-Extractable Com-
mitments

In this section we define commitment schemes (Defini-

tion 1), non-malleable commitment schemes (Definition 3),

and ε-extractable commitment schemes (Definition 4), the

latter being a new notion. All commitment schemes in this

work are perfectly binding, so we give definitions only for

this case.

Definition 1 (Perfectly Binding Commitment). Let
〈C,R〉 be a two-phase, two party protocol between a
committer C and a receiver R which works as follows.
In the commit phase, C uses secret input m and interacts
with R who uses no input. Let c = Com(m; r) denote R’s
view after the commit phase; let (m,w) = Decom(c,m, r)
denote R’s view after the decommit phase, which R either
accepts or rejects. We say that 〈C,R〉 is a perfectly binding

commitment scheme if the following properties hold:

• Correctness: If parties follow the protocol, then

R(c,m,w) = 1;

• Perfect Binding: For all c and (m,w), (m′, w′)
such that m �= m′, at most one of R(c,m,w) and

R(c,m′, w′) is 1;

• Hiding: For all m0,m1,
{
Com(m0; r)

}
r

≈c{
Com(m1; r)

}
r
.

If, moreover, the commitment scheme consists of a

single round from C to R, 〈C,R〉 is called a non-
interactive, perfectly binding commitment scheme. Such

schemes can be constructed from any one-to-one one-way

function [Blu81].

Definition 2 (Rewind Secure Hiding). We say that a
three round commitment scheme 〈C,R〉 has rewind secure

hiding if no PPT R∗ can win the following game with
probability noticeably better than 1/2. In the following

we let (Com1,Com2,Com3) be the subroutines used to
generate the messages in the three rounds.

• R∗ sends C two messages (m0,m1);
• C draws b← {0, 1} and σ1 ← Com1(mb) and sends

σ1 to R;

• R∗ sends σ2, σ̂2 to C;

• C prepares σ3 = Com3(σ1, σ2,mb) and σ̂3 =
Com3(σ1, σ̂2,mb) and sends (σ3, σ̂3) to R∗;

• R∗ outputs b′ ∈ {0, 1} and wins if b′ = b.

The MIM Experiment.: Given a commitment scheme

〈C,R〉, the man-in-the-middle experiment, refers to the

situation where an adversarial M plays two executions

of 〈C,R〉, once on the left where he interacts with an

honest C, and once on the right where he interacts with

an honest R. We call such an adversary a man-in-the-

middle (MIM). The output of the experiment consists of

two transcripts of 〈C,R〉, and the commitment m̃ inside

the right session. The experiment is parameterized by a

left commitment message m and a left identity id. Thus,

(T, m̃) ← MIMM
m,id. If the right execution has identity

ĩd = id, the experiment outputs ⊥ automatically.

Definition 3 (Non-Malleable Commitment). Let 〈C,R〉
be a perfectly binding commitment scheme. We say that
〈C,R〉 is non-malleable if there exists a PPT simulator
SIM which, on input id, and given oracle access to M,
outputs a transcript-message pair, (T, m̃) such that for all
m:

{
(T, m̃)

}
(T,m̃)←MIMM

m,id

≈c

{
(T, m̃)

}
(T,m̃)←SIMM(id)

.

Definition 4 (ε-Extractable Commitment). We say that
a perfectly binding commitment scheme 〈C,R〉 is ε-
extractable if for all ε > 0, there exists an extractor Extε
satisfies the following syntax, running time and extraction
guarantees.

• Syntax: Extε is parametrized by ε > 0, gets oracle
access to a possibly unbounded cheating C∗, takes a
transcript T of 〈C,R〉 as input and outputs a message
m.

• Running Time: The running time of Extε is
poly

(
λ,TC∗ , 1/ε

)
.

• Extraction: Let valC
∗

and ExtC
∗

ε denote the distri-
butions which generate a transcript T by running
〈C,R〉 between an honest R and C∗; then valC

∗

outputs m = val(T), the committed message inside T;
ExtC

∗
ε outputs m = ExtC

∗
ε (T). Then for any cheating,

unbounded C∗, Δ
(
valC

∗
,ExtC

∗
ε

) ≤ ε.

B. Delayed-Input Rewind Secure Witness Indistinguish-
able Proofs

Definition 5 (Delayed-Input Interactive Arguments).
[BGJ+18] An n-round delayed-input interactive protocol
(P, V ) for deciding a language L is an argument system
for L that satisfies the following properties:
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• Delayed-Input Completeness. For every security
parameter λ ∈ N, and any (x,w) ∈ RL such that
|x| ≤ 2λ,

Pr[(P, V )(1λ, x, w) = 1] = 1− negl(λ).

where the probability is over the randomness of P and
V . Moreover, the prover’s algorithm initially takes as
input only 1λ, and the pair (x,w) is given to P only
in the beginning of the n’th round.

• Delayed-Input Soundness. For any PPT cheating
prover P ∗ that chooses x∗ (adaptively) after the first
n− 1 rounds, it holds that if x∗ /∈ L then

Pr[(P ∗, V )(1λ, x∗) = 1] ≤ ε.

where the probability is over the random coins of V ,
and, ε is known as the soundness error of the protocol.

The next definition is from [BGJ+18] where such a

primitive was constructed assuming the polynomial hard-

ness of DDH.

Definition 6 (3-Round Delayed-Input WI with Bounded
Rewinding Security). [BGJ+18] Fix a positive integer B.
A delayed-input 3-round interactive argument (as defined
in Definition 5) for an NP language L, with an NP relation
RL is said to be WI with B-Rewinding Security if for
every non-uniform PPT interactive Turing Machine V ∗,
it holds that {REALV ∗

0 (1λ)}λ and {REALV ∗
1 (1λ)}λ are

computationally indistinguishable, where for b ∈ {0, 1}
the random variable REALV

∗
b (1λ) is defined via the fol-

lowing experiment. In what follows we denote by P1 the
prover’s algorithm in the first round, and similarly we
denote by P3 its algorithm in the third round.

Experiment REALV
∗

b (1λ)::
1) Run P1(1

λ) and denote its output by (rwi1, σ), where
σ is its secret state, and rwi1 is the message to be
sent to the verifier.

2) Run the verifier V ∗(1λ, rwi1), who outputs
{(xi, wi)}i∈[B−1], xB , wB

0 , wB
1 and a set of

messages {rwii2}i∈[B].
3) For each i ∈ [B − 1], run P3(σ, rwi

i
2, x

i, wi), and
for i = B, run P3(σ, rwi

i
2, x

i, wi
b) where P3 is

the (honest) prover’s algorithm for generating the
third message of the WI protocol. Send the resulting
messages {rwii3}i∈[B] to V ∗.

In Section III-B, we construct three-round delayed-input

WI with bounded-rewinding security from any one-to-

one one-way function for any fixed polynomial rewinding

parameter B. Our construction will use as a building block

the 3-round delayed-input WI protocol of [LS90] (i.e., the

case of B = 1 above).

MPC-in-the-Head [IKOS07].: As in [BGJ+18], we

make black-box use of a 3-round zero knowledge protocol

(non delayed-input) with bounded rewinding security. The

soundness error of the protocol would depend upon the

rewinding parameter B.

Definition 7 (3-Round ZK with Bounded Rewinding
Security). [BGJ+18] Fix a positive integer B. A delayed-
input 3-round interactive argument (as defined in Defini-
tion 5) for an NP language L, with an NP relation RL is
said to have B-Rewinding Security if there exists a simu-
lator Sim such that for every non-uniform PPT interactive
Turing Machine V ∗, it holds that {REALV ∗

(1λ)}λ and
{IDEALV ∗

(1λ)}λ are computationally indistinguishable,
where the random variable REALV

∗
(1λ) is defined via

the following experiment. In what follows we denote by
P1 the prover’s algorithm in the first round, and similarly
we denote by P3 his algorithm in the third round.

Experiment REALV
∗
(1λ): is defined as follows:

1) Run P1(1
λ, x, w; r) and obtain output rwi1 to be sent

to the verifier.
2) Run the verifier V ∗(1λ, rwi1) and interpret its output

as message rwi2.
3) Run P3(1

λ, rwi2, x, w; r), where P3 is the (honest)
prover’s algorithm for generating the third message
of the WI protocol, and send its output rwi3 to V ∗.

4) Set a counter i = 0.
5) If i < B, then set i = i + 1, and V ∗ (given all

the information so far) generates another message
rwii2, and receives the (honest) prover’s message
P3(rwi

i
2, x, w; r). Repeat this step until i = B.

6) The output of the experiment is the view of V ∗.

Experiment IDEALV
∗
(1λ): is the output of the exper-

iment SimV ∗
(1λ, x; r).

Imported Theorem 1. [IKOS07], [BGJ+18] Assume the
existence of injective one-way functions. Then, for any
(polynomial) rewinding parameter B, there exists a 3-
round zero-knowledge protocol for proving NP statements
that is simulatable under B-bounded rewinding according
to 7.

If B is a constant, the soundness error of the above

protocol will be a constant. If B = poly(λ), the soundness

error ε ≤ 1− q(λ) where q is also a polynomial.

C. The Goldreich-Levin Theorem

An influential result of Goldreich and Levin [GL89] says

that every one-way function has a hardcore predicate. The

core of their proof is the “prediction implies inversion”

lemma, which says roughly that if an algorithm can, given

f(x), predict random inner products of x with probability

noticeably better than 1/2, then this prediction algorithm

can be used to invert f and recover x. We will make

frequent use of this lemma in our security proofs. We set

some notations, and then prove the lemma we need.

Given λ−bit strings r1, . . . , rk ∈ {0, 1}λ and a subset

S ⊂ {1, . . . , k} we let rS :=
⊕

i∈S ri. Given S and i ∈
{1, . . . , λ} we let rS,i := rS ⊕ ei where ei is the i−th

unit vector.

Definition 8. Given r1, . . . , rk ∈ {0, 1}λ, let
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GL(r1, . . . , rk) be the set{
rS,i ∈ {0, 1}λ : ∅ �= S ⊂ {1, . . . , k}, i ∈ {1, . . . , λ}}.

Rackoff’s combinatorial proof of the Goldreich-Levin the-

orem considers sets of the form GL(r1, . . . , rk) and shows

how to recover x using an algorithm whose prediction

success on r ∈ GL(r1, . . . , rk) satisfies certain statistical

properties.

Definition 9. Fix ε > 0 and a secret x ∈ {0, 1}λ.
A Goldreich-Levin Prediction Algorithm with secret x
and advantage ε (or just GL-predictor for short), is a
randomized procedure Pred which takes r ∈ {0, 1}λ as
input, and outputs a value in {0, 1} ∪ {⊥} such that:

1) Valid Output: Prr←{0,1}λ
[
Pred(r) �= ⊥] ≥ ε;

2) Prediction Advantage:
∣∣∣Prr←{0,1}λ[Pred(r) =

〈r,x〉∣∣Pred(r) �= ⊥]− 1
2

∣∣∣ ≥ ε.

Remark.: Prediction advantage says that, conditioned

on Pred giving valid (i.e., non−⊥) output, Pred(r) =
〈r,x〉 occurs with probability bounded away from 1/2;

the probability is over r← {0, 1}λ.

Lemma 1. Let y = f(x) for a one-to-one function
f : {0, 1}λ → {0, 1}poly(λ). Let Pred be a GL-predictor
with secret x ∈ {0, 1}λ and advantage ε > 0. Then there
exists an inversion algorithm Inv which, given y and oracle
access to Pred, outputs x with high probability 1−2−Ω(λ).
The running time of Inv is TInv = poly

(
λ, 1/ε,TPred

)
,

where TPred is the running time of Pred.

Definition 10. We call the algorithm Inv guaranteed by
Lemma 1 the GL-inversion algorithm corresponding to

Pred.

III. BUILDING BLOCKS

A. Unbounded Polynomial Commitment

Here we present a simple, yet key component of our

main construction. It is a two round commitment scheme

where C commits to an integer. If executed honestly, the

committed value is 1 with high probability. Moreover,

even if C cheats, the committed value is at most N with

probability proportional to 1/N . We call this protocol an

unbounded polynomial commitment because a simulator

who is able to rewind R can, in time poly(N), produce an

indistinguishable transcript where the committed value is

N . The protocol is the following.

1) C→ R: send c = Com(s,N ; η) where s,N ← [
2λ

]
and η ← $;

2) R→ C: draw and send s′ ← [
2λ

]
;

3) Committed Value: the committed value is N if s+
s′ ≡ 0 (mod N ); 1 otherwise.

Note that if C sends c = Com(s,N ; η) in round 1, then

1/2N ≤ Prs′←[2λ]

[
s+ s′ ≡ 0 (mod N )

] ≤ 2/N. (1)

It follows from (1) (upper bound) that a) if C and R play

honestly, then the committed value is 1 with probability

1−2−Ω(λ); b) no matter how C deviates from the protocol,

if R plays honestly then the committed value is at most

N with overwhelming probability 1− 2/N . The proof of

the next claim is omitted because of space.

Claim 1. Suppose one-to-one one-way functions ex-
ist. Let R be a polynomial time receiver such
that Pr(s,N ′,η)

[
R completes protocol on receiving c =

Com(s,N ′; η)
] ≥ ε, for non-negligible ε > 0, where the

probability is over s,N ′ ← [
2λ

]
and η ← $. Then for any

fixed polynomial N = N(λ) there exists a polynomial time
simulator SIM whose output is indistinguishable from the
transcript resulting the execution of the above protocol
with an honest C. Moreover, whenever SIM outputs the
transcript of a completed protocol, the committed value in
the transcript is N .

B. Rewind Secure Delayed-Input Witness-
Indistinguishable Proof

Theorem 3. Assuming injective one-way functions, for
every (polynomial) rewinding parameter B, there exists a
three round delayed-input witness-indistinguishable proof
system RWI with B-rewinding security.

We omit the construction from this extended abstract.

Please see the full version for details.

IV. THREE ROUND ε-EXTRACTIBLE BIT-COMMITMENT

SCHEME

A. The Scheme

Our scheme is described in Figure 1. Informally, our

protocol consists of the following parts:

1) an unbounded polynomial commitment which C
uses to commit to the value N ;

2) a three round coin-flip type protocol:

• C commits to random strings (r1, . . . , rλ) where

ri ∈ {0, 1}λ;

• R sends r′

• C sends a random r ∈ GL(r1, . . . , rk) where

k = O(
log(N)

)
; we think of the string r ⊕ r′

as being the “output” of this subroutine;

3) an interactive version of non-interactive commitment

using output of the coin-flip protocol:

• C sends (f,y) a one-to-one one-way function

and a random image y = f(x);
• C sends 〈r ⊕ r′,x〉 ⊕m, where m ∈ {0, 1} is

C’s commitment bit;

4) C proves that r ∈ GL(r1, . . . , rk) where k =
O(

log(N)
)

and N is committed value inside the

unbounded polynomial commitment.

As mentioned in the introduction, our proof of hiding

follows the Goldreich-Levin based proof of hiding for the

non-interactive commitment scheme. This proof uses an

adversary who wins the hiding game in order to invert

the one-way function. It is key for this proof that k be

larger than roughly log
(
1/ε

)
where ε is the adversary’s
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advantage in the hiding game. If the committer is honest,

N = 1 with high probability which means k = 1 as well.

The unbounded polynomial commitment is used in order

to argue that the real world is indistinguishable from a

world where N is such that k is sufficiently large to allow

the proof to go through.

We mention here that the above outline is an oversim-

plification of our actual protocol for two reasons. First,

moving from the real world to the world where N is large

requires (among other things) witness indistinguishability

of the proof in part 4. In order to get the security

proof to go through, we use two copies of steps 1 and

2, corresponding to witnesses w0 and w1. The second

oversimplification, is that we require our WI proof to

be have 1−rewind secure delayed-input security. This is

due to the fact that the Goldreich-Levin proof requires

pairwise independence among many pairs of elements in

GL(r1, . . . , rk). As C commits to the ri in the first round

of our protocol, we can only hope for a “computational

analogue” of this pairwise independence to hold. We are

able to establish the property if we use the scheme from

Section III-B.

Theorem 4. Assume that injective one-way functions exist.
Then 〈C,R〉ext−bit is a three-round, perfectly binding bit-
commitment scheme.

Note that perfect binding follows immediately from the

perfect binding of Com. 〈C,R〉ext−bit is also ε-extractable

as per Definition 4. We omit the full proof for ε-
extractablility since we give a full proof directly for our

string commitment scheme in Section VI. However we

give a sketch of the proof in the following.

Suppose an execution of 〈C,R〉ext−bit is played with

possibly malicious C∗, producing a transcript T =
(σ1, σ2, σ3). If the WI proof is non-accepting, the extractor

simply outputs ⊥. Else let the committed bit be m (observe

that every transcript with an accepting WI has a valid

committed bit). Suppose furthermore that C∗, T and σ1

are such that the following two properties hold for some

non-negligible ε > 0 (if not, we discuss what to do later):

1) if C∗ is rewound and fed with a fresh σ̂2 =(
(ŝ0, ŝ1), r̂

′, ˆrwi2
)
, the probability that C∗ returns a

valid σ̂3 = (r̂, v̂, ˆrwi3) such that r̂ = r is at least ε
(by valid, we mean that (rwi1, ˆrwi2, ˆrwi3) accepts);

and

2) There exists a fixed bit m̂ s.t. conditioned on C∗

returning a valid σ̂3 with r̂ = r, the resulting

transcript T̂ = (σ1, σ̂2, σ̂3) is a commitment to m̂
with probability at least 1/2 + ε.

In this case, C∗ and T can be used in a straightforward

fashion to build a GL-predictor Pred, with advantage ε
(see Definition 9). Then by Lemma 1, there is a GL-

inverter which can recover x which allows extracting the

committed bit m inside T: m = v ⊕ 〈r⊕ r′,x〉. The pre-

diction algorithm takes input r̂′ ∈ {0, 1}λ, completes r̂′ to

Parameters and Subroutines: The protocol takes place

between C and R. Let λ be the security parameter. Let

F1−1 owf be a family of one-to-one oneway functions

taking inputs of length λ. Let Com be a non-interactive,

perfectly binding commitment scheme. Let

(RWI1,RWI2,RWI3,RWI4) be the three-round

B−rewind secure delayed-input WI proof (RWI4 is

verification).

Input: C has an input bit m ∈ {0, 1} that it will commit

to; R uses no input.

Commit Phase:

1. C −→ R: C sends(
(c0, c1); {(zα0 , zα1 )}α=1,...,λ; f,y; rwi1

)
to R where:

(a) s0, s1, N0, N1 ←
[
2λ

]
; η0, η1 ← $,

ca = Com(sa ◦Na; ηa) for a = 0, 1;

(b) rαa ← {0, 1}λ, ωα
a ← $, zαa = Com(rαa ;ω

a
α) for

a = 0, 1, α = 1, . . . , λ;

(c) rwi1 ← RWI1; the statement will come during the

third round;

(d) f ← F1−1 owf , x← {0, 1}λ, y = f(x);

2. R −→ C: R sends
(
(s′0, s

′
1); r

′; rwi2
)

to C where:

(a) s′0, s
′
1 ←

[
2λ

]
; (b) r′ ← {0, 1}λ; (c) rwi2 ← RWI2.

3. C −→ R: C sends
(
r; v; rwi3

)
to R where:

(a) b← {0, 1}, r = r1b ; (b) v = 〈x, r⊕ r′〉 ⊕m;

(c) rwi3 generated using RWI3 and (rwi1, rwi2) for

statement: ∃ (
b, s,N, η, val, {rα, ωα}α∈[val]

)
st

(i) val =

⎧⎪⎪⎨
⎪⎪⎩

3 log(λ) + 9 log(Nb),
s+ s′b ≡ 0 (mod Nb)

1,
otherwise

(ii) cb = Com(s ◦N ; η)
(iii) zαb = Com(rα;ωα) ∀ α ∈ [val]
(iv) r ∈ GL(r1, . . . , rval)

Decommit Phase: C sends x to R along with

decommitments of the first round commitments ca and

zαa for α = 1, . . . , λ and a = 0, 1.

Output: If the verification in RWI4 accepts, then R
outputs v ⊕ 〈r⊕ r′,x〉.

Figure 1. Three-Round ε-Extractable Bit Commitment Scheme
〈C,R〉ext−bit

σ̂2 =
(
(ŝ0, ŝ1), r̂

′, ˆrwi2
)

by choosing fresh ŝ0, ŝ1, ˆrwi2 and

sends σ̂2 to C∗. If C∗ returns σ̂3 = (r̂, v̂, ˆrwi3) such that

(rwi1, ˆrwi2, ˆrwi3) is an accepting proof and such that r̂ = r,

Pred outputs v̂ ⊕ v; otherwise Pred outputs ⊥. Property

1 above establishes that Pred meets the “valid output”

requirement of being a GL-algorithm, while property 2

establishes “prediction advantage”. Indeed, conditioned on

C∗ returning valid σ̂3 with r̂ = r, with probability at least
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1/2 + ε,

v̂ ⊕ v =
(
m̂⊕ 〈r̂⊕ r̂′,x〉)⊕ (

m⊕ 〈r⊕ r′,x〉)
= 〈r̂′,x〉 ⊕

(
〈r′,x〉 ⊕m⊕ m̂

)
.

So depending on whether
(〈r′,x〉⊕m⊕ m̂

)
is 0 or 1, the

output of Pred either is equal or not equal to 〈r̂′,x〉 with

probability 1/2 + ε.

If condition 1 or 2 is not true for the chosen r, simply

try again with a fresh choice of the first transcript with the

same first message σ1. If condition 1 is not true for any

choice of r, simply output ⊥. If condition 2 is not true for

any choice of r, then simply output a random bit (since in

this case C∗ is committing to a random bit for σ1). Note

that ε is given as input to the extractor and it can check

these conditions by running in time poly(1/ε).

V. HIDING OVERVIEW

Lemma 2. Assume that one-to-one one-way functions
exist. Then 〈C,R〉ext−bit is computationally hiding.

Let GA0 (m) denote the real world experiment where a

challenger C sends an adversarial receiverA a commitment

to m ∈ {0, 1}. The transcript of GA0 (m) is:(
(c0, c1), (s

′
0, s

′
1); {(zα0 , zα1 )}α=1,...,λ, r

′, r; f,y, v; (rwi1, rwi2, rwi3)
)

where (among other things) y = f(x) for a randomly

drawn x ← {0, 1}λ, and v = 〈r ⊕ r′,x〉 ⊕ m. We

prove hiding by showing that for all polynomial time A,

GA0 (0) ≈c GA0 (1). The omitted proof consists of three

main steps. First, we define a hybrid game GA,δ
1 (m)

(parametrized by δ > 0) and prove that for all non-

negligible δ > 0, and m ∈ {0, 1}, GA0 (m) ≈c GA,δ
1 (m).

Next, we use a distinguisher for GA,δ
1 (0) and GA,δ

1 (1) for a

particular δ > 0 (related to A’s chance of breaking hiding),

to construct a prediction algorithm Pred which, given(
f, f(x)

)
, predicts random inner products of x. Finally,

we use this prediction algorithm to construct an inversion

algorithm Inv which, given
(
f, f(x)

)
, outputs x with non-

negligible probability (over f and x). This contradicts the

assumption that F1−1 owf is a family of one-way functions,

proving GA,δ
1 (0) ≈c G

A,δ
1 (1), from which hiding follows.

Our proof of hiding follows the high-level strategy of the

proof of the Goldreich-Levin theorem [GL89]. However

several complications arise, essentially due to the fact

that our protocol is interactive. For example, since C
commits in the first round to its set of potential third

round messages, we will not have the freedom to run our

prediction algorithm on arbitrary strings as is normally

done in Goldreich-Levin-type proofs. Instead, we have to

use cryptographic arguments to show that the set of strings

which are allowed to be given to the prediction algorithm

are “random enough” against polynomial time adversaries

that the proof goes through anyway. The reader familiar

with Rackoff’s proof of the Goldreich-Levin theorem re-

calls that pairwise-independence played a key role. Indeed,

the most technical part of our proof is the establishment

of a “pairwise-independence-like” property.

VI. THREE ROUND ε-EXTRACTABLE STRING

COMMITMENT SCHEME

In this section we describe a three round ε-extractable

commitment scheme from any one-to-one one-way func-

tion. Intuitively, in order to commit to a string m ∈ {0, 1}e,

let (m1, . . . ,mn) = ECC(m) ∈ {0, 1}n for ECC a binary

error correcting code with constant distance, then use

〈C,R〉ext−bit to commit to each mi in parallel. However,

there are a few complications which we discuss momentar-

ily. The formal description of 〈C,R〉 is given in Figure 2.

Intuitively, the protocol can be broken into the following

parts.

1) C sends z = Com(m;ω), and computes

(c1, . . . , cn) = ECC(m ◦ ω).
2) C and R engage in n simplified executions of

〈C,R〉ext−bit where C commits to ci in the i−th

copy. The simplified protocols go as follows:

• C sends f,y, z where z = Com(r); R sends r′;
C sends r and v = 〈x, r⊕ r′〉 ⊕ ci;

The reason for the simplifications is that there will

be a single global proof, unbounded polynomial

commitment, and Goldreich-Levin set for the entire

outer protocol, so the inner protocols do not need

these parts.

3) C also commits to random strings r1, . . . , rλ, which

are generators to a Goldreich-Levin set. Also, C and

R play an unbounded polynomial commitment to

determine the size of the GL set.

4) Finally, C proves that every value r send in the inner,

simplified 〈C,R〉ext−bit sessions, is the committed

string inside the corresponding z, except for at most

one such r which is in the GL set of size determined

by N .

We remark again that the above is a simplification. The

actual protocol employs bounded rewind secure WI, and

so needs two copies of much of the above data for security.

Parameters and Subroutines.: The protocol takes

place between a committer C and a receiver R. Let λ be

the security parameter. Let F1−1 owf be a family of one-to-

one oneway functions taking inputs of length λ. Let Com
be a non-interactive, perfectly binding (string) commitment

scheme, whose decommitments are strings of length k. Let

ECC : {0, 1}k → {0, 1}n be a binary error-correcting code

with constant distance. Finally, let RWI be the three-round

rewind secure WI proof from Section III-B.

Theorem 5. Assume that one-to-one one-way functions
exist. Then 〈C,R〉 is a three-round, perfectly binding, com-
putationally hiding, ε−extractable commitment scheme.

Proof Outline: Perfect binding follows immediately

from the perfect binding of 〈C,R〉ext−bit. The main chal-

lenge is proving ε−extractability as per Definition 4,
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Input: C has a message m ∈ {0, 1}e that it will commit

to; R uses no input.

Commit Phase:

1. C −→ R: C sends(
z; (c0, c1); {(zα0 , zα1 )}α∈[λ]; {fi,yi, z

∗
i }i∈[n]; rwi1

)
to R:

(a) z = Com(m;ω) for ω ← $;
(b) ca = Com(sa ◦Na; ηa) where sa, Na ←

[
2λ

]
,

ηa ← $;
(c) zαa = Com(rαa ;ω

α
a ) where rαa ← {0, 1}λ, ωα

a ← $;
(d) fi ← F1−1 owf , xi ← {0, 1}λ, yi = fi(xi);

z∗i = Com(r∗i ;ω
∗
i ) for r∗i,a ← {0, 1}λ, ω∗i,a ← $;

(c) rwi1 ← RWI1; the statement will come during the

third round;

2. R −→ C: R sends
(
(s′0, s

′
1); {r′i}; rwi2

)
to C:

(a) s′0, s
′
1 ←

[
2λ

]
; (b) r′i ← {0, 1}λ; (c) rwi2 ← RWI2.

3. C −→ R: C sends
({ri, vi}; rwi3) to R where:

(a) ri = r∗i,b; for b← {0, 1} (b) vi = 〈xi, ri ⊕ r′i〉 ⊕ ci,
where (c1, . . . , cn) = ECC(m ◦ ω);

(c) rwi3 so that (rwi1, rwi2, rwi3) proves: ∃(
b, i∗, s,N, η, val, {rα, ωα}α∈[val], {r∗i , ω∗i }i∈[n]

)
st

(i) val =

{
3 log(λ) + 9 log(Nb), Nb|s+ s′b
1, otherwise

(ii) cb = Com(s ◦N ; η)
(iii) zαb = Com(rα;ωα) ∀ α ∈ [val]
(iv) ri∗ ∈ GL(r1, . . . , rval) ∪ {r∗i∗}
(v) z∗i = Com(r∗i ;ω

∗
i )

(vi) ri = r∗i ∀ i �= i∗

Decommit Phase: C sends {xi}i∈[n] to R.

Output: R computes ĉi = vi ⊕ 〈xi, ri ⊕ r′i〉, and decodes

(ĉ1, . . . , ĉn) to get (m,ω). If any errors are detected

during decoding, or if (m,ω) �= Decom(z), output ⊥.

Otherwise, output m.

Figure 2. Three-Round ε-Extractable Commitment Scheme 〈C,R〉

our proof occupies the next several sections. Hiding is

proved using a hybrid argument where we pass from a

commitment to m to a commitment of m′ by changing C’s

inputs in the 〈C,R〉ext−bit from ci to 0, one at a time. If we

instantiate the 〈C,R〉ext−str with a version of 〈C,R〉ext−bit

which has 1−rewind hiding, then 〈C,R〉ext−str will have

1−rewind hiding security as well.

VII. THREE-ROUND NM COMMITMENT FROM

ONE-TO-ONE OWF

Our three round non-malleable commitment is very

simple. It is shown in Figure 3. It consists simply of two

commitments run side by side. The first, GPR, is the main

protocol from [GPR16]; the second is the 〈C,R〉ext−str

from Section VI, enhanced to have rewindable hiding

security.

Parameters and Subroutines: The protocol takes place

between a committer C and a receiver R. Let

(Com1,Com2,Com3) denote the subroutines used to

generate the rounds of 〈C,R〉ext−str from Section VI. Let

(GPR1,GPR2,GPR3) represent the subroutines of GPR,

the main protocol from [GPR16] that is non-malleable

against a synchronizing adversary.

Input: C has m ∈ {0, 1}λ that it will commit to; R uses

no input.

Commit Phase:

1. C −→ R: C sends (gpr1,Com1) to R where:

(a) gpr1 ← GPR1(m); let ω be the decommitment

information of gpr1.

(b) σ1 ← Com1(ω).

2. R −→ C: R sends (gpr2,Com2) to C.

3. C −→ R: C sends (gpr3,Com3) to R.

Decommit Phase: C sends R the decommitment

information corresponding (gpr1, gpr2, gpr3) and

(σ1, σ2, σ3).

Output: If both decommitments are well formed, and if,

moreover, the committed message in (σ1, σ2, σ3) is the

decommitment information for gpr1, then R outputs m,

the committed message in (gpr1, gpr2, gpr3); otherwise R
outputs ⊥.

Figure 3. Three-Round Non-Malleable Commitment Scheme 〈C,R〉nm

Theorem 6. If one-to-one oneway functions exist then
〈C,R〉nm is a three-round, perfectly binding, non-
malleable commitment scheme.

Proof: Perfect binding and hiding follow immedi-

ately from the perfect binding and hiding of GPR and

〈C,R〉ext−str. To prove non-malleability, we consider the

case when the MIM is synchronizing (i.e., plays the

corresponding messages from the two sessions one after

another), or sequential (i.e., plays the entire left interaction

followed by the entire right). The synchronizing case

follows from [GPR16], who proved that GPR is non-

malleable against a synchronizing adversary even if it is

run in parallel with a (malleable) commitment scheme

which has 1−rewind secure hiding. The main difficulty is

to prove non-malleability against a sequential MIM; our

proof occupies the next section.

A. Non-Malleability of 〈C,R〉nm Against a Sequential
MIM

Notation.: We are interested in the following ran-

domized process, parametrized by m ∈ {0, 1}λ and a

PPT sequential MIM M: M plays two executions of the

commit phase of 〈C,R〉nm, one on the left where M plays

as receiver against an honest C, who commits to m, and
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one on the right where M plays as committer against honest

R. We T to denote the transcript of this experiment:

T = (TL,TR) =
(
TL, (gpr1, gpr2, gpr3), (τ1, τ2, τ3), (σ1, σ2, σ3)

)
,

where (gpr1, gpr2, gpr3) is the GPR transcript of the

right execution, and
(
(τ1, τ2, τ3), (σ1, σ2, σ3)

)
, is the right

〈C,R〉ext−str transcript, notated as in Section VI. Proving

non-malleability ammounts to showing that that for every

non-negligible ε > 0, polytime MIM M, there exists a

simulator SIMM
ε which outputs a transcript/message pair

(T, m̃) such that for all m ∈ {0, 1}λ, and polytime

distinguishers D:

∣∣∣Pr(T,m̃)←MIMM
m

[
D(T, m̃) = 1

]−Pr(T,m̃)←SIMM
ε

[
D(T, m̃) = 1

]∣∣∣ ≤ ε,

(2)

where recall that MIMM
m plays the MIM experiment with

M, producing a transcript T and then outputs (T, m̃)
where m̃ = val(T) is the committed value inside the right

execution. The main Lemma of this section is thus:

Lemma 3 (Sequential NM of 〈C,R〉nm). For all non-
negligible ε > 0 and polynomial time sequential M,
there exists a polynomial time algorithm SIMM

ε which
runs in time poly

(
λ,TM, 1/ε

)
, and on input id, outputs

a transcript-message pair (T, m̃) such that for all m, id ∈
{0, 1}λ, and polynomial time distinguishers D, (2) holds.

Proof Intuition.: The key to the proof is an extrac-

tion procedure, EXTLOOP, which yields several distinct

candidate simulators, one of which is the simulator we are

looking for. EXTLOOP is an extraction loop, the k−th

candidate simulator, denoted SIMk, works by executing

the loop k times and then exiting and giving output. On

the i−th run through the loop, the simulation procedure

will call Di, a PPT distinguisher for SIMi−1 (if no such

Di exists then SIMi−1 is the simulator we are looking for,

so we are done). Each time through the extraction loop,

we are likely to recover a oneway function preimage from

the right execution of 〈C,R〉ext−str. The lemma follows

since if we get every oneway function preimage, we can

recover M’s commitment in polynomial time and thus he

cannot be mauling (this would break hiding).
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