
Efficient Truncated Statistics with Unknown Truncation

Vasilis Kontonis

University of Wisconsin-Madison
Madison, WI, USA
kontonis@wisc.edu

Christos Tzamos

University of Wisconsin-Madison
Madison, WI, USA
tzamos@wisc.edu

Manolis Zampetakis

MIT
Cambridge, MA, USA

mzampet@mit.edu

Abstract—We study the problem of estimating the parame-
ters of a Gaussian distribution when samples are only shown
if they fall in some (unknown) set. This core problem in
truncated statistics has long history going back to Galton,
Lee, Pearson and Fisher. Recent work by Daskalakis et al.
(FOCS’18), provides the first efficient algorithm that works for
arbitrary sets in high dimension when the set is known, but
leaves as an open problem the more challenging and relevant
case of unknown truncation set.

Our main result is a computationally and sample efficient
algorithm for estimating the parameters of the Gaussian under
arbitrary unknown truncation sets whose performance decays
with a natural measure of complexity of the set, namely its
Gaussian surface area. Notably, this algorithm works for large
families of sets including intersections of halfspaces, polynomial
threshold functions and general convex sets. We show that our
algorithm closely captures the tradeoff between the complexity
of the set and the number of samples needed to learn the
parameters by exhibiting a set with small Gaussian surface
area for which it is information theoretically impossible to learn
the true Gaussian with few samples.

Keywords-Truncated Statistics; Gaussian Distribution;
Learning Theory; Unknown Truncation Set

I. INTRODUCTION

A classical challenge in Statistics is estimation from

truncated samples. Truncation occurs when samples falling

outside of some subset S of the support of the distribution

are not observed. Truncation of samples has myriad manifes-

tations in business, economics, engineering, social sciences,

and all areas of the physical sciences.

Statistical estimation under truncated samples has had a

long history in Statistics, going back to at least the work

of Galton [Gal97] who analyzed truncated samples corre-

sponding to speeds of American trotting horses. Following

Galton’s work, Pearson and Lee [Pea02], [PL08], [Lee14]

used the method of moments in order to estimate the mean

and standard deviation of a truncated univariate normal

distribution and later Fisher [Fis31] used the maximum

likelihood method for the same estimation problem. Since

then, there has been a large volume of research devoted

to estimating the truncated normal distribution; see e.g.

[Sch86], [Coh16], [BC14]. Nevertheless, the first algorithm

that is provably computationally and statistically efficient

was only recently developed by Daskalakis et al. [DGTZ18],

under the assumption that the truncation set S is known.

In virtually all these works the question of estimation

under unknown truncation set is raised. Our work resolves

this question by providing tight sample complexity guaran-

tees and an efficient algorithm for recovering the underlying

Gaussian distribution. Although this estimation problem has

clear and important practical and theoretical motivation too

little was known prior to our work even in the asymptotic

regime. In the early work of Shah and Jaiswal [SJ66] it

was proven that the method of moments can be used to

estimate a single dimensional Gaussian distribution when

the truncation set is unknown but it is assumed to be an

interval. In the other extreme where the set is allowed to

be arbitrarily complex, Daskalakis et al. [DGTZ18] showed

that it is information theoretically impossible to recover the

parameters. We provide the first complete analysis of the

number of samples needed for recovery taking into account

the complexity of the underlying set.

Our Contributions.: Our work studies the estimation

task when the truncation set belongs in a family C of “low

complexity”. We use two different notions for quantifying

the complexity of sets: the VC-dimension and the Gaussian

Surface Area.

Our first result is that for any set family with VC-

dimension VC(C), the mean and covariance of the true d-

dimensional Gaussian Distribution can be recovered up to

accuracy ε using only Õ
(
VC(C)

ε + d2

ε2

)
truncated samples.

Informal Theorem 1. Let C be a class of sets with VC-
dimension VC(C) and let N = Õ

(
VC(C)

ε + d2

ε2

)
. Given

N samples from a d-dimensional Gaussian N (μ,Σ) with
unknown mean μ and covariance Σ, truncated on a set
S ∈ C with mass at least α, it is possible to find an estimate
(μ̂, Σ̂) such that dTV(N (μ,Σ),N (μ̂, Σ̂)) ≤ ε.

The estimation method computes the set of smallest mass

that maximizes the likelihood of the data observed and

learns the truncated distribution within error O(ε) in total

variation distance. To translate this error in total variation to

parameter distance, we prove a general result showing that

it is impossible to create a set (no matter the complexity) so

that two Gaussians whose parameters are far have similar

truncated distributions (see Lemma 8).

A simple but not successful approach would be to first
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try to learn an approximation of the truncation set with

symmetric difference roughly ε2/d2 with the true set and

then run the algorithm of [DGTZ18] using the approximate

oracle. This approach would lead to a VC(S)d2/ε2 sample

complexity that is worse than what we get. More impor-

tantly, doing empirical risk minimization1 using truncated

samples does not guarantee that we will find a set of small

symmetric difference with the true and it is not clear how

one could achieve that.

Our result bounds the sample complexity of identifying

the underlying Gaussian distribution in terms of the VC-

dimension of the set but does not yield a computationally

efficient method for recovery. Obtaining a computationally

efficient algorithm seems unlikely, unless one restricts at-

tention to simple specific set families, such as axis aligned

rectangles. One would hope that exploiting the fact that

samples are drawn from a “tame” distribution, such as

a Gaussian, can lead to general computationally efficient

algorithms and even improved sample complexity.

Indeed, our main result is an algorithm that is both

computationally and statistically efficient for estimating the

parameters of a spherical Gaussian and uses only dO(Γ
2(C))

samples, where Γ(C) is the Gaussian Surface Area of the

class C, an alternative complexity measure introduced by

Klivans et al. [KOS08]:

Informal Theorem 2. Let C be a class of sets with Gaussian
surface area at most Γ(C) and let k = poly(1/α, 1/ε)Γ(C)2.
Given N = dk samples from a spherical d-dimensional
Gaussian N (μ, σ2I), truncated on a set S ∈ C with mass
at least α,in time poly(m), we can find an estimate μ̂, σ̂2

such that

dTV(N (μ, σ2I),N (μ̂, σ̂2I)) ≤ ε.

The notion of Gaussian surface area can lead to better

sample complexity bounds even when the VC dimension is

infinite. An example of such a case is when C is the class of

all convex sets. Table I summarizes the known bounds for

the Gaussian surface area of different concept classes and

the implied sample complexity in our setting when combined

with our main theorem.

Beyond spherical Gaussians, our main result extends to

Gaussians with arbitrary diagonal covariance matrices. In

addition, we provide an information theoretic result showing

that the case with general covariance matrices can also

be estimated using the same sample complexity bound by

finding a Gaussian and a set that matches the moments of

the true distribution. We remark our main algorithmic result

Informal Theorem 3 uses Gaussian Surface Area whereas

our sample complexity result Informal Theorem 2 uses VC-

dimension. We discuss the differences of the two approaches

in Section VII.

1That is finding a set of the family that contains all the observed samples.

Informal Theorem 3. Let C be a class of sets with Gaussian
surface area at most Γ(C) and let k = poly(1/α, 1/ε)Γ(C)2.
Any truncated Gaussian with N (μ̂, Σ̂, Ŝ) with Ŝ ∈ C
that approximately matches the moments up to degree k
of a truncated d-dimensional Gaussian N (μ,Σ, S) with
S ∈ C, satisfies dTV(N (μ,Σ),N (μ̂, Σ̂)) ≤ ε. The number
of samples to estimate the moments within the required
accuracy is at most dO(k).

This shows that the first few moments are sufficient

to identify the parameters. Analyzing the guarantees of

moment matching methods is notoriously challenging as

it involves bounding the error of a system of many poly-

nomial equations. Even for a single-dimensional Gaussian

with truncation in an interval, where closed form solutions

of the moments exist, it is highly non-trivial to bound

these errors [SJ66]. In contrast, our analysis using Hermite

polynomials allows us to easily obtain bounds for arbitrary

truncation sets in high dimensions, even though no closed

form expression for the moments exists.

We conclude by showing that the dependence of our

sample complexity bounds both on the VC-dimension and

the Gaussian Surface Area is tight up to polynomial factors.

In particular, we construct a family in d dimensions with VC

dimension 2d and Gaussian surface area O(d) for which it

is not possible to learn the mean of the underlying Gaussian

within 1 standard deviation using o(2d/2) samples.

Informal Theorem 4. There exists a family of sets S with
Γ(S) = O(d) and VC-dimension 2d such that any algorithm
that draws N samples from N (μ, I, S) and computes an
estimate μ̃ with ‖μ̃− μ‖2 ≤ 1 must have N = Ω(2d/2).

Our techniques and relation to prior work.: The work

of Klivans et al. [KOS08] provides a computationally and

sample efficient algorithm for learning geometric concepts

from labeled examples drawn from a Gaussian distribu-

tion. On the other hand, the recent work of Daskalakis

et al. [DGTZ18] provides efficient estimators for truncated

statistics with known sets. One could hope to combine these

two approaches for our setting, by first learning the set

and then using the algorithm of [DGTZ18] to learn the

parameters of the Gaussian. This approach, however, fails

for two reasons. First, the results of Klivans et al. [KOS08]

apply in the supervised learning setting where one has access

to both positive and negative samples, while our problem can

be thought of as observing only positive examples (those

falling inside the set). In addition, any direct approach that

extends their result to work with positive only examples

requires that the underlying Gaussian distribution is known

in advance.

One of our key technical contributions is to extend the

techniques of Klivans et al. [KOS08] to work with posi-
tive only examples from an unknown Gaussian distribution,

which is the major case of interest in truncated statistics. To
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Concept Class Gaussian Surface Area Sample Complexity

Polynomial threshold functions of degree k O(k) [Kan11] dO(k2)

Intersections of k halfspaces O(
√
log k) [KOS08] dO(log k)

General convex sets O(d1/4) [Bal93] dO(
√

d)

Table I
SUMMARY OF KNOWN RESULTS FOR GAUSSIAN SURFACE AREA. THE LAST COLUMN GIVES THE SAMPLE COMPLEXITY WE OBTAIN FOR OUR

SETTING.

perform the set estimation Klivans et al. [KOS08], rely on a

family of orthogonal polynomials with respect to the Gaus-

sian distribution, namely the Hermite polynomials and show

that the indicator function of the set is well approximated

by its low degree Hermite expansion. While we cannot learn

this function directly in our setting, we are able to recover an

alternative function, that contains “entangled” information of

both the true Gaussian parameters and the underlying set.

After learning the function, we formulate an optimization

problem whose solution enables us to decouple these two

quantities and retrieve both the Gaussian parameters and

the underlying set. We describe our estimation method in

more detail in Section IV. As a corollary of our approach,

we obtain the first efficient algorithm for learning geometric

concepts from positive examples drawn from an unknown

spherical Gaussian distribution.

Simulations.: In addition to the theoretical guarantees

of our algorithm, we empirically evaluate its performance

using simulated data. We present the results that we get in

Figure 1, where one can see that even when the truncation

set is complex, our algorithm finds an accurate estimation of

the mean of the untruncated distribution. Observe that our

algorithm succeeds in estimating the true mean of the input

distribution despite the fact that the set is unknown and the

samples look similar in both cases.

A. Further Related Work

Our work is related to the field of robust statistics as it

can robustly learn a Gaussian even in the presence of an ad-

versary erasing samples outside a certain set. Recently, there

has been a lot of theoretical work doing robust estimation

of the parameters of multi-variate Gaussian distributions in

the presence of arbitrary corruptions to a small ε fraction

of the samples, allowing for both deletions of samples and

additions of samples that can also be chosen adaptively

[DKK+16], [CSV17], [LRV16], [DKK+17], [DKK+18].

When the corruption of the data is so powerful it is easy

to see that the estimation error of the parameter depends on

ε and cannot shrink to 0 as the number of samples grows to

infinity. In our model the corruption is more restrictive but

in return our results show how to estimate the parameters of

a multi-variate Gaussian distribution to arbitrary accuracy

even when the fraction of corruption is any constant less

than 1.

(a) Execution of our algorithm for isotropic Gaussian distribution with
μ∗ = (0.1, 0.78) and μS = (0.48, 0.32).

(b) Execution of our algorithm for isotropic Gaussian distribution with
μ∗ = (0, 0) and μS = (0.47, 0.27).

Figure 1. Illustration of the results of our algorithm for an unknown
truncation set. The × sign corresponds to the conditional mean of the
truncated distribution, while the green point corresponds to the true mean
and the red points correspond to the estimated true mean depending on the
degree of the Hermite polynomials that are being used by the algorithm.

Our work also has connections with the literature of

learning from positive examples. At the heart of virtually

all of the results in this literature is the use of the exact

knowledge of the original non-truncated distribution to be

able to generate fake negative examples, e.g. [Den98],

[LDG00]. When the original distribution is uniform, better

algorithms are known. Diakonikolas et al. [DDS14] gave
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efficient learning algorithms for DNFs and linear threshold

functions, Frieze et al. [FJK96] and Anderson et al. [AGR13]

gave efficient learning algorithms for learning d-dimensional

simplices. Another line of work proves lower bounds on

the sample complexity of recovering an unknown set from

positive examples. Goyal et al. [GR09] showed that learning

a convex set in d-dimensions to accuracy ε from positive

samples, uniformly distributed inside the set, requires at least

2Ω(
√

d/ε) samples, while the work of [Eld11] showed that

2Ω(
√
d) samples are necessary even to estimate the mass of

the set. To the best of our knowledge, no matching upper

bounds are known for those results. Our estimation result

implies that dpoly(
1
ε )
√
d are sufficient to learn the set and its

mass when given positive samples from a Gaussian truncated

on the convex set.

II. PRELIMINARIES

Notation. We use small bold letters x to refer to real vectors

in finite dimension R
d and capital bold letters A to refer to

matrices in R
d×�. Similarly, a function with image in R

d is

represented by a small and bold letter f . Given a subset S
of R

d we define 1S(x) to be its 0 − 1 indicator. Let A ∈
R

d×d, we define A� ∈ R
d2

to be the standard vectorization

of A. Let also Qd be the set of all the symmetric d × d
matrices. The Frobenius norm of a matrix A is defined as

‖A‖F =
∥∥∥A�

∥∥∥
2
.

Gaussian Distribution. Let N (μ,Σ) be the normal dis-

tribution with mean μ and covariance matrix Σ, with the

following probability density function

N (μ,Σ;x) =
1√

det(2πΣ)
exp

(
−1
2
(x− μ)TΣ−1(x− μ)

)
. (1)

Also, let N (μ,Σ;S) denote the probability mass of a
measurable set S under this Gaussian measure. We shall also

denote by N0 the standard Gaussian, whether it is single or

multidimensional will be clear from the context.

Truncated Gaussian Distribution. Let S ⊆ R
d be a

subset of the d-dimensional Euclidean space, we define

the S-truncated normal distribution N (μ,Σ, S) the normal

distribution N (μ,Σ) conditioned on taking values in the

subset S. The probability density function of N (μ,Σ, S) is

the following

N (μ,Σ, S;x) = 1S(x)

N (μ,Σ;S)N (μ,Σ;x). (2)

We will assume that the covariance matrix Σ is full rank. The

case where Σ is not full rank we can easily detect and solve

the estimation problem in the linear subspace of samples.

The core complexity measure of Borel sets in R
d that we

use is the notion of Gaussian Surface Area defined below.

Definition 1 (GAUSSIAN SURFACE AREA). For a Borel set
A ⊆ R

d, δ ≥ 0 let Aδ = {x : dist(x,A) ≤ δ}. The
Gaussian surface area of A is

Γ(A) = lim inf
δ→0

N0(Aδ \A)
δ

.

We define the Gaussian surface area of a family of sets C
to be Γ(C) = supC∈C Γ(C).

Problem Formulation. Given samples from a truncated

Gaussian N ∗S := N (μ∗,Σ∗, S), our goal is to learn the

parameters (μ∗,Σ∗) and recover the set S. We denote by

α∗ = N (μ∗,Σ∗;S), the total mass contained in set S by

the untruncated Gaussian N ∗ := N (μ∗,Σ∗). Throughout

this paper, we assume that we know an absolute constant

α > 0 such that

N (μ∗,Σ∗;S) = α∗ ≥ α. (3)

We next state the following simple lemma that connects

the total variation distance of two Normal distributions with

their parameter distance. For a proof see e.g. Corollaries

2.13 and 2.14 of [DKK+16].

Lemma 1. Let N1 = N (μ1,Σ1) , N2 = N (μ2,Σ2) be
two Normal distributions. Then

dTV(N1, N2) ≤ 1

2

∥∥∥Σ−1/21 (μ1 − μ2)
∥∥∥
2

+
√
2
∥∥∥I −Σ

−1/2
1 Σ2Σ

−1/2
1

∥∥∥
F

We readily use the following two lemmas from

[DGTZ18]. The first suggests that we can accurately esti-

mate the parameters (μS ,ΣS).

Lemma 2. Let (μS ,ΣS) be the mean and covariance of
the truncated Gaussian N (μ,Σ, S) for a set S such that
N (μ,Σ;S) ≥ α. Using Õ( d

ε2 log(1/α) log
2(1/δ)) samples,

we can compute estimates μ̃S and Σ̃S such that ,with
probability at least 1− δ,

‖Σ−1/2(μ̃S − μS)‖2 ≤ ε

(1− ε)ΣS � Σ̃S � (1 + ε)ΣS

The second lemma suggests that the empirical estimates

are close to the true parameters of underlying truncated

Gaussian.

Lemma 3. The empirical mean and covariance μ̃S and Σ̃S

computed using Õ(d2 log2(1/αδ)) samples from a truncated
Normal N (μ,Σ, S) with N (μ,Σ;S) ≥ α satisfies with
probability 1− δ that:

‖Σ−1/2(μ̃S − μ)‖22 ≤ O(log
1

α
), Σ̃S 	 Ω(α2)Σ,∥∥∥Σ−1/2Σ̃SΣ

−1/2 − I
∥∥∥2
F
≤ O(log

1

α
).

Moreover, Ω(α2) ≤
∥∥∥∥Σ̃−1/2S ΣΣ̃

−1/2
S

∥∥∥∥
2

≤ O(1/α2).
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In particular, the mean and covariance μ̃S and Σ̃S that

satisfy the conditions of Lemma 3, are in (O(log(1/α)), 1−
O(α2))-near isotropic position.

We will use the following very useful anti-concentration

result about the Gaussian mass of sets defined by polyno-

mials.

Theorem 1 (Theorem 8 of [CW01]). Let q, γ ∈ R+,
μ ∈ R

d, Σ ∈ R
d×d such that Σ is symmetric positive

semidefinite and p : Rd → R be a multivariate polynomial
of degree at most �, we define

Q̄ =
{
x ∈ R

d | |p(x)| ≤ γ
}
,

then there exists an absolute constant C such that

N (μ,Σ; Q̄) ≤ Cqγ1/�(
Ez∼N (μ,Σ)

[
|p(z)|q/�

])1/q .
A. Hermite Polynomials, Ornstein-Uhlenbeck Operator, and
Gaussian Surface Area.

We denote by L2(Rd,N0) the vector space of all functions

f : R
d → R such that Ex∼N0

[f2(x)] < ∞. The usual

inner product for this space is Ex∼N0
[f(x)g(x)]. While,

usually one considers the probabilists’s or physicists’ Her-

mite polynomials, in this work we define the normalized
Hermite polynomial of degree i to be H0(x) = 1, H1(x) =

x,H2(x) = x2−1√
2
, . . . , Hi(x) = Hei(x)√

i!
, . . . where by

Hei(x) we denote the probabilists’ Hermite polynomial

of degree i. These normalized Hermite polynomials form

a complete orthonormal basis for the single dimensional

version of the inner product space defined above. To get

an orthonormal basis for L2(Rd,N0), we use a multi-index

V ∈ N
d to define the d-variate normalized Hermite polyno-

mial as HV (x) =
∏d

i=1Hvi
(xi). The total degree of HV is

|V | = ∑
vi ∈ V vi. Given a function f ∈ L2 we compute

its Hermite coefficients as f̂(V ) = Ex∼N0
[f(x)HV (x)] and

express it uniquely as
∑

V ∈Nd f̂(V )HV (x). We denote by

Skf(x) the degree k partial sum of the Hermite expan-

sion of f , Skf(x) =
∑
|V |≤k f̂(V )HV (x). Then, since

the basis of Hermite polynomials is complete, we have

limk→∞ Ex∼N0
[(f(x)− Skf(x))

2
] = 0. We would like to

quantify the convergence rate of Skf to f . Parseval’s identity

states that

E
x∼N0

[(f(x)− Skf(x))
2
] =

∞∑
|V |=k

f̂(V )2.

Definition 2 (HERMITE CONCENTRATION). Let γ(ε, d) be
a function γ : (0, 1/2) × N �→ N. We say that a class of
functions F over R

d has a Hermite concentration bound of
γ(ε, d), if for all d ≥ 1, all ε ∈ (0, 1/2), and f ∈ F it holds∑
|V |≥γ(ε,d) f̂(V )

2 ≤ ε.

We now define the Gaussian Noise Operator as in

[O’D14]. Using a different parametrization, which is not

convenient for our purposes, these operators are also known

as the Ornstein-Uhlenbeck semigroup, or the Mehler trans-

form.

Definition 3. The Gaussian Noise operator Tρ is the linear
operator defined on the space of functions L1(Rd,N0) by

Tρf(x) = E
y∼N0

[
f(ρx+

√
1− ρ2y)

]
.

A nice property of operator T1−ρ that we will use is that

it has a simple Hermite expansion

Sk(Tρf)(x) =
∑

V :|V |≤k

ρ|V |f̂(V )HV (x) (4)

We also define the noise sensitivity of a function f .

Definition 4 (NOISE SENSITIVITY). Let f : Rd �→ R be a
function in L2(Rd,N0). The noise sensitivity of f at ρ ∈
[0, 1] is defined to be

NSρ[f ] = 2 E
x∼N0

[f(x)2 − f(x)T1−ρf(x)]

Since, the vectors x and z = (1 − ρ)x +
√
1− ρ2y are

jointly distributed according to

Dρ = N
((

0
0

)
,

(
I (1− ρ)I

(1− ρ)I I

))
. (5)

we can write

NSρ[f ] (6)

= E
(x,z)∼Dρ

[
f(x)2

]
+ E

(x,z)∼Dρ

[
f(z)2 − 2f(x)f(z)

]
= E

(x,z)∼Dρ

[(f(x)− f(z))2]. (7)

When f is an indicator of a set, the noise sensitivity is

NSρ[1S ] = 2 E
(x,z)

[1S(x)(1− 1S(z))]

= 2 E
(x,z)

[1S(x)1Sc(z)], (8)

which is equal to the probability of the correlated points

x, z landing at ”opposite” sides of S.
Ledoux [Led94] and Pisier [Pis86] showed that the noise

sensitivity of a set can be bounded by its Gaussian surface

area.

Definition 5 (Gaussian Surface Area). For a Borel set
A ⊆ R

d, its Gaussian surface area is Γ(A) =

lim infδ→0
N0(Aδ\A)

δ , where Aδ = {x : dist(x,A) ≤ δ}.
We will use the following lemma given in [KOS08].

Lemma 4 (Corollary 14 of [KOS08]). For a Borel set S ⊆
R

d and ρ ≥ 0, NSρ[1S(x)] ≤
√
π
√
ρ Γ(S).

For more details on the Gaussian space and Hermite

Analysis (especially from the theoretical computer science

perspective), we refer the reader to [O’D14]. Most of the

facts about Hermite polynomials that we shall use in this

work are well known properties and can be found, for

example, in [Sze67].

1570



III. IDENTIFIABILITY WITH BOUNDED VC DIMENSION

In this section we analyze the sample compexity of

learning the true Gaussian parameters when the truncation

set has bounded VC-dimension. In particular we show

that the overhead over the d2/ε2 samples (which is the

sample compexity of learning the parameters of the Gaussian

without truncation) is proportional to the VC dimension of

the class.

Theorem 2. Let S be a family of sets of finite VC dimension,
and let N (μ,Σ, S) be a truncated Gaussian distribution
such that N (μ,Σ;S) ≥ α. Given N samples with

N = poly(1/α) Õ

(
d2

ε2
+
VC(S)
ε

)
Then, with probability at least 99%, it is possible to iden-
tify (μ̃, Σ̃) that satisfy dTV(N (μ,Σ),N (μ̃, Σ̃)) ≤ ε and∥∥∥Σ−1/2(μ− μ̃)

∥∥∥
2
≤ ε and

∥∥∥I −Σ−1/2Σ̃Σ−1/2
∥∥∥
F
≤ ε.

Our algorithm works by first learning the truncated dis-

tribution within total variation distance ε. To do this, we

first assume that we know the mean and covariance of

the underlying Gaussian by guessing the parameters and

accurately learn the underlying set. After drawing N =
Θ(VC(S) log(1/ε)ε ) samples from the distribution, any set in

the class that contains the samples will only exclude at

most an ε fraction of the total mass. Picking the set S̃ that

maximizes the likelihood of those samples, i.e. the set with

minimum mass according to the guessed Gaussian distribu-

tion, guarantees that the total variation distance between the

learned truncated distribution and the true is at most ε, if

the guess of the parameters was accurate (Lemma 5). For

the proof of Lemma 5 we refer the reader to the full version

of the paper.

Lemma 5. Let S be a family of subsets in R
d and Let

N (μ,Σ, S∗) = N ∗S be a Normal distribution truncated on
the set S∗ ∈ S . Fix ε ∈ (0, 1), δ ∈ (0, 1/4) and let

N = O

(
VC(S) log(1/ε)

ε
+ log

(
1

δ

))
Moreover, let μ̃, Σ̃ be such that dTV(N (μ̃, Σ̃),N (μ,Σ)) ≤
ε. Assume that we draw N samples xi from NS∗ , Let S̃ be
the solution of the problem

min
S
N (μ̃, Σ̃;S) subject to xi ∈ S for all i ∈ [n]

Then with probability at least 1 − δ we have
dTV(N (μ̃, Σ̃, S̃),N (μ,Σ, S)) ≤ 3ε/(2α).

This is because the total variation distance between

two densities f and g can be written as
∫
(f(x) −

g(x))1f(x)>g(x)dx. Note that by choosing the set of the

smallest mass consistent with the samples, we guarantee

that the guess will have higher density at every point apart

from those outside the support S̃. However, as we argued the

outside mass is at most ε with respect to the true distribution

which gives the bound in the total variation distance.

To remove the assumption that the true parameters are

known, we build a cover of all possible mean and covariance

matrices that the underlying Gaussian might have and run the

tournament from [DK14] to identify the best one (Lemma 6).

We will use the following statement of the tournament from

[DK14]. See also [DL12].

Lemma 6 (Tournament [DK14]). There is an algorithm,
which is given sample access to some distribution X and
a collection of distributions H = {H1, . . . , HN} over
some set, access to a PDF comparator for every pair of
distributions Hi, Hj ∈ H, an accuracy parameter ε > 0,
and a confidence parameter δ > 0. The algorithm makes
O(log(1/δ)ε2) logN) draws from each of X,H1, . . . , HN

and returns some H ∈ H or declares ”failure” If there
is some H ∈ H such that dTV(H,X) ≤ ε then with
probability at least 1−δ the returned distribution H satisfies
dTV(H,X) ≤ 512ε. The total number of operations of the
algorithm is O(log(1/δ)(1/ε2)(N logN + log 1/δ)).

While there are (d/ε)O(d
2) such parameters, the number

of samples needed for running the tournament is only

logarithmic which shows that an additional Õ(d2/ε2) are

sufficient to find a hypothesis in total variation distance ε
(Lemma 7). The proof of Lemma 7 can be found the full

version of the paper.

Lemma 7. Let S ∈ S be a subset of Rd and N (μ,Σ, S)
be the corresponding truncated normal distribution. Then
Õ
(
VC(S)/ε+ d2/ε2

)
samples are sufficient to find param-

eters μ̃, Σ̃, S̃ such that dTV(N (μ,Σ, S),N (μ̃, Σ̃, S̃)) ≤ ε
with probability at least 99%.

We finally argue that the ε error in total variation of

the truncated distributions translates to an O(ε) bound

in total variation distance of the untruncated distributions

(Lemma 8). We show that this is true in general and does not

depend on the complexity of the set. To prove this statement,

we consider two Gaussians with parameters that are far from

each other and construct the worst possible set to make their

truncated distributions as close as possible. We show that

under the requirement that the set contains at least α mass,

the total variation distance of the truncated distributions will

be large.

Lemma 8 (Total Variation of Truncated Normals).
Let D1 = N (μ1,Σ1, S1) and D2 = N (μ2,Σ2, S2)
be two truncated Normal distributions such that
N (μ1,Σ1;S1),N (μ2,Σ2;S2) ≥ α. Then

dTV(D1, D2) ≥ Cα dTV(N (μ1,Σ1),N (μ2,Σ2))

where Cα < α/8 is a positive constant that only depends
on α, Cα = Ω(α3).
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Proof: Without loss of generality we assume that

D1 = N (0, I, S1) and D2 = N (μ,Λ, S2), where Λ is

a diagonal matrix. We want to find the worst sets S1, S2 so

that dTV(D1, D2) is small. If D1(S1 \ S2) ≥ α/2 then the

statement holds. Therefore, we consider the set S = S1∩S2
and relax the constraint that the truncated Gaussian D2

integrates to 1. Taking into account the fact that the set

S = S1∩S2 must have at least some mass α/2 with respect

to N (0, I), the following optimization problem provides a

lower bound on the total variation distance of D1 and D2.

min
S∈S,β>0

1

α

∫
|N (0, I;x)− α

β
N (μ,Λ;x)| 1S(x)dx

subj. to

∫
N (0, I;x) 1S(x)dx ≥ α/2,

For any fixed β > 0 this is a fractional knapsack problem

and therefore we should include in the set the points x
in order of increasing ratio of weight that is contribution

to the L1 error |N (0, I;x) − α
βN (μ,Λ;x)|, over value,

that is density N (0, I;x) until we reach some threshold T .

Therefore, the set is defined to be

S =

{
x ∈ R

d :
|N (0, I;x)− α

βN (μ,Λ;x)|
N (0, I;x) ≤ T

}
=
{
x ∈ R

d : |1− exp(p(x))| ≤ T
}
,

where p(x) = − 1
2 (μ − x)TΛ−1(μ − x) + 1

2x
Tx +

log(α/(
√|Λ|β)). Using Theorem 1 for the degree

2 polynomial p(x) and setting q = 4, γ =
α2(Ex∼N0

p2(x))1/2/(256C2), where C is the absolute con-

stant of Theorem 1, we get that

N0({z : |p(z)| ≤ γ}) ≤ α

4
.

To simplify notation set Q = {z : |p(z)| ≤ γ}. Therefore,

for any x in the remaining α/4 mass of the set S we know

that |p(x)| ≥ γ. Next, we lower bound γ in terms of the

distance of the parameters of the two Gaussians. We have

E
x∼N0

[p2(x)] ≥ Var
x∼N0

[p(x)]

= Var
x∼N0

[
−1
2
(μ− x)TΛ−1(μ− x) +

1

2
xTx

]
= Var

x∼N0

[
d∑

i=1

(
μi

λi
x+ x2

(1− 1/λi)

2

)]

=
d∑

i=1

Var
x∼N (0,1)

[
μi

λi
x+ x2

(1− 1/λi)

2

]

=
d∑

i=1

1

2

(
1

λi
− 1

)2
+
μ2i
λ2i

=
1

2

∥∥Λ−1 − I
∥∥2
F
+
∥∥∥Λ−1/2μ∥∥∥2

2

Therefore, using the inequality
√
2
√
x+ y ≥ √x+√y we

obtain

γ ≥ α2

256
√
2C2

(
1√
2

∥∥Λ−1 − I
∥∥
F
+
∥∥∥Λ−1/2μ∥∥∥

2

)
≥ α2

256C2
dTV(N (μ1,Σ1),N (μ2,Σ2)),

where we used Lemma 1. Assume first that γ ≤ 1. We

have that the L1 distance between the functions f(x) =
N (0, I;x)1S(x) and g(x) = α

βN (μ,Λ;x)1S(x) is∫
|f(x)− g(x)|dx
= E

x∼N0

[|1− exp(p(x))|1S(x)]

≥ E
x∼N0

[ |p(x)|
2

1S\Q(x)
]

≥ γ E
x∼N0

[
1S\Q(x)

] ≥ αγ

4

≥ CαdTV(N (μ1,Σ1),N (μ2,Σ2)),

where for the first inequality we used the inequality |1 −
ex| ≥ |x|/2 for |x| ≤ 1. Note that Ca = Ω(α3). If γ > 1
we have∫

|f(x)− g(x)|dx = E
x∼N0

[|1− exp(p(x))|1S(x)]

≥ E
x∼N0

[
1

2
1S\Q(x)

]
≥ α/8,

where we used the inequality |1− ex| ≥ 1/2 for |x| > 1.

A. Learning a Weighted Characteristic Function

Our goal in this section is to recover using conditional

samples from N ∗S a weighted characteristic function of the

set S. In particular, we will show that it is possible to learn

a good approximation to the function

ψ(x) =
1S(x)

α∗
N (μ∗,Σ∗;x)
N (0, I;x) =

1S(x)

α∗
N ∗(x)
N0(x)

. (9)

We will later use the knowledge of this function to extract

the unknown parameters and learn the set S.

1) Hermite Concentration: We start by showing that the

function ψ(x) admits strong Hermite concentration. This

means that we can well-approximate ψ(x) if we ignore the

higher order terms in the Hermite expansion of ψ(x).

Theorem 3. (LOW DEGREE APPROXIMATION) Let Skψ
denote the degree k Hermite expansion of function ψ defined
in (9). We have that

E
x∼N0

[
(Skψ(x)− ψ(x))2

]
=

∑
|V |≥k

ψ̂(V )2 ≤ poly(1/α)

(√
Γ(S)

k1/4
+
1

k

)
.

where Γ(S) is the Gaussian surface area of S, and a < α∗

is the absolute constant of (3).
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We note that the Hermite expansion of ψ is well-defined

as ψ(x) ∈ L2(Rd,N0). This can be seen from the following

lemma which will be useful in many calculations throughout

the paper.

Lemma 9. Let N (μ1,Σ1) and N (μ2,Σ2) be two
(B, 1−δ

2k )-isotropic Gaussians for some parameters B, δ > 0

and k ∈ N. Let C = 13k2

δ B. It holds

exp (−C) ≤ E
x∼N0

[(N (μ1,Σ1;x)

N (μ2,Σ2;x)

)k
]
≤ exp (C) .

Lemma 9 applied for N0 and N ∗ for k = 2 implies that

ψ(x) ∈ L2(Rd,N0).
To get the desired bound for Theorem 3 we use the

following lemma, which allows us to bound the Hermite

concentration of a function f through its noise stability.

Lemma 10. For any function f : Rd �→ R and parameter
ρ ∈ (0, 1), it holds∑
|V |≥1/ρ

f̂(V )2 ≤ 2 E
x∼N (0,I)

[
f(x)2 − f(x)T1−ρf(x)

]
Lemma 10 was originally shown in [KKMS05] for indi-

cator functions of sets, but their proof extends to arbitrary

real functions. For a proof see the full of the paper.
Using Lemma 10, we can obtain Theorem 3 by bounding

the noise sensitivity of the function ψ. The following lemma

directly gives the desired result.

Lemma 11. For any ρ ∈ (0, 1),
E

x∼N0

[
ψ(x)2 − ψ(x)T1−ρψ(x)

]
≤ poly(1/α)

(√
Γ(S)ρ1/4 + ρ

)
To prove Lemma 11, we will require the following lemma

whose proof is provided in the full version of the paper.

Lemma 12. Let r(x) ∈ L2(R
d,N (0, I)) be differentiable

at every x ∈ R
d. Then

1

2
E

(x,z)∼Dρ

[(r(x)− r(z))2] ≤ ρ E
x∼N (0,I)

[
‖∇r(x)‖22

]
We now move on to the proof of Lemma 11.

Proof of Lemma 11: For ease of notation we define the

following distribution

Dρ = N
(
0,

(
I (1− ρ)I

(1− ρ)I I

))
.

We also denote by r(x) = N ∗(x)/N0(x) We can now write

2 E
x∼N0

[
ψ(x)2 − ψ(x)T1−ρψ(x)

]
= E

(x,z)∼Dρ

[
ψ(x)2 − ψ(x)ψ(z)]

=
1

α∗2
E

(x,z)∼Dρ

[1S(x)r
2(x)− 1S(x)1S(z)r

2(x)]+

E
(x,z)∼Dρ

[1S(x)1S(z)r
2(x)− 1S(x)1S(z)r(x)r(z)]

We bound each of the two terms separately. For the first

term, using Schwarz’s inequality we get

E
(x,z)∼Dρ

[1S(x)r
2(x)− 1S(x)1S(z)r

2(x)]

≤
(

E
(x,z)∼Dρ

[1S(x)1S̄(z)]
)1/2(

E
(x,z)∼Dρ

[r4(x)]
)1/2

≤ (NS[S])1/2 poly(1/α) ≤
√
Γ(S)ρ1/4 poly(1/α)

where the bound on the expectation of r4(x) follows from

Lemma 9 and the last inequality follows from Lemma 4.

For the second term, we have that

E
(x,z)∼Dρ

[1S(x)1S(z)(r
2(x)− r(x)r(z))]

= E
(x,z)∼Dρ

[
1S(x)1S(z)

(
r2(x)

2
+
r2(z)

2
− r(x)r(z)

)]
= E

(x,z)∼Dρ

[
1S(x)1S(z)

1

2
(r(x)− r(z))2

]
≤ 1

2
E

(x,z)∼Dρ

[
(r(x)− r(z))2] ≤ ρ E

x∼N0

[‖∇r(x)‖22],

where the last inequality follows from Lemma 12. It thus

suffices to bound the expectation of the gradient of r. We

have

E
x∼N0

[ ‖∇r(x)‖22]

= E
x∼N0

[∥∥−Σ∗−1(x− μ∗) + x
∥∥2
2
r2(x)

]
≤ 2 E

x∼N0

[
∥∥(I −Σ∗)−1x

∥∥2
2
r2(x)]

+ 2
∥∥∥Σ∗−1μ∗∥∥∥2

2
E

x∼N0

[r2(x)]

≤ 2

√
E

x∼N0

[‖(I −Σ∗−1)x‖42] E
x∼N0

[r4(x)]

+ 2
∥∥∥Σ∗−1μ∗∥∥∥2

2
E

x∼N0

[r2(x)] ≤ poly(1/α)

where the bound on the expectation of r4(x) and r2(x)
follows from Lemma 9 and the expectation

E
x∼N0

[∥∥(I −Σ∗−1)x
∥∥4
2

]
= E

x∼N0

⎡⎣(∑
i

(1− λi)2x2i
)2
⎤⎦

≤ 3

(∑
i

(1− λi)2
)2

≤ 3 log2(1/α) ≤ poly(1/α)

2) Learning the Hermite Expansion: In this section we

deal with the sample complexity of estimating the coeffi-

cients of the Hermite expansion. We have

cV = E
x∼N (μ,Σ,S)

[HV (x)]
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Using samples xi from N (μ,Σ, S), we can estimate this

expectation empirically with the unbiased estimate

c̃V =

∑N
i=1HV (xi)

N
.

We now show an upper bound for the variance of the

above estimate. The proof of this lemma can be found in

the full version of the paper.

Lemma 13. Let N (μ∗,Σ∗, S) be the unknown truncated
Gaussian. The variance of the following unbiased estimator
of the Hermite coefficients c̃V =

∑N
i=1 HV (xi)

N , is upper
bounded

E
x∼N (μ,Σ,S)

[(c̃V − cV )2] ≤ poly(1/α)
5|V |

N
.

Theorem 4. Let S be an arbitrary (Borel) subset of R
d.

Let α be the constant of (3). Let N (μ∗,Σ∗, S) be the
corresponding truncated Gaussian in (O log(1/α), 1/16)-
isotropic position (see Definition 6), Then, for the estimate

ψk(x) = max

⎛⎝0, ∑
V :0≤|V |≤k

c̃VHV (x)

⎞⎠ ,

where c̃V =
∑N

i=1 HV (xi)

N it holds for k � d, Γ(S) > 1,

E
x1,...,xN∼N (μ∗,Σ∗,S)

[
E

x∼N (0,I)
[
(ψk(x)− ψ(x))2

]]
≤ poly(1/α)

(√
Γ(S)

k1/4
+
(5d)k

N

)
.

Alternatively, for k = poly(1/α)Γ(S)2/ε4 we obtain that
with N = dpoly(1/α)Γ(S)

2/ε4 samples, with probability at
least 9/10, it holds Ex∼N0

[(ψN,k(x)− ψ(x))2] ≤ ε.

Proof: Instead of considering the positive part of the

Hermite expansion, we will prove the claim for the empirical

Hermite expansion of degree k and N samples

pN,k =
∑

V :0≤|V |≤k

c̃VHV (x).

As usual we denote by Skψ(x) the true (exact) Hermite

expansion of degree k of ψ(x). Using the inequality (a −
b)2 ≤ 2(a− c)2 + 2(c− b)2 we obtain

E
x∼N0

[
(pN,k(x)− f(x))2

]
≤ 2 E

x∼N0

[
(pN,k(x)− Skψ(x))

2
]

+ 2 E
x∼N0

[
(Skψ(x)− ψ(x))2

]
Since Hermite polynomials form an orthonormal system

with respect to N0, we obtain

E
x∼N0

[
(pN,k(x)− Skψ(x))

2
]
=

∑
V :0≤|V |≤k

(c̃V − cV )2.

Using Lemma 13 we obtain

E
x1,...,xN∼N∗

⎡⎣ ∑
V :0≤|V |≤k

(c̃V − cV )2
⎤⎦

≤ poly(1/α)

N

∑
V :0≤|V |≤k

5|V | ≤ poly(1/α)

N

(
d+ k

k

)
5k,

where we used the fact that the number of all multi-indices

V of d elements such that 0 ≤ |V | ≤ k is
(
d+k
k

)
. Moreover,

from Theorem 3 we obtain that

E
x∼N0

[
(Skψ(x)− ψ(x))2

] ≤ poly(1/α)

(√
Γ(S)

k1/4
+
1

k

)
.

The theorem follows.

IV. ESTIMATION ALGORITHM FOR BOUNDED GAUSSIAN

SURFACE AREA

In this section, we present the main steps of our estima-

tion algorithm. In later sections, we provide details of the

individual components. The algorithm can be thought of in

3 stages.

First Stage: In the first stage, our goal is to learn

a weighted characteristic function of the underlying set.

Even though we cannot access the underlying set directly,

for any given function f we can evaluate the expectation

Ex∼N (μ∗,Σ∗,S)[f(x)] using truncated samples.

This expectation can be equivalently written as

Ex∼N (0,I)[f(x)ψ(x)] for the function

ψ(x) :=
1S(x)

α∗
N (μ∗,Σ∗;x)
N (0, I;x) =

1S(x)

α∗
N ∗(x)
N0(x)

.

By evaluating the above expectation for different functions

f corresponding to the Hermite polynomials HV (x), we can

recover ψ(x), through its Hermite expansion:

ψ(x) =
∑
V ∈Nd

E
x∼N0

[HV (x)ψ(x)]HV (x)

=
∑
V ∈Nd

E
x∼N∗

S

[HV (x)]HV (x).

Of course, it is infeasible to calculate the Hermite expan-

sion for any V ∈ N
d. In Section III-A, we show that by

estimating only terms of degree at most k, we can achieve

a good approximation to ψ where the error depends on

the Gaussian surface area of the underlying set S. To do

this, we show that most of the mass of the coefficients

cV = Ex∼N0 [HV (x)ψ(x)] is concentrated on low degree

terms, i.e.
∑
|V |>k c

2
V is significantly small. Moreover, we

show that even though we can only estimate the coefficients

cV through sampling, the sampling error is significantly

small.

Overall, after the first stage, we obtain a non-negative

function ψk that is close to ψ. The approximation error

guarantees are given in Theorem 4.
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Second Stage: Given the function ψk that was recov-

ered in the first stage, our goal is to decouple the influence

of the set
1S(x)
α∗ and the influence of the underlying Gaussian

distribution which corresponds to the multiplicative term
N (μ∗,Σ∗;x)
N (0,I;x) . This would be easy if we had the exact function

ψ in hand. In contrast, for the polynomial function ψk the

problem is significantly challenging as it is only close to ψ
on average but not pointwise.

To perform the decoupling and identify the underly-

ing Gaussian we explicitly multiply the function ψk with

a corrective term of the form
N (0,I;x)
N (μ,Σ;x) . We set up

an optimization problem seeking to minimize the func-

tion C(μ,Σ)Ex∼N∗
S
[ N (0,I;x)N (μ,Σ;x)ψk(x)] with an appropriate

choice of C(μ,Σ) so that the unique solution corresponds

to (μ,Σ) = (μ∗,Σ∗). Under a reparameterization of

(u,B) = (Σ−1μ,Σ−1), we show that the corresponding

problem is strongly convex. Still, optimizing it directly is

non-trivial as it involves taking the expectation with respect

to the unknown truncated Gaussian. Instead, we perform

stochastic gradient descent (SGD) and show that it quickly

converges in few steps to point close to the true minimizer

(Algorithm 2).

This allows us to recover parameters (μ̂, Σ̂) so

that the total variation distance between the recovered

and the true (untruncated) Gaussian is very small, i.e.

dTV

(
N (μ̂, Σ̂),N (μ∗,Σ∗)

)
≤ ε. Theorem 5 describes the

guarantees of the second stage. Further details are provided

in Section IV-A.

The guarantees of the algorithm: We first show our

algorithmic results under the assumption that the untruncated

Gaussian N ∗ is known to be in near-isotropic position.

Definition 6 (Near-Isotropic Position). Let μ ∈ R
d, Σ ∈

R
d×d be a positive semidefinite symmetric matrix and a, b >

0. We say that (μ,Σ) is in (a, b)-isotropic position if the
following hold.

‖μ‖22 ≤ a, ‖Σ− I‖2F ≤ a, (1− b)I � Σ � 1

1− bI

We later transform the more interesting case with an

unknown mean and an unknown diagonal covariance matrix

to the isotropic case.

Theorem 5. Let N (μ∗,Σ∗) be a d-dimensional Gaussian
distribution that is in (O(log(1/α∗), 1/16)-isotropic posi-
tion and consider a set S such that N (μ∗,Σ∗;S) ≥ α.
There exists an algorithm such that for all ε > 0, the

algorithm uses n > dpoly(1/α)
Γ2(S)

ε8 samples and produces,
in poly(n) time, estimates that, with probability at least
99%, satisfy dTV (N (μ∗,Σ∗),N (μ̂, Σ̂)) ≤ ε.

We can apply this theorem to estimate the parameters of

any Gaussian distribution with an unknown mean and an

unknown diagonal covariance matrix by bringing the Gaus-

sian to an (O(log(1/α∗), 1/16)-isotropic position. Lemma 3

shows that with high probability, we can obtain initial esti-

mates μ̃S and Σ̃S so that ‖Σ−1/2(μ̃S −μ∗)‖22 ≤ O(log 1
α )

and

Σ̃S 	 Ω(α2)Σ∗,

and
∥∥∥Σ∗−1/2Σ̃SΣ

∗−1/2 − I
∥∥∥2
F
≤ O(log

1

α
).

Given these estimates, we can transform the space so that

μ̃S = 0, and Σ̃S = I . We note that after this transformation,

the mean will be at the right distance from 0, while the

eigenvalues λi of Σ∗ will all be within the desired range
15
16 ≤ λi ≤ 16

15 apart from at most O(log(1/α)). This is be-

cause the condition
∥∥∥Σ∗−1/2Σ̃SΣ

∗−1/2 − I
∥∥∥2
F
≤ O(log 1

α )

implies that
∑

i(1 − 1
λi
)2 ≤ O(log(1/α)). With this ob-

servation, since we know of the eigenvectors of Σ∗, we

would be able to search over all possible corrections to

the eigenvalues to bring the Gaussian in (O(log(1/α)), 116 )-
isotropic position as required by Theorem 5. We only need

to correct O(log(1/α)) of them.
We can form a space of candidate hypotheses for the

underlying distribution, for each choice of O(log(1/α))
out of the d vectors along with the all possible scal-

ings. These hypotheses are at most dO(log(1/α)) times

(log(1/α))O(log(1/α)) for all possible scalings. Thus, there

are at most dO(log(1/α)) hypotheses. Running the algorithm

for each one of them, we would learn at least one distribution

and one set that is accurate according to the guarantees

of Theorems 5. Running the generic hypothesis testing

algorithm of Lemma 6, we can identify one that is closest

in total variation distance to the true distribution N ∗S . The

sample complexity and runtime would thus only increase by

at most dO(log(1/α)). As we showed in Lemma 8, knowing

the truncated Gaussian in total variation distance suffices to

learn in accuracy ε the parameters of the untruncated distri-

bution. We thus obtain as corollary, that we can estimate the

parameters when the covariance is spherical or diagonal. The

same results hold when one wants to recover the underlying

set in these cases.

A. Optimization of Gaussian Parameters
In this section we show that we can formulate a con-

vex objective function that can be optimized to yield the

unknown parameters μ∗,Σ∗ of the truncated Gaussian.

Let S be the unknown (Borel) subset of R
d such that

N (μ∗,Σ∗;S) = α∗ and let N ∗S = N (μ∗,Σ∗, S) be the

corresponding truncated Gaussian.
To find the parameters μ∗,Σ∗, we define the function

Mf (u,B) :− E
x∼N∗

S

[
eh(u,B;x)N (0, I;x)f(x)

]
(10)

where h(u,B;x) = xTBx
2 − tr((B−I)(Σ̃S+μ̃Sμ̃T

S ))
2 −uT (x−

μ̃S) +
d
2 log 2π.

We will show that the minimizer of Mf (u,B) for the

polynomial function f = ψk, will satisfy (B−1u,B−1) ≈

1575



(μ∗,Σ∗). Note that Mf (u,B) can be estimated through

samples. Our goal will be to optimize it through stochastic

gradient descent.

In order to make sure that SGD algorithm for Mψk

converges fast in the parameter space we need to project

after every iteration to some subset of the space as we will

see in more details later in this Section. Assuming that the

pair (μ∗,Σ∗) is in (
√
log(1/α∗), 1/16)-isotropic position

we define the following set

D = {(u,B) | (B−1u,B−1)
is in (c · log(1/α∗), 1/16)-isotropic position} (11)

Where c is the universal constant guaranteed to exist from

Section II so that

max
{
‖μ∗ − μ̃‖Σ∗ ,

∥∥∥Σ∗ − Σ̃
∥∥∥
F

}
≤ c · log(1/α∗).

It is not hard to see that D is a convex set and that for any

(u,B) the projection to D can be done efficiently. For more

details we refer to Lemma 8 of [DGTZ18]. Since after every

iteration of our algorithm we project to D we will assume

for the rest of this Section that (u,B) ∈ D.

An equivalent formulation of Mf (u,B) that will be

useful for the analysis of the SGD algorithm is

Mf (u,B)

= e−
1
2 (tr((B−I)(Σ̃S+μ̃Sμ̃T

S )))+uTB−1u−uT μ̃S)
√
|B|

E
x∼N∗

S

[ N (0, I;x)
N (B−1u,B−1;x)

f(x)

]
:= Cu,B E

x∼N∗
S

[ N0(x)

Nu,B(x)
f(x)

]
(12)

Lemma 14. For (u,B) ∈ D, we have that poly(α) ≤
Cu,B ≤ poly(1/α).

Proof: We have that

|2 logCu,B |
=
∣∣tr((B − I)(Σ̃S + μ̃Sμ̃

T
S )))

+ uTB−1u− uT μ̃S − log |B|∣∣
=
∣∣tr(B − I) + tr((B − I)(Σ̃S − I))

+ uTB−1u− log |B|∣∣
≤ |tr(B − I)− log |B||
+
∣∣∣tr((B − I)(Σ̃S − I))

∣∣∣+ ∣∣uTB−1u
∣∣

We now bound each of the terms separately. Let

λ1, . . . , λd be the eigenvalues of B.

For the first term, we have that

|tr(B − I)− log |B||

= |
d∑

i=1

(λi − 1− log λi)| ≤
d∑

i=1

(λi − 1)2

λi
≤ ‖B − I‖2F

λmin
,

where we used the fact that 0 ≤ x − 1 − log x ≤
(x−1)2

x for all x > 0. For the second term, we have that∣∣∣tr((B − I)(Σ̃S − I))
∣∣∣ ≤ ‖B − I‖F ‖Σ̃S − I‖F For the

third term, we have that
∣∣uTB−1u

∣∣ = uTB−1BB−1u ≤
λmax‖B−1u‖22

Now from the assumption (u,B) ∈ D we have

that ‖B − I‖F ≤ O(
√
log(1/α∗)),

∥∥B−1u
∥∥
2

≤
O(
√
log(1/α∗)), λmin ≥ 15/16 and λmax ≤ 17/16. Also

from Lemma 3 we get that
∥∥∥Σ̃S − I

∥∥∥
F
≤ O(

√
log(1/α∗))

and hence |2 logCu,B | ≤ O(log(1/α∗)). This means that

Cu,B = poly(1/α) and the lemma follows.
1) The Objective Function and its Approximation:

To show that the minimizer of the function Mψk
is

a good estimator for the unknown parameters μ∗,Σ∗,
we consider the function M ′

f , defined as Mf (u,B) =

Ex∼N∗
S

[
eh

′(u,B;x)N (0, I;x)f(x)
]

for h′(u,B;x) =

xTBx
2 − tr((B−I)(ΣS+μSμT

S ))
2 −uT (x−μS)+

d
2 log 2π. This

function corresponds to an ideal situation where we know

the parameters μS ,ΣS exactly. Similarly to (12), we can

write M ′
f as C ′u,B Ex∼N∗

S

[
N0(x)
Nu,B(x)

f(x)
]
. We argue that

both Mf and M ′
f are convex.

Claim 1. For any function f : Rd �→ R≥0, Mf (u,B) and
M ′

f (u,B) are convex functions of the parameters (u,B).

Proof: We show the statement for Mf . The proof for

M ′
f is identical. The proof follows by computing the Hessian

of Mf and arguing that it is positive semidefinite.

The gradient with respect to (u,B) is

∇Mf (u,B)

= E
x∼N (μ∗,Σ∗,S)

[
∇h(u,B;x)eh(u,B;x)N (0, I;x)f(x)

]
= E

x∼N (μ∗,Σ∗,S)

[(
1
2

(
xxT − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x

)

eh(u,B;x)N (0, I;x)f(x)
]

(13)

Moreover, the Hessian is

HMf
(u,B) = E

x∼N (μ∗,Σ∗,S)

[(
1
2

(
xxT − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x

)
(
1
2

(
xxT − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x

)T

eh(u,B;x)N (0, I;x)f(x)
]

which is clearly positive semidefinite since for any z ∈
R

d×d+d we have

zTHMf
(u,B)z

= E
x∼N (μ∗,Σ∗,S)

[(
zT

(
1
2

(
xxT − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x

))2
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eh(u,B;x)N (0, I;x)f(x)
]
≥ 0.

We now argue that the minimizer of the convex func-

tion M ′
ψ for the weighted characteristic function ψ(x) =

1S(x)
α∗

N (μ∗,Σ∗;x)
N (0,I;x) is (u,B) = (Σ∗−1,Σ∗−1μ∗).

Claim 2. The minimizer of M ′
ψ(u,B) is (u,B) =

(Σ∗−1,Σ∗−1μ∗).

Proof: The gradient of M ′
ψ with respect to (u,B) is

∇M ′
ψ(u,B) = E

x∼N∗
S

[(
1
2

(
xxT −ΣS − μSμ

T
S

)�
μS − x

)

eh(u,B;x)N (0, I;x)1S(x)

α∗
N (μ∗,Σ∗;x)
N (0, I;x)

]

= E
x∼N∗

S

[(
1
2

(
xxT −ΣS − μSμ

T
S

)�
μS − x

)

eh(u,B;x)N (μ∗,Σ∗;x)
α∗

]

For (u,B) = (Σ∗−1μ∗,Σ∗−1), this is equal to

∇M ′
ψ(Σ

∗−1μ∗,Σ∗−1)

= Cu,B · E
x∼N∗

S

[(
1
2

(
xxT −ΣS − μSμ

T
S

)�
μS − x

)
1

N (μ∗,Σ∗;x)
N (μ∗,Σ∗;x)

α∗

]

=
Cu,B

α∗
· E
x∼N∗

S

[(
1
2

(
xxT −ΣS − μSμ

T
S

)�
μS − x

)]

where Cu,B that does not depend on x. This is equal to 0

by definition of μS and ΣS .

We want to show that the minimizer of Mψk
is close to

that of M ′
ψ . To do this, we bound the difference of the two

functions pointwise. The proof of the following lemma is

technical and can be found in the full version of the paper.

Lemma 15 (POINTWISE APPROXIMATION OF THE OB-

JECTIVE FUNCTION). Assume that we use Lemma 2 to
estimate μ̃S , Σ̃S with ε = 1

poly(1/α∗)ε
′ and Theorem 4 with

ε = 1
p(1/α∗)ε

′2 then∣∣Mψk
(u,B)−M ′

ψ(u,B)
∣∣ ≤ ε′.

Now that we have established that Mψk
is a good approx-

imation of M ′
ψ we will prove that we can optimize Mψk

and

get a solution that is very close to the optimal solution of

M ′
ψ .

2) Optimization of the Approximate Objective Function:
Our goal in this section is to prove that using sample access

to N (μ∗,Σ∗, S) we can find the minimum of the function

Mψk
defined in the previous section. First of all recall that

Mψk
can be written as an expectation over N (μ∗,Σ∗, S)

in the following way

Mψk
(u,B) := E

x∼N∗
S

[
eh(u,B;x)N (0, I;x)ψk(x)

]
.

In Section III-A we prove that we can learn the function ψk

and hence Mψk
can be written as

Mψk
(u,B) = E

x∼N∗
S

[mψk
(u,B;x)]

where mψk
(u,B;x) = eh(u,B;x)N (0, I;x)ψk(x), and for

any u,B and x we can compute mψk
(u,B;x). Since Mψk

is convex we are going to use stochastic gradient descent to

find its minimum. To prove the convergence of SGD and

bound the number of steps that SGD needs to converge

we will use the the formulation developed in Chapter 14

of [SSBD14]. To be able to use their results we have to

define for any (u,B) a random vector v(u,B) and prove

the following

UNBIASED GRADIENT ESTIMATION

E [v(u,B)] = ∇Mψk
,

BOUNDED STEP VARIANCE

E

[
‖v(u,B)‖22

]
≤ ρ,

STRONG CONVEXITY for any z ∈ D it holds

zTHMf
(u,B)z ≥ λ.

We start with the definition of the random vector v. Given

a sample x from N (μ∗,Σ∗, S), for any (u,B) we define

v(u,B) =∇u,B mψk
(u,B;x) (14)

=

(
1
2

(
xxT − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x

)
· eh(u,B;x)N (0, I;x)ψk(x) (15)

observe that the randomness of v only comes from the

random sample x ∼ N (μ∗,Σ∗, S). The fact that v(u,B) is

an unbiased estimator of ∇Mf (u,B) follows directly from

the fact calculation of ∇Mf (u,B) in Section IV-A1. For

the other two properties that we need we have the following

lemmas. The following lemma bounds the variance of the

step of the SGD algorithm. It’s rather technical proof can

be found in the full version of the paper.

Lemma 16 (BOUNDED STEP VARIANCE). Let α be the
constant of (3). For every (u,B) ∈ D it holds

E
x∼N∗

S

[
‖v(u,B)‖22

]
≤ poly(1/α) · d2k,
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We are now going to prove the strong convexity of the

objective function Mψk
. For this we are going to use the anti-

concentration result, Theorem 1) for polynomial functions

over the Gaussian measure.
The following lemma shows that our objective is strongly

convex as long as the guess u,B remains in the set D. For

the proof, we refer the reader to the full version of the paper.

Lemma 17 (STRONG CONVEXITY). Let α be the absolute
constant of (3). For every (u,B) ∈ D, any z ∈ R

d such
that ‖z‖2 = 1 and the first d2 coordinated of z correspond
to a symmetric matrix, then

zTHMf
(u,B)z ≥ poly(α),

3) Recovering the Unconditional Mean and Covariance:
The framework that we use for proving the fast convergence

of our SGD algorithm is summarized in the following

theorem and the following lemma.

Theorem 6 (Theorem 14.11 of [SSBD14].). Let f :
R

d → R. Assume that f is λ-strongly convex, that
E
[
v(i) | w(i−1)] ∈ ∂f(w(i−1)) and that E

[∥∥v(i)∥∥2
2

]
≤ ρ2.

Let w∗ ∈ argminw∈D f(w) be an optimal solution. Then,

E [f(w̄)]− f(w∗) ≤ ρ2

2λT
(1 + log T ) ,

where w̄ is the output projected stochastic gradient descent
with steps v(i) and projection set D after T iterations.

Lemma 18 (Lemma 13.5 of [SSBD14].). If f is λ-strongly
convex and w∗ is a minimizer of f , then, for any w it holds
that

f(w)− f(w∗) ≥ λ

2
‖w −w∗‖22 .

Now we have all the ingredients to present the proof of

Theorem 5.
Proof of Theorem 5: The estimation procedure starts by com-

puting the polynomial function ψk using dpoly(1/α
∗)Γ

2(S)

ε′8

samples from N (μ∗,Σ∗, S) as explained in Theorem 4 to

get error poly(α∗)ε′2. Then we compute μ̃S and Σ̃S as

explained in Section II with ε = q(α∗)
8p(1/α∗) (ε

′)2 where p
comes from Lemma 15 and q comes from Lemma 17. Our

estimators for μ̂, Σ̂ are the outputs of Algorithm 2.
We analyze the accuracy of our estimation by proving

that the minimum of Mψk
is close in the parameter space

to the minimum of M ′
ψ . Let u′,B′ be the minimum of

the convex function M ′
ψ and uk,Bk be the minimum of

the convex function Mψk
. Using Lemma 15 we have the

following relations∣∣M ′
ψ(u

′,B′)−Mψk
(u′,B′)

∣∣ ≤ ε′,∣∣M ′
ψ(uk,Bk)−Mψk

(uk,Bk)
∣∣ ≤ ε′

and also

M ′
ψ(u

′,B′) ≤M ′
ψ(uk,Bk),

Mψk
(uk,Bk) ≤Mψk

(u′,B′).

These relations imply that

|Mψk
(u′,B′)−Mψk

(uk,Bk)|
=Mψk

(u′,B′)−Mψk
(uk,Bk)

≤Mψk
(u′,B′)−M ′

ψ(u
′,B′)

+M ′
ψ(uk,Bk)−Mψk

(uk,Bk)

≤ ∣∣M ′
ψ(u

′,B′)−Mψk
(u′,B′)

∣∣
+
∣∣M ′

ψ(uk,Bk)−Mψk
(uk,Bk)

∣∣ ≤ 2ε′.

But from Lemma 17 and Lemma 18 we get that∥∥∥∥(B′�

u′

)
−
(
B�

k

uk

)∥∥∥∥
2

≤ ε′
2 . Now we can apply the Claim

2 which implies that∥∥∥∥((Σ∗−1)�Σ∗−1μ∗

)
−
(
B�

k

uk

)∥∥∥∥
2

≤ ε′

2
. (16)

Therefore it suffices to find (uk,Bk) with accuracy ε′/2 to

get our theorem.

Let w∗ =
(
B�

k

uk

)
To prove that Algorithm 2 converges

to w∗ we use Theorem 6 which together with Markov’s

inequality, Lemma 16 and Lemma 17 gives us

P

(
Mψk

(û, B̂)−Mψk
(uk,Bk)

≥ poly(1/α∗) · d
2k

T
(1 + log(T ))

)
≤ 1

3
. (17)

To get our estimation we first repeat the SGD proce-

dure K = log(1/δ) times independently, with parameters

T, λ each time. We then get the set of estimates E =
{w̄1, w̄2, . . . , w̄K}. Because of (17) we know that, with

high probability 1 − δ, for at least the 2/3 of the points

w̄ in E it is true that Mψk
(w) − Mψk

(w∗) ≤ η where

η = poly(1/α∗) · d2k

T (1 + log(T )). Moreover we will

prove later that Mψk
(w)−Mψk

(w∗) ≤ η and this implies

‖w −w∗‖ ≤ c·η, where c is a universal constant. Therefore

with high probability 1− δ for at least the 2/3 of the points

w̄, w̄′ in E it is true that ‖w −w′‖ ≤ 2c · η. Hence if we

set ŵ to be a point that is at least 2c · η close to more that

the half of the points in E then with high probability 1− δ
we have that f(w̄) − f(w∗) ≤ η. Hence we can we lose

probability at most δ if we condition on the event

Mψk
(û, B̂)−Mψk

(uk,Bk)

≤ poly(1/α∗) · d
2k

T
(1 + log(T )) .

Using once again Lemma 18 we get that∥∥∥∥∥
(
B̂

�

û

)
−
(
B�

k

uk

)∥∥∥∥∥
2

≤ ε′

2
.
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Figure 2. Projected Stochastic Gradient Descent given access to samples
from N (μ∗,Σ∗, S).

1: w(0) =

(
(B(0))�

u(0)

)
←
(
(Σ̃
−1
S )�

Σ̃
−1
S μ̃S

)
2: for i = 1, . . . , T do
3: Sample x(i) from N (μ∗,Σ∗, S)
4: ηi ← 1

λ·i

5:

(
(B(i−1))�

u(i−1)

)
← w(i−1)

6:

v(i) ←
(
1
2

(
x(i)x(i)T − Σ̃S − μ̃Sμ̃

T
S

)�
μ̃S − x(i)

)
eh(u

(i−1),B(i−1);x(i))N (0, I;x(i))ψk

(
x(i)

)
{From Equation (13).}

7: r(i) ← w(i−1) − ηiv(i)
8: w(i) ← argminw∈D

∥∥w − r(i)
∥∥2
2{From Lemma 8 of [DGTZ18].}

9: end for

10:

(
B̂

�

û

)
← 1

T

∑T
i=1w

(i)

11: Σ̂← B̂
−1

12: μ̂← B̂
−1

û
13: return (μ̂, Σ̂)

which together with (16) implies∥∥∥∥∥
(
B̂

�

û

)
−
(
(Σ∗−1)�

Σ∗−1μ∗

)∥∥∥∥∥
2

≤ ε′

2
.

and the theorem follows as closeness in parameter distance

implies closeness in total variation distance for the corre-

sponding untruncated Gaussian distributions.

V. LOWER BOUND FOR LEARNING THE MEAN OF A

TRUNCATED NORMAL

Theorem 7. There exists a family of sets S with Γ(S) =
O(d) such that any algorithm that draws m samples from
N (μ, I, S) and computes an estimate μ̃ with ‖μ̃− μ‖2 ≤ 1
must have m = Ω(2d/2).

Proof: Let H = [−1, 1]d+1 be the d + 1-dimensional

cube. We will also use the left and right subcubes H+ =
[−1, 0] × [−1, 1]d, H− = [0, 1] × [−1, 1]d respectively. Let

N+ = N (e1, I) and N− = N (−e1, I). We denote by r the

(scaled) pointwise minimum of the two densities truncated

at the cube H , that is

r(x) =
min(N+(H;x),N−(H;x))

c

=
1H(x)

c
min(N+(x),N−(x)),

where c = 1− dTV(N+,N−).
To simplify notation we assume that we work in R

d+1

instead of Rd. Let V = (v1, . . . , vd) ∈ {+1,−1}d. For every

V we define the set GV = H ∩ {y ∈ R
d : yivi ≥ 0}. We

also define the subcubes HV = [0, 1]×GV . We consider the

following subset of H parameterized by the 2d parameters

tV ∈ [0, 1] and δ ∈ [−1, 1].
S+ = [−1 + δ, 0]× [−1, 1]d ∪

⋃
V ∈{−1,+1}d

[0, tV ]×GV

We will argue that there exists a distribution D+ on the

values tV such that on expectation dTV(N S+

+ ,N S−
− ) is

O(2−d). We show how to construct the distribution D+

since the construction for D− is the same. In fact we will

show that both distributions are very close to r(x). Notice

that for some (t,y) ∈ R
d+1 we have We draw each tV

independently from the distribution with cdf

F (t) = 1[0,1)(t)(1− e−2t) + 1[1,+∞)(t)

Notice that for t ∈ (0, 1) and any y ∈ R
d we have that

1− F (t) = N−(t,y)/N+(t,y).
After we draw all tV from F we choose δ so that

N+(S+;x) = c. We will show that on expectation over

the tV we have δ = 0, which means that no correction is

needed. In fact we show something stronger, namely that

for all x ∈ H+ we have that ES+∼D+ [N+(S+;x)] = r(x).
Assume that x ∈ HV . Indeed,

E
S+∼D+

[N+(S+;x)]

=
N+(x)

c
E

S+∼D+

[1S+
(x)] =

N+(x)

c
E

S+∼D+

[1{x1≤tV }]

=
N+(x)

c
(1− F (tV )) = N−(x)

c
= r(x)

Moreover, observe that for all x ∈ H− ∩ S+ we have that

N+(S+;x) = r(x) always (with probability 1). We now

argue that in order to have constant probability to distinguish

N+(S+) from r(x) one needs to draw Ω(2d) samples. Since

the expected density of N+(S+) matches r(x) for all x ∈
H+, to be able to distinguish the two distributions one needs

to observe at least two samples in the same cube HV . Since

we have 2d disjoint cubes HV the probability of a sample

landing in HV is at most 1/2d. Therefore, using the birthday

problem, to have constant probability to observe a collision

one needs to draw Ω(
√
2d) = Ω(2d/2) samples. Since for all

x ∈ H−∩S+, N+(S+) exactly matches r(x), to distinguish

between the two distributions one needs to observe a sample

x with −1 + δ < x1 < −1. Due to symmetry, N+ assigns
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to all cubes HV equal probability, call that p. Moreover, we

have that c = 2d+1p. Now let pV be the random variable

corresponding to the probability that N+ assigns to [0, tV ]×
GV . We have that EtV ∼F [pV ] = p for all V . Since the

independent random variables pV are bounded in [0, 1/2d],
Hoeffding’s inequality implies that |∑V ∈{−1,1}d(pV −p)| <
1/2d/2 with probability at least 1 − 2/e2. This means that

with probability at least 3/4 one will need to draw Ω(2d/2)
samples in order to observe one with x1 < −1 + δ.

Since any set S in our family S has almost everywhere

(that is except the set of its vertices which a finite set

and thus of measure zero) smooth boundary we may use

the following equivalent (see e.g. [Naz03]) definition of its

surface area

Γ(S) =

∫
∂S

N0(x)dσ(x),

where dσ(x) is the standard surface measure on R
d. Without

loss of generality we assume that S corresponds to the set

S+ defined above (the proof is the same if we consider a

set S−). We have

∂S ⊆
⋃

V ∈{+1,−1}d
({tV } ×GV )

∪ ∂([−1,+1]d+1) ∪
d+1⋃
i=1

{x : xi = 0}.

By the definition of Gaussian surface area it is clear that

Γ(A ∪ B) ≤ Γ(A) + Γ(B). From Table I we know

that Γ([−1,+1]d+1) = O(
√
log d). Moreover, we know

that a single halfspace has surface area at most
√
2/π

(see e.g. [KOS08]). Therefore Γ
(⋃d+1

i=1 {x : xi = 0}
)
≤∑d+1

i=1

√
2/π = O(d). Finally, we notice that for any point x

on the hyperplane {x : x1 = 0} and any y on {x : x1 = c}
(for any c ≥ 0), we have N0(x) ≥ N0(y). Therefore, the

surface area of each set tV ×GV is maximized for tV = 0. In

this case
⋃

V ∈{+1,−1}d({tV }×GV ) ⊆ {x : x1 = 0}, which

implies that the set
⋃

V ∈{+1,−1}d({tV } × GV ) contributes

at most
√
2/π to the total surface area. Putting everything

together, we have that Γ(S) = O(d).

VI. IDENTIFIABILITY WITH BOUNDED GAUSSIAN

SURFACE AREA

In this section we investigate the sample complexity of

the problem of estimating the parameters of a truncated

Gaussian using a different approach that does not depend

on the VC dimension of the family S of the truncation sets

to be finite. For example, we settle the sample complexity of

learning the parameters of a Gaussian distribution truncated

at an unknown convex set (recall that the class of convex sets

has infinite VC dimension). Our method relies on finding

a tuple (μ̃, Σ̃, S̃) of parameters so that the moments of

Figure 3. The set S+ when d = 1.

t−1

t+1

H+1

H−1

the corresponding truncated Gaussian N (μ̃, Σ̃, S̃) are all

close to the moments of the unknown truncated Gaussian

distribution, for which we have unbiased estimates using

samples. The main question that we need to answer to

determine the sample complexity of this problem is how

many moments are needed to be matched in order to be

sure that our guessed parameters are close to the parameters

of the unknown truncated Gaussian. We state now the main

result. Its proof is based on Lemma 20 and can be found in

the full version of the paper.

Theorem 8 (Moment Matching). Let S be a family of
subsets of R

d of bounded Gaussian surface area Γ(S).
Moreover, assume that if T is an affine map and T (S) =
{T (S) : S ∈ S} is the family of the images of the sets of
S , then it holds Γ(T (S)) = O(Γ(S)). For some S ∈ S , let
N (μ,Σ, S) be an unknown truncated Gaussian. dO(Γ(S)/ε

4)

samples are sufficient to find parameters μ̃, Σ̃, S̃ such that
dTV(N (μ,Σ, S),N (μ̃, Σ̃, S̃)) ≤ ε.

The key lemma of this section is Lemma 20. It shows that

if two truncated normals are in total variation distance ε then

there exists a moment where they differ. The main idea is

to prove that there exists a polynomial that approximates

well the indicator of the set {f1 > f2}. Notice that the total

variation distance between two densities can be written as∫
1{f1>f2}(x)f1(x) − f2(x)dx. In our proof we use the

chi squared divergence, which for two distributions with

densities f1, f2 is defined as

Dχ2(f1‖f2) =
∫

(f1(x)− f2(x))2
f2(x)

dx

To prove it we need the following nice fact about chi squared

divergence between Gaussian distributions. In general chi

squared divergence may be infinite for some pairs of Gaus-

sians. In the following lemma we prove that for any pair

of Gaussians, there exists another Gaussian N such that

Dχ2(N1‖N) Dχ2(N2‖N) are finite even if Dχ2(N1‖N2) =
∞.

Lemma 19. Let N1 = N (μ1,Σ1), and N2 = N (μ1,Σ2)
be two Normal distributions that satisfy the conditions of
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Lemma 3. Then there exists a Normal distribution N such
that

Dχ2(N1‖N), Dχ2(N2‖N) ≤ exp
(
2
∥∥∥Σ−1/21 (μ1 − μ2)

∥∥∥
2

+
1

2
max(1, ‖Σ1‖2)

∥∥∥Σ−1/21 Σ2Σ
−1/2
1 − I

∥∥∥2
F

)
Now we state the main lemma of this section. We give

here a sketch of its proof. For a formal proof we refer the

reader to the full version of the paper.

Lemma 20. Let S be a family of subsets of Rd of bounded
Gaussian surface area Γ(S). Moreover, assume that if T is
an affine map and T (S) = {T (S) : S ∈ S} is the family
of the images of the sets of S, then it holds Γ(T (S)) =
O(Γ(S)). Let N (μ1,Σ1, S1) and N (μ2,Σ2, S2) be two
truncated Gaussians with densities f1, f2 respectively. Let
k = O(Γ(S)/ε4). If dTV(f1, f2) ≥ ε, then there exists a
V ∈ N

d with |V | ≤ k such that∣∣∣∣ E
x∼N (μ1,Σ1,S1)

[xV ]− E
x∼N (μ2,Σ2,S2)

[xV ]

∣∣∣∣ ≥ ε/dO(k).

Proof sketch.: Let W = S1∩S2∩{f1 > f2}∪S1 \S2,

that is the set of points where the first density is larger than

the second. We now write the L1 distance between f1, f2 as∫
|f1(x)− f2(x)|dx =

∫
1W (x)(f1(x)− f2(x))dx

Denote p(x) the polynomial that will do the approximation

of the L1 distance. From Lemma 19 we know that there

exists a Normal distribution within small chi-squared diver-

gence of both N (μ1,Σ1) and N (μ2,Σ2). Call the density

function of this distribution g(x). We have∣∣∣ ∫ |f1(x)− f2(x)|dx−
∫
p(x)(f1(x)− f2(x))

∣∣∣ (18)

≤
∫
|1W (x)− p(x)| |f1(x)− f2(x)|dx

≤
∫
|1W (x)− p(x)|

√
g(x)

|f1(x)− f2(x)|√
g(x)

dx

≤
√∫

(1W (x)− p(x))2g(x)dx

·
√∫

(f1(x)− f2(x))2
g(x)

dx, (19)

where we use Schwarzs’ inequality. From Lemma 19 we

know that∫
f1(x)

2

g(x)
dx ≤

∫ N (μ1,Σ1;x)
2

g(x)
dx = exp(poly(1/α)).

Similarly,
∫ f2(x)

2

g(x) dx = exp(poly(1/α)). Therefore, we

have,∣∣∣ ∫ |f1(x)− f2(x)|dx−
∫
p(x)(f1(x)− f2(x))

∣∣∣
≤ exp(poly(1/α))

√∫
(1W (x)− p(x))2g(x)dx

Recall that g(x) is the density function of a Gaussian

distribution, and let μ,Σ be the parameters of this Gaussian.

Notice that it remains to show that there exists a good ap-

proximating polynomial p(x) to the indicator function 1W .

We can now transform the space so that g(x) becomes the

standard normal. Notice that this is an affine transformation

that also transforms the set W ; Since the Gaussian surface

area is ”invariant” under linear transformations

Since 1W ∈ L2(Rd,N0) we can approximate it using

Hermite polynomials. For some k ∈ N we set p(x) =
Sk1W (x), that is

pk(x) =
∑

V :|V |≤k

1̂WHV (x).

Combining Lemma 10 and Lemma 4 we obtain

E
x∼N0

[(1W (x)− pk(x))2] = O

(
Γ(S)
k1/2

)
.

Therefore,
∣∣∣ ∫ |f1(x) − f2(x)|dx − ∫

pk(x)(f1(x) −
f2(x))

∣∣∣ = exp(poly(1/α))Γ(S)
1/2

k1/4 . Ignoring the depen-

dence on the absolute constant α, to achieve error O(ε) we

need degree k = O(Γ(S)2/ε4).
To complete the proof, it remains to obtain a

bound for the coefficients of the polynomial q(x) =
pk(Σ

−1/2(x − μ)). Using known facts about the coeffi-

cients of Hermite polynomials we obtain that ‖q(x)‖∞ ≤(
d+k
k

)2
(4d)k/2(O(1/α2))k. To conclude the proof we notice

that we can pick the degree k so that∣∣∣∣∣
∫
q(x)(f1(x)− f2(x))

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

V :|V |≤k

xV (f1(x)− f2(x))
∣∣∣∣∣∣ ≥ ε/2.

Since the maximum coefficient of q(x) is bounded by dO(k)

we obtain the result.

VII. VC-DIMENSION VS GAUSSIAN SURFACE AREA

We use two different complexity measures of the trunca-

tion set to get sample complexity bounds, the VC-dimension

and the Gaussian Surface Area (GSA) of the class of the

sets. As we already mentioned in the introduction, there

are classes, for example convex sets, that have bounded

Gaussian surface area but infinite VC-dimension. However,

this is not the main difference between the two complexity
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measures in our setting. Having a class with bounded VC-

dimension means that the empirical risk minimization needs

finite samples. To get an efficient algorithm we still need to

implement the ERM for this specific class. Therefore, it is

not clear whether it is possible to get an algorithm that works

for all sets of bounded VC-dimension. On the other hand,

bounded GSA means that we can approximate the weighted

indicator of the set using its low order Hermite coeffients.

This approximation works for all sets of bounded GSA and

does not depend on the specific class of sets. Therefore,

using GSA we manage to get a unified approach that learns

the parameters of the underlying Gaussian distribution using

only the assumption that the truncation set has bounded

GSA. In other words, our approach uses the information of

the class that the truncation set belongs only to decide how

large the degree of the approximating polynomial should be.

Having said that, it is an interesting open problem to design

algorithms that learn the parameters of the Gaussian and use

the information that the truncation set belongs to some class

(e.g. intersection of k-halfspaces) to beat the runtime of our

generic approach that only depends on the GSA of the class.
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sciences mathématiques, 118(6):485–510, 1994.

[Lee14] Alice Lee. Table of the gaussian” tail” functions;
when the” tail” is larger than the body. Biometrika,
10(2/3):208–214, 1914.

[LRV16] Kevin A. Lai, Anup B. Rao, and Santosh Vempala.
Agnostic estimation of mean and covariance. In IEEE
57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Re-
gency, New Brunswick, New Jersey, USA, pages 665–
674, 2016.

[Naz03] Fedor Nazarov. On the Maximal Perimeter of a
Convex Set in R

n with Respect to a Gaussian Measure,
pages 169–187. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions.
Cambridge University Press, 2014.

[Pea02] Karl Pearson. On the systematic fitting of frequency
curves. Biometrika, 2:2–7, 1902.

[Pis86] Gilles Pisier. Probabilistic methods in the geometry
of banach spaces. In Probability and analysis, pages
167–241. Springer, 1986.

[PL08] Karl Pearson and Alice Lee. On the generalised prob-
able error in multiple normal correlation. Biometrika,
6(1):59–68, 1908.

[Sch86] Helmut Schneider. Truncated and censored samples
from normal populations. Marcel Dekker, Inc., 1986.

[SJ66] SM Shah and MC Jaiswal. Estimation of parameters
of doubly truncated normal distribution from first four
sample moments. Annals of the Institute of Statistical
Mathematics, 18(1):107–111, 1966.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Under-
standing machine learning: From theory to algorithms.
Cambridge university press, 2014.
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