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Abstract—A longstanding open problem in Algorithmic
Mechanism Design is to design computationally-efficient truth-
ful mechanisms for (approximately) maximizing welfare in
combinatorial auctions with submodular bidders. The first
such mechanism was obtained by Dobzinski, Nisan, and
Schapira [STOC’06] who gave an O(log2 m)-approximation
where m is number of items. This problem has been studied
extensively since, culminating in an O(

√
logm)-approximation

mechanism by Dobzinski [STOC’16].

We present a computationally-efficient truthful mechanism
with approximation ratio that improves upon the state-of-the-
art by an exponential factor. In particular, our mechanism
achieves an O((log logm)3)-approximation in expectation, uses
only O(n) demand queries, and has universal truthfulness
guarantee. This settles an open question of Dobzinski on
whether Θ(

√
logm) is the best approximation ratio in this

setting in negative.

Keywords-Combinatorial Auctions, Truthful Mechanisms,
Submodular Bidders

I. INTRODUCTION

In a combinatorial auction, m items are to be allocated

between n bidders. Each bidder i has a valuation function vi
that describes their value vi(S) for every bundle S of items.

The goal is to design a mechanism that finds an allocation A
of items that maximizes the social welfare, which is defined

as val(A) :=
∑

i vi(Ai) where Ai is the bundle allocated

to bidder i. For a mechanism to be feasible, it needs to be

computationally-efficient, i.e., run in poly(m,n) time given

access to certain queries to valuation functions, namely value

queries and demand queries (see Section II for definitions).

Mechanisms should also take into account the strategic

behavior of the bidders. A mechanism in which the dominant

strategy of each bidder is to reveal their true valuation in

response to given queries is called truthful. For randomized

mechanisms, we consider universally truthful mechanisms

which are distributions over truthful mechanisms (this is

a stronger guarantee than truthful-in-expectation considered

also in the literature, e.g. [1], [2]; see Appendix A).

∗ Part of this work was done while the author was a postdoctoral
researcher at Princeton University and was supported in part by the Simons
Collaboration on Algorithms and Geometry.

† Supported in part by the Schmidt Foundation.

A “paradigmatic” [3]–[5], “central” [6], [7], and “arguably

the most important” [8] problem in Algorithmic Mechanism

Design is to design mechanisms for combinatorial auctions

that are both computationally-efficient and truthful. At the

root of this problem is the question of whether there is an

inherent clash between computational-efficiency and truth-

fulness. On one hand, the celebrated VCG mechanism of

Vickrey-Clarke-Groves [9]–[11] is a truthful mechanism for

this problem that returns the welfare maximizing allocation.

Alas, this mechanism requires finding the welfare maximiz-

ing allocation exactly, which is not possible in poly(m,n)
time for most classes of valuations. On the other hand,

from a purely algorithmic point of view, constant factor

approximation algorithms exist for many interesting classes

of valuations, but they are no longer truthful.

A particular case of this problem that has received sig-

nificant attention is when the valuation functions of all the

bidders are submodular1 (see, e.g. [3], [8], [12]–[19] and ref-

erences therein). There is no poly-time algorithm for finding

the optimal allocation of submodular bidders [15], [18], [20]

and thus VCG mechanism is not computationally-efficient

here. On the other hand, by using only value queries, a sim-

ple greedy algorithm can achieve a 2-approximation [12] and

this can be further improved to ( e
e−1 )-approximation [21],

and even slightly better [22] by using demand queries. This

leads to one of the earliest and the most basic questions in

Algorithmic Mechanism Design:

How closely can the approximation ratio of truth-
ful mechanisms for submodular bidders match
what is possible from an algorithmic point of view
that ignore strategic behavior?

Already more than a decade ago, Dobzinski, Nisan, and

Schapira [23] gave the first non-trivial answer to this ques-

tion by designing an O(
√
m)-approximation mechanism.

This approximation ratio was soon after exponentially im-

proved by the same authors [3] to O(log2m), which in turn

was improved to O(logm log logm) by Dobzinski [8], and

then to O(logm) by Krysta and Vöcking [17]. Breaking

1A valuation function v is submodular iff v(S ∪ T ) + v(S ∩ T ) ≤
v(S) + v(T ) for all S and T ; see also Section II-A.
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this logarithmic barrier remained elusive until a recent

breakthrough of Dobzinski [19] that achieved an O(
√
logm)

approximation. Whether Θ(
√
logm) is the “correct” answer

to this question or further improvements are possible was

widely open thereafter [19].

Our Result.: We show that Θ(
√
logm) is not the

correct answer to this question and in fact one can improve

upon this ratio by an exponential factor.

Theorem 1. There exists a universally truthful mechanism
for combinatorial auctions with submodular valuations that
achieves an approximation ratio of O((log logm)3) to the
social welfare in expectation using polynomial number of
value and demand queries.

We shall note that our mechanism (as well as all previous

ones in [3], [8], [17], [19]) actually works for the much

broader class of XOS valuations (see Section II for defini-

tion). Our result reduces the gap between the approximation

ratio of truthful mechanisms vs algorithms for submodular

and XOS bidders significantly, namely, from poly(log (m))
in prior work to poly(log log (m)).

Similar to [19], our result implies a poly(m,n) time

algorithm with explicit access to valuations, when val-

uations are budget additive, i.e., for every S, v(S) =
min(b,

∑
j∈S v({j})) for some fixed b. These valuations

have been studied extensively in the past (see, e.g. [19], [24],

[25]) and a simple reduction from Knapsack shows that it

is NP-hard to compute a demand query for these valuations.

Yet, similar to [19], our mechanism uses demand queries of

a very specific form, and these can be computed in poly-

time. We omit the details here and instead refer the reader

to [19, Section 6].

Our Techniques.: All previous work on this prob-

lem [3], [8], [17], [19], at their core, relied on the fol-

lowing key observation: to design truthful mechanisms for

submodular or XOS bidders, “all” we need is to find “good”

estimates of the item prices in an optimal allocation; the rest

can be handled by a simple fixed-price auction using these

prices. We also use this observation but depart from prior

work in the following key conceptual way. Previous work

mainly aimed to learn coarse-grained “statistics” about the

prices, say, the range they should belong to [3], [8], and

used these statistics to “guess” a small number of good

prices (e.g., O(1) prices in [3], [8], and O(
√
logm) in [19]),

whereas we instead strive to “learn” the entire price vector

of items in a fine-grained way (at least for a large fraction of

items). This fine-grained view is the key factor that allows

us to get much more accurate prices and ultimately leads to

the exponentially improved performance of our mechanism.

A cornerstone of our approach is a “learning process”

which starts with a simple guess of item prices and it-
eratively refine this guess until it converges to suitable

prices for different items. Each iteration of this process

involves running several fixed-price auctions with the prices

learned so far and use the resulting allocations to refine our

learned prices further. The key to the analysis of this mecha-

nism is the “Learnable-Or-Allocatable Lemma” (Lemma 7):

Roughly speaking, we prove that in each iteration of this

process, we can either refine our learned prices significantly

(Learnable), or the fixed-price auction with the currently

learned prices already gets a high-welfare allocation (Allo-

catable). Thus, after a few iterations, the resulting prices have

been refined enough to allow for a high-welfare allocation.

One ingredient in the proof of this lemma is an interesting

property of fixed-price auctions that stems from their greedy

nature: if we run a fixed-price auction with a random order-
ing of bidders, either we obtain a high-welfare allocation

or we sell almost all items (most likely to wrong bidders).

Such a property was first proved (in a similar but not

identical form) by Dobzinski [19] and is closely related to

other similar results about greedy algorithms for maximum

matching [26], matroid intersection [27], and constrained

submodular maximization [28].

Further related work.: The gap between the approxi-

mation ratio of truthful mechanisms and general algorithms

has been studied from numerous angles in the literature. It

is known that algorithms that use only poly(m,n) many

value queries, or are poly-time in the input representation

(for succinctly representable valuations) can achieve only

mΩ(1)-approximation [7], [14], [14], [16], [29], [30] (the

latter assuming RP �= NP). However, these results no longer

apply for mechanisms that are allowed other natural types of

queries, e.g., demand queries2. This has led the researchers

to study the communication complexity of this problem that

can capture arbitrary queries to valuations [18], [23], [31]–

[38]. Although a clear path for proving a separation between

the communication complexity of truthful mechanisms and

general algorithms was shown recently in [35] (see also [37],

[38]), no such separation is still known.

II. PRELIMINARIES

Notation.: We denote by N the set of bidders and by M
the set of items. We use bold-face letters to denote vectors of

prices and capital letters for allocations. For a price vector p
and a set of items M ′ ⊆M , we define p(M ′) :=

∑
j∈M ′ pj .

For an allocation A = (A1, . . . , An), we sometimes abuse

the notation and use A to denote the set of allocated items.

A restriction of allocation A to bidders in N ′ ⊆ N and

items M ′ ⊆ M is an allocation A′ consisting of Ai ∩M ′

for every i ∈ N ′.

2Demand queries are quite natural from an economic point of view as
they simply return the most valued bundle for the bidder at the given item
prices; see Section II.
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A. Submodular and XOS Valuation Functions

We make the standard assumption that valuation vi of each

bidder i is normalized, i.e., vi(∅) = 0, and monotone, i.e.,

vi(S) ≤ vi(T ) for every S ⊆ T ⊆ M . We are interested in

the case when bidders valuations are submodular and hence

capture the notion of “diminishing marginal utility” of items

for bidders. A valuation v is submodular iff v(S∪T )+v(S∩
T ) ≤ v(S) + v(T ) for any S, T ⊆M .

Submodular functions are a strict subset of XOS valuations

also known as fractionally additive valuations (see, e.g. [12],

[39]) defined as follows. A valuation a is additive iff a(S) =∑
j∈S a({j}) for every bundle S. A valuation function v is

XOS iff there exists t additive valuations {a1, . . . , at} such

that v(S) = maxr∈[t] ar(S) for every S ⊆ M . Each ar
is referred to as a clause of v. If a ∈ argmaxr∈[t] ar(S),
then a is called a maximizing clause for S and a({j}) is a

supporting price of item j in this maximizing clause. We say

that an allocation A = (A1, . . . , An) of items to n bidders

with XOS valuation is supported by prices q = (q1, . . . , qm)
iff each qj is a supporting price for item j in the maximizing

clause of the bidder i to whom j is allocated, i.e., j ∈ Ai.

Query access to valuations.: Since valuations have size

exponential in m, a common assumption is that valuations

are specified via certain queries instead, in particular, value

queries and demand queries. A value query to valuation v
on bundle S reveals the value of v(S). A demand query

specifies a price vector p on items and the answer is the

“most demanded” bundle under this pricing, i.e., a bundle

S ∈ argmaxS′{v(S′)− p(S′)}.

B. A Fixed-Price Auction

We use a standard fixed-price auction as a sub-

routine in our mechanism. For an ordered set N
of bidders, M of items, and a price vector p,

FixedPriceAuction(N,M,p) is defined as follows.

FixedPriceAuction(N,M,p)

1) Iterate over the bidders i of the ordered set N in the

given order:

a) Allocate Ai ∈ argmaxS⊆M{vi(S) − p(S)} to

bidder i and update M ←M \Ai.

2) Return the allocation A = (A1, . . . , An).

It is easy to see that FixedPriceAuction can be

implemented using one demand query per bidder. Its truth-

fulness is also easy to check as bidders have no influence

on the pricing mechanism.

The following lemma gives a key property of this auction

used in our proofs. Variants of this lemma have already

appeared in the literature, e.g., in [3], [8], [19], [40], [41]

(although we are not aware of this particular statement). For

completeness, we prove this lemma in Appendix B.

Lemma 2. Let δ < 1/2 and define A :=
FixedPriceAuction(N,M,p). Suppose O is an
allocation with supporting prices q and M∗ is the set of
items j with δ · qj ≤ pj <

1
2 · qj . Then, val(A) ≥ δ · q(M∗).

III. THE HIGH-LEVEL OVERVIEW

We describe our mechanism using three parameters α :=
Θ(1), β := O(log logm), and γ := Θ(αβ). Let O =
(O1, . . . , On) be an optimal allocation with welfare OPT
and q = (q1, . . . , qm) be its supporting prices (obviously,

O and q are unknown). For now, let us assume that every

qj belongs to
{
1, γ, γ2, . . . , γK

}
, for some K = O(logm)

(and hence prices are roughly poly(m) large).

The crux of our mechanism is to “learn” q, namely, find

another price vector p such that for some subset C ⊆ M
with q(C) ≈ val(O), p point-wise γ-approximates q for

items in C (i.e., within a multiplicative factor of γ). Having

learned such prices, we can run a fixed-price auction with

prices p, and by Lemma 2, obtain an allocation with welfare

≈ γ · val(O).

In order to obtain the price vector p, we start with a

rough guess p(1) for what prices should be (say, all ones),

and update our guess over (at most) β iterations. In each

iteration i ∈ [β], we use the prices p(i) learned so far to

find α new price vectors p
(i)
1 , . . . ,p

(i)
α , and “explore” for

each item j ∈M which of these α vectors best represents its

price in q, and then assign that price to item j in p(i+1). We

continue this for β iterations until we converge to the desired

price vector p := p(β+1), or we decide along the way that

the prices learned so far are already “good enough”. There

are three main questions to answer here: (i) how to choose

which prices to explore in each iteration, (ii) how to explore

a new price for each item, and finally (iii) how to implement

all this in a truthful (and computationally-efficient) manner.

We elaborate on each part below.

Part (i) – which prices to explore.: This question can

be best answered from the perspective of a single item

j ∈ M . Originally, we set p
(1)
j ∈ p(1) to be 1, and so

with our assumption that qj ∈
{
1, γ, . . . , γK

}
, price p

(i)
j

will (γK)-approximate qj ∈ q. We want p
(2)
j to (γK/α)-

approximate qj in the next iteration. Thus, we simply need

to check for every � ∈ {0, . . . , α− 1}, whether qj ≥ γ�·K/α

or not (using part (ii) below). By picking the largest �∗ for

which this is true, we can get a (γK/α)-approximation to

qj . As such, for each item, there are only α choices of

prices that we need to explore next, which allows us to

devise price vectors p
(1)
1 , . . . ,p

(1)
α accordingly. We repeat

the same idea for later iterations as well, maintaining that in

iteration i, price p
(i)
j ∈ p(i) will (γK/αi−1

)-approximate qj ,
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and use α prices as before in p
(i)
1 , . . . ,p

(i)
α to update this

to a (γK/αi

)-approximation for the next iteration. This way,

after β = O(log logm) iterations, we obtain p
(β+1)
j that γ-

approximates qj as desired. See Figure 1 for an illustration.

In the above discussion, we talked about an item j as if its

price is learned correctly throughout (i.e., p
(i)
j is (γK/αi−1

)-
approximating qj for all i ∈ [β+1]). Our mechanism cannot

guarantee this property for every item (but rather for most

of them). Moreover, we are also not able to decide which

items have been correctly priced, so we simply treat all items

as being priced correctly in the mechanism and perform

the above process for them. This means that for some

items, their price may have been learned incorrectly in some

iteration; so we conservatively ignore their contribution from

now on in the analysis. A key part of our analysis is to show

that this does not hurt the performance of the mechanism by

much, namely, q(C) is still a good approximation to val(O),
where C is the set of items for which we learn their prices

correctly.

Part (ii) – how to explore a new price.: For this

part, we build on a key idea from [19] in using fixed-price

auctions themselves as a “proxy” for determining correctness

of a guess for item prices. The idea is as follows: suppose

we run a fixed-price auction with prices p
(i)
� for � ∈ [α]

that we want to explore in an iteration i. As these prices

may be very far from q yet, there is no guarantee that

this auction returns a high-welfare allocation. However, if

we choose the ordering of bidders randomly, then the only
way this auction does not succeed in outputting a high-

welfare allocation is because it sold almost all the items

at the current prices (most likely to wrong bidders). Hence,

an item getting sold in a certain fixed-price auction is a

“good indicator” that its price in q is at least as high as

the price used in this fixed-price auction. Such an idea was

used in [19] to narrow down the range of item prices from

O(logm) values to O(
√
logm), which in turn allows the

mechanism to simply guess a correct price for each item

and achieves an O(
√
logm)-approximation.

We take this idea to the next step to obtain our Learnable-

Or-Allocatable Lemma (Lemma 7). Roughly speaking, we

show that in each iteration i, starting from the set C(i)

of correctly priced items, either one of the α auctions

for exploring prices will lead to an O(β2)-approximate

allocation, or after this iteration we will manage to further

refine the prices of almost all items in C(i). I.e., we obtain

a set C(i+1) with q(C(i+1)) ≈ q(C(i)) and with p(i+1)

approximating prices q for C(i+1) much more accurately

than p(i) (as described in part (i)). Hence, either during

one of the iterations there is an auction that gives us an

O(β2)-approximation, or we eventually end up with p(β+1)

that point-wise γ-approximates q for a large set of items

C(β+1). Therefore, by ensuring q(C(β+1)) = Ω(OPT), a

fixed-price auction with prices p(β+1) gives a γ = O(αβ)-

approximation by Lemma 2.

This outline oversimplifies many details. Let us briefly

mention two here. Firstly, running fixed-price auctions only

help us in not underpricing items for the next iteration;

we also need to take care of overpricing. This is handled

by making sure there is a gap of γ between different

prices explored so that not many overpriced items can be

sold in an auction. Also while for the purpose of this

discussion we simply assumed the existence of this gap,

in the actual mechanism we need to create this gap using

a basic randomization idea. Secondly, our mechanism has

no way of determining (in a truthful way) which case of

the Learnable-Or-Allocatable Lemma we are in. This means

that there are α · β auctions in the mechanism and any one

of them may give an O(β2)-approximation welfare. (If not,

then we can learn the prices accurately and the final auction

would be an O(αβ)-approximation.) The solution here is

then to simply pick one of the (αβ+1) auctions uniformly at
random and allocate according to that. This way we succeed

in finding a good auction with probability at least 1/αβ and

hence, in expectation, we obtain an O(αβ3)-approximation.

Part (iii) – how to ensure truthfulness.: Recall that

a fixed-price auction is truthful primarily because the re-

sponses of the bidders has no effect on the price of their

allocated bundle. However, our mechanism consists of mul-

tiple fixed-price auctions and the outcomes of these auctions

do influence the prices for later iterations. As such, to

ensure truthfulness, each bidder should only participate in

the auctions of a single iteration. Hence, at the beginning

of the mechanism, we randomly partition the bidders into

β + 1 groups N1, . . . , Nβ+1. Then, in each iteration i, we

use the bidders in group Ni for fixed-price auctions with

prices p
(i)
1 , . . . ,p

(i)
α to learn prices p(i+1), and in the final

iteration we run one fixed-price auction with bidders Nβ+1

and prices p = p(β+1).

This partitioning of bidders results in a key challenge:

Our goal in learning the prices should actually be different

from what was stated earlier. In particular, the auctions in

each iteration i with bidders Ni should reveal the q prices of

items allocated in O to bidders in N>i := Ni+1, . . . , Nβ+1,

as opposed to bidders in Ni. This is because we are no

longer able to allocate any item to bidders in N1, . . . , Ni. We

handle this also by our Learnable-Or-Allocatable Lemma.

Instead of learning the set C(i+1) with q(C(i+1)) ≈ q(C(i))
in the Learnable case, we have a more refined statement in

which the LHS is replaced with q of items allocated only
to bidders in N>i. This in turn requires a delicate choice of

parameters and analysis to balance out two opposing forces:

on one hand, we need Ni to be large enough so that we can

“extrapolate” the learned prices in auctions with Ni to N>i

(in the Learnable case); on the other hand, each Ni should

be small enough so that by the time we end up learning the

prices, the contribution of the remaining bidders is still large
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pj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Iteration one:

pj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration two:

Figure 1: An illustration of the trajectory of the prices of a single item throughout the mechanism. Here, α = 4 and β = 2.

Each block i corresponds to price γi. Arrows correspond to the price of this item in the corresponding fixed-price auction; a

solid arrow means the item was sold, while a dashed arrow means it was not. The learned price of this item in this example

is γ9.

enough.

Comparison to Dobzinski [19].: We conclude this

section by comparing our work with the previous best

mechanism of Dobzinski [19] that achieved an O(
√
logm)

approximation. As described in Part (ii), our mechanism

builds on a key idea from [19] in using fixed price auctions

as a proxy for obtaining “good” prices for items. On a high

level, the main difference between the two works is that

Dobzinski [19] uses fixed price auctions to “learn” item

prices in a single-shot, but with a relatively poor accuracy.

Instead, we use fixed price auctions iteratively in order to

learn the prices of (most) items quite accurately.

Concretely, assuming that all prices qj ∈
{
1, γ, . . . , γK

}
for K = O(logm), Dobzinski’s mechanism can be viewed

as a special case of our mechanism by setting β = 1 and

α =
√
logm: Dobzinski first uses a set N1 of bidders to run

α =
√
logm auctions to learn the prices of items (to within

an O(
√
logm) factor), and then runs one more fixed price

auction with these learned prices on bidders Nβ+1 = N2.

The final auction is then chosen randomly from these√
logm+1 auctions to ensure truthfulness. Considering both

the prices are learned only to within an O(
√
logm) factor

and the final auction is chosen from
√
logm + 1 auctions,

the approximation ratio of this mechanism is O(
√
logm).

Our mechanism on the other hand learns prices of items

in multiple iterations (β = O(log logm) iterations) via the

Learnable-Or-Allocatable Lemma. This allows us to both

use a much smaller number of auctions (poly(log logm)
many), and at the same time learn prices much more

accurately (again to within a poly(log logm) factor), which

ultimately leads to our improved approximation ratio of

O((log logm)3).

IV. THE MAIN MECHANISM

We give our main mechanism for combinatorial auctions

with XOS valuations in this section. In the following,

we present our mechanism with an additional simplifying

assumption (Assumption 1). This assumption is made pri-

marily to simplify the presentation of the mechanism and its

analysis and as we show in Section VI is not necessary.

Assumption 1. We assume there exists two non-negative
numbers ψmin ≤ ψmax such that:

(i) for every valuation, supporting price of any item for
any clause belongs to {0} ∪ [ψmin : ψmax];

(ii) the ratio of these numbers, denoted by Ψ :=
ψmax/ψmin, is bounded by some fixed poly(m).

We further assume that the mechanism is given ψmin and
ψmax as input.

In the following, we first present a simple tree-structure,

named the price tree, that we use in our mechanism for

discretizing prices at different scales. We then describe the

method with which we assign different bidders to differ-

ent auctions run by our mechanism. Finally, we present

our mechanism and prove its computational efficiency and

universal truthfulness guarantees. The analysis of the ap-

proximation ratio of our mechanism—the main technical

contribution of the paper—appears in the subsequent section.

Parameters:: We define and use the following param-

eters in our mechanism.

• α := Θ(1) – number of different auctions run in each

iteration of our mechanism;

• β := O(log logΨ) – number of iterations in our

mechanism;

• γ := Θ(αβ) – the accuracy to which we aim to learn
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the true prices.

Moreover, the above parameters satisfy the following equa-

tions:

αβ+1 ≥ logγ Ψ, 20αβ ≤ γ ≤ 30αβ. (1)

It is immediate to verify that one can choose α, β, γ satis-

fying all the above equations.

A. Price Trees and Their Properties

We define a simple tree-structure used for discretizing the

range of prices in [ψmin : ψmax] by our mechanism. The

first part is a geometric partition of set of available prices

as follows.

Definition 3. We partition [ψmin : ψmax] into t :=
⌈
logγ Ψ

⌉
bins B1, . . . , Bt where values inside each Bi are within a
factor γ of each other. We use price(Bi) to denote the min
value in Bi.

We now use the concepts of bins to define a multi-level

partitioning of [ψmin : ψmax].

Definition 4 (Price Tree). A price tree T is a rooted tree
in which each node z is assigned two attributes: (i) bins(z)
which is a subset of bins B1, . . . , Bt with consecutive

indices, and (ii) price(z) which is the value of price(Bi)
where Bi is the smallest indexed bin inside bins(z). The
tree T satisfies the following properties:

• For the root zr of T , bins(zr) := (B1, . . . , Bt).
• T has t leaf-nodes where the i-th left most leaf-node
zi of T has bins(zi) = Bi.

• Every non-leaf node z of T has α children z1, . . . , zα
such that bins(z1) contains the first α fractions of
bins(z), bins(z2) contains the second α fraction, and
so on.

By the choice of αβ+1 ≥ t, the number of levels in T is
β + 1 (see Figure 2 for an illustration).

A price tree T gives a nested partitioning of the range

[ψmin : ψmax] into β + 1 levels with different granularities.

We say that a price p belongs to a node z of T iff p appears

in one of the bins in bins(z); moreover, if p = price(z),
then we say p strongly belongs to z.

Definition 5. We say a price vector p = (p1, . . . , pm) is a
level-i price vector iff every pj strongly belongs to some
node zj in level i of T .

We assign α canonical level-(i + 1) price vectors
p1, . . . ,pα to a level-i price vector p, where in pk =
(p′1, . . . , p

′
m) each p′j strongly belongs to the k-th child of

zj to which pj strongly belongs.

Modified price trees.: Using price trees in our mecha-

nism directly is problematic primarily because it is possible

that a price p ∈ Bi for some bin Bi is actually closer to

price(Bi+1) than price(Bi), hence making the learning of

the correct bin for p not feasible.

To fix this issue, we consider the following two modified

price trees T o and T e instead: T o is a subtree of T obtained

by retaining only the odd indexed bins B1, B3, . . . in bins of

T ; T e is defined analogously by retaining all even indexed

bins. In our mechanism, we pick one of T o or T e at random

and from there on, only consider the prices that belong to

the bins that appear in the corresponding modified price tree.

This way, for any two price p, p′ that belong to two different

nodes of the modified tree, there is at least a factor γ gap

between p and p′.

B. Partitioning Bidders

Our main mechanism involves partitioning the set of

bidders into β+1 different groups N1, . . . , Nβ+1 and assign-

ing them to different auctions throughout the mechanism.

The partitioning of the bidders is done using the following

procedure:

• Partition(N): Let N ′ ← N and for i = 1 to β
iterations: pick a random permutation of N ′ and insert

the first |N ′|/(10β) bidders into Ni; update N ′ ← N ′\
Ni. At the end, return N1, . . . , Nβ and Nβ+1 := N ′.

C. Formal Description of the Mechanism

We are now ready to give our main mechanism under

Assumption 1. The procedure PriceUpdate used in the

mechanism is defined immediately after.

PriceLearningMechanism(N,M)

1) Let (N1, N2, . . . , Nβ+1) := Partition(N).
2) Pick one of the modified trees T o or T e uniformly

at random and denote it by T �.

3) Let p(1) be the (unique) level-1 (root) price of T �.

For i = 1 to β iterations:

a) Let p
(i)
1 , . . . ,p

(i)
α be the level-(i + 1) canonical

price vectors of p(i) in T � (Definition 5).

b) For j = 1 to α: run

FixedPriceAuction(Ni,M,
p
(i)
j

2 ) and

let A
(i)
j be the allocation.

c) W.p. (1/β), pick j� ∈ [α] uniformly

at random and return A
(i)
j� as the final

allocation; otherwise, let p(i+1) :=
PriceUpdate(A(i)

1 , . . . , A
(i)
α ,p

(i)
1 , . . . ,p

(i)
α ),

and continue.

4) Run FixedPriceAuction(Nβ+1,M, p
(β+1)

2 )
and return the allocation A∗.

The PriceUpdate procedure is done as follows:
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B1 B2 B3 B4 B5 B6 B7 B8

(B1, B2) (B3, B4) (B5, B6) (B7, B8)

(B1, B2,B3, B4) (B5, B6,B7, B8)

(B1, B2,B3, B4,B5, B6,B7, B8)

Figure 2: An illustration of a price tree T with α = 2, β = 2, and t = 8. By considering only the bold-face bins (with odd

indices), we obtain the modified price tree T o.

• PriceUpdate(A(i)
1 , . . . , A

(i)
α ,p

(i)
1 , . . . ,p

(i)
α ): For any

item j ∈ M , we let p′j be equal to pj ∈ p
(i)
k where k

is the largest index such that item j is allocated in

A
(i)
k (if j is never allocated, we set k = 1). Return

p(i+1) = (p′1, . . . , p
′
m).

We shall right away remark that in

PriceLearningMechanism, every price vector

p(i) computed in iteration i is a level-i price vector and

hence the canonical price vectors defined in each iteration

indeed do exist. We have the following theorem which is

the main technical result of this paper.

Theorem 6. For a combinatorial auction with n submodular
(even XOS) bidders and m items, under Assumption 1,
PriceLearningMechanism is universally truthful, uses
O(n) demand queries and polynomial time, and achieves an
approximation ratio of O((log logm)3) in expectation.

We remark that our mechanism in Theorem 6 only makes

O(1) queries to the valuation of each bidder, which is

clearly optimal, and results in a highly efficient mechanism

(computationally).

To see that PriceLearningMechanism is truthful,

notice that every bidder b is participating in at most α fixed-

price auctions of FixedPriceAuction for which the

prices of items have already been fixed entirely independent

of b’s valuations (and responses). Moreover, for bidders in

N1, . . . , Nβ that participate in more than one auction, the

choice of which items (if any) they are being allocated

across the auctions is entirely independent of the auction

outcome and is determined by the random coin tosses in

Line (3c). This still does not imply that truth telling is a

dominant strategy as a bidder can “threat” another bidder

by presenting wrong valuations in subsequent auctions they

both participate in (see, e.g. [8], [19]). To fix this, we

make each bidder b output the preferences in all fixed-price

auctions b participates in simultaneously (or alternatively

hide bidders responses from each other). As was observed

in [8], [19] this ensures the truthfulness of the mechanism.

Computational efficiency of

PriceLearningMechanism and the bound on number

of demand queries follow immediately from the fact that

each bidder is participating in at most α = Θ(1) fixed-price

auctions, each of which requires one demand query per

bidder.

V. THE ANALYSIS OF MAIN MECHANISM

We now present the analysis of the approximation ratio

of PriceLearningMechanism.

Notation.: To avoid confusion, throughout this section,

we use “i” to index the iterations, “j” to index the auctions

inside an iteration, “b” to index the bidders, and “�” to index

the items.

We pick an optimal allocation O = (O1, . . . , On) of items

with supporting prices q = (q1, . . . , qm) and denote by

OPT the welfare of this allocation. We further define O�

as the restriction of O to items with supporting prices in

q that belong to the modified price tree T � chosen by the

mechanism. Similarly, q� is defined by zeroing out the price

of items in q that are not allocated by O� and leaving the rest

unchanged. We also define the following series of refinement

of q based on the bidders in N1, . . . , Nβ+1 and the choice of

T �. For every i ∈ [β + 1], q(i) = (q
(i)
1 , . . . , q

(i)
m ) is defined

so that for every item � ∈ M , q
(i)
� = 0 iff � is allocated in

O� to some bidder in N1, . . . , Ni−1 or is not allocated at

all, and otherwise q
(i)
� = q� for q� ∈ q�.

Fix any iteration i and the price vector p(i) =

(p
(i)
1 , . . . , p

(i)
m ) obtained by the mechanism so far. We say

an item � ∈ M is correctly priced in iteration i iff p
(i)
�

belongs to the same level-i node in T � as q
(i)
� . Note that

by construction, p
(i)
� always strongly belongs to a node, and

hence for any correctly priced item, we have p
(i)
� ≤ q

(i)
� . We

use C(i) to denote the set of all items that are correctly priced
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throughout all iterations 1 to i. Hence, under this definition,

O� = C(1) ⊇ C(2) ⊇ . . . ⊇ C(β+1). The definition of the

price tree ensures that by moving from C(1) towards C(β+1)

we are learning the priced of correctly prices items more and

more accurately.

Learnable-Or-Allocatable Lemma.: The goal of

our mechanism is to learn a set C(β+1) such that

q(β+1)(C(β+1)) is still sufficiently large compared to

q�(O�). Having reached such a state, we can run a fixed

price auction with price vector p(β+1)/2 with bidders

Nβ+1. Since for items in C(β+1), their price in p(β+1) and

q(β+1) are within a γ factor of each other, we can invoke

Lemma 2 and obtain an allocation with welfare at least γ
fraction of q(β+1)(C(β+1)).

Of course, in general, it is too much to expect that our

mechanism can converge to a particular price vector q�

(think of a case where there are many different optimal

allocations with different prices; converging to one such

price vector necessarily means not converging to the other

ones). The following lemma, which is the heart of the proof,

however states that in each iteration, we can either “learn”

the prices of most items more accurately than before, or we

can already “allocate” the items efficiently enough at the

current prices.

Lemma 7 (Learnable-Or-Allocatable Lemma). For
any iteration i ∈ [β], conditioned on any outcome of
first i− 1 iterations and choice of T �:

(i) either E
[
q(i+1)(C(i+1))

]
≥ q(i)(C(i)) − OPT

3β ,
where the expectation is over Ni;

(ii) or E

[
val(A(i)

j� )
]
≥ OPT

200α·β2 , where the expecta-
tion is over Ni and j� ∈ [α].

We refer to the first case as Learnable and to the
second one as Allocatable.

We prove Lemma 7 next and then use it to conclude the

proof of Theorem 6.

A. Proof of Lemma 7 – Learnable-Or-Allocatable Lemma

We start with a high level overview. We prove this lemma

in three steps:

(i) No underestimating prices: We first show (Lemma 8)

that for any of the auctions in this iteration, either most

of the correctly priced items (and with respect to this

auction) are sold, or this auction itself can result in a

high welfare. This step allows us to argue that for many

of the items we can sell them in these auctions with

a price at least as high as their true price, and hence

we will not underestimate their prices in this iteration.

The proof of this part crucially uses the fact that the

bidders are coming in a random order and is along the

lines of a similar argument by Dobzinski [19].

(ii) No overestimating prices: We then show (Lemma 11)

that in these auctions only a small fraction of items

may continue to get sold even past their correct price.

Roughly speaking, this is because if we could actually

sell many items in auctions with higher prices, this

implies that the true welfare of the auction is larger

than OPT, a contradiction. This part relies on the

“price gap” we introduced in price trees by picking

T e or T o (instead of T itself).

(iii) Handling removed bidders: Finally, in Claim 12 we

argue that even if we ignore the items for bidders

in Ni (as the mechanism no longer considers these

bidders), the remaining correctly priced items still have

a substantial contribution. This part of the proof uses

the fact that we only consider a small random subset

Ni of the remaining bidders.

We now present the formal proof. Throughout the proof,

we fix i ∈ [β] and condition on the outcome of the first

i − 1 iterations and the choice of T �. Conditioning on the

outcome of the first i− 1 iterations fixes the set of bidders

N1, . . . , Ni−1 but bidders in Ni are chosen randomly from

the remaining bidders. Fixing the bidders N1, . . . , Ni−1 also

fixes the price vector q(i). This conditioning also fixes the

level-i price vector p(i) and its canonical level-(i+1) price

vectors p
(i)
1 , . . . ,p

(i)
α . The set C(i) of items that have been

correctly priced so far is also fixed.

We partition the correctly priced items C(i) into α sets

D
(i)
1 , . . . , D

(i)
α , defined as follows. For an item � ∈ C(i),

let z� denote the node in level i of T that both p
(i)
� and

q
(i)
� belong to. Suppose the child-node of z� to which q

(i)
�

belongs is z�,j for some j ∈ [α]. We place item � in D
(i)
j

in this case. Note that under this partitioning, the level (i+

1) node z�,j to which q
(i)
� belongs is the same node that

p� ∈ p
(i)
j (strongly) belongs to; thus, for items in D

(i)
j ,

p
(i)
j ≤ q(i).

In the following lemma, we use the construction of

Partition to argue that for any j ∈ [α], we either allocate

most items in D
(i)
j in the fixed price auction with price

vector p
(i)
j or otherwise this auction is obtaining a large

welfare.

Lemma 8. For any j ∈ [α], we have 20β · E
[
val(A(i)

j )
]
+

E

[
q(i)(A

(i)
j ∩D(i)

j )
]
≥ q(i)(D

(i)
j ).

Proof: We define N≥i := N \ (N1∪ . . .∪Ni−1). In the

following, all expectations are taken over the choice of Ni

from N≥i. Recall that in Partition, Ni is chosen from

N≥i by picking a random permutation and picking the first

|N≥i| /(10β) bidders in Ni.

Define OD
Ni

as the restriction of O� to items in D
(i)
j and
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bidders in Ni. Similarly, define OD
N>i

as the restriction of O

to items in D
(i)
j and bidders in N>i := N≥i \Ni. Note that

q(i)(Dj) = q(i)(OD
Ni

) + q(i)(OD
N>i

) (recall that q(i) gives

price 0 to items not allocated to bidders in N≥i).

Proof of this lemma is by a simple combination of the

following two claims.

Claim 9. Deterministically, val(A(i)
j ) ≥ q(i)(OD

Ni
\A(i)

j )/2.

Proof: For any bidder b ∈ Ni, when it was

bidder b’s turn to pick a set in allocation A
(i)
j

of FixedPriceAuction(Ni,M,p
(i)
j /2), b could have

picked OD
b \A(i)

j ⊆ OD
Ni

and obtain the profit of

vb(O
D
b \A(i)

j )− p
(i)
j (OD

b \A(i)
j )/2

≥ q(i)(OD
b \A(i)

j )− p
(i)
j (OD

b \A(i)
j )/2

≥ q(i)(OD
b \A(i)

j )/2.

The first inequality is because q(i) is a supporting price for

OD
b \A(i)

j and the second one is because p
(i)
j ≤ q(i) on the

items in D
(i)
j . As bidder b maximizes the profit by picking

A
(i)
j,b, we have

val(A(i)
j ) =

∑
b∈Ni

vb(A
(i)
j,b)

≥
∑
b∈Ni

q(i)(OD
b \A(i)

j )/2

= q(i)(OD
Ni

\A(i)
j )/2. Claim 9

Claim 10. By randomness of choice of Ni from N≥i,
E

[
val(A(i)

j )
]
≥ ( 1

10β ) · E
[
q(i)(OD

N>i
\A(i)

j )/2
]
.

Proof: For the purpose of this proof, it helps to think

of picking Ni alternatively by repeating the following for

ni := |Ni| steps: sample a bidder uniformly at random from

N≥i, include it in Ni , and remove it from consideration for

sampling from now on. It is immediate that the distribution

of Ni is the same under this and the original definition.

For every k ∈ [ni], define Ni,k ⊆ Ni as the set Ni

constructed before step k and OD
≥k as the restriction of

O� to D
(i)
j and N≥i \ Ni,k. Thus, OD

≥k ⊇ OD
N>i

and

hence q(i)(OD
≥k) ≥ q(i)(OD

N>i
) for every k. Recall that

FixedPriceAuction operates in a greedy manner and

hence allocation of bidders participating in the auction

before step k are already determined by step k. Define A<k

as the set of items allocated by auction before step k and

let uk := vb(A
(i)
j,b) where b is the chosen bidder in step

k and A
(i)
j,b is the allocation b will get by participating in

FixedPriceAuction(Ni,M,p
(i)
j /2).

We first prove that uk ≥ q(OD
≥k,b \ A<k)/2. This is

precisely because of the same reason as in Claim 9 that b
could have chosen OD

≥k,b \A<k but decided to pick another

set. Define n≥i := |N≥i|. Recall that b is chosen uniformly

at random from the (n≥i − k + 1) bidders at step k and

hence,

E
b
[uk] ≥

1

n≥i − k + 1
·
q(i)(OD

≥k \A<k)

2

≥ 1

n≥i
·
q(i)(OD

≥k \A<k)

2
. (2)

We can thus write,

E
Ni

[
val(A(i)

j )
]

=

ni∑
k=1

E
Ni,k

E
b
[uk | Ni,k]

≥ 1

2n≥i
·

ni∑
k=1

· E
Ni,k

[
q(i)(OD

≥k \A<k) | Ni,k

]
(by Eq (2))

≥ 1

2n≥i
·

ni∑
k=1

E
Ni

[
q(i)(OD

N≥i
\A(i)

j )
]

(as OD
N≥i

⊆ OD
≥k and A

(i)
j ⊇ A<k always)

=
ni
n≥i

· E
Ni

[
q(i)(OD

N≥i
\A(i)

j )/2
]

=

(
1

10β

)
· E

[
q(i)(OD

N≥i
\A(i)

j )/2
]
. Claim 10

We can now conclude the proof of Lemma 8 as follows.

By Claims 9 and 10,

20β · E
[
val(A(i)

j )
]

≥ E

[
q(i)(OD

Ni
\A(i)

j ) + q(i)(OD
N≥i

\A(i)
j )

]
= E

[
q(i)(D

(i)
j \Aj)

]
= q(i)(D

(i)
j )− E

[
q(i)(D

(i)
j ∩A(i)

j )
]
.

This concludes the proof. Lemma 8

The quantity A
(i)
j ∩D(i)

j bounded in Lemma 8 is closely

related to the set of correctly priced items at iteration i+1,

namely C(i+1). The only difference between the two sets

is that some items in A
(i)
j ∩ D(i)

j can be allocated even in

A
(i)
k for k > j and hence in PriceUpdate, we assign

a larger price to them. In the following, we prove that the

contribution of such items cannot be too large.

Lemma 11. We have q(i)(C(i+1)) ≥ ∑α
j=1 q

(i)(A
(i)
j ∩

D
(i)
j )− OPT

10β .

Proof:
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By definition of PriceUpdate, we know that items in

A
(i)
j ∩D(i)

j will join C
(i+1)
j iff they do not belong to some

A
(i)
k for k > j. For each k > j, let OEk be the set of

items in D
(i)
j ∩ A(i)

j that are also allocated in A
(i)
k . Then,

OEj+1 ∪ . . . ∪OEα forms the set of all items in D
(i)
j that

the mechanism overestimates their price in iteration i. We

bound the contribution of such items.

Fix some k > j. Consider the level i + 1 of the price

tree T �. There are αi nodes in this level to which the q(i)-

price of an item in D
(i)
j can belong to. Let oek,1, . . . , oek,αi

be the number of items corresponding to these nodes that

were allocated in A
(i)
k as well. Hence, |OEk| =

∑αi

�=1 oek,�.
Moreover, let pk,1, . . . , pk,αi be the maximum prices that

belong to these nodes. Finally, let p′k,1, . . . , p
′
k,αi be the

prices that these items were sold in A
(i)
k . Because T � is

either T o or T e, we have pk,� ≤ γk−j · p′k,� (there is a

factor γ gap between the maximum price of any bin Bx and

minimum price of Bx+2).

Since all the items in OEk are sold in a single application

of FixedPriceAuction, we know that there exists an

allocation with supporting prices p′k,� for oek,� items for all

� ∈ [αi]. As such,

OPT ≥
αi∑
�=1

p′k,� · oek,�

≥ γk−j ·
αi∑
�=1

pk,� · oek,�

≥ γk−j · q(i)(OEk), (3)

by definition of pk,� as the maximum price inside the nodes

of T � that prices of q(i)(OEk) belong to. Summing up

Eq (3) for all choices of k > j, we have

α∑
k=j+1

q(i)(OEk) ≤
α∑

k=j+1

1

γk−j
· OPT ≤ 2

γ
· OPT.

Finally, as there are α choices for j, we have⎛
⎝ α∑

j=1

q(i)(A
(i)
j ∩D(i)

j )

⎞
⎠− q(i)(C(i+1))

≤
α∑

j=1

2

γ
· OPT =

2α

γ
· OPT ≤ OPT

10β
,

by the choice of γ ≥ 20αβ in Eq (1). Lemma 11

So far we only considered prices with respect to q(i).

We now extend the bounds to q(i+1), for which we need to

remove the correctly priced items corresponding to bidders

in Ni.

Claim 12. We have E
[
q(i+1)(C(i+1))

]
≥

E
[
q(i)(C(i+1))

]
− OPT

10β .

Proof: For a bidder b, we write C
(i)
b as the set of items

in C(i) that are allocated to b in O� (i.e., take their price in

q� because of bidder b); this is similarly defined for C
(i+1)
b .

We can write,

E

[
q(i+1)(C(i+1))

]

= E

[
q(i)(C(i+1))−

∑
b∈Ni

q(i)(C
(i+1)
b )

]

≥ E

[
q(i)(C(i+1))−

∑
b∈Ni

q(i)(C
(i)
b )

]
,

because C(i+1) ⊆ C(i). Since each bidder joins Ni with

probability (1/10β), this implies

E

[
q(i+1)(C(i+1))

]
≥ E

[
q(i)(C(i+1))

]
− 1

10β
· q(i)(C

(i)
b )

≥ E

[
q(i)(C(i+1))

]
− OPT

10β
. Claim 12

We now have all the ingredients needed to prove

Lemma 7.

Proof of Lemma 7: By applying Lemma 8 to every

j ∈ [α], we have

20β ·
α∑

j=1

E

[
val(A(i)

j )
]
+ E

⎡
⎣ α∑
j=1

q(i)(A
(i)
j ∩D(i)

j )

⎤
⎦

≥
α∑

j=1

q(i)(D
(i)
j ). (4)

The RHS of above is clearly q(i)(C(i)). The second term in

the LHS can be upper bounded by Lemma 11 and Claim 12,

E

⎡
⎣ α∑
j=1

q(i)(A
(i)
j ∩D(i)

j )

⎤
⎦

≤ E

[
q(i)(C(i+1))

]
+

OPT
10β

≤ E

[
q(i+1)(C(i+1))

]
+

2 · OPT
10β

.

Plugging in these bounds in Eq (4), we obtain

20β ·
α∑

j=1

E

[
val(A(i)

j )
]
+ E

[
q(i+1)(C(i+1))

]

≥ q(i)(C(i))− OPT
5β

. (5)

Now let us consider two cases. First suppose,

α∑
j=1

E

[
val(A(i)

j )
]
≥ OPT

200β2
. (6)
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In this case, E

[
val(A(i)

j� )
]

for j� chosen uniformly at

random from [α] is at least OPT
100αβ2 , hence satisfying item ii

of the lemma (Allocatable case). We now consider the other

case where the LHS of Eq (6) is smaller than the RHS.

Plugging in this bound in Eq (5) implies that

E

[
q(i+1)(C(i+1))

]
≥ q(i)(C(i))− OPT

5β
− 20β · OPT

200β2

> q(i)(C(i))− OPT
3β

.

This satisfies item i of the lemma (Learnable case), conclud-

ing the proof. Lemma 7

B. Proof of Theorem 6 – Approximation Ratio

We now prove the bound on expected approximation

ratio of PriceLearningMechanism. We first need some

definitions.

For an iteration i ∈ [β + 1], we use Alg(i) =
(Alg1, . . . , Algn) to denote the allocation returned by our

mechanism, conditioned on the mechanism reaching iter-

ation i and on the outcomes of N1, . . . , Ni−1 as well as

the choice of T �. We use ALG(i)
to denote the welfare of

allocation Alg(i). We note that except for i = β +1, Alg(i)

is a random variable.

Our main tool in this section is the following inductive

lemma.

Lemma 13. For i ∈ [β + 1],

E

[
ALG(i)

]
≥ 1

200αβ3
·
(
1− 1

β

)β+1−i

·(
q(i)(C(i))− OPT

3β
(β + 1− i)

)
,

where the expectation is taken over the choice of
Ni, Ni+1, . . . , Nβ .

Before proving this lemma, we show how it immediately

implies the proof of Theorem 6.

Proof of Theorem 6 – Approximation Ratio:

By Lemma 13 for i = 1,

E

[
ALG(1)

]
≥ 1

200αβ3
·
(
1− 1

β

)β

·
(
q(1)(C(1))− OPT

3β
· β

)

= Ω
( 1

αβ3

)
·
(
q(1)(C(1))− OPT

3

)
.

The only random event that we have not conditioned on in

q(1)(C(1)) is the choice of T �. Let ALG denote the welfare

of allocation returned by the mechanism. We have,

E [ALG] = Ω
( 1

αβ3

)
· E
T �

[
q(1)(C(1))− OPT

3

]

= Ω
( 1

αβ3

)
·
(

OPT
2

− OPT
3

)

= Ω
( 1

αβ3

)
· OPT,

where the second equality is because T � is cho-

sen uniformly at random to be T o or T e and the

bins in these two price trees partition the prices in

q(O) by Assumption 1. As α = Θ(1), and β =
O(log logΨ), which is O(log logm) under Assumption 1,

we obtain that PriceLearningMechanism achieves an

O((log logm)3) approximation in expectation.

We prove Lemma 13 using backward induction. We

first show that the lemma easily holds true for the base

case, namely, for i = β + 1, because of the perfor-

mance of FixedPriceAuction for correctly priced

items (Lemma 2). The heart of the induction step lies

in Learnable-Or-Allocatable Lemma (Lemma 7) that states

E
[
q(i+1)(C(i+1))

]
is close to q(i)(C(i)) unless we already

have a good allocation. So we first use the induction hypoth-

esis to show that the expected welfare of the mechanism is

close to E
[
q(i+1)(C(i+1))

]
and then use Lemma 7 to show

it is close to q(i)(C(i)).

Proof of Lemma 13: We use backward induction on

i. Consider the base case for i = β + 1, where we want

to show the following (note that ALG(β+1)
is no longer a

random variable)

ALG(β+1) ≥ 1

200αβ3
·
(
q(β+1)(C(β+1))

)
.

Since our mechanism has already reached iteration i = β+1,

this means that for every correctly priced item j ∈ C(β+1),

pj ∈ p(β+1) and qj ∈ q(β+1) both belong to a leaf-node

of T �, and consequently the same price bin. As such, by

construction of bins, pj ≤ qj ≤ γ · pj and hence running

FixedPriceAuction(Nβ+1,M,p(i+1)/2) in this step

of PriceLearningMechanism, by Lemma 2, results in

allocation with welfare,

ALG(β+1) ≥ 1

γ
· q(β+1)(C(β+1))

>
1

200αβ3
· q(β+1)(C(β+1)),

by the choice of γ = Θ(αβ) in Eq (1). This proves the

induction base.

We now prove the induction step. Suppose the lemma is

true for iterations ≥ i + 1 and we prove the induction step

for iteration i. Notice that w.p. 1/β the mechanism outputs

an allocation A
(i)
j� for j� chosen randomly from [α], and
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otherwise it continues to the next iteration. This implies:

E

[
ALG(i)

]
≥ 1

β
E

Ni,j�

[
val(A(i)

j� )
]
+

(
1− 1

β

)
· E
Ni

[
ALG(i+1)

]

≥ 1

β
· E
Ni,j�

[
val(A(i)

j� )
]
+

(
1− 1

β

)β+1−i

·

E
Ni

[
1

200αβ3

(
q(i+1)(C(i+1))− OPT

3β
(β − i)

)]
, (7)

where the second inequality uses induction hypothesis. Now

to prove the induction step we consider the two cases

corresponding to Lemma 7:

(i) Learnable case, i.e., E
[
q(i+1)(C(i+1))

]
≥

q(i)(C(i))− OPT
3β : Combining this with Eq (7),

E

[
ALG(i)

]
≥

(
1− 1

β

)β+1−i

·

E
Ni

[
1

200αβ3

(
q(i)(C(i))− OPT

3β − OPT
3β (β − i)

)]
,

which implies the induction step.

(ii) Allocatable case, i.e., E
[
val(A(i)

j� )
]
≥ OPT

200α·β2 : Com-

bining this with Eq. (7),

E

[
ALG(i)

]
≥ OPT

200αβ3

≥ 1

200αβ3

(
1− 1

β

)β+1−i

·

E

[
q(i)(C(i))− OPT

2β
(β + 1− i)

]
,

where the last inequality uses OPT ≥ q(i)(C(i)) and

implies the induction step.

This concludes the proof of the lemma.

VI. REMOVING THE EXTRA ASSUMPTIONS

We now show how to remove Assumption 1 and prove

our main result in its full generality. We shall emphasize

that the main contribution of our work is in establishing

Theorem 6; the remaining ideas here are standard for the

most part and appear in similar forms in previous work on

truthful mechanisms, e.g. in [3], [8], [19]. We present them

for completeness.

Let O = (O1, . . . , On) be an optimal allocation with

welfare OPT and supporting prices q. In order to remove

Assumption 1, we find prices ψmin and ψmax such that

ψmax/ψmin = O(m2), and for most items allocated by O,

their price in q belongs to the range [ψmin : ψmax]; here,

“most items” should be interpreted as items with prices in

q that is a constant fraction of OPT. Having found such

prices, we can then run PriceLearningMechanism
from Section IV and apply Theorem 6 to finalize the proof

(strictly speaking, Assumption 1 stated that all prices in all

valuations of bidders need to be in range [ψmin : ψmax];
however, as is evident from the proof of Theorem 6, we

only applied this assumption to prices in q).

To find ψmin and ψmax, we partition N into two (al-

most) equal-size groups Nstat and Nmech randomly. We

run any constant-factor approximation algorithm (and not

a truthful mechanism) for welfare maximization with bid-

ders in Nstat and items M , say, the algorithm of [12], to

compute a value ALGstat which is an O(1)-approximation

to OPTstat namely, the value of welfare maximizing al-

location for Nstat and M . We completely ignore the al-

location of these bidders and instead only set ψmin :=
ALGstat/m

2 and ψmax := ALGstat · Θ(1). We then run

PriceLearningMechanism(Nmech,M) with ψmin and

ψmax, and return the resulting allocation to bidders in Nmech.

The intuition behind the approach is that because we

partitioned N into two random groups, OPTstat and con-

sequently ALGstat should be an O(1)-approximation to

OPTmech, namely, the value of welfare optimizing allocation

for bidders in Nmech (this intuition is not quite correct but

for the moment let us ignore this fact). Thus, in an optimal

allocation of M to Nmech, no item have price more than

ψmax and also the total contribution of items with price

smaller than ψmin is negligible, hence we can safely ignore

them. This in turn implies that Assumption 1 holds and

by Theorem 6, PriceLearningMechanism(Nmech,M)
outputs an allocation with welfare ALGmech such that

E [ALGmech] ≥ OPTmech ·Ω
(

1
(log logm)3

)
. Moreover, by the

choice of Nmech, we have E [OPTmech] = OPT/2. Thus,

this should gives us an O((log logm)3) approximation in

expectation.

As stated earlier, there is a slight problem with the

above intuition. One cannot in general guarantee that by

partitioning the bidders into two parts randomly, each part

will have roughly the same contribution to the value of OPT.

In particular, if there exists a bidder with a much higher

contribution to OPT than the rest, the above approach is

bound to fail. So we take care of this case separately as

follows: With probability half, we simply run a second-price

auction on the grand bundle M and sell it to the highest

bidder entirely. With the remaining half probability, we run

the above procedure. This ensures that if such a bidder exists,

we get her contribution with probability half. Otherwise,

with probability half, we can run the previous analysis.

A. The Final Mechanism

Our final mechanism is as follows.

FinalMechanism(N,M)

1) With probability 1/2, run a second-price auction on
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grand bundle M with all bidders, return the resulting

allocation, and terminate. With the remaining prob-

ability, continue.

2) Pick Nstat by sampling each bidder in N indepen-

dently and w.p. 1/2. Let Nmech := N \Nstat.

3) Run the 2-approximation algorithm of [12] on items

M and bidders Nstat. Let ALGstat be the welfare of

the returned allocation. Let ψmin := ALGstat/m
2 and

ψmax := 8 · ALGstat.

4) Run PriceLearningMechanism(Nmech,M)
with ψmin and ψmax, and return the allocation.

We have the following theorem that formalizes our main

result from Section I.

Theorem 14. For a combinatorial auction with n submod-
ular (even XOS) bidders and m items, FinalMechanism
is universally truthful, uses poly(m,n) demand and
value queries, and achieves an approximation ratio of
O((log logm)3) in expectation.

The proof of truthfulness of Theorem 14 is quite easy.

The case where we run the second-price auction is clearly

truthful. For the other case, note that we never allocate

any item to bidders in Nstat and so they might as well

reveal their true valuations in response to the algorithm

in Line (3). Finally, PriceLearningMechanism with

bidders Nmech is truthful by Theorem 6. The bound on the

number of queries also follows from [12] for Line (3) and

Theorem 6 for Line (4), and since the second-price auction

can be implemented with n value queries for the grand

bundle. It thus only remains to analyze the approximation

ratio of FinalMechanism, which we do in the next section.

B. Approximation Ratio of Final Mechanism

We use the following standard result that follows directly

from Chernoff-Hoeffding bound.

Lemma 15 (cf. [3], [8], [19]). Let O = (O1, . . . , On) be
an optimal allocation of items M to bidders N with welfare
OPT. Suppose we sample each i ∈ N w.p. ρ independently
to obtain N ′. If for every i ∈ N , we have vi(Oi) ≤ ε ·OPT,
then

∑
i∈N ′ vi(Oi) ≥ (ρ/2) · OPT w.p. at least 1 − 2 ·

exp
(
− ρ

2·ε
)
.

Fix an optimal allocation O = (O1, . . . , On) of items

to bidders in N with welfare OPT. We say that a bidder

i ∈ N is dominant iff vi(Oi) ≥ OPT/8. For the analysis,

we consider two cases: either (i) there exists at least one

dominant bidder, or (ii) no bidder is dominant.

Case (i): A dominant bidder exists.: W.p. half, we

decide to run the second-price auction. Let i be the bidder

that gets the grand bundle M in the auction. Clearly i has to

be a dominant bidder in this case and thus vi(M) ≥ OPT/8
already. As such, in this case, the expected welfare of the

allocation is at least OPT/16, concluding the proof.

Case (i): No dominant bidder exists.: W.p. half, we

decide not to run the second-price auction. Let OPTstat and

OPTmech be the welfare of the optimal allocation of M
to Nstat and Nmech, respectively. By Lemma 15, applied

to choice of Nstat and N \ Nstat (both sets have the same

distribution) with ρ = 1/2 and ε = 1/8, and a union bound,

w.p. at least 1/2, we have

1

4
· OPT ≤ OPTstat ≤ OPT and

1

4
· OPT ≤ OPTmech ≤ OPT. (8)

In the following, we condition on the (independent) events

that we do not run the second-price auction, and that Eq (8)

holds, which happens w.p. 1/4.

Fix a welfare maximizing allocation of M to Nmech with

welfare OPTmech and supporting prices q = (q1, . . . , qm).
Since we run a 2-approximation algorithm in Line (3),

we know that 1
8 · OPT ≤ ALGstat ≤ OPT by Eq (8).

Hence, setting ψmax = 8 · ALGstat ensures that qj ≤ ψmax

for every item j ∈ M . Moreover, let M ′ ⊆ M be the

set of items j such that qj ≤ ψmin. By definition of

ψmin = ALGstat/m
2 and since ALGstat > OPTmech/8, we

get q(M ′) ≤ OPTmech/2 (as m � 8). As such, we can

simply ignore the contribution of all items in M ′ and still

have a set of items M \M ′ that can be allocated to bidders

in Nmech with welfare at least OPTmech/2 ≥ OPT/8.

Moreover, the supporting prices of these items now belong

to [ψmin : ψmax]. Hence, we can apply Theorem 6 under

Assumption 1 and obtain that in this case, the expected

welfare of the allocation is at most O((log logm)3) times

smaller than OPT, finishing the proof of Theorem 14.

VII. CONCLUDING REMARKS AND OPEN PROBLEMS

We gave a randomized, computationally-efficient, and

universally truthful mechanism for combinatorial auctions

with submodular (even XOS) bidders that achieves an

O((log logm)3)-approximation. This reduces the gap be-

tween the approximation ratio achievable by truthful mech-

anisms vs arbitrary algorithms for this problem by an

exponential factor from poly(log (m)) to poly(log log (m)).
The obvious question left open by our work is whether

this gap can be improved further. We do not believe in

any way that our O((log logm)3) approximation is the best

possible3. On the other hand, the limit of our approach seems

to be an Ω(log logm) approximation. It is a fascinating open

3Indeed, using a slightly more nuanced argument, our bounds can be

improved to O(
(log logm)3

log log logm
); however as this Θ(log log logm) improve-

ment is minor and for the sake of clarity, we used the slightly weaker
analysis in the paper.
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question whether one can improve the approximation factor

all the way down to a constant. However, even improving the

approximation ratio of our mechanism down to O(log logm)
already seems challenging, and is an interesting open ques-

tion. On the lower bound front, proving any separation

between the power of truthful mechanisms and algorithms

when the access to input is via arbitrary queries, namely, the

communication complexity setting, is also very interesting.

APPENDIX

A. Formal Definitions of Mechanisms and Truthfulness

Let V be a class of valuation functions defined over M ,

say, all submodular functions 2M → R
+, and A be the set

of all possible allocations of M to n bidders. A deterministic

mechanism for combinatorial auctions is a pair (f,p) where

f : Vn → A (representing the allocation to bidders) and p =
(p1, . . . , pn) where pi : Vn → R

+ (representing the price

charged for item i). A randomized mechanism is simply a

probability distribution over deterministic mechanisms.

Definition 16 (Truthfulness and Universal Truthfulness). A
deterministic mechanism (f, p) is truthful iff for all i ∈ N ,
vi, v

′
i ∈ V and v−i ∈ Vn−1, we have,

vi(f(vi, v−i)i)− pi(vi, v−i)

≥ vi(f(v
′
i, v−i)i)− pi(v

′
i, v−i).

A randomized mechanism is universally truthful iff it is a
distribution over truthful mechanisms.

We note that beside universal truthfulness, the notion

of truthful-in-expectation is also considered for randomized

mechanisms that guarantee that bidding truthfully maximizes

the expected profit; see, e.g. [1], [2], [7] and references

therein. This is a much weaker guarantee than universal

truthfulness we consider in this paper. In particular such

mechanisms are only applicable when bidders are risk

neutral and have no information about the outcomes of the

random coin flips before they need to act; see [3, Section

1.2] for more details.

B. Proof of Lemma 2 – Fixed-Price Auctions

Lemma 17 (Restatement of Lemma 2). Let A :=
FixedPriceAuction(N,M,p) and δ < 1/2 be a pa-
rameter. Suppose O is any allocation with supporting prices
q and M� ⊆M is the set of items j with δ ·qj ≤ pj <

1
2 ·qj .

Then, val(A) ≥ δ · q(M�).

Proof: Define the allocation O� = (O�
1 , . . . , O

�
n) as the

restriction of O to M�. Define Ai = O�
i \A for every i ∈ N

and A := A1 ∪ . . . ∪An. Bidder i could have chosen Ai in

FixedPriceAuction but decided to pick another bundle

Ai instead. This implies that:

vi(Ai)− p(Ai) ≥ vi(Ai)− p(Ai). (9)

We now use Eq (9) to prove the lemma. We have,

val(A) =
n∑

i=1

vi(Ai) = p(A) +
n∑

i=1

(vi(Ai)− p(Ai))

≥ p(A) +
n∑

i=1

(vi(Ai)− p(Ai))

≥ p(A) +
n∑

i=1

(q(Ai)− p(Ai))

by Eq (9) and since Ai ⊆ O�
i ⊆ Oi. Now using as pj ≤ qj/2

for all j ∈ A ⊆ O� =M�, we get

val(A) ≥ p(A) +

n∑
i=1

p(Ai)

≥ p(O�) ≥ δ · q(O�),

where the last two inequalities use O� ⊆ A∪A and A∩A =
∅, and that pj ≥ δ · qj for all j ∈ O�. This concludes the

proof as q(O�) = q(M�) by definition.
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