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Laboratoire de Combinatoire

et d’Informatique Mathématique (LaCIM)
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Abstract—In graph theory, the question of fully leafed induced
subtrees has recently been investigated by Blondin Massé et al.
in regular tilings of the Euclidian plane and 3-dimensional space.
The function LG that gives the maximum number of leaves of
an induced subtree of a graph G of order n, for any n ∈ N, is
called leaf function. This article is a first attempt at studying this
problem in non-regular tilings, more specifically Penrose tilings.
We rely not only on geometric properties of Penrose tilings, that
allow us to find an upper bound for the leaf function in these
tilings, but also on their links to the Fibonacci word, which give
us a lower bound. In particular, we show that 2ϕn/(4ϕ + 1) ≤
Lkd(n) ≤ �n/2�+ 1, for any n ∈ N, where ϕ is the golden ratio
and Lkd is the leaf function for kites and darts Penrose tilings.
As a byproduct, a purely discrete representation of points in the
tiling, using quadruples, is described.

I. INTRODUCTION

Since Roger Penrose introduced them in 1974 [1] and

described them with more details in [2] and [3], Penrose tilings

have aroused great interest among many mathematicians,

including Robert Ammann and Raphael M. Robinson whose

tilings of the plane are also quite interesting (see [4], Sections

10.2 and 10.4). Martin Gardner, known for his popularization

of mathematics by proposing recreational puzzles in written

media, greatly contributed to making these tilings famous [5],

and we owe much of the vocabulary specific to Penrose tilings

as well as many of their known properties to John H. Conway.

Penrose tilings are so remarkable that Grünbaum and Shephard

devoted several sections of their book on tilings to the study

of Penrose tilings based on the work of these four researchers

and Roger Penrose himself, including unpublished notes and

private communications [6], [4]. Furthermore, the algebraic

study of Penrose tilings by de Bruijn [7] allowed for the

discovery of quasicrystals, that is crystals whose structure is

not periodic [8].

Initially, Penrose described three interconnected sets of tiles,

called respectively P1, P2 and P3. The set P1 is composed

of six prototiles, while the sets P2 and P3 both use only 2
prototiles. The tiles of P2 are called kites and darts and an

example of a tiling by P2 is illustrated in Figure 1. The two

tiles of P3 are called rhombs, one being thinner and the other

thicker. Since those tilings all similar properties [6] but still

differ enough to be studied separately, we shall only focus on

“kites and darts” tilings in the remaining part of this article.

Fig. 1: A Penrose tiling by kites and darts.

Although they are intrinsically geometric objects, Penrose

tilings can be viewed as simple graphs, whose vertices are

the tiles and whose adjacency relation in the graph is the

adjacency relation between tiles in the tiling. In particular, one

might be interested in inspecting its subgraphs in order to gain

some insight about its global structure. In a recent series of

publications, Blondin Massé and his co-authors have studied

the fully leafed induced subtrees, i.e. subtrees that maximize

the number of leaves with respect to their order, appearing in

different families of graphs ([9], [10], [11]). They looked at

the four basic periodic lattices: the square, the triangle and

the hexagonal lattices in 2D, and the cubic lattice in 3D. One

of their results consisted in describing the leaf function L in

each of these four lattices, i.e. the map associating with each

integer n ≥ 2 the number of leaves of a fully leafed induced

subtree of n vertices [10].

This article aims to provide similar results for Penrose

tilings, a first step in studying non-periodic tilings, where the

situation is more intricate. Although we are not sure whether

the induced subtrees built in Section VI are fully leafed, they

present remarkable properties and are closely linked to the

Fibonacci word. Another interesting observation is that they

are caterpillar graphs, i.e. trees such that the removal of all

their leaves yields a chain graph. In particular, since they

have a linear structure, they might be interpreted as words

embedded in graphs. For instance, in [12], the second author
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of this article and his co-authors established a link between the

leaf function of caterpillar graphs and prefix-normal words, a

family of words closely related to the bubble sort [13].

The next sections are divided as follows. In Section II, we

present the basic definitions and notations on tilings, graphs

and words, while Section III is devoted to the known properties

of “kites and darts” Penrose tilings. Section IV concerns

computational aspects of generating these tilings and their

graphs, and describes a discrete representation of the vertices

using quadruples. Section V then presents an upper bound for

their leaf function and finally, in Section VI, we exhibit special

caterpillars having many leaves, therefore providing a lower

bound for the leaf function.

II. PRELIMINARIES

We now recall some useful definitions and notations about

tilings, graphs and words.

A tiling of the plane is a countable family T = {Tn}n∈N of

closed sets of R
2 which is both a covering and a packing of

the plane, that is (1) tiles T1, T2, . . . verify
⋃

n∈N Tn = R
2 and

(2) for all i �= j, int(Ti)∩ int(Tj) = ∅. The intersection of any

two tiles is either a set of edges (line segments) and/or vertices

(points), or the empty set. Two tiles are called adjacent if they

share an edge. Two tilings T1 and T2 are congruent if there

is an isometry σ of the plane such that T1 = σ(T2). We say

that two tilings T1 and T2 are equal if there is a similarity

τ of the plane (i.e. an isometry followed by a scaling) such

that T1 = τ(T2). A tiling T is called monohedral if any tile

of T is congruent with a given set T , that is if all tiles have

the same size and shape. This set T is called prototile and

we say that the prototile T admits the tiling T . A tiling T
is dihedral if any of its tiles Ti is congruent with any of two

(non-congruent) prototiles T and T ′. This article focuses on

Penrose tilings which are dihedral, where the prototiles are a

kite and a dart.

If T is a tiling, an isometry σ is a symmetry of T if the

image through σ of any tile of T is a tile of T , which also

preserves markings and colors when there are any. A tiling is

called symmetric if its symmetry group is non trivial, that is

if it contains at least one symmetry in addition to the identity.

A tiling is periodic if its symmetry group contains at least

two translations in non-parallel directions. If a tiling is not

periodic but its symmetries include rotations about a fixed

point, then this point is unique and is called the center of the

tiling. Penrose tilings by kites and darts are all non-periodic

but two of them have a center. A patch in a tiling is any set

of tiles (not prototiles) whose union forms a connected set

without hole. The theory of tilings is extensively described in

[4], including the study of Penrose tilings.

The vertices and edges of a tiling form an undirected graph,

whose dual is the graph we are interested in. Let G = (V,E)
be a simple graph. For any u ∈ V and U ⊆ V , the set of

neighbors of u in G is denoted by NG(u), which is naturally

extended to U by defining NG(U) = {NG(u
′) | u′ ∈ U}. The

subgraph of G induced by U is G[U ] = (U,E∩P2(U)), where

•

•
◦

◦ ◦

• •◦ ◦

(a) Kite

◦

◦
• •
• •

◦◦

(b) Dart

Fig. 2: Decomposition of kites and darts.

P2(U) is the set of 2-element subsets of U . In this article,

the vertices of G are tiles composing a tiling of the plane

by Penrose kites and darts, and E is given by the adjacency

relation between tiles. The graph thus obtained is infinite but

we only consider its finite subgraphs. More precisely, we focus

on induced subtrees of fixed order n, that is subgraphs of G
which are trees, for all n ∈ N. We denote TG(n) the set of

all induced subtrees of order n of G, and |T |� the number of

leaves of any tree T . The leaf function of G is then defined

for all n ∈ {1, 2, · · · , |G|} by

LG(n) = max{|T |� : T ∈ TG(n)}.
An induced subtree T of G of order n is said fully leafed if

|T |� = LG(n). A caterpillar graph C is a tree whose derived

tree, obtained from C by removing its leaves, is a path [14].

To conclude this section, we briefly recall some definitions

on words. An alphabet A is a set of symbols (or characters).

A word on A is a sequence of symbols of A, and the set of

all words on A is denoted A∗. We say that a word y is a

subword or factor of a word w if there exist words x, z such

that w = xyz. A binary word is a word on {0, 1} or any

other 2-element alphabet. The Fibonacci word is an infinite

binary word, and the structure of Penrose tilings is guided by

“musical sequences”, that is factors of the Fibonacci word.

More information about words can be found in [15].

III. PENROSE TILINGS

Tilings by kites and darts were first described by Roger

Penrose in [2]. The dart is actually a non-convex kite and in

each tile, the longer side is ϕ times longer than the shorter one,

where ϕ = 1+
√

5
2

is the golden ratio. The tiles must be arranged

according to specific assembly rules, for instance using a

marking of the tiles, or arrows on the sides, or two colors for

the corners of the tiles (opposite corners then have the same

color). Following such rules, there are infinitely many ways

in which the tiles can be arranged, so that there are infinitely

many tilings by Penrose kites and darts, and as many graphs

corresponding to them. Most knowledge on Penrose tilings

is compiled in [4]. Many properties of these tilings rely on

triangular decomposition: any tile cut along its reflection line

gives two isosceles triangles called A-tiles – a kite is divided

into two large tiles LA and a dart into two short tiles SA. A-

tiles can in turn be decomposed into smaller tiles of the same

shape, with which smaller kites and darts can be recomposed,

as shown in Figure 2. Provided a scaling by ϕ : 1, the new

kites and darts have the same size as the original ones.
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Sun Star Ace Deuce Jack Queen King

Fig. 3: The seven vertex configurations in a Penrose tiling by kites and darts.

There are seven vertex configurations, that is seven ways

in which tiles can be arranged around a vertex of the tiling.

These are given in Figure 3. Penrose tilings have the local

isomorphism property: any patch of tiles in a tiling by kites and

darts (for instance the vertex configurations) is congruent to

infinitely many patches in any tiling composed with the same

prototiles. Figure 4 shows two small particular patches (darker

colored tiles), called (long and short) bowties. A sequence of

bowties placed side by side, as the colored tiles in Figure 5,

is called a Conway worm. Any kites and darts tiling contains

arbitrarily long finite worms, that cross each other.

(a) Long bowtie in the queen’s kingdom.

(b) Short bowtie in the jack’s kingdom.

Fig. 4: Long and short bowties (darker colored tiles) respec-

tively in the queen’s and the jack’s kingdoms (all colored tiles).

A special marking of the tiles gives three sets of parallel

straight lines, in three different directions, called Ammann bars
(see [4] for more details). Figure 5 shows one of these sets

(red lines). The interval distance between any two consecutive

bars in the same set can take only two values, such that the

longer one, denoted by L, is ϕ times the smaller one, denoted

by S. For a given set of Ammann bars, the sequence of L’s

and S’s is called a musical sequence, and is a factor of the

Fig. 5: A set of parallel Ammann bars along a Conway worm.

Fibonacci word. One significant property is that in a musical

sequence we cannot have two S’s in a row, nor three L’s.

Also, for a given length of the sequence, there are only two

possible values for the number of L intervals (see Proposition

4). This is why, starting with a given patch, Ammann bars

often force the placement of some tiles outside the patch if one

wishes to extend the tiling in order to cover the whole plane.

In particular, each vertex configuration induces Ammann bars

that force a (sometimes infinite) number of tiles in the plane

and the set of all such tiles, along with the ones in the

vertex configuration, is called an empire. We call kingdom
the largest connected subset of an empire, which includes the

vertex configuration. For instance, Figure 4 shows the queen’s

kingdom and the jack’s kingdom.

IV. COMPUTING THE GRAPHS CORRESPONDING TO

PENROSE TILINGS

As previously said, the graph corresponding to a Penrose

tiling has tiles as its vertices, and a set of edges given by

the adjacency relation between tiles (see Figure 6). We call

Penrose tree an induced subtree in such a graph. If the tree is

a caterpillar, we shall simply call it a Penrose caterpillar.

There are a few ways to generate a Penrose tiling and several

ways to encode the vertices of the tiling and of the graph.

Though the projection method suggested by de Bruijn [7] is

quite commonly used, we prefer the substitution method –

subdividing the tiles like in Figure 2 and then scaling them –

because it gives more insight on the structure and we believe

it might help us find the leaf function. In the square and cubic

lattices, the coordinates of the vertices are simply the tuples

of integers (respectively in 2D and 3D) ; in the triangular and

hexagonal lattices, the graphs are isomorphic to ones with only

regular integer coordinates.

In the case of Penrose tilings, identifying points with respect

to a coordinate system is more intricate. Let us call a Penrose
point any point of R2 that is the vertex of at least one Penrose

tile. Assuming that the plane origin is the vertex of at least
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Fig. 6: A paler version of the Penrose tiling of Figure 1

superimposed with its underlying graph in blue.

one tile, it is easy to see that, for any Penrose point p, there

exist 20 integers ak and bk, for k = 0, 1, . . . , 9, such that

p =

9∑
k=0

(ak + bkϕ)e
kiπ/5. (1)

Indeed, when moving along the edges of the tiles, there are 10
possible directions, given by ekiπ/5 for k = 0, 1, . . . , 9, and 2
possible steps, either by a unit or a ϕ distance. Hence, from a

computational perspective, the location of any vertex of a tile

can be represented by 20 integers, and translations are simply

obtained by coordinate-wise additions and substractions. This

representation is not unique but a canonical representation can

be derived in virtue of the following theorem.

THEOREM 1 – For any Penrose point p, there exist four
unique integers a0, a1, a2 and a3 such that

p =

3∑
k=0

ake
kiπ/5.

Proof: (Existence) Using Equation 1, we can write

p =

9∑
k=0

(a′k + b′kϕ)e
kiπ/5,

for some integers a′k, b′k, with k = 0, 1, . . . , 9. We claim that

the integers a0, a1, a2 and a3 are given as follows:

a0 = (a′0 + b′9 + b′1)− (a′5 + b′4 + b′6)− a4,

a1 = (a′1 + b′0 + b′2)− (a′6 + b′5 + b′7) + a4,

a2 = (a′2 + b′1 + b′3)− (a′7 + b′6 + b′8)− a4,

a3 = (a′3 + b′2 + b′4)− (a′8 + b′7 + b′9) + a4

where a4 = (a′4 + b′3 + b′5)− (a′9 + b′8 + b′0).
In order to substantiate our claim, we first provide three

identities that hold for any integer k ∈ {0, 1, . . . , 9}, where

the addition and substraction is taken modulo 10:

(1) ekiπ/5 = −e(k+5)iπ/5, obtained by applying a rotation of

angle π;

(2) ϕekiπ/5 = e(k+1)iπ/5 + e(k−1)iπ/5, since ϕ = 2 cos(π/5)
and

(3)
∑4

k=0(−1)k+1ekiπ/5 = 0, using the relation ϕ2 = 1+ϕ.

Therefore,

3∑
k=0

ake
kiπ/5 =

(
4∑

k=0

ake
kiπ/5

)
− a4e

4iπ/5

=

4∑
k=0

(a′k − a′k+5)e
kiπ/5

+
4∑

k=0

(
b′ke

(k+1)iπ/5 − b′ke
(k+4)iπ/5

)

+

9∑
k=5

(
b′ke

(k−1)iπ/5 − b′ke
(k−4)iπ/5

)

+

4∑
k=0

(−1)k+1a4e
kiπ/5

=
4∑

k=0

a′ke
kiπ/5 +

9∑
k=5

a′ke
kiπ/5

+
4∑

k=0

(
b′ke

(k+1)iπ/5 + b′ke
(k−1)iπ/5

)

+

9∑
k=5

(
b′ke

(k−1)iπ/5 + b′ke
(k+1)iπ/5

)
+ 0

=

9∑
k=0

(a′k + b′kϕ)e
kiπ/5,

as claimed. Notice that the penultimate equality follows from

Identities (1) and (3), and the last equality from Identity (2).

(Unicity) It is sufficient to prove that the set

{ekiπ/5 | k = 0, 1, 2, 3}
is linearly independent over Z, that is,

3∑
k=0

ake
kiπ/5 = 0 implies ak = 0 for k = 0, 1, 2, 3.

Since cos(3π/5) = − cos(2π/5) and sin(3π/5) = sin(2π/5),
one first shows that

0 =

3∑
k=0

ake
kiπ/5

= a0 + a1e
iπ/5 + (a2 − a3) cos(2π/5)

+ i(a2 + a3) sin(2π/5).

Next, using the double angle identities for both sin and cos,
and after factoring and regrouping, we find

0 = a0 + a2 − a3 + cos(π/5) (a1 + 2(a2 − a3) cos(π/5))

+ i sin(π/5) (a1 + 2(a2 + a3) cos(π/5)) .

But all ak are integers, and we know that cos(π/5), sin(π/5)
are not, which implies a2 = a3, a1 = 0, a0 = 0 and a2 = −a3,

i.e. a0 = a1 = a2 = a3 = 0, concluding the proof.
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Let f : Z20 → Z
20 be the function that maps any 20-tuple

integers onto (a0, a1, a2, a3, 0, . . . , 0), where a0, a1, a2 and

a3 are defined in the proof of Theorem 1. Let p and p′ be

two Penrose points and f(p), f(p′) be the unique 20-tuple

obtained by applying f to any 20-tuple representation of p
and p′ respectively. Then the following problems are easily

decidable:

• Are p and p′ equal? We only have to check if f(p) =
f(p′).

• Can we totally order Penrose points? It is sufficient to

compute f(p) and f(p′) and then use the lexicographical

order on the obtained quadruples.

• Are two given tiles equal? This can be decided by

checking if their origins are equal and if they are oriented

in the same direction.

• Are two given tiles adjacent? Yes if they share two points

but are not equal.

Moreover, except for the drawing parts, all computations on

Penrose tilings and Penrose graphs can be performed exclu-

sively on integers and are therefore not sensible to floating

numerical errors. The reader is invited to look at [16], where

similar ideas were used for representing Penrose points by

four integers, although the representation is different and is

for tilings by Penrose rhombs.

V. UPPER BOUND FOR THE LEAF FUNCTION OF PENROSE

TREES

Due to the isomorphism property, graphs associated with

kites and darts tilings all have the same leaf function, which

we denote by Lkd. Let us begin with an observation on Lkd:

PROPOSITION 1 – The leaf function Lkd for graphs corre-
sponding to Penrose tilings is non-decreasing.

Proof: The proof naturally relies on the fact that we

consider infinite graphs, but this condition is not enough. Let

n be an integer greater than 1 and T a fully leafed induced

subtree of order n. Recall that the vertices of T are tiles (that

is, subsets of the plane) and consider the convex hull C of

the union of these tiles. Then at worst all angles of C have

a measure of 4π/5 and only a few configurations have to be

examined considering a tile which lies in a corner. If the edge

of the tile which lies on the boundary of C is a long one,

then adding a tile adjacent to it that is not in C will not create

a cycle (due to the angles). Otherwise we have a kite with

its short side on the boundary of C, so we can add another

kite exterior to C (like in the deuce configuration, without

the darts) without creating a cycle. In both cases we obtain

a tree of order n + 1 with at least as many leaves as T , so

Lkd(n+ 1) ≥ Lkd(n).

Since any tile in a kites and darts tiling is adjacent to four

other tiles, the maximum degree of a vertex in a Penrose tree

cannot be more than 4. We actually have:

PROPOSITION 2 – The maximal degree of a vertex in a Pen-
rose tree is 3.

•

•◦ ◦

A

C

B D

(a) Kite (b) Case 1 (c) Case 2

Fig. 7: Adjacency constraints on kites in Penrose trees: for a

kite ABCD (red), when focusing on the side CD, only two

cases are possible.

Proof: For any kite or dart in a Penrose tree T , at most

3 of its adjacent tiles can also be in T . Firstly, any dart lies

in an ace for it is the only possible vertex configuration for

the vertex in the reflex angle of the dart. It follows that if the

dart is in T , then only one among two (adjacent) kites in the

corresponding ace can be in T . As for the kites, two cases are

to be considered, shown in Figure 7. If we focus on the side

CD of the red kite (7a), there is exactly one way to arrange

a dart adjacent to it (Case 1) and exactly one way to arrange

a kite adjacent to it (Case 2). In Case 1, the yellow kite is

forced so that if ABCD is in T then the dart and the yellow

kite cannot be both in T . In Case 2, vertex C can only be in

a deuce, so that the darts are forced and then so is the kite

adjacent to AB. Subsequently, if the red kite is in T then T
cannot contain both the tiles adjacent to AB and BC.

This constraint on degrees turns out to be useful in finding

an upper bound for Lkd, and more generally for the leaf

function in any graph sharing the same constraint on degrees.

To prove proposition 3, we need the following lemma:

LEMMA 1 – Let L be the leaf function of a graph G such that
the maximal degree of a vertex in any induced subtree of G is
at most 3. Then for any positive integer n, if L(n) > L(n−1)
we have L(n+ 1) ≤ L(n).

Proof: Let n a positive integer such that

L(n) > L(n− 1). Suppose L(n) < L(n + 1) and let

Tn+1 be a fully leafed induced subtree of G of order

n + 1. Since L(n) < L(n + 1), by deleting a leaf f from

Tn+1 we get a tree Tn whose number of leaves |Tn|� is

greater or equal to L(n), so |Tn|� = L(n) by maximality

of the leaf function. Let v be the vertex of Tn adjacent

to f in Tn+1, then v cannot be a leaf in Tn because

|Tn|� = L(n) < L(n+1) = |Tn+1|�. Suppose v has degree

0, then Tn is of order 1 so |Tn|� = L(1) = L(0), which

contradicts the assumption L(n) > L(n − 1). Hence v has

degree at least 2 in Tn. Without loss of generality, we can

choose f so that v is adjacent to at most one inner vertex of

Tn+1. If v had degree 3 in Tn then it would have degree 4 in

Tn+1, which is impossible. Finally if v has degree 2 in Tn,

since at most one of its neighbors is an inner one, there is

a leaf f ′ adjacent to v in Tn. Let Tn−1 be the tree obtained

by deleting f ′ from Tn, then v is a leaf in Tn−1 so we have

|Tn−1|� = |Tn|� = L(n) > L(n − 1) ≥ |Tn−1|�, which is

absurd.
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Fig. 8: A fully leafed Penrose tree with 19 vertices and 10

leaves. Note that this is a caterpillar. Tiles are colored with

respect to their degrees.

PROPOSITION 3 – Let L be the leaf function of a graph G
such that the maximal degree of a vertex in any induced
subtree of G is at most 3. Then for any non-negative integer
n, L(n) ≤ �n/2�+ 1.

Proof: In any graph, the inequality is true for n ∈ [0, 1, 2].
Lemma 1 then gives the inductive step, provided that induced

subtrees of orders n and n+1 exist: if Tn+1 is a fully leafed

Penrose tree of order n+1, then by removing a leaf from Tn+1

we obtain a tree Tn of order n which has at least |Tn+1|�−1
leaves, so that L(n) ≥ L(n+ 1)− 1. The difference between

L(n) and L(n+1) is at most 1 and these values are equal for

at least half the values of n, hence the result for all n ∈ [0..k],
where k is the greatest integer for which an induced subtree of

order k exists. Finally, for all n > k, since there is no subtree

of order n we have L(n) = −∞ ≤ �n/2�+ 1.

With Propositions 2 and 3, we have proved:

THEOREM 2 – For any non-negative integer n,

Lkd(n) ≤ �n/2�+ 1.

Thanks to the algorithm presented in [9] and a particular

Penrose tree (see Figure 8), we know that this upper bound is

reached for all n ≤ 19 (except for n = 1) and we suspect that

it is not realized for n ≥ 20 but we cannot prove it yet.

VI. PENROSE CATERPILLARS AND LOWER BOUND

As mentioned in Section III, arbitrarily long Conway worms

cross Penrose tilings, and by local isomorphism there are

infinitely many of them. Figure 5 shows how they correspond

to parallel Ammann bars, so that we can use the properties

of musical sequences: any subtree whose vertices are all tiles

inside the worm is necessarily a path. It is then easy to build

caterpillars whose derived paths are inside the worms.

This section gives an increasing family of Penrose trees with

the maximum number of leaves among such caterpillars. In

the best case scenario, we will have fully leafed Penrose trees

and in the worst case scenario, we will have a lower bound

for the leaf function, thus complementing the upper bound

given in Theorem 2. The idea of caterpillars is suggested by

(a) CS (b) CL

Fig. 9: Fully leafed Penrose caterpillars in bowtie patches:

(a) (respectively (b)) Fully leafed caterpillar in the patch

composed with the short (resp. long) bowtie and its adjacent

tiles. Tiles are colored with respect to their degrees.

the fact that fully leafed induced subtrees in the triangular and

hexagonal lattices are caterpillars, or almost caterpillars, and

the maximum degree of a vertex in a Penrose tree is 3 as

in these lattices. Recall Figure 4, which shows the queen’s

kingdom around vertex C and the jack’s kingdom around

vertex P (colored tiles). We use the observations on kingdoms

and bowties to show how tiles adjacent to a worm are forced.

LEMMA 2 – Any long bowtie lies in a queen’s kingdom.

Proof: In Figure 4a notice that the dart in the center of

the long bowtie forces two kites above it, so that the vertex

configuration around point A is an ace. Moreover, since this

dart is surrounded with two aces in the bowtie, the vertex

configurations at points B and D are necessarily jacks, forcing

the vertex neighborhood around C to be a queen (using the

jack’s kingdom). Hence the long bowtie is entirely inside a

queen’s kingdom.

LEMMA 3 – Any short bowtie lies in a jack’s kingdom.

Proof: In Figure 4b the vertex neighborhood around P
can only be a jack, then we can see how the short bowtie is

inside the jack’s kingdom.

Now let us first consider the patch composed with a short

bowtie and its adjacent tiles. Figure 9a shows a fully leafed

Penrose caterpillar CS in such a patch: this caterpillar has 7

vertices including 4 leaves, and we know that Lkd(7) ≤ 4 so

it is a fully leafed Penrose tree in the whole tiling. In this

patch, this is the biggest fully leafed Penrose tree and it is

unique up to isometry. Furthermore, it is easily extendable on

both sides (left and right) so that the derived path of CS stays

in the worm. In the patch composed with the long bowtie

and its adjacent tiles, as shown in Figure 9b, the biggest

fully leafed Penrose tree that can be extended on both sides

following the worm has 11 vertices and 6 leaves. It is also

unique up to isometry and it is a caterpillar which we call CL.

With both patches side by side it is easy to see what happens

when a short and a long bowtie follow each other in a worm:

if for instance the short one is on the left, both darts in CS

coincide with the two ones on the left side of CL, so that

we lose two leaves but the resulting subgraph is a tree. Then
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Fig. 10: A Penrose caterpillar along a worm, with 16 leaves

and 35 vertices. Tiles are colored with respect to their degrees.

we have a caterpillar of order 16 with 4 + 6 − 2 = 8 leaves,

and the same happens when the short bowtie is placed to the

right of the long one (except the tiles that coincide are kites).

Note that this caterpillar is not fully leafed, so the function

to be presented here is not the leaf function but only a lower

bound for it. Since a worm cannot have two consecutive short

bowties, the only remaining possible configuration is two long

bowties in a row. In this case, one caterpillar is the reflection

of the one in Figure 9b and the concatenation, in either way,

gives a caterpillar with 2 · 6− 2 = 10 leaves and 20 vertices.

Figure 10 gives an example of a Penrose caterpillar constructed

along a Conway worm.

Let C ′S and C ′L be the caterpillars obtained from CS and CL

by deleting the leaves on the sides – the ones that eventually

coincide with inner vertices during concatenation –, then C ′S
has 2 leaves and 5 vertices, and C ′L has 4 leaves and 9 vertices.

Let qS (resp. qL) be the ratio of number of leaves over order

in C ′S (resp. C ′L), then qS = 2/5 is lower than qL = 4/9. So

we consider caterpillars that are concatenations of C ′S and C ′L,

and we would like them to lie on as many long bowties as

possible. Figure 5 shows how a set of parallel Ammann bars

determines a sequence of bowties in a worm: each bowtie (long

or short) crosses two half L-intervals, and each long bowtie

additionally crosses one S-interval between both L’s. Thus

each long bowtie corresponds to L+S and each short bowtie

to L. Hence L corresponds to C ′S which means 2 leaves in

5 tiles, and S corresponds to what is left of C ′L when tiles

corresponding to L are removed, that is 2 leaves in 4 tiles.

As a result, we can now focus only on L and S intervals.

Since each interval give 2 leaves, we just have to determine

the number k of intervals in the caterpillar and how many of

them are long. Before completing our main argument, we need

a last proposition.

PROPOSITION 4 (PROPOSITION 10.6.10 OF [4]) – If k is the
number of intervals the caterpillar crosses, then the number
xk of L intervals can only take two values: x and x+1 such
that

x

k
<

1

ϕ
<

x+ 1

k
.

Hence, we have xk = �k/ϕ� or xk = �k/ϕ�. The correct

value will actually be the one that best approximates 1/ϕ ,

and when we need to choose, since we would not want to

exceed the real value for Lkd(n), we take the value that

corresponds to less L intervals, that is xk = �k/ϕ�.

If n is the order of the caterpillar and k is the number of

intervals in it, since we prefer to take a smaller value for k
and then add a few tiles to equal n, then we want the greatest

k such that

5
k

ϕ
+ 4

(
k − k

ϕ

)
≤ n

that is
k

ϕ
+ 4k ≤ n

then

k

(
4ϕ+ 1

ϕ

)
≤ n

which yields

k ≤ ϕn

4ϕ+ 1
.

So finally we have

k =

⌊
ϕn

4ϕ+ 1

⌋
.

The number of leaves over the intervals is then 2k and since

4 < (4ϕ + 1)/ϕ < 5 there are at most 5 remaining tiles to

arrange at one end of the caterpillar or the other. Let Δ be the

number of remaining tiles. If 0 ≤ Δ ≤ 2 then we just have to

add Δ leaves to the ends ; if 3 ≤ Δ ≤ 4 the best strategy is

to add one tile (a leaf) to an end and 2 or 3 tiles on the other,

giving respectively 1 or 2 leaves ; if Δ = 5 then we add 3

tiles/2 leaves to an end and 2 tiles/1 leaf to the other. We have

proved:

THEOREM 3 – Let �kd(n) denote the number of leaves of a
caterpillar of order n constructed as described above. Then
�kd is a lower bound for the leaf function Lkd and we have

�kd(n) = 2k +

⎧⎪⎨
⎪⎩
Δ if 0 ≤ Δ ≤ 2

Δ− 1 if 3 ≤ Δ ≤ 4

3 if Δ = 5

where k = �ϕn/(4ϕ+ 1)� and Δ = n− 4k − �k/ϕ�.
For instance, the caterpillar in Figure 10 has n = 35 vertices

and 16 leaves, and we can verify that k = 7 and Δ = 2, which

yields �kd(35) = 16. By removing the 5 rightmost tiles, we

would get a caterpillar with 30 vertices and 14 leaves, and we

have �kd(30) = 14. Finally, from Theorems 2 and 3 we have

COROLLARY 1 – For all n ∈ N,

2ϕn/(4ϕ+ 1) ≤ Lkd(n) ≤ �n/2�+ 1.

VII. CONCLUSION

The problem studied in this article is at the junction between

graphs, tilings and words. It is quite intricate due to the non-

periodicity of Penrose tilings and of the Fibonacci word. Still,

even though we have not been able to find the leaf function

for Penrose tilings yet, we managed to restrict the range of

possible values. Since 2ϕ/(4ϕ+1) � 0.433, the gap between

lower and upper bounds for the leaf function is relatively
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small. We have good hope that we can find Lkd or at least

a finer lower bound thanks to a particular patch which has

more leaves than a Penrose caterpillar of the same order

constructed as described in section VI. If the leaf function

for kites and darts tilings can be found, a similar procedure

could be pursued in order to find the analogous function for

Penrose tilings by rhombs, and possibly for other aperiodic

tilings which share similar properties.
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