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Abstract—SSD (Single Shot Multi Box Detector) is an object 
detection algorithm based on deep learning. As one of the most 
mainstream detection algorithms, it can greatly improve the 
detection speed and ensure the detection accuracy. In this 
paper, the Batch Norm operation is added to the network in 
order to improve the generalization of the network and speed 
up network training. The object counting function is added to 
the image recognition. This paper uses SSD algorithm that 
incorporates Batch Norm algorithm. The object detection 
system was built by the Flask framework and the Layui 
framework. The system can select the data to be detected on 
the front-end page, the detection results and the number of 
each type of object were displayed on the front-end page in 
real time.  

Keywords-SSD algorithm; Batch Norm algorithm; Object 
counting; Flask.  

I.  INTRODUCTION  
Object detection is an extremely important and very hot 

topic in the current computer vision field. The purpose of 
object detection is to identify the object in the picture and 
use the bounding box to locate the object. With the 
development of deep learning and the needs of the 
monitoring field, the object detection technology has made 
great progress. That has been widely used in the fields of 
intelligent monitoring, traffic management, and security. At 
present, Object detection algorithms based on deep learning 
are divided into two categories: models based on regional 
candidate boxes and models based on regression. 

The deep learning object detection model based on 
regional candidate boxes is divided into two stages: The first 
stage is the selection of candidate boxes, the second stage is 
the extraction and classification of features. Typical 
representatives of such models are R-CNN [1], SPP-net [2], 
Fast R-CNN [3], Faster R-CNN [4], R-FCN [5], etc. 
Although the algorithms represented by Faster R-CNN have 
achieved end-to-end training. However, these algorithms are 
difficult to detect in real time due to the complex network 
structure and many training parameters. The regression-
based deep learning object detection model requires pre-
drawing default boxes in a certain way, and then classifying 
objects and predicting borders on each default box. Typical 
representatives of such models are YOLO [6] and SSD [7]. 
The idea of YOLO is to divide the image into grids of S×S 
size, and then predict the bounding box and category of each 
grid. It discards the suggestions of candidate regions, makes 
the network simpler, and greatly improves the detection 

speed. However, The YOLO model also limits the model's 
ability to predict nearby objects, thus leading to missed 
detection of dense targets. The object detection accuracy of 
the YOLO model was also reduced by 10% compared to Fast 
R-CNN [8]. The SSD model combines the advantages of 
both Faster R-CNN and YOLO. Based on YOLO, The SSD 
model takes advantage of the idea of RPN to ensure high 
inspection accuracy and speed at the same time. Later, On 
the basis of SSD, Fu et al. [9] replaced the original VGG16 
[10] with the residual neural network Reisidual-101 [11] that 
has stronger feature extraction capabilities. The de-
convolution module is also introduced in the network.  
Finally, Fu et al proposed the new DSSD model. Although 
the DSSD model improves the detection accuracy, there is a 
significant decrease in the detection speed. The R-SSD 
model proposed by Jeong et al. [12] has the same problem. 

In this paper, the SSD network structure is modified, and 
The Batch Norm operation is added before the feature fusion 
layer to accelerate network training. The target counting 
function is added to the object detection. Finally, the usable 
object detection system was built through the Flask 
framework and the Layui framework. 

II. SSD ALGORITHM 

A. Introduction to the SSD algorithm    
The SSD model is a one-stage object detection network. 

It draws on the anchors mechanism in Faster R-CNN, 
combines the idea of YOLO regression, and expresses the 
characteristics of different scale features. The SSD model 
adopts a multi-scale target feature extraction method, which 
makes the detection speed of SSD model faster than Faster 
R-CNN and the detection accuracy is higher than YOLO. 

The SSD model can be divided into the following parts: 
the backbone network part, the original bounding box 
generation part and the convolution prediction part. The 
backbone network part could further divided into the basic 
network and the additional feature extraction layer. The 
convolution prediction includes object category prediction 
and position prediction. The main process of the algorithm is 
as follows: First, the images are fed into the network to 
extract features using deep neural networks. Second, design 
different default boxes used to extract feature maps at 
different scales. Third, the features in the default frames are 
extracted to predict the type and location of the target. 
Finally, the non-maximal suppression algorithm (NMS) is 
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used to select the prediction result that best matches the real 
target box.  

B. SSD network structure  
The basic network of the SSD uses the VGG16 network. 

The two fully connected layers FC6 and FC7 of the VGG16 
are replaced by convolution layers. All Dropout layers and 
FC8 layers are removed. Four convolution layers Conv8_2, 
Conv9_2, Conv10_2, and Conv11_2 are added after the 
modified VGG16. The new convolution layer is used to 
obtain more features for detection. The SSD network 
structure as shown in Fig. 1 

 
Figure 1.  SSD network structure diagram 

C. Identify candidate boxes  
The SSD model borrows the concept of anchor from 

Faster R-CNN, where each cell sets priori frames with 
different aspect ratios. The SSD model uses a pyramid 
network structure to comprehensively extract the feature 
maps of the Conv4_3, Conv7, Conv8_2, Conv9_2, 
Conv10_2, and Conv11_2 layers. Each point on top of these 
feature map layers constructs six candidate boxes of different 
scale sizes, and then combines the candidate boxes obtained 
from different feature maps. Non-maximum suppression 
(NMS) method is used to filter out some of the overlapping 
or incorrect candidate boxes to produce the final set of 
candidate boxes. Since the SSD model not only obtains 
feature mappings at different scales, but also makes 
predictions on top of different feature mappings. The SSD 
model is able to accurately detect objects at different scales. 
Here are the rules for generating six candidate boxes of 
different scale sizes for each point. 

 Centered on the midpoint of each point on the 
feature map (offset=0.5) generates a series of 
concentric Default boxes. 

 Using m feature maps of different sizes to make 
predictions. The scale of the underlying feature map, 
the value is set to min = 0.2. The scale of the top 
feature map, the value is set to max = 0.95. The other 
layers are calculated by (1). 
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max min 1
1
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 Using different ratio values, ra   = (1, 2, 3, 1/2, 1/3), 
calculate the width (w) and height (h) of the default 
box via (2) and (3). 

a
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 For ratios = 0, the specified scale is calculated 
according to (4). 
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D. Loss function  
The loss function of the SSD algorithm is designed based 

on the output of the prediction part. The loss function is the 
sum of the confidence loss and the position loss. The formula 
for the loss function is shown in (5). 

1, , , , , ,conf locL z c l g L z c L z l g
N

Where N is the number of prediction boxes that match 
the ground truth object box, ,confL z c  represents the 
confidence loss, , ,locL z l g  represents the position loss, 
z indicates whether the prediction box matches the ground 
truth target box, if it does z  is equal to 1, otherwise it is 0, 
c  indicates the confidence of the prediction box, l  indicates 
the information on the location of the prediction box, g  
denotes the location information of the ground truth object 
box,  is weight coefficient, which is used to determine the 
weight relationship between the confidence loss and position 
loss. Generally, the two losses take the same weight, and the 
value is set to 1. 

III. MODIFY THE MODEL 

A. Batch Norm algorithm 
Batch Norm algorithm was designed to solve the problem 

of data distribution during training, which improves network 
generalization and speeds up network training. The essence 
of Batch Norm algorithm is to pre-process the data and 
normalize it before feeding the data into the network, which 
reduces variation in the data distribution and makes the 
network much more generalizable and faster to train. 

Data preprocessing is often done in neural networks with 
a whitening operation, but the operation is too 
computationally intensive and not microscopic everywhere. 
So the Batch Norm algorithm improves on the whitening 
operation. Each dimensional feature is independently 
normalized to a vector with a mean of 0 and a variance of 1. 
But if the Batch Norm algorithm is simply normalized in this 
way, it will affect the features learned by the network layer. 
To solve this problem, two parameters  and  are 
introduced to deflate and shift the normalized values. The 
Batch Norm algorithm preprocessing process is shown in 
(6)-(9). 
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Equations (6)-(9) represent the mean, variance, 
normalization, and reconstruction transformations of small 
batches.   is constant to ensure numerical stability of the 
small batch variance. 

In this paper, the Batch Norm operation is added before 
the Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and 
Conv11_2 layers. Then the output feature map is fused with 
features and sent to the prediction network for prediction 
computation. 

B. Object counting function 
In this paper, the Pascal VOC dataset is used to train the 

SSD network. There are 20 types of objects in the Pascal 
VOC dataset, so when counting the objects, first create a 
dictionary with the object name as the key and all values set 
to 0. In the process of object detection, the number of final 
candidate boxes is summed up by labels and stored in the 
dictionary.  

IV. EXPERIMENTS AND ANALYSIS OF RESULTS 

A. Experimental data 
The dataset used in this paper is the Pascal VOC, which 

is a standardized set of object detection datasets. The data set 
includes 20 categories. The composition of the data set is 
shown in TABLE Ⅰ. 

TABLE I.  COMPONENTS OF THE PASCAL VOC DATASET 

Dataset trainval test 
Pascal VOC2007 5011 4952 
Pascal VOC2012 17125 5138 
The modified SSD model was trained using the 

VOC2007trainval dataset and VOC2012trainval dataset. The 
model was tested by the VOC2007test dataset and 
VOC2012test dataset. 

B. Evaluation index 
In this experiment, mAP (mean average precision) was 

used as the evaluation index. mAP takes into account both 
precision and recall, so it is often used as a model evaluation 
index for multi-target detection. The formula for mAP is 
given in (10). 

1

Q

q
AveP q

mAP
Q

In the formula, Q  is the type of objects, q  refers to the 
detection rate of a type of object at different recall rates, 
Avep q  refers to the average precision of a class of object. 

C.  Experimental and Analysis of results 
In network training, the size of each batch was 16, the 

initial learning rate was 0.01, and the decay factor of the 
learning rate was 0.94. The model was saved once every 
1000 iterations, the maximum number of iterations was 
50000. The test results in the VOC2007 test set were shown 
in TABLE Ⅱ. The test results in the VOC2012 test set were 
shown in TABLE Ⅲ.  

TABLE II.  VOC2007 TEST SET TEST RESULTS COMPARISON 

Model mAP/% FPS 
SSD 76.2 46 

SSD+BN 78.1 38 

TABLE III.  VOC2012 TEST SET TEST RESULTS COMPARISON 

Model mAP/% FPS 
SSD 77.8 46 

SSD+BN 81.2 38 
The experimental results in TABLE Ⅱ and TABLE Ⅲ 

show that the modified SSD model has a good performance 
in the VOC2007 test set and VOC2012 test set, the detection 
accuracy has been improved compared to the original SSD 
model.  However, the detection speed of the modified model 
has decreased slightly to 38 FPS. Comprehensive 
comparison of the model's detection accuracy and detection 
speed, the model that incorporates Batch Norm operation has 
improved performance relative to the original SSD. 

V. VISUALIZATION OF OBJECT DETECTION SYSTEMS 
The object detection system was built by the Flask 

framework and Layui framework Through CSS for simple 
rendering of the page, while using JS and Ajax to establish a 
link between the front and back, so that the back-end 
application to respond to front-end requests and data transfer 
to the front-end to display. 

A. Picture detection visualization 
In the front-end page, first select the picture to be 

detected, and then click the start detection button. The 
picture will be submitted to the function to detect the picture 
through Ajax. The function detects the picture. After the 
detection. The detected picture and count results are saved 
locally, while the path to save the file is returned in JSON 
format. Ajax receives the returned JSON file, the detected 
images and count results are displayed on the page. Fig. 2 
shows the visual interface for picture detection.  
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Figure 2.  Picture detection visualization 

In Fig. 2, the right-hand side is the detected image, and 
the left-hand text is the detected objects and number of 
objects. For example, there are three people in the detected 
picture, the text description shows the three people 
synchronously. 

B. Video detection visualization 
Local video detection and online video detection are 

visualized in the same way. For the visualization of video 
detection, the video streaming method would be used. The 
video to be detected is submitted to the video stream function, 
which calls the video detection function to detect the 
incoming data. The detected data is output in the format of a 
video stream, the video stream is displayed on the web. At 
the same time, the detected target types and quantities are 
displayed in real time. The video detection visualization is 
shown in Fig. 3. 

 
Figure 3.  Video detection visualization 

In Fig. 3, the video detection results and text descriptions 
are displayed in the same location as in Fig. 2. However, in 
Fig. 3, the video detection results and text descriptions are 
updated in real time. 

C. Text Visualization 
The display of count results for picture detection is a 

static operation, the detection results are displayed on the 
front page via Ajax transfer. The display of count results for 
video detection is a dynamic operation. This must record the 
type and number of objects for each frame, and display the 
results on the front page in real time. To ensure that the 
count results are updated in real time on the page, the 

setTimeout method in JS is used to partially update the part 
of the webpage that displays the counting results. 

VI. CONCLUSION 
The paper presents the SSD model, which is modified by 

adding the BN algorithm. The modified SSD model was 
trained and tested on Pascal VOC dataset and obtained a 
high mAP. There's not much of a drop in detection speed. 
The object counting function is added to the object detection. 
The useable object detection system was built using the 
Flask framework and Layui framework. The following will 
further improve the model by introducing Convolutional 
Block Attention Module (CBAM) [13]. This can improve the 
learning and generalization capabilities of the model, further 
improve the performance of SSD algorithms. 
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