
Object detection system based on SSD algorithm

Qianjun Shuai, Xingwen Wu
School of Information and Communication Engineering

 Communication University of China, CUC
 Beijing, China

e-mail: sqj, xingwen@cuc.edu.cn

Abstract—SSD (Single Shot Multi Box Detector) is an object
detection algorithm based on deep learning. As one of the most
mainstream detection algorithms, it can greatly improve the
detection speed and ensure the detection accuracy. In this
paper, the Batch Norm operation is added to the network in
order to improve the generalization of the network and speed
up network training. The object counting function is added to
the image recognition. This paper uses SSD algorithm that
incorporates Batch Norm algorithm. The object detection
system was built by the Flask framework and the Layui
framework. The system can select the data to be detected on
the front-end page, the detection results and the number of
each type of object were displayed on the front-end page in
real time.

Keywords-SSD algorithm; Batch Norm algorithm; Object
counting; Flask.

I. INTRODUCTION
Object detection is an extremely important and very hot

topic in the current computer vision field. The purpose of
object detection is to identify the object in the picture and
use the bounding box to locate the object. With the
development of deep learning and the needs of the
monitoring field, the object detection technology has made
great progress. That has been widely used in the fields of
intelligent monitoring, traffic management, and security. At
present, Object detection algorithms based on deep learning
are divided into two categories: models based on regional
candidate boxes and models based on regression.

The deep learning object detection model based on
regional candidate boxes is divided into two stages: The first
stage is the selection of candidate boxes, the second stage is
the extraction and classification of features. Typical
representatives of such models are R-CNN [1], SPP-net [2],
Fast R-CNN [3], Faster R-CNN [4], R-FCN [5], etc.
Although the algorithms represented by Faster R-CNN have
achieved end-to-end training. However, these algorithms are
difficult to detect in real time due to the complex network
structure and many training parameters. The regression-
based deep learning object detection model requires pre-
drawing default boxes in a certain way, and then classifying
objects and predicting borders on each default box. Typical
representatives of such models are YOLO [6] and SSD [7].
The idea of YOLO is to divide the image into grids of S×S
size, and then predict the bounding box and category of each
grid. It discards the suggestions of candidate regions, makes
the network simpler, and greatly improves the detection

speed. However, The YOLO model also limits the model's
ability to predict nearby objects, thus leading to missed
detection of dense targets. The object detection accuracy of
the YOLO model was also reduced by 10% compared to Fast
R-CNN [8]. The SSD model combines the advantages of
both Faster R-CNN and YOLO. Based on YOLO, The SSD
model takes advantage of the idea of RPN to ensure high
inspection accuracy and speed at the same time. Later, On
the basis of SSD, Fu et al. [9] replaced the original VGG16
[10] with the residual neural network Reisidual-101 [11] that
has stronger feature extraction capabilities. The de-
convolution module is also introduced in the network.
Finally, Fu et al proposed the new DSSD model. Although
the DSSD model improves the detection accuracy, there is a
significant decrease in the detection speed. The R-SSD
model proposed by Jeong et al. [12] has the same problem.

In this paper, the SSD network structure is modified, and
The Batch Norm operation is added before the feature fusion
layer to accelerate network training. The target counting
function is added to the object detection. Finally, the usable
object detection system was built through the Flask
framework and the Layui framework.

II. SSD ALGORITHM

A. Introduction to the SSD algorithm
The SSD model is a one-stage object detection network.

It draws on the anchors mechanism in Faster R-CNN,
combines the idea of YOLO regression, and expresses the
characteristics of different scale features. The SSD model
adopts a multi-scale target feature extraction method, which
makes the detection speed of SSD model faster than Faster
R-CNN and the detection accuracy is higher than YOLO.

The SSD model can be divided into the following parts:
the backbone network part, the original bounding box
generation part and the convolution prediction part. The
backbone network part could further divided into the basic
network and the additional feature extraction layer. The
convolution prediction includes object category prediction
and position prediction. The main process of the algorithm is
as follows: First, the images are fed into the network to
extract features using deep neural networks. Second, design
different default boxes used to extract feature maps at
different scales. Third, the features in the default frames are
extracted to predict the type and location of the target.
Finally, the non-maximal suppression algorithm (NMS) is

141

2020 International Conference on Culture-oriented Science & Technology (ICCST)

978-1-7281-8138-7/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCST50977.2020.00033

used to select the prediction result that best matches the real
target box.

B. SSD network structure
The basic network of the SSD uses the VGG16 network.

The two fully connected layers FC6 and FC7 of the VGG16
are replaced by convolution layers. All Dropout layers and
FC8 layers are removed. Four convolution layers Conv8_2,
Conv9_2, Conv10_2, and Conv11_2 are added after the
modified VGG16. The new convolution layer is used to
obtain more features for detection. The SSD network
structure as shown in Fig. 1

Figure 1. SSD network structure diagram

C. Identify candidate boxes
The SSD model borrows the concept of anchor from

Faster R-CNN, where each cell sets priori frames with
different aspect ratios. The SSD model uses a pyramid
network structure to comprehensively extract the feature
maps of the Conv4_3, Conv7, Conv8_2, Conv9_2,
Conv10_2, and Conv11_2 layers. Each point on top of these
feature map layers constructs six candidate boxes of different
scale sizes, and then combines the candidate boxes obtained
from different feature maps. Non-maximum suppression
(NMS) method is used to filter out some of the overlapping
or incorrect candidate boxes to produce the final set of
candidate boxes. Since the SSD model not only obtains
feature mappings at different scales, but also makes
predictions on top of different feature mappings. The SSD
model is able to accurately detect objects at different scales.
Here are the rules for generating six candidate boxes of
different scale sizes for each point.

 Centered on the midpoint of each point on the
feature map (offset=0.5) generates a series of
concentric Default boxes.

 Using m feature maps of different sizes to make
predictions. The scale of the underlying feature map,
the value is set to min = 0.2. The scale of the top
feature map, the value is set to max = 0.95. The other
layers are calculated by (1).

min

max min 1
1

k [1, m]

k
s s

s s k
m

 Using different ratio values, ra = (1, 2, 3, 1/2, 1/3),
calculate the width (w) and height (h) of the default
box via (2) and (3).

a
k k rw s a

a
k k rh s a

 For ratios = 0, the specified scale is calculated
according to (4).

,
1k k ks s s

D. Loss function
The loss function of the SSD algorithm is designed based

on the output of the prediction part. The loss function is the
sum of the confidence loss and the position loss. The formula
for the loss function is shown in (5).

1, , , , , ,conf locL z c l g L z c L z l g
N

Where N is the number of prediction boxes that match
the ground truth object box, ,confL z c represents the
confidence loss, , ,locL z l g represents the position loss,
z indicates whether the prediction box matches the ground
truth target box, if it does z is equal to 1, otherwise it is 0,
c indicates the confidence of the prediction box, l indicates
the information on the location of the prediction box, g
denotes the location information of the ground truth object
box, is weight coefficient, which is used to determine the
weight relationship between the confidence loss and position
loss. Generally, the two losses take the same weight, and the
value is set to 1.

III. MODIFY THE MODEL

A. Batch Norm algorithm
Batch Norm algorithm was designed to solve the problem

of data distribution during training, which improves network
generalization and speeds up network training. The essence
of Batch Norm algorithm is to pre-process the data and
normalize it before feeding the data into the network, which
reduces variation in the data distribution and makes the
network much more generalizable and faster to train.

Data preprocessing is often done in neural networks with
a whitening operation, but the operation is too
computationally intensive and not microscopic everywhere.
So the Batch Norm algorithm improves on the whitening
operation. Each dimensional feature is independently
normalized to a vector with a mean of 0 and a variance of 1.
But if the Batch Norm algorithm is simply normalized in this
way, it will affect the features learned by the network layer.
To solve this problem, two parameters and are
introduced to deflate and shift the normalized values. The
Batch Norm algorithm preprocessing process is shown in
(6)-(9).

142

1

1 m

B i
i

x
m

2
2

1

1 m

B i B
i

x
m

2
i B

i

B

x
x

i iy x

Equations (6)-(9) represent the mean, variance,
normalization, and reconstruction transformations of small
batches. is constant to ensure numerical stability of the
small batch variance.

In this paper, the Batch Norm operation is added before
the Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and
Conv11_2 layers. Then the output feature map is fused with
features and sent to the prediction network for prediction
computation.

B. Object counting function
In this paper, the Pascal VOC dataset is used to train the

SSD network. There are 20 types of objects in the Pascal
VOC dataset, so when counting the objects, first create a
dictionary with the object name as the key and all values set
to 0. In the process of object detection, the number of final
candidate boxes is summed up by labels and stored in the
dictionary.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

A. Experimental data
The dataset used in this paper is the Pascal VOC, which

is a standardized set of object detection datasets. The data set
includes 20 categories. The composition of the data set is
shown in TABLE Ⅰ.

TABLE I. COMPONENTS OF THE PASCAL VOC DATASET

Dataset trainval test
Pascal VOC2007 5011 4952
Pascal VOC2012 17125 5138
The modified SSD model was trained using the

VOC2007trainval dataset and VOC2012trainval dataset. The
model was tested by the VOC2007test dataset and
VOC2012test dataset.

B. Evaluation index
In this experiment, mAP (mean average precision) was

used as the evaluation index. mAP takes into account both
precision and recall, so it is often used as a model evaluation
index for multi-target detection. The formula for mAP is
given in (10).

1

Q

q
AveP q

mAP
Q

In the formula, Q is the type of objects, q refers to the
detection rate of a type of object at different recall rates,
Avep q refers to the average precision of a class of object.

C. Experimental and Analysis of results
In network training, the size of each batch was 16, the

initial learning rate was 0.01, and the decay factor of the
learning rate was 0.94. The model was saved once every
1000 iterations, the maximum number of iterations was
50000. The test results in the VOC2007 test set were shown
in TABLE Ⅱ. The test results in the VOC2012 test set were
shown in TABLE Ⅲ.

TABLE II. VOC2007 TEST SET TEST RESULTS COMPARISON

Model mAP/% FPS
SSD 76.2 46

SSD+BN 78.1 38

TABLE III. VOC2012 TEST SET TEST RESULTS COMPARISON

Model mAP/% FPS
SSD 77.8 46

SSD+BN 81.2 38
The experimental results in TABLE Ⅱ and TABLE Ⅲ

show that the modified SSD model has a good performance
in the VOC2007 test set and VOC2012 test set, the detection
accuracy has been improved compared to the original SSD
model. However, the detection speed of the modified model
has decreased slightly to 38 FPS. Comprehensive
comparison of the model's detection accuracy and detection
speed, the model that incorporates Batch Norm operation has
improved performance relative to the original SSD.

V. VISUALIZATION OF OBJECT DETECTION SYSTEMS
The object detection system was built by the Flask

framework and Layui framework Through CSS for simple
rendering of the page, while using JS and Ajax to establish a
link between the front and back, so that the back-end
application to respond to front-end requests and data transfer
to the front-end to display.

A. Picture detection visualization
In the front-end page, first select the picture to be

detected, and then click the start detection button. The
picture will be submitted to the function to detect the picture
through Ajax. The function detects the picture. After the
detection. The detected picture and count results are saved
locally, while the path to save the file is returned in JSON
format. Ajax receives the returned JSON file, the detected
images and count results are displayed on the page. Fig. 2
shows the visual interface for picture detection.

143

Figure 2. Picture detection visualization

In Fig. 2, the right-hand side is the detected image, and
the left-hand text is the detected objects and number of
objects. For example, there are three people in the detected
picture, the text description shows the three people
synchronously.

B. Video detection visualization
Local video detection and online video detection are

visualized in the same way. For the visualization of video
detection, the video streaming method would be used. The
video to be detected is submitted to the video stream function,
which calls the video detection function to detect the
incoming data. The detected data is output in the format of a
video stream, the video stream is displayed on the web. At
the same time, the detected target types and quantities are
displayed in real time. The video detection visualization is
shown in Fig. 3.

Figure 3. Video detection visualization

In Fig. 3, the video detection results and text descriptions
are displayed in the same location as in Fig. 2. However, in
Fig. 3, the video detection results and text descriptions are
updated in real time.

C. Text Visualization
The display of count results for picture detection is a

static operation, the detection results are displayed on the
front page via Ajax transfer. The display of count results for
video detection is a dynamic operation. This must record the
type and number of objects for each frame, and display the
results on the front page in real time. To ensure that the
count results are updated in real time on the page, the

setTimeout method in JS is used to partially update the part
of the webpage that displays the counting results.

VI. CONCLUSION
The paper presents the SSD model, which is modified by

adding the BN algorithm. The modified SSD model was
trained and tested on Pascal VOC dataset and obtained a
high mAP. There's not much of a drop in detection speed.
The object counting function is added to the object detection.
The useable object detection system was built using the
Flask framework and Layui framework. The following will
further improve the model by introducing Convolutional
Block Attention Module (CBAM) [13]. This can improve the
learning and generalization capabilities of the model, further
improve the performance of SSD algorithms.

REFERENCES
[1] Girshick R B, Donahue J, Darrell T, et al. Rich feature hierarchies

for accurate object detection and semantic segmentation[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence.
2014:580-587.

[2] HE K M, ZHANG X Y, REN S, et al. Spatial pyramid pooling in
deep convolutional networks for visual recognition[J]. IEEE
Transactions on Pattern Analysis and Ma-chine Intelligence, 2015, 37
(9):1904-1916.

[3] Girshick R B. Fast R-CNN[C]. International Conference on Computer
Vision. 2015:1440-1448.

[4] REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time
object detection with region proposal networks [J]. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):
1137-1149.

[5] DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-
based fully convolutional networks[C]. NIPS. 2016:379-387.

[6] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,
real-time object detection[C]. IEEE Conference on Computer Vision
and Pattern Recognition. 2016:779-788.

[7] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox
detector[C]. European Conference on Computer Vision, 2016:21-37.

[8] Jinchen Hu, Yuchen Wang, Jianghong Jiang, et al. Deep
convolutional network based target detection Overview of
measurement techniques [J]. Digital technology and applications.
2018, 36(4):97-98.

[9] FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single
shot detector[J]. 2017: arXiv: 1701.06659.

[10] Simonyan K, Zisserman A. Very deep convolutional networks
for large-scale image recognition[C]. ICLR, 2015.

[11] HE K M, ZHANG X Y, REN S, et al. Deep residual learning for
image recognition[C]. CVPR. 2016:770-778.

[12] JEONG J, PARK H, KWAK N. Enhancement of SSD by
concatenating feature maps for object detection[J]. Computer Vision
and Pattern Recognition. 2017: arXiv: 1705.09587.

[13] Sanghyun Woo, Jongchan Park, Joon-Young Lee, et al. CBAM:
Convolutional Block Attention Module[C]. ECCV. 2018: arXiv:
1807.06521.

144

