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Abstract—Recently, the introduction of deep convolutional 
neural networks has achieved great performance in low-level 
vision tasks like single image super-resolution. However, deeper 
networks tend to have larger number of parameters and be 
more difficult to be trained. Considering massive low-frequency 
information in low-resolution inputs, we propose a self-adaptive 
weighted skip connections (SAWSC) structure to make full use 
of both the low-level and high-level features in order to better 
the representation ability of super-resolution networks. In our 
proposed network, we follow a coarse-to-fine strategy, which 
reconstructs high-resolution images progressively based on the 
Laplacian pyramid. At each upscale level, feature maps of each 
block are connected to subsequent blocks with self-adaptive 
weights. During each block, several residual channel attention 
layers are cascaded. Evaluations on five public benchmark 
datasets show that this algorithm achieves better performance 
than some other existing methods. 

Keywords-single image super-resolution; deep convolutional 
neural network; Laplacian pyramid; self-adaptive weighted 
skip connections 

I.  INTRODUCTION  
Image super-resolution (SR) is one of the branches of 

image restoration technology, belonging to low-level vision 
tasks, and aims to reconstruct high-resolution (HR) images 
from the low-resolution images. Usually, we refer to the 
problem of generating a HR image with the input of a single 
LR image as single image super-resolution (SISR). 
Considering the ill-posed inverse problem that there exist 
many different mapping functions from a single LR image to 
its corresponding HR image, more and more methods are 
exampled-based, trying to learn an accurate mapping from LR 
image patches to their HR counterparts on datasets which 
consist of LR and HR image pairs. 

Since Dong et al. [1] firstly introduce the use of 
convolutional neural network (CNN) into image super-
resolution, despite its shallow structure with only three layers, 
following CNN-based methods have greatly enhanced both 
the reconstruction accuracy and visual details. Some works [2, 
3, 4, 5, 6] succeed in building relatively deep and wide CNNs 
to improve the quality of image SR, proving that increasing 
the complexity of networks which is widely used in other 
high-level vision tasks still works in this field. In order to 
solve the problem of vanishing gradient caused by increasing 
the depth of CNNS, the residual architecture proposed by He 
et al. [7] is modified and applied into image SR. Compared 
with tasks like classification, detection and segmentation, 

however, the quality of reconstructed HR images is more 
relative to low-level features extracted by shallow layers 
instead of high-level features extracted by deep layers. 
Although some recent methods [8, 9, 10, 11] find that 
combining low-level features with high-level features is of 
critical importance to help reconstruct better HR images, most 
proposed networks set static skip connections between 
different blocks or layers, which means some feature map will 
be added or concatenated to another no matter what the input 
is. As a result, this kind of skip connection may constrain the 
ability of representation to some extent. In additional, most 
CNN-based methods treat features from different channels 
equally and this may affect the information flow of low and 
high frequency. In terms of image SR, we need to reconstruct 
as more high-frequency details from LR image as possible. So, 
we want SR network pays more attention to the recovery of 
high-frequency information instead of the delivery of low-
frequency information. Besides, many researches usually 
place the upscaling layer at the end to build a deeper network, 
reduce the number of parameters and faster the inference 
speed. However, they cannot generate multi-scale predictions 
in one inference with one trained model.  

To solve these problems, we first draw lessons from 
Laplacian pyramid super-resolution structure proposed by Lai 
et al. [12] and follow a similar coarse-to-fine SR strategy. That 
is to say, feature maps are progressively upscaled to the 
desired size in more than one step. Second, we introduce 
residual channel attention into each basic block to explore the 
most important features from different channels for image SR. 
Third, self-adaptive weighted skip connections (SAWSC), a 
more flexible way of residual connection, is proposed, with 
which we hope to better promote the effective flow of 
information between different levels of features. Specifically, 
a feature map will be multiplied by a weight produced by self-
attention mechanism and then added to another feature map 
through skip connections.  

We evaluate our proposed method on five widely-used 
benchmark datasets and the results show that our structure 
achieves great performance. 

II. RELATED WORKS 

A. CNN-based Image SR 
In recent years, more and more CNN-based researches 

have proposed state-of-the-art methods since the pioneer work 
SRCNN [1] introduce the convolutional network into SISR. 
Although SRCNN consists of only three convolutional layers, 
it still outperforms conventional methods [13, 14, 15]. 
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Figure 1.  The architecture of our proposed network. Dotted lines with different colors means skip connections with different weights.

FSRCNN [3], the improved version of SRCNN, increases 
the depth of network and adopt deconvolutional layer, making 
it possible to input the LR image as its original size. Similar 
to other tasks, the residual structure and its modified version 
is also introduced into image SR. VDSR [2] cascades 20 
layers and add the interpolated input LR image to the output.  

As the concept of sub-pixel is introduced in ESPCN [16], 
many methods start to feed LR image directly into the network 
and add the sub-pixel layer at the end to reduce the cost of 
inference time. Meanwhile, the reduction of number of 
parameters also makes it possible to design a deeper network. 
DRRN [17] uses one recursive block and twenty-five residual 
blocks to build a fifty-two-layer deep CNN. Lim et al. [5] 
remove all batch normalization layers and ReLU activation 
layers outside the residual blocks of SRResNet [18]. They 
further propose the EDSR for single-scale image SR and 
MDSR for multi-scale image SR. In their study, the depth of 
the SR network is extended to 32 while the width is extended 
to 256 and the model capacity is largely increased in this way. 
Zhang et al. [19] use the basic channel attention layer to 
establish RCAN, an extremely deep network, and achieve 
significant improvement. 

  There are some methods try to make better use of low-
level features from shallow layers besides increasing the 
model capacity. Tone el al. [20] propose the SRDenseNet 
based on DenseNet [11], which concatenates feature maps 
from different layers with skip connections. Further, MSRN 
[6] let features extracted by convolution layers of different 
kernel size interact with each other and RDN [8] introduces 
residual structure into dense skip connection. Besides, SAN 
by Dai et al. [10] introduces non-local network, another kind 
of self-attention mechanism, into image SR and uses the 

shared-source structure to make full use of the information 
from the original LR image and explore the intrinsic 
correlation of different features. 

  To improve the visual quality, generative adversarial 
networks is used in SRGAN [18] and ESRGAN [21], although 
this may cause unnatural artifacts. 

B. Skip Connections 
As the depth of CNNs continually grows, the problem of 

vanishing gradient makes the training become harder. ResNet 
[7] tries to solve this problem by bypassing features. Many 
researches have proved that this kind of structure could 
achieve better performance because it makes the design of 
deeper networks possible. Residual scaling, meaning that the 
residual blocks are multiplied by a decimal after convolution 
processing before adding them, is proposed by Szegedy et al. 
[22] and introduced to EDSR and RCAN. The results indicate 
that this trick could stabilize the training process. Huang et al. 
propose DenseNet to alleviate the problem of vanishing 
gradient, encourage the reuse of features, and greatly reduces 
the number of parameters. DenseNet allows each layer to get 
additional input from all previous layers and passes its own 
feature map to all subsequent layers. Different from ResNet, 
DenseNet replaces the operation of sum with concatenation in 
terms of the method of skip connections. 

III. PROPOSED METHOD 

A. Network Architecture 
In our proposed method, the reconstruction of SR images 

follows a coarse-to-fine strategy. As shown in Fig. 1, the 
framework of our SR network, similar to LapSRN, is based 
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on the Laplacian pyramid. To be specific, the original LR 
image is directly fed into the network, and after a sequence 
of complex operations, a reconstructed HR image will be 
generated. During the process of inference, feature maps are 
upscaled progressively instead of in one step. Assuming the 
upscale factor is ݂, then the number of steps ݏ is calculated 
as ݈݃݋ଶ݂. For example, the network is divided into 2 upscale 
levels and at each level, a sub-network is embedded if the 
scale factor is 4. At different upscale level, sub-networks 
share the similar structure but different heights and widths of 
feature maps.  

Let’s denote the input LR image as ܫ௅ோ and the output SR 
image as ܫௌோ௙  if scale factor is ݂. One convolution layer is used 
to extract shallow features  
଴ܨ                                     =  (1)                                       (௅ோܫ)଴ܪ
where ܪ଴(∙)  denotes convolution operation of the first 
convolution layer. Then the ܨ଴  is fed into following sub-
networks.  

At upscale level ݅ , feature maps from level ݅ − 1  are 
upscaled with a factor of 2 and then input to the level ݅ + 1 for 
further operations. This process can be denoted as 
௜ܨ                                     =  (2)                                   (௜ିଵܨ)௜ܪ
where ܨ୧  is the output of the ݅ -th sub-network and ܪ௜(∙) 
denotes the operation of sub-network at level ݅, including the 
feature extraction, self-adaptive weighted skip connections 
and sub-pixel convolution upscaling. Further, in terms of the 
scale level ݏ, we can have  
௦ܨ                     = ⋯)௦ିଵܪ)௦ܪ ⋯ ( (଴ܨ)ଵܪ)ଶܪ ) )                    (3) 
where ܨ௦ denotes the output of the ݏ-th sub-network, as well 
as the end of feature extraction part.  

In the prediction branch, at the end of each upscale sub-
network, the last feature maps are input into a prediction layer, 
which consists of several cascaded convolution layers. The 
output of the prediction layer is a residual and it is summed 
with the upsampled LR image, predicted in the previous level, 
using the bicubic kernel. So, we can get all intermediate 
predictions with the scale factor of ݂, ݂ = 2,3 ⋯ 2௦. And the 
prediction at level ݏ can be represented as 
ௌோ௦ܫ                          = ௦ܲ(ܪ௦(ܨୱିଵ) ) + ௦ܷ(ܫௌோ௦ିଵ)                       (4) 
where ௦ܲ(∙)  denotes prediction operation and ௦ܷ(∙)  denotes 
upsampling with bicubic interpolation.  

Our proposed network is optimized with multi-scale ܮଵ 
loss function. At different level, we downscale the HR image 
to specific size as the ground truth. So, we have total loss ℒ(ߠ) = ଵே ∑ ∑ ฮܫௌோ௡,௜ − ฮଵ௦௜ୀଵே௡ୀଵ( ுோ௡ܫ)௜ܦ                 (5) 

where ߠ denotes the parameter needed to be updated of 
our network, ܦ௜(∙) denotes downscale operation using bicubic 
kernel and ܰ  denotes the number of image pairs in one 
iteration. Note that ܫௌோ௡,௜ and ܫுோ௡  means predicted SR image at 
level ݅ and downscaled HR image which has the same size as ܫௌோ௡,௜ respectively in terms of the ݊-th training sample in each 
batch. 

B. Feature Extraction Block (FEB) 
Here we give more details about feature extraction blocks,  

basic blocks making up a single sub-network, whose structure 
is shown in Fig. 2.  

Supposing there are m feature extraction blocks at each 
level. In each feature extraction block, we connect b channel 
attention modules in series and set a long skip connection from 
block’s input directly to its output. ܨ௜௠ = ⋯௜௠,௕൫ܪ ⋯ (௜௠ିଵܨ)௜௠,ଵܪ ൯ +  ௜௠ିଵ         (6)ܨ

where ܪ௜௠,௕(∙) denotes the operation of the ܾ-th channel 
attention module in the ݉-th feature extraction block at level ݅  and ܨ௜௠  denotes features from the ݉-th feature extraction 
block at level ݅. 

  Our channel attention module is a modified version based 
on residual channel attention block [12]. Here, in order to 
speed up the inference and reduce the number of parameters 
of the network, we delete the channel reduction process. The 
operation of our channel attention module ܪ௜௠,௕(∙)  is 
concretized below from equation 7 to equation 9.  

(ݔ)௜௠,௕ܪ  = ݓ ∙ ݖ +  (7)                             ݔ

ݓ                       = ߜ ቆܥସ ൬ܴଶ ቀܥଷ൫ܲ(ݖ)൯ቁ൰ቇ                  (8) 

ݖ                              = ଶܥ ቀܴଵ൫ܥଵ(ݔ)൯ቁ                           (9) 
where ܥ(∙) , ܴ(∙) , ܲ(∙) (∙)ߜ ,  denotes operations of 

convolution, ReLU activation, global pooling and sigmoid 
activation respectively. Note that ݔ is used here to represent 
the input of the channel attention module. 

C. Self-Adaptive Weighted Skip Connections (SAWSC) 
Self-adaptive weighted skip connections (SAWSC) is our 

proposed structure, with which residuals are rescaled by 
adaptive factor ranging from 0 to 1. We use colored dotted 
arrows above in Fig. 1 to simply represent this kind of skip 
connections and then we present how it works concretely.  
For demonstration convenience, we compare SAWSC with 
other kinds of skip connections in prior SR networks in Fig. 2. 
In this figure, (a) (b) (c) presents long and short skip 
connections used in SRResNet, share-source skip connections 
proposed in SAN and our SAWSC. Note that in Fig. 2, we use 
blue arrows in (a) and (b) to denote residual addition with a 
constant rescaling factor, which can be recognized as a weight 
from 0 to 1. However, arrows with different colors in our 
SAWSC, as shown in (c), means that different weight is put 
on different skip connections. The output of SAWSC can be 
iterated with the equation 10. 

                     ௠ܶ = ∑ ௝ߙ ௝ܶ௠ିଵ௝ୀଵ + )ܤܧܨ ௠ܶିଵ)                   (10) 
where ܤܧܨ(∙) denotes the operation of a feature extraction 
block, and its concrete function is given above. ௜ܶ  is used to 
represent aggregated features after the ݅-th FEB and ߙ௝  is a 
rescaling factor. 

In the limit case, when the weight is 0, it is equivalent to 
that there is no skip connection between two blocks. Hence, 
proposed SAWSC is a particularly flexible structure that has 
dynamic skip connections so that it can make the full use of 
features from different levels. 

Therefore, the core of SAWSC lies in how to produce the 
rescaling factors of residuals. In our proposed method, 
SAWSC is based on self-attention mechanism and its 
operation is shown in Fig. 3. A rescaling factor is generated 

194



 (a) SRResNet                 (b) SAN               (c) SAWSC (Ours) 

Figure 2.  Comparison of different skip connections 

 
Figure 3.  Self-Adaptive Weighted Skip Connections 

according to the input features. Note that SAWSCs do not 
share weights which means that there are ௠∙(ଵା௠)ଶ  SAWSCs 
given that the number of FEBs is ݉.  

D. Implementation Details 
The implementation details of our proposed network are 

given here. We set the number of levels as ݏ = 2 and the scale 
factor ݂ is 4. At each level, there are ݉ = 5 FEBs and in each 
FEB, the number of channel attention modules is set as ܾ = 5. 
So, the number of SAWSCs in one sub-network can be 
calculated as ௠∙(ଵା௠)ଶ = 15.  

The kernel size of all convolution layers is set 3 × 3 
except for that after global pooling. Instead, those convolution 
layers’ kernel size is 1 × 1 . We also take a zero-padding 
strategy to maintain features’ size constant at the same level. 
Most convolution layers have ܥ௕  filters. However, each 
prediction layer is made up with two cascaded convolution 
layers and the first one has ஼ଶ್  filters whereas the second one 
has 3 filters. Note that because we use sub-pixel convolution 
to upscale feature maps, the channel size of feature maps is 
increased to 4 ∙ ௕ܥ  and then reduced back to ܥ௕ . In our 
experiments, we train two versions of our proposed network 
with ܥ௕ set to 64 and 128 respectively. 

IV. EXPERIMENT RESULTS 

A. Datasets and Metrics 
Considering the small number of some conventional 

datasets, recent researches mainly use DIV2K dataset [25] as 
raining set, which consists of 800 high-quality images with 2K 
resolution. To be specific, we crop non-overlapping patches 

with the size 256 × 256 from these 800 training images as 
HR images. And they are degraded with the bicubic model to 
simulate LR counterparts. We additionally randomly augment 
the training patches by flipping both vertically and 
horizontally, rotating 90° and resizing the size to half or 
quarter.  

Our proposed method is evaluated on public benchmarks 
including Set5 [24], Set14 [25], B100 [26], Urban100 [27] and 
Manga109 [28]. The same as other researches, PSNR and 
SSIM are used on Y channel of YCbCr color space. 

B. Training Settings 
Our network is optimized using Adam [29] with the initial 

learning rate set to 0.0001. After 100 epochs, the learning rate 
is decreased to one tenth of its initial set.  

  We use PyTorch as our framework to perform 
experiments with a GeForce RTX 2080 Ti GPU. The training 
stops after 200 epochs. 

C. Comparison with Some Other Methods 
We compare our proposed network with 8 other SISR 

methods: Bicubic, A+ [30], SRCNN [1], VDSR [2], DRCN 
[4], LapSRN [12], SRDenseNet [20] and CARN [9]. Table. 1 
quantitatively shows the average PSNR and SSIM values on 
five different benchmark datasets. We use SAWSC ( ∙ ) to 
represent our proposed method and results of all other 
methods are provided by their corresponding articles or public 
codes. Specifically, SAWSC (64) denotes our proposed 
network with the number of block channels set as ܥ௕ = 64. 
Similarly, ܥ௕ is 128 in SAWSC (128). Red text indicates the 
best score and blue text indicates the second best. 

It can be found that our algorithm outperforms other listed 
methods for scale factor × 4, especially in Manga109 dataset. 
For the scale factor of 2, our network consists of only one sub-
network, meaning less parameters. And we do not train the 
model of scale × 2  independently. Instead, the first sub-
network trained for scale × 4 is used directly. Even so, our 
model still achieves a comparable performance to other 
methods in the case that the number of filters is set to 64. But 
when the number of filters increases to 128, our method 
outperforms most of others. Our method is at least 0.1 dB 
higher than them on average PSNR even in the case that 
Manga109 is excluded. It means that results generated by our 
model are more realistic. So, our method proves to be able to 
generate multi-scale SR images with relatively high quality 
and generalization. 

To further present the visual performance of our method, 
we show some comparisons on Urban100 and Manga109 
(mainly containing urban scenes, natural scenes and Japanese 
manga) with a scale factor of 4 in Fig. 4 and Fig. 5. We 
observe that SR images generated by our methods have richer 
details and shaper edges. Although the degradation distorts the 
window frame, the reconstructed image by our method is 
much clearer. Also, the super-resolution on faces is usually 
more difficult because of the rich details. However, our 
method is proved to be successfully applied into the anime 
face super-resolution and can generate more natural fake 
images. This indicates that our network has better visual 
results.  
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TABLE I.  Quantitative results of some SR algorithms: average PSNR/SSIM for scale factor × 2 and × 4.  

Algorithm Scale Set5 Set14 BSDS100 Urban100 Manga109 
Bicubic 2 33.65 / 0.930 30.34 / 0.870 29.56 / 0.844 26.88 / 0.841 30.84 / 0.935 

A+ 2 36.54 / 0.954 32.40 / 0.906 31.22 / 0.887 29.23 / 0.894 35.33 / 0.967 
SRCNN 2 36.65 / 0.954 32.29 / 0.903 31.36 / 0.888 29.52 / 0.895 35.72 / 0.968 
VDSR 2 37.53 / 0.958 33.05 / 0.913 31.90/0.896 30.77/0.914 37.16 / 0.974 
DRCN 2 37.63/ 0.959 32.98 / 0.913 31.85 / 0.894 30.76 / 0.913 37.57/ 0.973 

LapSRN 2 37.52 / 0.959 33.08 / 0.913 31.80 / 0.895 30.41 / 0.910 37.27 / 0.974 
CARN 2 37.76 / 0.960 33.52 / 0.920 32.09 / 0.898 31.92 / 0.926  

SAWSC (64) 2 37.76 / 0.959 33.64 / 0.921 32.06 / 0.897 31.87 / 0.925 39.30 / 0.980 
SAWSC (128) 2 37.83 / 0.959 33.74 / 0.921 32.14 / 0.898 32.10 / 0.928 39.56 / 0.981 

Bicubic 4 28.42 / 0.810 26.10 / 0.704 25.96 / 0.669 23.15 / 0.659 24.92 / 0.789 
A+ 4 30.30 / 0.859 27.43 / 0.752 26.82 / 0.710 24.34 / 0.720 27.02 / 0.850 

SRCNN 4 30.49 / 0.862 27.61 / 0.754 26.91 / 0.712 24.53 / 0.724 27.66 / 0.858 
VDSR 4 31.35 / 0.882 28.03 / 0.770 27.29 / 0.726 25.18 / 0.753 28.82 / 0.886 
DRCN 4 31.53 / 0.884 28.04 / 0.770 27.24 / 0.724 25.14 / 0.752 28.97 / 0.886 

LapSRN 4 31.54 / 0.885 28.19 / 0.772 27.32 / 0.728 25.21 / 0.756 29.09 / 0.890 
SRDenseNet 4 32.02 / 0.893 28.50 / 0.778 27.57 / 0.734 26.05 / 0.782  

CARN 4 32.13 / 0.894 28.60 / 0.781 27.58 / 0.735 26.07 / 0.784  
SAWSC (64) 4 32.23 / 0.894 28.63 / 0.796 27.62 / 0.726 26.39 / 0.796 31.33 / 0.920 

SAWSC (128) 4 32.45 / 0.897 28.74 / 0.799 27.75 / 0.743 26.61 / 0.803 31.59 / 0.923 

 

Figure 4.  Visual comparison for scale × 4 on Urban100 
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Figure 5.  Visual comparison for scale × 4 on Manga109 

V. CONCLUSIONS 
In this paper, we propose the self-adaptive weighted skip-

connections structure for image SR. Further, based on which, 
a SR network following a coarse-to-fine strategy is proposed. 
It combines features self-adaptively and makes full use of 
them. The experimental results indicate that our method 
achieves better quantitative and visual performance than some 
other algorithms. This structure is efficient and has potential 
in other computer vision tasks. 
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