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Abstract—Recently, the introduction of deep convolutional
neural networks has achieved great performance in low-level
vision tasks like single image super-resolution. However, deeper
networks tend to have larger number of parameters and be
more difficult to be trained. Considering massive low-frequency
information in low-resolution inputs, we propose a self-adaptive
weighted skip connections (SAWSC) structure to make full use
of both the low-level and high-level features in order to better
the representation ability of super-resolution networks. In our
proposed network, we follow a coarse-to-fine strategy, which
reconstructs high-resolution images progressively based on the
Laplacian pyramid. At each upscale level, feature maps of each
block are connected to subsequent blocks with self-adaptive
weights. During each block, several residual channel attention
layers are cascaded. Evaluations on five public benchmark
datasets show that this algorithm achieves better performance
than some other existing methods.

Keywords-single image super-resolution; deep convolutional
neural network; Laplacian pyramid; self-adaptive weighted
skip connections

I. INTRODUCTION

Image super-resolution (SR) is one of the branches of
image restoration technology, belonging to low-level vision
tasks, and aims to reconstruct high-resolution (HR) images
from the low-resolution images. Usually, we refer to the
problem of generating a HR image with the input of a single
LR image as single image super-resolution (SISR).
Considering the ill-posed inverse problem that there exist
many different mapping functions from a single LR image to
its corresponding HR image, more and more methods are
exampled-based, trying to learn an accurate mapping from LR
image patches to their HR counterparts on datasets which
consist of LR and HR image pairs.

Since Dong et al. [1] firstly introduce the use of
convolutional neural network (CNN) into image super-
resolution, despite its shallow structure with only three layers,
following CNN-based methods have greatly enhanced both
the reconstruction accuracy and visual details. Some works [2,
3,4, 5, 6] succeed in building relatively deep and wide CNNs
to improve the quality of image SR, proving that increasing
the complexity of networks which is widely used in other
high-level vision tasks still works in this field. In order to
solve the problem of vanishing gradient caused by increasing
the depth of CNNS, the residual architecture proposed by He
et al. [7] is modified and applied into image SR. Compared
with tasks like classification, detection and segmentation,
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however, the quality of reconstructed HR images is more
relative to low-level features extracted by shallow layers
instead of high-level features extracted by deep layers.
Although some recent methods [8, 9, 10, 11] find that
combining low-level features with high-level features is of
critical importance to help reconstruct better HR images, most
proposed networks set static skip connections between
different blocks or layers, which means some feature map will
be added or concatenated to another no matter what the input
is. As a result, this kind of skip connection may constrain the
ability of representation to some extent. In additional, most
CNN-based methods treat features from different channels
equally and this may affect the information flow of low and
high frequency. In terms of image SR, we need to reconstruct
as more high-frequency details from LR image as possible. So,
we want SR network pays more attention to the recovery of
high-frequency information instead of the delivery of low-
frequency information. Besides, many researches usually
place the upscaling layer at the end to build a deeper network,
reduce the number of parameters and faster the inference
speed. However, they cannot generate multi-scale predictions
in one inference with one trained model.

To solve these problems, we first draw lessons from
Laplacian pyramid super-resolution structure proposed by Lai
etal. [12] and follow a similar coarse-to-fine SR strategy. That
is to say, feature maps are progressively upscaled to the
desired size in more than one step. Second, we introduce
residual channel attention into each basic block to explore the
most important features from different channels for image SR.
Third, self-adaptive weighted skip connections (SAWSC), a
more flexible way of residual connection, is proposed, with
which we hope to better promote the effective flow of
information between different levels of features. Specifically,
a feature map will be multiplied by a weight produced by self-
attention mechanism and then added to another feature map
through skip connections.

We evaluate our proposed method on five widely-used
benchmark datasets and the results show that our structure
achieves great performance.

II.  RELATED WORKS

A. CNN-based Image SR

In recent years, more and more CNN-based researches
have proposed state-of-the-art methods since the pioneer work
SRCNN [1] introduce the convolutional network into SISR.
Although SRCNN consists of only three convolutional layers,
it still outperforms conventional methods [13, 14, 15].
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Figure 1.

FSRCNN [3], the improved version of SRCNN, increases
the depth of network and adopt deconvolutional layer, making
it possible to input the LR image as its original size. Similar
to other tasks, the residual structure and its modified version
is also introduced into image SR. VDSR [2] cascades 20
layers and add the interpolated input LR image to the output.

As the concept of sub-pixel is introduced in ESPCN [16],
many methods start to feed LR image directly into the network
and add the sub-pixel layer at the end to reduce the cost of
inference time. Meanwhile, the reduction of number of
parameters also makes it possible to design a deeper network.
DRRN [17] uses one recursive block and twenty-five residual
blocks to build a fifty-two-layer deep CNN. Lim et al. [5]
remove all batch normalization layers and ReLU activation
layers outside the residual blocks of SRResNet [18]. They
further propose the EDSR for single-scale image SR and
MDSR for multi-scale image SR. In their study, the depth of
the SR network is extended to 32 while the width is extended
to 256 and the model capacity is largely increased in this way.
Zhang et al. [19] use the basic channel attention layer to
establish RCAN, an extremely deep network, and achieve
significant improvement.

There are some methods try to make better use of low-
level features from shallow layers besides increasing the
model capacity. Tone el al. [20] propose the SRDenseNet
based on DenseNet [11], which concatenates feature maps
from different layers with skip connections. Further, MSRN
[6] let features extracted by convolution layers of different
kernel size interact with each other and RDN [8] introduces
residual structure into dense skip connection. Besides, SAN
by Dai et al. [10] introduces non-local network, another kind
of self-attention mechanism, into image SR and uses the
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The architecture of our proposed network. Dotted lines with different colors means skip connections with different weights.

shared-source structure to make full use of the information
from the original LR image and explore the intrinsic
correlation of different features.

To improve the visual quality, generative adversarial
networks is used in SRGAN [18] and ESRGAN [21], although
this may cause unnatural artifacts.

B. Skip Connections

As the depth of CNNss continually grows, the problem of
vanishing gradient makes the training become harder. ResNet
[7] tries to solve this problem by bypassing features. Many
researches have proved that this kind of structure could
achieve better performance because it makes the design of
deeper networks possible. Residual scaling, meaning that the
residual blocks are multiplied by a decimal after convolution
processing before adding them, is proposed by Szegedy et al.
[22] and introduced to EDSR and RCAN. The results indicate
that this trick could stabilize the training process. Huang et al.
propose DenseNet to alleviate the problem of vanishing
gradient, encourage the reuse of features, and greatly reduces
the number of parameters. DenseNet allows each layer to get
additional input from all previous layers and passes its own
feature map to all subsequent layers. Different from ResNet,
DenseNet replaces the operation of sum with concatenation in
terms of the method of skip connections.

III.  PROPOSED METHOD

A. Network Architecture

In our proposed method, the reconstruction of SR images
follows a coarse-to-fine strategy. As shown in Fig. 1, the
framework of our SR network, similar to LapSRN, is based



on the Laplacian pyramid. To be specific, the original LR
image is directly fed into the network, and after a sequence
of complex operations, a reconstructed HR image will be
generated. During the process of inference, feature maps are
upscaled progressively instead of in one step. Assuming the
upscale factor is f, then the number of steps s is calculated
as log, f. For example, the network is divided into 2 upscale
levels and at each level, a sub-network is embedded if the
scale factor is 4. At different upscale level, sub-networks
share the similar structure but different heights and widths of
feature maps.

Let’s denote the input LR image as I;z and the output SR
image as ISfR if scale factor is f. One convolution layer is used
to extract shallow features

Fo = Ho(ILg) 1
where Hy(-) denotes convolution operation of the first
convolution layer. Then the F; is fed into following sub-
networks.

At upscale level i, feature maps from level i — 1 are
upscaled with a factor of 2 and then input to the level i + 1 for
further operations. This process can be denoted as

F; = H;(Fi_1) 2)
where F; is the output of the i-th sub-network and H;(")
denotes the operation of sub-network at level i, including the
feature extraction, self-adaptive weighted skip connections
and sub-pixel convolution upscaling. Further, in terms of the
scale level s, we can have

Fy = Hy(Hg_1 (- Hy(Hy (Fo) ) ~+)) 3)
where F; denotes the output of the s-th sub-network, as well
as the end of feature extraction part.

In the prediction branch, at the end of each upscale sub-
network, the last feature maps are input into a prediction layer,
which consists of several cascaded convolution layers. The
output of the prediction layer is a residual and it is summed
with the upsampled LR image, predicted in the previous level,
using the bicubic kernel. So, we can get all intermediate
predictions with the scale factor of f, f = 2,3 - 25, And the
prediction at level s can be represented as

I§p = P(H(Fs—1) ) + Us (I “)
where P,(+) denotes prediction operation and U,(-) denotes
upsampling with bicubic interpolation.

Our proposed network is optimized with multi-scale L,
loss function. At different level, we downscale the HR image
to specific size as the ground truth. So, we have total loss

A .
L(0) = 3 X0 Biaalllsy — DR, ()
where 8 denotes the parameter needed to be updated of

our network, D; (+) denotes downscale operation using bicubic
kernel and N denotes the number of image pairs in one

iteration. Note that I;l,‘?i and Ifjr means predicted SR image at
level i and downscaled HR image which has the same size as

12 respectively in terms of the n-th training sample in each

batch.

B. Feature Extraction Block (FEB)
Here we give more details about feature extraction blocks,
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basic blocks making up a single sub-network, whose structure
is shown in Fig. 2.

Supposing there are m feature extraction blocks at each
level. In each feature extraction block, we connect b channel
attention modules in series and set a long skip connection from
block’s input directly to its output.

F™ = H" (- HPYH (Y )+ FL 0 (6)

where Him'b (*) denotes the operation of the b-th channel

attention module in the m-th feature extraction block at level

i and F™ denotes features from the m-th feature extraction
block at level i.

Our channel attention module is a modified version based
on residual channel attention block [12]. Here, in order to
speed up the inference and reduce the number of parameters
of the network, we delete the channel reduction process. The
operation of our channel attention module Him b ) is
concretized below from equation 7 to equation 9.

H™(x)=w-z+x (7)
w=o <c4 (k2 (@(P&))))) ®)
2= G (Ri(6:()) ©)

where C(-), R(-), P(), 8(-) denotes operations of
convolution, ReLU activation, global pooling and sigmoid
activation respectively. Note that x is used here to represent
the input of the channel attention module.

C. Self-Adaptive Weighted Skip Connections (SAWSC)

Self-adaptive weighted skip connections (SAWSC) is our

proposed structure, with which residuals are rescaled by
adaptive factor ranging from 0 to 1. We use colored dotted
arrows above in Fig. 1 to simply represent this kind of skip
connections and then we present how it works concretely.
For demonstration convenience, we compare SAWSC with
other kinds of skip connections in prior SR networks in Fig. 2.
In this figure, (a) (b) (c) presents long and short skip
connections used in SRResNet, share-source skip connections
proposed in SAN and our SAWSC. Note that in Fig. 2, we use
blue arrows in (a) and (b) to denote residual addition with a
constant rescaling factor, which can be recognized as a weight
from 0 to 1. However, arrows with different colors in our
SAWSC, as shown in (c), means that different weight is put
on different skip connections. The output of SAWSC can be
iterated with the equation 10.

Ty = S5 T, + FEB(T_) (10)
where FEB(*) denotes the operation of a feature extraction
block, and its concrete function is given above. T; is used to
represent aggregated features after the i-th FEB and a; is a
rescaling factor.

In the limit case, when the weight is 0, it is equivalent to
that there is no skip connection between two blocks. Hence,
proposed SAWSC is a particularly flexible structure that has
dynamic skip connections so that it can make the full use of
features from different levels.

Therefore, the core of SAWSC lies in how to produce the
rescaling factors of residuals. In our proposed method,
SAWSC is based on self-attention mechanism and its
operation is shown in Fig. 3. A rescaling factor is generated
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according to the input features. Note that SAWSCs do not
share weights which means that there are - SAWSCs
given that the number of FEBs is m.

D. Implementation Details

The implementation details of our proposed network are
given here. We set the number of levels as s = 2 and the scale
factor f is 4. At each level, there are m = 5 FEBs and in each
FEB, the number of channel attention modules is setas b = 5.

So, the number of SAWSCs in one sub-network can be
m-(1+m) _ = 15.

The kernel size of all convolution layers is set 3 X 3
except for that after global pooling. Instead, those convolution
layers’ kernel size is 1 X 1. We also take a zero-padding
strategy to maintain features’ size constant at the same level.
Most convolution layers have Cj, filters. However, each
prediction layer is made up with two cascaded convolution

layers and the first one has %

has 3 filters. Note that because we use sub-pixel convolution
to upscale feature maps, the channel size of feature maps is
increased to 4 - C, and then reduced back to Cp. In our
experiments, we train two versions of our proposed network
with Cp, set to 64 and 128 respectively.

calculated as

filters whereas the second one

IV. EXPERIMENT RESULTS

A. Datasets and Metrics

Considering the small number of some conventional
datasets, recent researches mainly use DIV2K dataset [25] as
raining set, which consists of 800 high-quality images with 2K
resolution. To be specific, we crop non-overlapping patches
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with the size 256 X 256 from these 800 training images as
HR images. And they are degraded with the bicubic model to
simulate LR counterparts. We additionally randomly augment
the training patches by flipping both vertically and
horizontally, rotating 90° and resizing the size to half or
quarter.

Our proposed method is evaluated on public benchmarks
including Set5 [24], Set14 [25], B100 [26], Urban100 [27] and
Mangal09 [28]. The same as other researches, PSNR and
SSIM are used on Y channel of YCbCr color space.

B. Training Settings

Our network is optimized using Adam [29] with the initial
learning rate set to 0.0001. After 100 epochs, the learning rate
is decreased to one tenth of its initial set.

We use PyTorch as our framework to perform
experiments with a GeForce RTX 2080 Ti GPU. The training
stops after 200 epochs.

C. Comparison with Some Other Methods

We compare our proposed network with 8 other SISR
methods: Bicubic, A+ [30], SRCNN [1], VDSR [2], DRCN
[4], LapSRN [12], SRDenseNet [20] and CARN [9]. Table. 1
quantitatively shows the average PSNR and SSIM values on
five different benchmark datasets. We use SAWSC (*) to
represent our proposed method and results of all other
methods are provided by their corresponding articles or public
codes. Specifically, SAWSC (64) denotes our proposed
network with the number of block channels set as C,, = 64.
Similarly, C;, is 128 in SAWSC (128). Red text indicates the
best score and blue text indicates the second best.

It can be found that our algorithm outperforms other listed
methods for scale factor X 4, especially in Mangal09 dataset.
For the scale factor of 2, our network consists of only one sub-
network, meaning less parameters. And we do not train the
model of scale X 2 independently. Instead, the first sub-
network trained for scale X 4 is used directly. Even so, our
model still achieves a comparable performance to other
methods in the case that the number of filters is set to 64. But
when the number of filters increases to 128, our method
outperforms most of others. Our method is at least 0.1 dB
higher than them on average PSNR even in the case that
Mangal09 is excluded. It means that results generated by our
model are more realistic. So, our method proves to be able to
generate multi-scale SR images with relatively high quality
and generalization.

To further present the visual performance of our method,
we show some comparisons on Urbanl00 and Mangal09
(mainly containing urban scenes, natural scenes and Japanese
manga) with a scale factor of 4 in Fig. 4 and Fig. 5. We
observe that SR images generated by our methods have richer
details and shaper edges. Although the degradation distorts the
window frame, the reconstructed image by our method is
much clearer. Also, the super-resolution on faces is usually
more difficult because of the rich details. However, our
method is proved to be successfully applied into the anime
face super-resolution and can generate more natural fake
images. This indicates that our network has better visual
results.



TABLE L. Quantitative results of some SR algorithms: average PSNR/SSIM for scale factor X 2 and X 4.
Algorithm Scale Set5 Set14 BSDS100 Urban100 Mangal09

Bicubic 2 33.65/0.930 30.34/0.870 29.56/0.844 26.88/0.841 30.84/0.935
A+ 2 36.54/0.954 32.40/0.906 31.22/0.887 29.23/0.894 35.33/0.967
SRCNN 2 36.65/0.954 32.29/0.903 31.36/0.888 29.52/0.895 35.72/0.968
VDSR 2 37.53/0.958 33.05/0.913 31.90/0.896 30.77/0.914 37.16/0.974
DRCN 2 37.63/0.959 32.98/0.913 31.85/0.894 30.76/0.913 37.57/0.973
LapSRN 2 37.52/0.959 33.08/0.913 31.80/0.895 30.41/0.910 37.27/0.974

CARN 2 37.76 / 0.960 33.52/0.920 32.09/0.898 31.92/0.926 —
SAWSC (64) 2 37.76 / 0.959 33.64/0.921 32.06/0.897 31.87/0.925 39.30/0.980
SAWSC (128) 2 37.83/0.959 33.74/0.921 32.14/0.898 32.10/0.928 39.56 / 0.981
Bicubic 4 28.42/0.810 26.10/0.704 25.96 /0.669 23.15/0.659 24.92/0.789
A+ 4 30.30/0.859 27.43/0.752 26.82/0.710 24.34/0.720 27.02/0.850
SRCNN 4 30.49/0.862 27.61/0.754 26.91/0.712 24.53/0.724 27.66/0.858
VDSR 4 31.35/0.882 28.03/0.770 27.29/0.726 25.18/0.753 28.82/0.886
DRCN 4 31.53/0.884 28.04/0.770 27.24/0.724 25.14/0.752 28.97/0.886
LapSRN 4 31.54/0.885 28.19/0.772 27.32/0.728 25.21/0.756 29.09/0.890

SRDenseNet 4 32.02/0.893 28.50/0.778 27.57/0.734 26.05/0.782 —

CARN 4 32.13/0.894 28.60/0.781 27.58/0.735 26.07/0.784 —
SAWSC (64) 4 32.23/0.894 28.63/0.796 27.62/0.726 26.39/0.796 31.33/0.920
SAWSC (128) 4 32.45/0.897 28.74/0.799 27.75170.743 26.61/0.803 31.59/0.923
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Figure 4. Visual comparison for scale X 4 on Urban100
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Figure 5. Visual comparison for scale X 4 on Mangal09

V. CONCLUSIONS

In this paper, we propose the self-adaptive weighted skip-
connections structure for image SR. Further, based on which,
a SR network following a coarse-to-fine strategy is proposed.
It combines features self-adaptively and makes full use of
them. The experimental results indicate that our method
achieves better quantitative and visual performance than some
other algorithms. This structure is efficient and has potential
in other computer vision tasks.
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