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Abstract—Edge computing is an effective approach for re-
source provisioning at the network edge to host virtualized
network functions (VNF). Considering the cost diversity in edge
computing, from the perspective of service providers, it is
significant to orchestrate the VNFs and schedule the traffic flows
for network utility maximization (NUM) as it implies maximal
revenue. However, traditional model-based optimization methods
usually follow some assumptions and impose certain limitations.
In this paper, inspired by the success of deep reinforcement
learning in solving complicated control problems, we propose
a deep deterministic policy gradients (DDPG) based algorithm.
We first formulate the NUM problem with the consideration
of end-to-end delays and various operation costs into a non-
convex optimization problem and prove it to be NP-hard. We then
redesign the exploration method and invent a dual replay buffer
structure to customize the DDPG. Meanwhile, we also apply
our formulation to guide our replay buffer update. Through
extensive trace-driven experiments, we show the high efficiency
of our customized DDPG based algorithm as it significantly
outperforms both model-based methods and traditional non-
customized DDPG based algorithm.

Index Terms—Deep Reinforcement Learning; VNF Orchestra-
tion; Flow Scheduling

I. INTRODUCTION

It is a common pain point for network service providers to

provision services in an efficient manner as it is time, cost, and

resource consuming to deploy services at the hardware level.

The heavy reliance on customized hardware severely hinders

the development of computer networks. Modern network-

ing industry highly demands lightweight service provision

methods to foster network innovation and to drive long-term

expenditure reduction. Network function virtualization (NFV)

is thus proposed to take network functions (e.g., firewall,

DPI, router) off the hardware, and to “softwarize” them such

that they can run on common servers (e.g., x86 servers)

as on-demand virtualized network functions (VNF) in cloud

computing or edge computing infrastructure. Edge computing,

which utilizes resources in the network edge, is considered as

an ideal platform for VNF deployment. By deploying VNFs

and processing network flows in geo-distributed edge servers

close to the end users, the transmission delay and the traffic

congestion on the Internet can be effectively reduced, thereby

improving the user experience.

Along with NFV, software defined networking (SDN), by

decoupling the control and data planes, allows network service

providers to schedule the network traffic in a centralized

manner on flow-level granularity. NFV and SDN together

enable centralized network control and show great potential

in promoting openness, innovation, flexibility, and scalability

of networks. Both technologies therefore have attracted lots

of interests in the networking communities. Many pioneering

researchers have proposed different methods to better utilize

the two technologies with different goals such as perfor-

mance efficiency improvement [1], [2], cost reduction [3],

[4], and network utility maximization (NUM) [5], [6]. From

the network service provider perspective, as they usually

rent resources from the infrastructure providers, one of the

most important issues is the profit relating to both cost and

revenue. The latter is further related to the quality-of-service
(QoS), e.g., end-to-end delay, as declared in the service
level agreement (SLA) between network service providers

and consumers. Similar to cloud computing, edge computing

also exhibits cost diversity. To pursue the goal of better user

experience and higher profit, network service providers eagerly

call for better intelligent control agents that consider both edge

computing cost diversity and QoS.

When surveying the literature, we notice that existing op-

timization methods are mostly model-based, assuming that

the network environment can be well modeled, or can be

accurately predicted. However, real-world networks have be-

come more complicated and highly dynamic, making it hard

to model, predict, and control. Moreover, these model-based

algorithms heavily rely on prior knowledge and are usually

designed in an offline manner, sacrificing the flexibility feature

of NFV and SDN. Even worse, some studies intentionally

neglect some issues in order to simplify problem formulation

or make the model easier to solve. In particular, we observe

that many studies overlook the end-to-end delay, especially

the intermediate processing delay, e.g., [2], [4]. While, the

end-to-end delay is one of the most important metrics in the
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SLA. But it is hard to accurately model, especially in the case

of multi-hop transmission in “service function chain” (SFC)

consisting of a set of ordered VNFs [1].

To make the algorithm more practical, we try to seek a

model-free approach that can exploit the advantages of NFV

and SDN, and can be applied online to adapt to the time-

varying traffic demands. Recently, the success of AlphaGo

has drawn considerable interest on artificial intelligence. The

essence of AlphaGo is an improved version of reinforcement

learning, i.e. deep reinforcement learning (DRL), which inte-

grates deep learning into reinforcement learning to address

more complicated control problems [7]. Thereafter, DRL

has been widely applied in a variety of domains, with no

exception to computer networking. Reinforcement learning,

including DRL, has been successfully applied as an alternative

promising model-free means to address many issues in com-

puter networks, e.g., TCP congestion control [8], workload

balancing [9], SDN routing [10], resource allocation [11],

traffic optimization [12]. Similarly, we believe that DRL is

also applicable for building intelligent control agents for VNF

orchestration and flow scheduling.

Although a DRL based algorithm could be model-free, this

does not mean that the model is totally useless. We note that

deep deterministic policy gradient (DDPG), as a representative

advanced DRL technique capable of dealing with continuous

control problems (e.g., load balancing), requires an experience

replay buffer to store the explored samples during the training

process. Other than letting the DDPG agent naively update

the buffer, we can use our model-based solution, although

still based on some assumptions, to customize the experience

replay buffer. Therefore, we are motivated to adopt such ap-

proach to design a customized DDPG based intelligent control

agent. The main contributions of this paper are summarized

as follows:

• We formally describe the online VNF orchestration and

flow scheduling for NUM as a non-convex optimization

problem and prove its NP-hardness by reducing from the

multi-level uncapacitated facility location problem.

• Based on our formulation, we redesign the experience

replay buffer structure in the DDPG algorithm. We also

invent a bias exploration method and accordingly propose

our customized DDPG-based VNF orchestration and flow

scheduling algorithm. To the best of our knowledge, this

is the first work to apply DRL for joint optimization of

VNF orchestration and flow scheduling.

• By conducting extensive trace-driven experiments, the

high efficiency of our customized DDPG based algorithm

is verified by the fact that it significantly outperforms

both existing model-based algorithms and traditional non-

customized DDPG algorithm.

The remainder of the paper is organized as follows. Sec-

tion II describes the system model, based on which the

problem is formally formulated in Section III. Then, we

propose our customized DDPG-based algorithm in Section IV.

The trace-driven performance evaluation results are reported

in Section V. Section VI discusses some related work. Finally,

Section VII concludes our work.

II. BACKGROUND AND SYSTEM MODEL

A. Background

In this paper, we consider the scenario that a service

provider provides a set S of different network services by

renting resources from the edge computing infrastructure

provider. The edge computing infrastructure consists of a

set N of networked edge servers and is represented as an

indirected graph Gn = (N,En), where En is a set of links

between the edge servers. A network service s ∈ S is provided

in the form of SFC as a set of ordered network functions.

Therefore, a service s can be represented as a directed graph

Gs = (Fs,Es), where Fs denotes the set of functions required

by service s and eff ′ ∈ Es enforces the flow traverse sequence

between the functions. Specifically, we assume that there is

a proxy server as the origin function os ∈ Fs for service

s. Any network flow requesting service s shall start from

os, sequentially traverse over all the functions defined in Fs

and eventually reach the destination function to complete the

service.

A network function f could have one or multiple VNF

instances on different edge servers in the infrastructure. Dif-

ferent network functions are with different preferred software

and hardware specifications. For example, to setup a Bro IDS

usually requires a c4.2large IDS VNF [13]. Launching a

VNF instance of type f commonly involves transferring a

VM image containing the VNF instance to the hosting server,

and then booting the VM image with a setup cost ΦSU
f [14].

Moreover, once a VNF f on edge server n is set up, the

service provider needs to pay for the VNF operation at a unit

price of ΦOP
fn , determined by VNF type, edge server location,

and operation time. Geo-distributed edge computing shall have

similar charging policy as cloud computing and therefore also

exhibits cost diversity. For example, the recommended running

environment for a Bro IDS is an 8-core processor pricing at

$0.398 per hour in Ohio while $0.504 per hour in Tokyo in

Amazon EC2 [15]. Due to the cost geo-diversity, the hosting

server location will have deep influence on the operation cost.

To reduce the operation cost, it seems that we may aggres-

sively choose the edge servers with the lowest unit price to host

the VNFs. However, another non-negligible issue to the overall

cost is the communication cost as the flows will traverse the

VNFs hosted on different edge servers. The hosting server

location affects the flow scheduling and hence the communi-

cation cost. For example, the communication price of Amazon

EC2 is $0.01/GB and $0.120 − 0.200/GB for the same

geographic region and different regions, respectively [16].

Geo-distributed edge computing shall also have the same

communication cost diversity. To describe such phenomenon,

ΦTR
mn is used to denote the unit communication cost on link

emn ∈ En between the edge servers m and n. Specifically, we

define ΦTR
nn = 0, ∀n ∈ N, indicating that no cost is incurred if

the transmission is within the same edge server. Note that, a

network function may have multiple VNFs on different edge
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servers and the network flows shall be carefully balanced.

Also, one VNF may be shared by different SFCs with light

traffic load and the flows for these SFCs shall be merged at

the VNF. Both the above two issues refer to flow scheduling.

From the perspective of network service providers, it is of

course important to lower the overall cost. However, low cost

does not always mean high profit as the profit also relates to the

revenue, which further relates to the QoS declared in the SLA.

It is widely agreed that the end-to-end service delay is one of

the most important QoS metrics. A network flow must traverse

and be processed by all ordered VNFs in the SFC. Therefore,

the end-to-end delay of a flow is the sum of the processing

delay on all required VNFs. Without loss of generality, we

use μfn to denote the average processing rate for VNF of

type f on edge server n. As widely known, queuing theory,

e.g., M/M/1, M/D/1, G/D/1, can be applied to estimate the

processing delay on one VNF, but it is not accurate enough.

Even worse, it is hard to solve an optimization model including

the end-to-end delay as the sum of processing delay on

sequential queues [1].

B. Runtime VNF Orchestration and Flow Scheduling

We consider a discrete time period T = {1, 2, 3, .., T}. In

practice, the user requests for a specific service vary over

the time. Let Rs(t) be the flow rate requesting service s
at time slot t, i.e. arriving rate at os. Therefore, both VNF

orchestration and flow scheduling shall be operated in an

online manner at run-time. The run-time operation in the

control agent is conducted at the beginning of each time slot.

VNF orchestration refers to the activation and deactivation

of the deployed VNFs. Flow scheduling is not only about

the routing path planning but also about the load balancing

when one network function has multiple instances in the

infrastructure.

To clearly tract the flow relationship between the edge

servers for any SFC, we build a directed VNF graph Gv =
(V,Ev) based on the SFC graph Gs and infrastructure graph

Gn. The VNF graph is built according to the following rules.

We define vfn ∈ V to present a VNF of type f on edge

server n. That is, for a network function f , whenever there

is an instance on edge server n, a vertex vfn is introduced in

Gv . Note that, there is only one origin function os for each

service s. Therefore, it is directly introduced into Gv . For each

SFC s, strictly following the VNF sequence, a network flow

processed by vf ′n′ shall be passed to the next VNFs of type

f in order as defined in the service graph Gs. Therefore, a

directed link e(vf′n′ ,vfn) is added in set Ev for each vfn ∈ V

whenever ef ′f ∈ Es, ∀s ∈ S.

The essence of VNF orchestration is to decide whether the

VNF of type f on edge server n shall be activated or not at

time slot t. Supported by the VNF graph, we can represent

such activation status by introducing binary variables as

xfn(t) =

⎧⎪⎨
⎪⎩

1, if VNF of type f on edge server n

is activated at time slot t,

0, otherwise.

(1)

Accordingly, the essence of flow scheduling is to allocate

the traffic load on the edges Ev as the VNF graph already

implies the processing sequence.

At run-time, we shall decide the values of xfn(t) as well

as the flow value on each edge in Ev according to the flow

rates requesting for different SFCs so as to achieve the goal

of NUM.

III. PROBLEM FORMULATION

In this section, we formulate the NUM problem into a non-

convex optimization form for a formal understanding of the

problem and then prove it as NP-hard even in the case with

known service request rates and without the consideration of

end-to-end delay.

A. Flow Scheduling

For any flow requesting a service, its flow rate must be al-

ways reserved across any edge server visited, i.e. network flow

conservation. Intuitively, we can express the flow conservation

using linear programming. However, without known VNF

activation status, it is hard to describe the flow relationship

between the edge servers in Gn directly. Fortunately, with the

introduction of VNF graph, we can instead express the flow

relationship between the vertex in Gv , regardless of actual

VNF activation status.

For any service s, a constituent network function f may

have multiple VNFs and the flow requesting s may be dis-

tributed to these VNFs. As we do not know the activation

status of the VNFs yet, any link in Ev could be allocated

with certain traffic requesting the service. We define variable

re(v
f′n′ ,vfn)

(t), ∀e(vf′n′ ,vfn) ∈ Ev as the flow rate on link

e(vf′n′ ,vfn). Then, we can express the network flow conser-

vation on a service basis, as follows.

According to the network flow conservation theory, the total

egress flow amount shall be equal to its ingress flow. As a

result, for any intermediate network function f hosted on edge

server n, we shall have
∑

∀e(v
f′n′ ,vfn)∈Ev

re(v
f′n′ ,vfn)

(t) =

∑
∀e(vfn,v

f′′n′′ )∈Ev

re(vfn,v
f′′n′′ )(t), ∀vfn ∈ V

(2)

where vf ′n′ and vf ′′n′′ are a parent vertex and a child vertex

of vfn in the VNF graph, respectively. Note that, we do

not distinguish the service in the intermediate VNFs. This

is because one VNF could be shared among different SFCs.

Once the flow conservation is guaranteed, we can ensure that

all flows get completely served. For the origin function, we

shall distinguish the service as each service has one unique

origin function. The total egress flow amount from the origin

function of each service must be equal to the request rate, i.e.

∑
e(os,v(f,n))

∈Ev

re(os,v(f,n))
(t) = Rs(t), ∀s ∈ S (3)
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B. VNF Orchestration

The VNF orchestration is mainly about the activation and

deactivation of the VNFs of each SFC. To pursue the goal

of NUM, only a portion of VNFs, not all of them, shall be

activated according to the real-time traffic flow rate, provided

that the SLA is obeyed. Anyhow, if a flow passes through a

VNF f hosted on edge server n, the VNF must be activated to

process the flow, i.e. xfn(t) = 1. On the other hand, it would

be better to make xfn(t) = 0 for operation cost reduction

when there is no flow to be processed. Let rfn(t) denote the

total flow rate to VNF f on edge server n, i.e.

rfn(t) =
∑

f ′,e(v
f′n′ ,vfn)∈Ev

re(v
f′n′ ,vfn)

(t), ∀v(f,n) ∈ V (4)

Thus, we can easily express the relationship between xfn(t)
and rfn(t) in a linear form as

rfn(t)

L
≤ xfn(t) ≤ rfn(t) · L, ∀vfn ∈ V (5)

where L is an arbitrary large number. The setup cost is

incurred only when a VNF needs to be activated but is inactive

in the previous time slot. As a result, we can calculate the total

setup cost as

CSU (t) =
∑

vfn∈V
max{xfn(t)− xfn(t− 1), 0} · ΦSU

f (6)

from which we shall see that the VNF activation decision not

only depends on the previous decisions, but also affects the

subsequent decisions.

If a VNF is activated on an edge server during a time slot,

certain operation cost will be charged by the infrastructure

provider. The total operation cost therefore can be written as

COP (t) =
∑

vfn∈V
xfn(t) · μfn · ΦOP

fn (7)

Meanwhile, the communication cost for transferring the

traffic flow from the servers hosting its parent function will

be also counted in as

CTR(t) =
∑

e(vf∗n∗ ,vfn)∈Ev

re(vf∗n∗ ,vfn)
(t) · ΦTR

n∗n (8)

C. End-to-End Delay and Utility

As mentioned above, the end-to-end delay of a flow request-

ing service s is defined as the sum of the processing delay on

each constituent VNF of the SFC. Thus, the average end-to-

end delay of a flow requesting service s can be computed as

ds(t) =
∑
f∈Fs

dfn, ∀s ∈ S (9)

where dfn is the average processing delay for VNF f on

edge server n. Although it can be estimated via applying

various queuing models, none of them gives an accurate value

in practice. Even based on queuing theory, we can estimate

it in closed-form as a function of the processing rate μfn

and request rate rfn, e.g., dfn(t) =
1

μfn−rfn(t)
with M/M/1

model, it is still non-convex, no matter which model is applied.

This is the reason that end-to-end delay is rarely included in

the optimization models in the existing work.

Nevertheless, to build a formal description on the problem

studied in this paper, we still take into account of the end-

to-end delay as it is closely relevant to the network utility,

even without closed-form expression. We follow the classical

model defined in [17] and define the revenue function as:

USLA
s (t) = Ps ·Rs(t)− log ds(t), ∀s ∈ S (10)

where Ps is the expected service payment from consumers

according to the SLA. The service provider receives full

payment when the delay is small. With the increase of service

delay, less payment can be obtained. Now, we can calculate the

network utility by subtracting the total cost from the revenue,

i.e.

U(t) =
∑
s∈S

USLA
s (t)− CSU (t)− COP (t)− CTR(t) (11)

D. NUM Problem Formulation

Summing up all the issues, we can finally formulate the

VNF orchestration and flow scheduling for the NUM problem

as
Overall-NUM:

max :
∑
t∈T

U(t),

s.t. : (1), (2), (3), (5).

Due to the involvement of non-convex expression U(t), it

is obvious that the problem described above is a non-convex

optimization problem, which is hard to solve, i.e. at least NP-

hard. Next, we will formally show that it is NP-hard.

E. Hardness Proof

Intuitively, we can greedily maximize the NUM of each

time slot, i.e. Instant-NUM with known flow rates and VNF

activation statuses, at run-time to approach the Overall-NUM.

While, we will see that even such Instant-NUM is NP-hard.

Theorem 1: The VNF orchestration and flow scheduling

for the NUM problem in each time slot is NP-hard.

Proof: The k-level (or multilevel) uncapacitated facility

location problem is one of the classical generalizations of the

uncapacitated facility location problem, and usually occurred

in modeling supply chains, e.g., how to locate warehouses and

distribution centers in a hierarchical distribution network [18].

The definition of the k-level uncapacitated facility location

problem is that: given K collections Sk of facilities for |K|
levels, and a set of clients J . Each client j ∈ J has to be served

by a sequence of |K| open facilities in order, one from each

level (k, k−1, ..., 1). That is, for each level, at least one facility

must be selected from each facility collection. The goal is to

open a subset of the facilities that minimize the sum of the

total opening cost of the facilities and the total communication

cost of the paths between facilities.

We assume that the VNFs can provide sufficient resources

and the end-to-end delay is negligible, so we have USLA
s (t) =

937



−CSU (t) − COP (t) − CTR(t). Then the NUM problem can

be transformed into a cost minimization problem as

Instant-NUM:

min :
∑
t∈T

CSU (t) + COP (t) + CTR(t),

s.t. : (1), (2), (3), (5).

In one time slot, the network flow of each service s ∈ S
should be served by an ordered set Fs of VNFs, i.e. |Fs|-
level. For each level, we must activate at least one instance

as multiple VNF instances in the same level may coexist on

different edge servers. We shall minimize the activation cost

of the VNFs and the communication cost between the edge

servers. This is exactly a multi-level uncapacitiated facility

location problem, which has been proved as NP-hard [18].

IV. CUSTOMIZED DDPG-BASED ALGORITHM DESIGN

There are many available DRL algorithms (e.g., DQN,

DDPG, A3C) with different features. As the NUM problem in-

volves both discrete control (i.e. VNF activation and deactiva-

tion) and continuous control (i.e. flow scheduling), we choose

DDPG capable of continuous control as the base algorithm.

Although the Instant-NUM problem is NP-hard, fortunately we

notice that it is in integer linear programming (ILP) form with

binary variables, which has been extensively studied. Many

heuristic algorithms (e.g., branch-and-bound) and solvers (e.g.,

Gurobi Optimizer) are available. Furthermore, we will see that

the solution actually can be used to customize the DDPG

training algorithm such that it can better fit our NUM problem.

The basic DDPG training procedure can be viewed as a

combination process of policy-based and value-based methods.

The DDPG agent learns the optimum policy and its value

function through interactions with the network environment.

The agent is composed of two parts: the actor network (i.e.

policy) and the critic network (i.e. estimated value function).

The role of the actor is to define parameterized policy and

generate actions (e.g., VNF activation and flow scheduling) ac-

cording to the observed network state (e.g., network topology,

current VNF activation, flow rate), while the critic is in charge

of evaluating current action considering the reward received

from the network. In detail, the critic produces a temporal
difference error (TD-error) which indicates whether current

actions are getting better or worse than expected, and then

adjusts both the actor and the critic accordingly to reduce

the TD-error mostly. Therefore, actor-critic methods typically

perform well in learning continuous-valued stochastic policies.

Nevertheless, to utilize the DDPG algorithm, we shall first

accurately define state, action, and reward.

A. Definition of State, Action, and Reward

The essential elements required by any DRL, including

DDPG, can be described by a tuple (S,A,R), referring to

the state space, action space and reward space, respectively.

Upon the state S, after taking action A, the agent shall observe

a new state S ′, and corresponding reward R can be calculated

to judge the effectiveness of action. As a result, we define

Algorithm 1 Customized DDPG-based Agent Training

1: Randomly initialize critic network Q(S,A|θQ) and actor

π(S|θπ) with weights θQ and θπ

2: Initialize target network Q′ and π′ with weights θQ
′ ←

θQ, θπ
′ ← θπ

3: Initialize global replay buffer Rg and baseline buffer Rb

4: Receive the initial observed state s(0)
5: for t = 1 to Tepisode do
6: Apply the extreme case aware exploration method to

obtain action A(t)
7: Execute action A(t), observe rewardR(t) and new state

s(t+ 1)
8: Solve Instant-NUM and get the utility as R′(t)
9: if R(t) ≤ R′(t) then

10: (S(t),A(t),R(t),S(t+1))→ global buffer Rg and

baseline buffer Rb

11: else
12: (S(t),A(t),R(t),S(t+ 1))→ global bufferRg

13: end if
14: Sample a random mini-batch of N transitions

(Si,Ai,Ri,Si+1) from Rg and Rb

15: for n = 1 to N do
16: yn = Rn + γQ′(Sn+1, π

′(Sn+1|θπ′
)|θQ′

)
17: end for
18: Update critic by minimizing the loss: L = 1

N

∑
i(yn −

Q(Sn,An|θQ))2
19: Update the actor policy using the sampled policy gra-

dient:

∇θπJ ≈ 1
N

∑
i

∇AQ(S,A|θQ)|S=Sn,A=π(sn)∇θππ(S|θπ)|Sn

20: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′

21: end for

the state, action and reward associated with our problem as

follows:

S: The state S(t) at time t is represented by a vector

consisting of the flow rate of each service and the current

VNF activation statues, i.e. S(t) = [(Rs(t), xfn(t)), ∀s ∈
S, f ∈ F, n ∈ N].

A: The action shall include both VNF activation and flow

scheduling. According to (5), we see that the VNF activa-

tion can be derived from the flow scheduling. Therefore,

we only explicitly define the action on flow scheduling

as A(t) = [rse(t), ∀e ∈ Ev], where
∑

e∈Ev
rse(t) = Rs(t),

leaving the VNF activation and deactivation as hidden

actions.

R: The reward we received at time t is set as the objective

of our NUM problem defined in (11), i.e. R(t) = U(t).

B. Problems in General DDPG Training

Incorporating the above definitions, we start to design our

DDPG based algorithm. The normal training process of DDPG

algorithm is to first generate a bulk number of transition
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samples in the format of (S(t),A(t),R(t),S(t + 1)) in the

replay buffer via exploration, and then draw some samples as

mini-batch from the reply buffer to train the actor and critic

networks.

We got the following findings on our initial trial on directly

applying the DDPG algorithm.

• DDPG uses a normal-distribution-based exploration

method to explore an action A(t) as a real number

within the range of [0, Rs(t)]. However, during the ex-

periments, we find that most actions A(t) generated by

normal-distribution-based exploration are in the range of

(0, Rs(t)). That is, the case without load balancing is

seldom explored and learned.

• DDPG randomly draws the samples from the relay buffer

for the training of actor and critic networks. Our experi-

ments show that it may be trapped into bad samples with

low utility. Moreover, due to the relay buffer size lim-

itation, the bad samples may even occasionally extrude

the good samples from the buffer. Both may lead to slow

convergence and bad performance.

To tackle the above problems, we customize the DDPG

algorithm by redesigning the exploration method and the

replay buffer structure.

C. Customized DDPG Algorithm Design

1) Extreme Case aware Exploration: The inexperienced

agent shall see sufficient transition samples to become in-

telligent for good decision making. But there are an infinite

number of actions in continuous control problems, it is impos-

sible to see all possible actions. Some potentially good actions

may be easily overlooked due to the normal-distribution based

exploration, i.e. the probability of exploring an action as either

0 or Rs(t) approaching 0. In practice, it is common to activate

only one instance of each constituent network function of an

SFC, i.e. without load balancing, when the flow rate is low

or even totally deactivate the whole chain when there is no

request. Motivated by such fact, we propose a new extreme

case aware exploration to ensure the actions of 0 and Rs(t)
can also be fairly explored and learned. Firstly, we randomly

generate an integer i in range [1, I], where I is a parameter to

be set according to the estimated workload. Then, we explore

A = 0 and A = Rs(t) if i = 1 and i = I , respectively. For

the other cases, normal-distribution-based exploration is still

applied. Thus, the probabilities of exploring actions A = 0
and A = Rs(t) are both 1/I .

2) Dual Replay Buffer: The second problem mentioned

above is incurred by indistinguishably storing all the transition

samples in the replay buffer. Therefore, we propose a dual

replay buffer structure consisting of a global buffer and a

baseline buffer. The global buffer is the same as the replay

buffer in the general DDPG design. The baseline buffer

is particularly used to store the good samples according

to our understanding of the problem. Specially, we update

the baseline buffer with the help of model-based solutions.

Although the Instant-NUM overlooks the end-to-end delay, it

still provides potential solutions with good utility and therefore

can be used as baselines. If the utility of the explored action

is even worse than baseline, we only update the global replay

buffer as normal. Otherwise, we update both buffers such that

the baseline buffer can store some good samples. Accordingly,

we also redesign our mini-batch policy. Other than drawing

samples only from the global replay buffer, we enforce it with

some samples from the baseline buffer. To this end, we define a

parameter β ranging in (0, 1). Then, a mini-batch in size N is

constructed by drawing Nβ samples from the baseline buffer

and N(1− β) from the global buffer. By such means, we can

make sure that some potentially good samples are included in

the mini-batch.

3) Algorithm Design: Incorporating the above design, we

summarize our customized DDPG-based agent training algo-

rithm in Algorithm 1. We first randomly set the weights of

actor network π(s|θπ) and critic network Q(s, a|θQ) as θπ ,

and θQ, respectively (line 1). As for the target networks π′

and Q′, they are cloned from the actor and critic networks

(line 2). To support experience-based learning and avoid bad

sample trapping, we construct our dual replay buffer as Rg

and Rb in line 3.

Then, we kick off the agent training with initial state

S(0). At the beginning of each episode, we first apply our

extreme case aware exploration method to obtain an action

A(t), as shown in line 6. This action A(t) is executed to

get a reward R(t) and new state S(t + 1) in line 7. Next,

we solve Instant-NUM to obtain a reference reward and

apply our dual buffer update policy to update both global

buffer Rg and baseline buffer Rb with transition sample

(S(t),A(t),R(t),S(t+ 1)) in lines 8-13. After accumulating

enough transition samples in Rg and Rb, we sample a mini-

batch of N transition samples from both buffers to train the

actor and critic networks in line 14. For the nth transition

sample (S(n),A(n),R(n),S(n+1)), we calculate target value

y(n) from target actor network π′(S(n + 1)) and use the

average value 1
N

∑
n∈N y(n) to update the critic networks

(lines 16-18). Finally, we compute the policy gradient in

line 19 and update the target networks with update rate τ
in line 20. The above procedures iterate until convergence or

reaching the predefined episode bound.

Once the control agent gets well trained after convergence,

it shall already witness a sufficient number of samples and

become experienced to make the right decision towards max-

imal network utility according to the real-time observations

(i.e. state). We can embed the intelligent agent in the central

controller to orchestrate the VNFs and schedule the flows at

run-time, based on the information collected from the network.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed customized
DDPG (“cDDPG”) based VNF orchestration and flow schedul-

ing algorithm, we conduct extensive trace-driven simulations

and report the results in this section.

To verify the correctness of our newly designed exploration

method and dual buffer structure, we compare cDDPG with

non-customized DDPG based algorithm (“DDPG”). Besides,
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Fig. 1. Average reward during the training process

we also realize the algorithm (“NUM”) by solving the Instant-

NUM to maximize the utility in each time slot and the rule-

based algorithm “POLAR” [19] which combines both online

learning method for workload prediction and model-based

optimization for scheduling decision making. The neural net-

works, employed in both cDDPG and DDPG, are implemented

using the Tensorflow framework. For the bias exploration

in cDDPG, we set I = 10 in our experiments. All the

experiments are conducted on a server equipped with a 2.6GHz

8-Core Intel Xeon CPU E5-2670 processor. We consider two

well-known real network topologies: Cogent’s Network [20]

and ARPA Network [21], consisting of 43 and 47 nodes,

respectively, as the physical infrastructure. We view each node

as an edge server in our experiments. We embed 10 different

service chains consisting of 30 types of network functions.

Each network function has 1-3 VNFs hosted on different edge

servers. We adopt the dataset in [22] as the base trace to mimic

the time-varying traffic demands.

The first step of both cDDPG and DDPG is to train the

control agent with respect to the network environment includ-

ing the network topology, the SFC structure, and the VNF

deployment. Based on the network environment described

above, we train our agent for 600, 000 episodes. In order to

make each agent observe a sufficient number of samples, the

rates of the flows requesting the 10 services are randomly

generated in range [0, 11] during each episode. The main

differences between cDDPG and DDPG is in the training

process as we redesign the exploration method, replay buffer

structure, and the mini-batch policy. To check whether our

design does take effect, we check the average rewards during

the training process on Cogents network and ARPA network

in Fig. 1(a) and Fig. 1(b), respectively. Each point plotted in

Fig. 1 is averaged over 900 episodes.

From Fig. 1, we can see that the reward of either cDDPG

or DDPG gradually converges with the increasing number of

training episodes on both network topologies. For example,

the average rewards of DDPG and our cDDPG on Cogent’s

network are basically stable after about 200, 000 and 450, 000
training episodes, respectively, as shown in Fig. 1(a). One no-

table finding in Fig. 1(a) is that during the 340, 000 to 400, 000
episodes, the reward of DDPG suddenly drops. Similar obser-

vation can also be found in Fig. 1(b) during 500, 000-510, 000
episodes with ARPA network topology. This is attributed to the

trapping in a local optimal due to the normal-distribution based

exploration and non-distinguishable replay buffer design. Such

phenomenon is barely seen in the training process of cDDPG.

This verifies that our bias exploration and dual buffer structure

design effectively address the problems of traditional DDPG

as mentioned in Section IV-B. The results from the training

process imply that the cDDPG agent shall be more intelligent

than the DDPG agent as it gets higher reward after 600, 000
episodes of training.

Next, we apply the well-trained agents to practically or-

chestrate the VNFs and schedule the flows to check how they

perform. In addition, we include the performance evaluation

results for comparison in this group of experiments. For each

topology, we obtain the instant results during each time slot

when the flow rate upper bound is set as 11 and calculate the

average results under different flow rate upper bounds for 900
time slots. The results are reported in Figs. 2-5.

Let us first check the instant performance from Fig. 2 and

Fig. 4. Figs. 2(a) and 4(a) give the instant utility during the

first 30 time slots on Cogent’s network and ARPA network,

respectively. In most time slots, cDDPG achieves the maximal

utility as desired, implying that a well trained cDDPG agent

does indeed well control the network. NUM and POLAR

almost always perform the worst, but occasionally with the

best performance. DDPG looks better but never surpasses

cDDPG.

To get more insightful understanding of the above

phenomenon, we detail the instant revenue and cost in

Figs. 2(b), 2(c), 4(b) and 4(c). It can be observed from Fig

.2(b) and Fig. 4(b) that NUM and POLAR always give the

lowest revenue because they fail to capture the end-to-end

delay. DDPG performs better for its capability in incorporating

the end-to-end delay. But it is not as good as cDDPG due

to the not-so-good training, as reported in Fig. 1. The well-

trained cDDPG agent always gets the highest revenue as it
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Fig. 2. Instant performance during the first 30 time slots on Cogent’s network when the flow rate upper bound is 11
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Fig. 3. Average performance on Cogent’s network when the flow rate upper bound varies from 1 to 11
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Fig. 4. Instant performance during the first 30 time slots on ARPA network when the flow rate upper bound is 11
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Fig. 5. Average performance on ARPA network when the flow rate upper bound varies from 1 to 11

effectively schedules the flows to experience the lowest end-

to-end delay. However, when it comes to the instant cost,

we can see from both Figs. 2(c) and 4(c) that NUM and

POLAR always achieve the lowest cost. When the traffic

demand is low, even the lowest end-to-end delay does not take

much revenue, the cost is more dominant. This explains why

NUM and POLAR occasionally achieve the maximal utility.

Nevertheless, cDDPG can always well balance the tradeoff

between the revenue and the cost to get the maximal utility in

most cases.

Then, we investigate the long-term performance of all four

algorithms when the flow rate upper bound increases from 1 to

11. The average results on Cogent’s and ARPA networks are

reported in Fig. 3 and Fig. 5, respectively. From Fig. 3(a) and

Fig. 5(a), we can see that the average utility obtained by either

algorithm first increases and then decreases with the increasing

of flow rate. Initially, although more workload leads to higher

cost, as shown in Fig. 3(c) and Fig. 5(c), more revenue can also

be obtained if the flows get scheduled effectively as shown in

Fig. 3(b) and Fig. 5(b). Under any flow rate, cDDPG always
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Fig. 6. Utility and execution time under different number of time slots and network sizes

performs better than DDPG because it is trained better thanks

to the bias exploration and dual buffer design. An interesting

phenomenon is that when the flow rate is very small NUM

and POLAR can deliver the best performance, as shown in

Figs. 3(a) and 5(a). The reason is that when the flow rate is

very small, the cost dominates the utility and the model-based

NUM and rule-based POLAR can accurately find the optimal

solution with the lowest cost. However, when the flow rate

becomes larger, both cDDPG and DDPG outperform NUM

and POLAR as the revenue influences the utility more than the

cost. With further increasing of the flow rate, the processing

delay on a VNF is substantially increased, leading to severe

degradation of the revenue according to the definition in (10).

As a result, the utility of either algorithm on both topologies

starts to decrease.

Finally, we discuss how our cDDPG algorithm performs

with different numbers of time slots and network sizes as

shown in Fig. 6. First, we averagely divide the time period

T into multiple time slots varying from 10 to 60. The

corresponding long-term utility and total execution time of

cDDPG are reported in Fig. 6(a). It can be observed that the

execution time slightly increases with the number of time slots

since the agent needs to make decisions at the beginning of

each time slot. The long-term utility first shows an increase

trend and then converges. The reason is that, with less time

slots, the time slot interval is relatively long and the dynamics

of network flow cannot be accurately captured. The flow

scheduling decisions made at the beginning of each time slot

cannot deal with the rate fluctuation thereafter. As the number

of time slot increases, the interval of each time slot decreases,

so does the flow rate fluctuation level. After the number of

time slot researches 30, the agent can accurately capture the

flow rate fluctuation and make proper actions, hence the utility

of cDDPG gradually converges. Then, we check the scalability

of cDDPG by evaluating the execution time of NUM, POLAR,

DDPG and cDDPG on different network sizes from 10 to 60.

We can see from Fig. 6(b) that model-free algorithms (i.e.

cDDPG and DDPG) always require less execution time than

the model-based algorithms (i.e. NUM and POLAR). cDDPG

only slightly requires a little more execution time than DDPG.

VI. RELATED WORK

A. NFV Optimization

Since the proposal of NFV, the networking researchers

have conducted various studies to optimize the network with

different goals such as cost minimization [3], performance

improvement [1], [2], utility maximization [6]. Different as-

pects related with NFV, e.g., VNF deployment [2], VNF

resource scaling [5], flow scheduling [23], are investigated

independently or jointly. For example, Sang et al. [3] study

how to deploy and allocate the VNFs to minimize the total

number of VNF instances. Luizelli et al. [4] present an SFC

deployment algorithm that minimizes the virtual switching

cost. For performance improvement, Li et al. [1] propose NFV-

RT to maximize the achievable service capacity of each SFC,

under of constraints of estimated end-to-end delay. Guo et

al. [2] discuss the joint placement and routing of network

function chains in data centers for performance optimization.

For utility maximization, Kuo et al. [5] investigate the VNF

placement and path selection such that the network resources

can be better utilized. Later, Kuo et al. [6] further take the

link capacity into the SFC embedding problem to saturate the

usage of both computation and communication resources.

The above studies are all based on one-shot offline op-

timization. Recently, some studies have focused on how to

optimize the NFV networks at run-time to adapt to network

dynamics. For example, Zhang et al. [15] adopt online learning

to predict the traffic demands and proactively adjust the VNF

deployment to minimize the cost. Xu et al. [24] design an

online admission control algorithm to maximize the network

throughput for NFV-enabled multicasting. These online algo-

rithms are still model-based with some assumptions and none

of them takes the end-to-end delay into consideration.

B. Reinforcement Learning in Network Control

To many network control problems, besides model-based

optimization, an alternative promising solution is to apply

reinforcement learning. Actually, reinforcement learning has

been successfully applied in a variety of complex control

problems, in both wired networks and wireless networks. For

example, in wired networks, Xu et al. [9] propose a DRL-based
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control framework for network traffic flow balancing among

a set of pre-known paths. Stampa et al. [10] apply DRL to

adapt to the traffic demands and optimize routing for network

delay minimization in SDN networks. Chen et al. [12] develop

a two-level DRL to deal distinguishably with the short flows

and long flows for traffic optimization in datacenters. Mao

et al. [11] build a resource management and job scheduling

system based on reinforcement learning to minimize the job

completion time. In wireless networks, Ortiz et al. [25] find

that it is possible to apply reinforcement learning to tune the

transmission power to maximize the two-hop communication

throughput on nodes with energy-harvesting capability. Yan

et al. [26] design a multi-agent reinforcement learning based

radio access technology selection method to maximize the

network throughput.

The above successful examples show that reinforcement

learning is promising in addressing complex network control

problems. Hence, we apply reinforcement learning for VNF

orchestration and flow scheduling. Meanwhile, the reinforce-

ment learning algorithms shall be customized according to the

problem characteristics, as noted in [9], [12] and this work.

VII. CONCLUSION

In this paper, we investigated how to orchestrate the VNFs

(i.e. VNF activation and deactivation) and schedule the flows

to maximize the overall network utility with the consider-

ation of end-to-end delay and various cost. It is hard to

use traditional model-based algorithm to address such NUM

problem formulated as a non-convex optimization form and

proved as NP-hard. Instead, we resort to the newly proposed

DRL technique, i.e. DDPG, to design a model-free solution.

Although DDPG is applicable, we notice that it is too general

to fit our problem and therefore we further customize it by

redesigning the exploration method and proposing dual replay

buffer for distinguishable sample reservation. In particular,

we exclude the end-to-end delay to simplify our problem

formulation, whose solution is then applied for the dual buffer

update. The well trained control agent then can intelligently

orchestrate the VNFs and schedule the flows for maximal

network utility at run-time, with respect to the real-time traffic

demands. Extensive experiments verify the correctness of our

design and the efficiency of our algorithm by the fact that

it outperforms both model-based method and non-customized

DDPG based algorithm.
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