
Joint Online Edge Caching and Load Balancing for
Mobile Data Offloading in 5G Networks

Yiming Zeng∗, Yaodong Huang∗, Zhenhua Liu†, Yuanyuan Yang∗
∗Department of Electrical and Computer Engineering
†Department of Applied Mathematics and Statistics

Stony Brook University, Stony Brook, NY 11794, USA

{yiming.zeng, yaodong.huang, zhenhua.liu, yuanyuan.yang}@stonybook.edu

Abstract—This paper considers how to cache popular contents
and load balancing in 5G networks to minimize the total operating
cost. Specifically, popular contents requested by mobile users
(MUs) are cached in small base stations (SBSs) to serve them
with better quality and lower cost because the SBSs are often
much closer to MUs than the base station (BS). Due to limited
caching capacity and bandwidth of SBSs, the caching policy
and load balancing algorithm need to be carefully designed
jointly and dynamically over time. In this paper, we formulate
the joint content placement and load balancing by an online
optimization problem. This problem is challenging because of the
integer constraint in content placement and the lack of future
information. We tackle the challenges in two progressive steps.
First, we propose a primal-dual algorithm to solve the problem
efficiently and prove it always achieves the optimal cost assuming
all system information is available. Then we integrate promising
online optimization algorithms with the proposed primal-dual
algorithm so that only limited short-term predictions are needed.
Theoretical performance bounds are also derived. We conduct
extensive numerical simulations to evaluate the performance of
proposed algorithms. Results highlight that the proposed online
algorithms can reduce the system cost significantly (by as much
as 27%) compared to the existing solutions and perform similarly
to the offline optimal solution.

I. INTRODUCTION

The explosive growth of smart edge devices such as smart

phones and tablets has greatly enriched the mobile user (MU)

experience by expanding available services such as social

media applications and live video streaming [1]. This im-

provement comes at the cost of an exponential growth of

data generated in communication networks. In particular, the

global mobile data traffic is predicted to increase 7x times

from 2016 to 2021 [2] and threatens to drain the capacity

of cellular networks. As a result, wireless communication

networks are required to increase their capacity at a similar

pace, as well as to meet the stringent requirements of latency-

sensitive applications of MUs [3].

To increase the capacity of the cellular networks, the 5G

wireless network is designed with larger bandwidth, larger

scale of antennas, higher frequency reuse with network densi-

fication, etc. [4]. Besides the engineering efforts, an increasing

number of small base stations (SBSs), e.g., microcell, picocell

and femtocell base stations [5], are being deployed for better

service quality with lower costs. These SBSs are connected

with the core base station (BS) with backhual links. Instead of

always communicating with the BS, MUs are able to utilize

nearby SBSs. The transmission cost between a user and a

neighbouring SBS is much lower than that from the BS because

of the lower energy consumption resulted from the shorter

distance and spectrum reuse. However, the effectiveness of

this approach heavily relies on the high speed backhaul links

between the BS and every single SBS. The capacity of these

links must exceed the aggregated data requests rate of all the

users served, which is not practical due to the high structure

costs.
Edge caching is proposed in 5G for better quality of service.

SBSs in 5G networks are equipped with mobile computing

servers, which provide both memory for caching and com-

puting devices for intelligent decision making [6]. Due to

the ever decreasing cost of memory devices, it is realistic to

equip each SBS a limited but significant amount of memory

space that enables edge caching. The temporal variability of

network traffic provides the opportunity to perform caching

updates during the periods with low traffic, which reduces

peak traffic demands and the transmissions delay [7]. The

computing devices enable the SBS to carefully balance load

among competing user requests.
Many previous studies have been done on edge caching in

the cellular network (including 5G network) [8]–[11]. Note

that the content popularity or the MUs’ request patterns are

often modeled as Zipf distributions. The caching policy is

modeled as integer programming in [8], [9]. The online caching

problems are considered in [12]–[18]. Among them, [13]–[15]

implement data analysis methodologies driven by real data for

cache replacement algorithms. The time-correlated adjustment

cost such as the system replacement cost is not considered in

the most studies mentioned above. However, it has been widely

considered in many domains, e.g., edge caching in Cloud Radio

Access Networks (C-RAN) [12] and load balancing [19], [20].
In this paper, we aim to answer the following question:
How should each SBS cache contents (caching policy) and

each MU be served from the SBS or the BS for each request
(load balancing) in order to minimize the system cost?

The key challenges are:

• The caching policy and load balancing are interdependent

and need to be jointly optimized. The caching policy

depends on the load balancing decisions of MUs to decide

which contents to be (re)placed. MUs need to know

whether the requested contents are cached by each SBS

923

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00096

to distribute their requests across the SBSs.

• The edge caching involves integer programming, which

is NP-hard in many specific cases. Therefore, we need

a computationally efficient solution instead of the brute-

force method.

• The decisions are over a possibly long time horizon,

during which the popularity of contents, user demand,

and other factors may change. This makes it an online

optimization problem, and it is challenging to solve online

optimization with integer constraints.

By addressing these challenges, we make the following

contributions.

• We formulate an online optimization problem for the joint

caching policy and load balancing for the mobile data

offloading in 5G networks.

• We propose an algorithm to solve the offline problem by

separating the original problem into two sub-problems

based on dual decomposition. The first sub-problem is

a standard convex optimization problem which can be

solved directly. We relax the integer variables in the other

sub-problem to continuous ones and prove this relaxation

is exact, i.e., the optimal integer solution is guaranteed.

• To solve the problem in an online manner with lim-

ited predictions, we incorporate three promising on-

line algorithms, namely, the Receding Horizon Con-

trol (RHC) [19], Averaging Fixed Horizon Control

(AFHC) [19] and the Committed Horizon Control

(CHC) [21]. We prove the theoretical bound. Details of

these algorithms are presented in Section IV.

• Extensive simulations are conducted to validate the perfor-

mance of our online algorithms. Results highlight that the

proposed algorithms reduce the system cost significantly

(by at most 27%) compared to the existing scheme.

The rest of paper is organized as follows. In Section II, we

describe the system model and formulate the joint caching and

load balancing problem. Section III provides a solution based

on the primal-dual method to solve the problem. The online

algorithms are designed in Section IV. Section V provides our

numerical results. Some related work is introduced in Section

VI, and we conclude our work in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time model whose timeslot matches

the timescale at which caching policies and load balancing

decisions can be updated. There is a (possible long) interval of

interest t ∈ {1, 2, 3, ..., T}. In reality, T can be a year or a time

slot every 10 minutes. Important notations are summarized in

Table I.

A. Modeling the 5G network:

Stations: As depicted in Fig.1, we consider a down-link edge

caching wireless 5G network with one base station (BS) and N
small base stations (SBSs), indexed by N = {1, 2, 3, ..., N}.
Each SBS covers the area with the transmission range of a

few tens of meters. We assume that SBSs do not interfere

with the BS. For the presentation simplicity, we assume the

TABLE I
TABLE OF NOTATIONS USED IN PROBLEM FORMULATION

Notation Definition
N Set of SBS N = {1, 2, . . . , N}
K Set of files K = {1, 2, . . . ,K}

Mn Set of classes of MUs Mn = {mn : n ∈ N}
T Set of timeslots T = {1, 2, . . . , T}
Λt MUs requests matrix

λt
mn,k Demand of mn for content k at time slot t

Xt Set of cahching variables Xt = (xt
n,k)n∈N ,k∈{1,2,3,...,K}

Y t Set of load balancing variables of SBS (ytmn,k)mn∈Mn,k∈K
Cn Cache size of SBS n
Bn Bandwidth capacity of SBS n
ωmn Weighted transmission parameter to BS of the

classes MUs mn

ω̂mn Weighted transmission parameter to SBS n of the
classes MUs mn

Xt Vector of Xt

Yt Vector of Y t

βn Cache replacement parameter of SBS n
ztmn,k Load balancing variable of BS

Fig. 1. An example of our proposed system model.

regions covered by different SBSs are disjoint. This assumption

accords with the real 5G cellular network topology structure

as it reduces the implementations cost and enables spectrum

reuse by different SBSs. Our models and algorithms can be

readily extended to SBSs with overlaps in coverage.

The BS offers a set K = {1, 2, 3, ...,K} of content items and

these items are of the same size of o. Note that this assumption

is justified in the real system that the contents are spilt into

chunks of the same size and it has been used in many previous

works (e.g. [12], [22]). For presentation simplicity, we assume

o = 1 and normalize everything else accordingly.

Mobile users: Denote Mn = {mn : n ∈ N} as the set of

classes of mobile users (MUs) in SBSs, where mn represents

the (multiple) MUs served by the SBS n. Each MU in mn can

either request from the BS or the SBS n.

The mean arrival rate at time t is denoted by λt
mn,k

, the

demand of each MU class mn ∈ Mn for content k ∈ K at

time slot t ∈ T . Denote by Λt the matrix of all λt
mn,k

. We

set Λt = 0 for t ≤ 0 and t ≥ T . These request can be served

by either the BS or the corresponding SBS, which is preferred

when the requested item is in the cache of the SBS and there is

924

enough bandwidth for the transmission. Otherwise, the request

is served by the BS instead.

Decision variables and constraints: We focus on the caching

(re)placement policy and load balancing for each individual

SBS in order to minimize the cost for serving requests from

all MUs. Specifically, we seek the values of the following

parameters:

• Edge caching: Xt = (xt
n,k)n∈N ,k∈K, where xt

n,k ∈
{0, 1} is the (integer) variable represents whether content

k is cached in SBS n at time t (xt
n,k = 1) or not

(xt
n,k = 0). Denote caching decision of all SBSs by Xt.

• Load balancing between the BS and SBSs: The frac-

tion of requests served by the SBS is denoted by

Y t=(ytmn,k
)mn∈Mn,k∈K, where ytmn,k

∈ [0, 1] represents

the fraction of requests from each MU class mn for

content k that is served by the SBS n at timeslot t.
Similarly, the fraction of requests served by the BS is de-

noted by Zt = (ztmn,k
)mn∈Mn,k∈K, where ztmn,k

∈ [0, 1]
represents the fraction of requests from each MU class

mn for content k that is served by the BS n at timeslot

t.

The caching policy of each SBS is restricted by its caching

capacity Cn. Formally,∑
k∈K

xt
n,k ≤ Cn, ∀n ∈ N , t ∈ T . (1)

Similarly, the total load allocated to MUs ytmn
cannot exceed

the bandwidth capacity of each SBS, denoted as Bn. Formally,

we have the following constraint:∑
k∈K

∑
mn∈Mn

λt
mn,ky

t
mn,k ≤ Bn, ∀n ∈ N , t ∈ T . (2)

The load balancing decision (percentage of the requested

content served by the BS and the SBS) and the caching decision

of SBS are tightly coupled. The request from an MU for an

item k cannot be satisfied by SBS n if the item has not yet

been cached by this SBS. This inter-dependency is captured

by the following set of constraints:

ytmn,k ≤ xt
n,k, ∀n ∈ N ,mn ∈Mn, k ∈ K, t ∈ T , (3)

which implies that if xt
n,k = 0, then ytmn,k

= 0.

Actually, requests from the MUs must be satisfied by either

BS or SBSs, i.e.,

ztmn,k + ytmn,k = 1, ∀n ∈ N , ∀mn ∈Mn, ∀k ∈ K, ∀t ∈ T .
(4)

Therefore, in the remainder of the paper, we ignore ztmn,k

because it is fully decided by ytmn,k
(zmn,k = 1− ytmn

).

B. The objective function

We aim to choose the xt
n,k and ykmn,k

to minimize the cost

for serving the requests from MUs, which is decomposed into

the following three components:

• The operating cost incurred by serving the MUs directly

by the BS: The cost is mostly due to resource consumption

of the network such as spectrum, backhual link bandwidth,

energy, etc.

• The operating cost incurred by serving the MUs by the

SBSs: Similar to the BS, serving the requests by the SBSs

consumes network resources. However, SBSs are close to

the MUs in edge, therefore the cost such as delay and

transmission energy is far less than that of the BS.

• The caching replacement cost incurred by updating the

items cached in the SBSs: An SBS needs to fetch the

new items from the BS and replace the old ones from the

caching devices.

Now we model and discuss each component in details.
The operating cost for serving MUs from the BS: This is

the sum of the operating cost of MUs requests that cannot be

satisfied by the local SBSs across all MUs. For each SBS n,

the operating cost depends on the number of received requests

by the BS and the location of MUs. For instance, the MUs

who are located at the boundary the BS cell incur higher

operating cost, e.g., due to higher transmission power required

and larger delay. We use a transmission weighted parameter

ωmn
≥ 0 to describe the all these situations and captures the

average impacts of the location of the MUs in the class mn

on the operating cost of the BS. In [23], the author models the

energy consumption cost function as a linear function of the

total transmission power of base stations. The assumption is at

variance with objective reality because to deliver the packet to

the MU under bad channel conditions, it takes more time which

results in higher energy cost. In [8], the authors model the

monetary cost for the energy consumption as a strictly convex

function of the load and the transmission efficiency which

can be modified to allow for the linear energy consumption

function. In this paper, we assume that our cost function ft(·)
has the similar properties as we mentioned above. Formally,

ft(·) is assumed to be non-decreasing and jointly convex in all

ytmn,k
’s.

The cost function ft(·) can be any function that satisfies

the properties discussed above. For example, the following is

a representative function of the BS during timeslot t:

ft(Y
t) =

∑
n∈N

(∑
mn∈Mn

ωmn

∑
k∈K

(
1− ytmn,k

)
λt
mn,k

)2

.

(5)

Note that this cost function is jointly convex in all ytmn,k
’s.

The operating cost for serving MUs by the SBSs: Similar to

the previous description, it is the sum of the operating cost of

MUs requests which can be served by the local SBSs directly

across all classes of MUs. The operating cost function, denoted

as gt(·), depends on the volume of the received requests and

the location of the MUs. The weighted parameter ω̂mn
≥ 0 is

used to describe how the locations of MUs effect the operating

cost. Clearly, the distance from BS to MUs is far larger

than the distance from SBSs to the corresponding MUs, the

transmission power needed for BS is greater than SBSs. To

describe this situation, the weighted parameter ωmn
is greatly

larger than the weighted parameter ω̂mn . Similiar with ft(·),
gt(·) is assumed to be non-decreasing and jointly convex in all

925

ytmn,k
’s, the total operating cost of the SBSs during timeslot t

is

gt(Y
t) =

∑
n∈N

(
∑

mn∈Mn

ω̂mn

∑
k∈K

ytmn,kλ
t
mn,k)

2. (6)

Cache replacement cost: we consider the cost of updating

cache contents between consecutive timeslots. Note that this

component is often overlooked in previous work. This cost

includes but not limits to the energy and delay incurred by the

content update. Formally, the cache replacement cost for the

SBS n from timeslot t− 1 to t is

d(xt
n, x

t−1
n) = βn

∑
k

(
xt
n,k − xt−1

n,k

)+
, (7)

where βn includes costs from different sources, e.g., the energy

cost for cache replacement, the delay cost incurred during the

update, network cost for downloading items from BS.

Therefore, the total cache placement cost is

h(Xt, Xt−1) =
∑
n∈N

βn

∑
k

(
xt
n,k − xt−1

n,k

)+
. (8)

C. The optimization problem

Now we present the optimization problem that aims to min-

imize the objective function consisted of the three components

mentioned previously by choosing the caching policy xt
n,k and

the load balancing policy ytmn,k
for each SBS and MU during

the time horizon. Formally, we have the following formulation:

min
Xt,Yt

∑
t∈T

(
f(Y t) + g(Y t) + h(Xt, Xt−1)

)
, (9)

s.t. (1), (2), (3),

xt
n,k ∈ {0, 1}, ∀n ∈ N , k ∈ K, t ∈ T , (10)

0 ≤ ytmn,k ≤ 1, ∀n ∈ N ,mn ∈Mn, k ∈ K, t ∈ T . (11)

This optimization problem is jointly convex in Xt and

Y t. However, there are two main challenges of this joint

optimization problem from the following aspects:

(1) Caching policy xt
n,k needs to be an integer. This makes the

problem a mixed-integer programming problem, which is

NP-hard [24]. It is difficult to solve this problem even

in the offline case, where all the information is known

beforehand.

(2) Some information needed is not available when making

the decision, e.g., future request arrival rates. However,

due to the caching update costs, decisions of different

timeslots are coupled. This makes the problem an online

optimization. It is challenging to handle the integer con-

straint and the lack of future information simultaneously.

III. OFFLINE ALGORITHM DESIGN

We start from the offline algorithm design, where all nec-

essary information is provided. This problem is a mixed 0-1

integer optimization, so it is not efficient to solve the problem

directly. In this section, we propose a novel solution based

on the primal-dual decomposition method to solve this offline

problem and prove that it is guaranteed to find the optimal

solution. This algorithm can be further used for the online

optimization.

Note that xt
n,k and ytmn,k

are coupled in the constraint (3).

We start by relaxing the constraint (3) and introduce the set of

dual Lagrange multipliers:

μt = (μt
n,mn,k ≥ 0 : ∀n ∈ N ,mn ∈Mn, k ∈ K, t ∈ T).

(12)

As we show, this relaxation simplifies the problem since it

can decouple the caching policy of SBSs and load balancing

decision of the MUs. Similar methods are used in [8], [9].

The new Lagrange function is defined as follows,

L(Xt,Yt, μt) =
∑
t∈T

(
f(Y t) + g(Y t) + h(Xt, Xt−1)

)
+
∑
n∈N

∑
mn∈Mn

∑
k∈K

∑
t∈T

μt
n,mn,k(y

t
mn,k − xt

n,k).
(13)

After introducing the Lagrange multiplier μt, the problem

can be rewritten as,

max
μt

min
Xt,Yt

L(Xt,Yt, μt), (14)

s.t.(1), (2), (10), (11), (12).

A. The primal-dual decomposition algorithm

To address this dual problem efficiently, we approach a

primal-dual decomposition algorithm as shown in Algorithm 1.

It is an iteration method, in each iteration l, the primal variable

(xt
n,k, y

t
mn,k

) is updated with the dual variable μt, then xt
n,k

and ytmn,k
will be inputted to the dual objective function.

Algorithm 1 Primal-dual Algorithm

Input: T , βn, Λt, ωmn , ω̂mn accuracy level ε = 0.0001, maximum
number of iterations L

Output: Xt, Yt

1: Set μ = 0, the lower bound LB = −∞, the upper bound UB =
+∞, and l = 1.

2: while UB−LB
UB

> ε and l ≤ L do
3: Solve sub-problems P1 for xt

n,k and P2 for yt
mn,k (in parallel)

4: Set h as the optimal value of the primal problem
5: if h > LB then
6: LB = h
7: end if
8: Update UB as the optimal value of (9)
9: Update dual variables using (15)(16)(17)

10: l=l+1
11: end while

The Dual Problem. The caching variable xt
n,k is discrete

and the constraint sets of xt
n,k are discrete accordingly, the

dual function can not be differentiable. Hence, the sub-gradient

926

method [25] [26] is employed. The following settings are

chosen because of the easy implementations in practice, while

other sub-gradient decent methods can also be adopted for our

algorithm.

In each iteration of l = 1, 2, 3, . . . , for the dual problem,

Lagrange multipliers are updated according to [26]

μ
t,(l+1)
n,mn,k

= [μ
t,(l)
n,mn,k

+ δ(l)g
t,(l)
n,mn,k

)]+, (15)

where [·]+ denotes the projections on the feasible set of μt.

δ(l) is the step size for the l update,

δ(l) =
1

1 + α · l , (16)

where α is the parameter to control the step size and g
t,(l)
n,mn,k

is

the current sub-gradient of iteration l. The sub-gradient of the

dual variable is equal to the value of the respective inequality

constraint of the primal problem [26].

g
t,(l)
n,mn,k

= y
t,(l)
mn,k

− x
t,(l)
n,k . (17)

After obtaining the updated variables, the relaxed primal prob-

lem is solved to find the new primal variables.

The Primal Problem. Observe that the constraint sets of

xt
n,k and ytmn,k

are disjoint, then the primal problem can be

decomposed as two separate classes of problems denoted as

P1 and P2 respectively, each problem is solved in l iteration

after the dual variables are updated, which as follows,

P1 : min
Xt

∑
t∈T

(h(Xt, Xt−1)−∑
n∈N

∑
mn∈Mn

∑
k∈K

μt
n,mn,k · xt

n,k),
(18)

s.t.(1), (10), (12).

P2 : min
Yt

∑
t∈T

(yt(Y
t) + gt(Y

t)+∑
n∈N

∑
mn∈Mn

∑
k∈K

μt
m,ky

t
mn,k),

(19)

s.t.(2), (11), (12).

Caching Problem. Note that P1 only involves the caching

variables xt
n,k, hence we name P1 as caching problem. P1

can also be composed into N independent sub-problems. For

each SBS n ∈ N , the sub-problem is denoted as Pn
1 . Since

xt
n,k is discrete, Pn

1 is also an integer programming. Instead

of solving this integer programming directly, we relaxed the

constraint (10) (i.e., xt
n,k ∈ [0, 1]), then the problem can be

solved by the standard convex optimization techniques [25].

Load Balancing Problem. Similar to P1, P2 only involves the

load balancing variables ytmn,k
, so we name it as load balancing

problem. Note that the objective function is strictly convex, and

the constraint sets are convex and continuous. Therefore, the

standard convex optimization techniques can be applied [25].

B. Performance analysis

In Caching Problem P1, caching variables are relaxed from

{0,1} to [0,1], the solutions derived after the relaxation may not

be feasible to the original problem if solution of the caching

variables are decimal. To address this problem, in Theorem

1, we prove that the optimal solution to the relaxed integer

problem is also the solution to the original integer problem.

Formally,

Theorem 1. The optimal solution of the relaxed integer prob-
lem is the optimal solution of the original integer problem and
the optimal solution is integral.

To prove Theorem 1, we need two lemmas first.

Lemma 1. The optimal solution result of linear problem
min{cx : Ax ≤ b, x ≥ 0} is the same with the integer linear
problem min{cx : Ax ≤ b, x ≥ 0} cointegraing vectors if the
A is the totally unimodular matrix.

The proof of Lemma 1 can be found in [27].

Lemma 2. (Hoffman and Kruskal) An integral matrix A is
totally unimodular if and only if the polyhedron {x : Ax ≤
b, x ≥ 0} is integral for each integral vector b.

The proof of Lemma 2 can be found in [28].

Then, the proof of Theorem 1 is as follows,

Proof: To implement the properties of the linear program-

ming, we write the Pn
1 into the linear form by introducing a

new set of variables,

ptn = {ptn,k ≥ 0 : ∀k ∈ K}. (20)

Then the new problem can be re-formulated as :∑
t∈T

(∑
n∈N

∑
k∈K

βnp
t
n,k −

∑
n∈N

∑
k∈K

∑
mn∈Mn

μt
n,mn,kx

t
n,k

)
,

(21)

s.t.(1), (10), (12), (20),

ptn,k ≥ xt
n,k − xt−1

n,k , ∀n ∈ N , k ∈ K, t ∈ T . (22)

The new problem is equivalent to Pn
1 and the new problem is a

linear programming problem, hence we can employ Lemma 1

and Lemma 2 to prove Theorem 1.

From Lemma 1, if we prove that the constraints matrices

are totally unimodular, we can prove that the optimal solution

of relaxed linear problem is the optimal solution of integer

problem. For constraint (1), it is clear that constraint matrix of

xt
n,k is totally unimodular. For constraint (22), we rewrite (22)

in the following form,

ptn,k − xt
n,k + xt−1

n,k ≥ 0, ∀n ∈ N , k ∈ K, t ∈ T , (23)

Then with the constraint matrix D, constraint (23) can be

transformed as follows,

D · (ptn,k, xt
n,k, x

t−1
n,k)

T ≥ 0, (24)

927

where (·)T means the transpose of a matrix. The matrix D can

be written as

D =
{
1,−1, 1

}
. (25)

It is easy to check that D is a totally unimodular matrix. D can

also be readily extended to the T dimensions. By constructing

the totally unimodular matrix for the constraints and from

Lemma 1, Pn
1 can be solved with relaxed xt

n,k from {0, 1}
to [0, 1]. Next we prove that the optimal solution of relaxed

integer problem is integral.

From Lemma 2, the optimal solution of the relaxed integer

problem is on the vertex of the polyhedron by the constraints

which are integers.

From Theorem 1, Pn
1 can be solved by standard linear

programming methods, simplex method is applied in this paper.

IV. ONLINE ALGORITHMS DESIGN

Many online control algorithms have been studied in the

literature to tackle the Online Convex Optimization (OCO)

problems which consider the impact of the time-correlated

adjustment cost [12], [19], [20]. Receding Horizon Control

(RHC), also known as the Model Predictive Control (MPC)

[29], [30] is a classic online control algorithm which has a

long history handles both the prediction effect and the time

coupling effect. In our previous work, we design the online

algorithms Averaging Fixed Horizon Control (AFHC) [19] and

Committed Horizon Control (CHC) [21].

We implement online algorithms RHC, AFHC and CHC

to solve our problem, these online algorithms are designed

for continuously convex problem. However, in this paper,

the problem is an optimization with integer variables xt
n,k.

The theoretical bounds proposed for these online algorithms

can not be guaranteed for integer programming, and solution

employed by RHC, AFHC and CHC directly are not feasible

for our integer problem. So RHC, AFHC and CHC can not

be employed directly. To tackle this challenge, we propose

the fixed version of RHC, AFHC and CHC for the integer

programming and theoretical performance bounds are also

derived.

In this section, firstly, we briefly introduce RHC and CHC

(AFHC is the special case of CHC in the integer programming).

Then we present the integer version and the proof of theoretical

bounds for each of them.

In the offline problem, all the information of the system is

available, e.g., all the MUs requests information Λt. In the

online problem, information about the system in the future

will be inaccurate or even unknown because there are often

significant prediction errors, and the prediction quality would

be worse if predicted further into the future. However, in many

applications, it is possible to estimate the information in the

near future, such as requests for videos [15], workloads for

data centers [20] and information about solar and wind energy

[19].

All these online algorithms use a prediction horizon/window

of size w, RHC, AFHC and CHC make decisions in different

ways. In each time slot, RHC determines the actions in horizon

w to minimize the total cost. RHC assigns the first action of the

horizon to the next one predicted time slot. Similar with RHC,

AFHC first derives all w actions and then averages them. CHC

is the generalization of RHC and AFHC. Instead of committing

the fixed actions to the prediction, CHC allows for arbitrary

levels of commitment.

A. Receding Horizon Control (RHC)

1) Introduction of RHC: At each time-step τ , RHC solves

the cost optimization problem over the window (τ, τ + w)
when given the starting state xτ−1 and yτ−1 and the length

the prediction window (horizon) w.

Formally, define λ·|τ as the vector (λτ+1|τ , · · · , λτ+w|τ),
the prediction of λ·|τ in a w time steps prediction window at

time τ . Let Xτ (xt
n,k, λτ+w|τ) and Y τ (ytmn,k

, λτ+w|τ) as the

vector in Rw indexed by t ∈ T τ = {τ, · · · , τ +ω}, which are

the solutions to

min
Xτ ,Yτ

∑
t∈T t

(
ft(Y

t) + gt(Y
t) + h(Xt, Xt−1)

)
, (26)

s.t. xt
n,k ∈ {0, 1}, ∀n ∈ N , k ∈ K, t ∈ T τ (27)

0 ≤ ytmn,k ≤ 1, , ∀n ∈ N ,m ∈M, k ∈ K, t ∈ T τ , (28)∑
k∈K

xt
n,k ≤ Cn, ∀n ∈ N , t ∈ T τ , (29)

∑
k∈K

∑
mn∈Mn

λt
mn,ky

t
mn,k ≤ Bn, ∀n ∈ N , t ∈ T τ , (30)

ytmn,k ≤ xt
n,k, ∀n ∈ N ,mn ∈Mn, k ∈ K, τ ∈ T τ . (31)

This problem can be solved in the similar method to get

Xt(xt
n,k, λτ+w|τ) and Y t(ytmn,k

, λτ+w|τ) as we discussed

in Section III. By introducing the Lagrange multipliers for

constraint (31), the Algorithm 1 can be employed to solve this

problem.

Algorithm 2. Receding Horizon Control

For all t ≤ 0, set xt
RHC,n,k = 0 and ytRHC,mn,k

= 0. At

each time slot τ ≥ 1, set the caching states of SBS n at time

slot τ to

xτ
RHC,n,k = Xτ

τ (x
t
RHC,n,k, λτ+w|τ). (32)

Similarly, set the vector of routing variable as

yτRHC,mn,k = Y τ
τ (ytRHC,mn,k, λτ+w|τ). (33)

The competitive ratios of RHC is O(1 + 1
w) [19].

2) Integer version of RHC and theoretical bound: RHC

studied in [19] is the convex problem with continuous decision

variables. In this paper, the problem is the mixed integer

programming, the competitive ratio of RHC can not be applied

directly. However, we prove in the Theorem 2 that the RHC

bound of the mixed inter problem is the same with the

continuous convex problem.

Theorem 2. The competitive ratio of the RHC with mixed
integer problem is the same as the continuous convex problem.

928

Proof: From Theorem 1, we know that the optimal solu-

tion of the caching problem can be solved with relaxed integer

variables. In the online problem, after relaxing the integer

variables xt
n,k, the objective function (26) is strictly convex

and the constraint sets are convex, so the competitive ratio of

the integer problem is still O(1 + 1
w).

B. Committed Horizon Control (CHC)

1) Introduction of CHC: CHC is the generalization of the

AFHC and RHC. CHC introduces a new parameter, commit-

ment level r ∈ [0, w], which allows to average fixed r levels

decisions. Formally, let

Ψv = {i : i ≡ v mod r} ∩ [−r + 1, T], v = 0, · · · , r − 1.

Actions denoted as x
t,(v)
FHC,n,k and y

t,(v)
FHC,mn,k

determined in

the fixed commitment level r are defined as follows, by using

(26) to set

x
t,(v)
FHC,n,k = Xτ

τ (x
t,(v)
FHC,n,k, λ·|τ). (34)

Similarly, set the vector of routing variable as

y
t,(v)
FHC,mn,k

= Y τ
τ (y

t,(v)
FHC,mn,k

, λ·|τ), (35)

for all t ≤ 0, set xt
FHC,n,k = 0 and ytFHC,mn,k

= 0. At

τ ∈ Ψv , t ∈ {τ, · · · , τ +w}, CHC takes the average of r with

commitment level r, and window size is w.

Algorithm 3. Committed Horizon Control.

At time slot t ∈ Ψr, for all v, CHC averages the actions

{xτ
n,k, x

τ+1
n,k , · · · , xτ+v

n,k } and {yτmn,k
, · · · , yτ+v

mn,k
} determined

by equations (34) and (35), then sets

xt
CHC,n,k =

1

r

r−1∑
v=0

x
t,(v)
CHC,n,k, (36)

ytCHC,mn,k =
1

r

r−1∑
v=0

y
t,(v)
CHC,mn,k

. (37)

2) Integer version of CHC and the theoretical bound: In

[21], similar with the RHC, the objective function of CHC

is assumed to be continuously convex and the results from

equations (34) and (35) are continuous. Hence, after averaging

the actions in each commitment window, the final results are

also continuous and feasible to the original functions.

In this paper, problem (26) is an optimization with integer

variables xt
n,k. From Theorem 1, we know that the optimal

solution of xt
n,k is integral. From (36), after averaging them,

xt
CHC,n,k may be fractional unless every x

t,(v)
CHC,n,k is 1. For

instance, if the solutions of x
t,(v)
FHC,n,k are {1,0,1,0,1} for the

commitment level of r = 5, then x
t,(v)
CHC,n,k is 0.6, which is

not feasible and does not have the realistic meaning in our

system. The average value of caching variables is denoted

as x̃τ
CHC,n = {x̃t

CHC,n,1, · · · , x̃t
CHC,n,K}. To tackle this

problem, we propose a rounding policy for CHC and prove

the performance bound for the rounding policy.

CHC Rounding Policy. The caching policy xt
n,k and load bal-

ancing policy ytmn,k
are coupled together. Hence, the rounding

policy contains two steps. We determine xt
n,k first, and then

ytmn,k
is determined according to the xt

n,k.

(i) xt
n,k. We set the boundary value as ρ (ρ ∈ (0, 1)). For

all k ∈ K, if x̃t
CHC,n,k is greater or equal to ρ, then

xt
CHC,n,k = 1, otherwise xt

CHC,n,k = 0.

(ii) ytmn,k
. If xt

CHC,n,k = 0, then ytCHC,mn,k
= 0, else

ytCHC,mn,k
is calculated from (37).

The optimal rounding boundary value is derived in the Theo-

rem 3.

To make it easier to derive the theoretical bound of CHC

rounding policy, we rewrite another linear form of cache

replacement cost d(xt
n,k, x

t−1
n,k) as the following, which is

equivalent to d(xt
n,k, x

t−1
n,k),

φ(x, t) =

{
βnx

t
n,k, ifxt−1

n,k = 0

0, ifxt−1
n,k = 1

(38)

then the switching cost can be rewritten as:

h(Xt, Xt−1) =
∑
n∈N

∑
k∈K

φ(x, t). (39)

To simplify the proof process, we denote the total operating

cost from objective function (26) as C(Xt, Y t). C(Xt, Y t)†,
h(Xt, Xt−1)†, ft(Y t)† and gt(Y

t)† are the results after round-

ing, C(Xt, Y t)∗, h(Xt, Xt−1)∗, ft(Y t)∗ and gt(Y
t)∗ are the

results without rounding. The theoretical bound for the CHC

rounding policy is derived as follows.

Theorem 3. The CHC rounding policy is an approxima-
tion algorithm to the original CHC without rounding and it
achieves an approximation ratio of 2.62, e.g., C(Xt, Y t)† ≤
2.62C(Xt, Y t)∗.

Proof: Theorem 3 is proved for three cost functions

h(Xt, Xt−1), ft(Y
t) and gt(Y

t) respectively.

(1) The bound of h(Xt, XT−1).

h(Xt, Xt−1)∗ =
∑
n∈N

∑
k∈K

φ(x̃t
CHC,n) (40)

≥
∑

{[n,k]|x̃t
CHC,n,k≥ρ}

φ(x̃t
CHC,n) (41)

≥ ρ ·
∑

{[n,k]|x̃t
CHC,n,k=1}

φ(x̃t
CHC,n)

(42)

= ρ ·
∑

{[n,k]|xt
CHC,n,k}

φ(xt
CHC,n) (43)

= ρ · h(Xt, Xt−1)†. (44)

We explain the deductions step by step here. Firstly,

inequality (41) is satisfied because {[n, k]|x̃t
CHC,n,k ≥

ρ} ⊆ {[n, k]|x̃t
CHC,n,k}. Inequality (42) exists because

{[n, k]|x̃t
CHC,n,k ≥ ρ} = {[n, k]|x̃t

CHC,n,k = 1} and

ρ ≥ 0. In (43), equality exists because x̃t
CHC,n,k =

xt
CHC,n,k = 1. So h(Xt, XT−1)† ≤ 1

ρ · h(Xt, XT−1)∗.

929

(2) The bound of ft(Y
t). After determining the xt

CHC,n,k, the

bound for ft(Y
t) can be derived accordingly. From the

rounding policy, when xt
CHC,n,k = 1, ytCHC,mn,k

follows

the equation (37), so there is no gap and ft(Y
t)† =

ft(Y
t)∗. When xt

CHC,n,k = 1, then ytCHC,mn,k
= 0, the

bound of ft(Y
t) is derived by the following.

ft(Y
t)∗ = ft(Y

t = {ytCHC,mn,k : t ∈ T τ}) (45)

≥ ft(Y
t = {ytCHC,mn,k = ρ : t ∈ T τ}) (46)

=
1

(1− ρ)2
ft(Y

t = {ytCHC,mn,k = 0 : t ∈ T τ})
(47)

=
1

(1− ρ)2
ft(Y

t)† (48)

We explain the deductions step by step. Inequality (46)

exists because ytCHC,mn,k
≤ x̂t

CHC,n,k = ρ and ft(Y
t)

decreases when ytCHC,mn,k
is larger. Then we put 1

(1−ρ)2

ahead which equals to ytCHC,mn,k
= 0, then we get (47)

(48). So ft(Y
t)∗ ≥ 1

(1−ρ)2 ft(Y
t)†.

(3) The bound of gt(Y
t). Similar proof can be derived as

ft(Y
t). We get gt(Y

t)∗ ≥ 1
ρ2 gt(Y

t)†.

So the approximation ratio for C(Xt, Y t) is

max{1
ρ
,
1

ρ2
,

1

(1− ρ)2
}

ρ ∈ (0, 1), so when 1
ρ = 1

(1−ρ)2 (ρ = 3−
√
5

2 ≈ 2.62), the

approximation ratio is minimal. Therefore, the approximation

ratio is 2.62.

Note that AFHC is an extreme case of CHC when the

commitment level r equals to the window size w, AFHC

is introduced repeatedly. As one specially case of CHC, the

rounding policy can also be applied to AFHC, so does the

theoretical bound.

V. NUMERICAL EVALUATION

In this section, we conduct numerical simulations to further

evaluate the performance of our proposed algorithms. To fully

understand the performance of the algorithms, we aim to

answer the following three questions:

1) How much can our online and offline algorithms reduce

the costs compared to existing solutions?

2) What are the impacts of time-correlated cache replace-

ment costs on the caching and load balancing in the 5G

edge caching system?

3) Which online algorithm should we choose?

To the best of our knowledge, this is the first paper for the

implementation of CHC in the a specific problem .

A. Methodology and performance criteria

In this paper, we compare the performance of the following

schemes,

• Offline optimal solution: The primal-dual algorithm is

implemented over the entire time horizon with all the

information provided. This is the optimal result of the

problem and serves as an unrealistic lower bound.

• Least Recently Frequently Used (LRFU): LRFU is an

algorithm combined with two typical caching algorithms,

namely, the Least Frequently Used (LFU) and the Least

Recently Used (LRU). In LRU, the cache replaces one

item which has been requested least recently at each time,

but it can only fit the situation with one user. In LFU, it

replaces one item which has the most requests at each

time slot, however, it can only replace one item at each

time. To combine LRU and LFU together, LRFU, at each

timeslot, SBSs cache the contents ranking by the MUs’

requests number from high to low with the limitation of

the cache size.

• Online algorithms: Integer versions of RHC, AFHC and

CHC.

B. Simulation setup
We consider a single BS serving a circular area. The total

number of files K = 30. In 5G network, each SBS is

independent from each other and each classes of MUs only

served by one SBS or the BS. Hence, the number of SBS is

set as 1. When consider multiple SBSs, the final results are

the sum of each SBS. The total time duration is 100 timeslots.

Note that, each SBS n is endowed with the cache size of 5,

bandwidth capacity of 30, e.g., the SBS is capable to transmit

at most 30 files at one time slot.
The number of MUs is 30. All MUs are normally distributed

in the coverage of the SBS. The transmission efficiency pa-

rameter ωmn
is randomly chosen from [0, 1] which means its

distance to the BS normalized by the radius of the BS. The

transmission efficiency parameter ω̂mn is set as 0. The distance

from SBS to MU is far less than the distance for BS to MU

because SBSs are placed in edge to serve MUs. For example,

if the distance from BS to one class of MUs is 100 times than

the distance from the SBS to MUs, then ω̂mn = 0.01ωmn , so

the operating cost of SBSs can be ignored compared with the

operating cost of BS in the simulation.
We use the Zipf-Mandelbrot model [31] to formulate the

MUs’ requests pattern which is presented as follows,

p(i) =
K

(i+ q)α
, (49)

in which the shape parameter α = 0.8 and the shift parameter

q = 30. The requests density of each class of MUs is randomly

picked from [0,100].
In the offline optimal solution and LRFU, the MUs’ requests

information is accurate and known for all timeslots. In online

algorithms, the short term of MUs’ requests information of

future is predicted, which is not accurate. Hence, we add the

perturbation parameter η ∈ [0, 1] which means the p(i) would

be randomly chosen from [(1 − η)p(i), (1 + η)p(i)], unless

otherwise specified, η is set as 0.1.
For the cache replacement cost, we set β = 100 by default,

which corresponds to the operating cost to replace one content

in SBS at each timeslot. Fig. 2 tests different β. For the

prediction window, we set w = 10, by default. It corresponds

to 10 time slots prediction of the MUs’ requests. We vary w
in Fig. 3 to examine the impact of total operating cost.

930

C. Experimental results
With the setup mentioned above, we perform several simu-

lations to evaluate the performance of proposed algorithms and

the impact of the time-correlated cache replacement cost.

50 100 150 200 250

cache replacement parameter,

4.5

5

5.5

6

6.5

7

to
ta

l o
pe

ra
tin

g
co

st

105

RHC
CHC
AFHC
Offline
LRFU

(a)

50 100 150 200 250

cache replacement parameter,

0

1

2

3

4

5

6

7

ca
ch

e
re

pl
ac

em
en

t c
os

t

105

RHC
CHC
AFHC
LRFU

(b)

50 100 150 200 250

cache replacement parameter,

100

200

300

400

500

600

700

nu
m

be
r

of
 th

e
re

pl
ac

em
en

t

RHC
CHC
AFHC
LRFU

(c)

50 100 150 200 250

cache replacement parameter,

4.8

5

5.2

5.4

5.6

5.8

6

6.2

op
er

at
in

g
co

st
 o

f B
S

105

RHC
CHC
AFHC
LRFU

(d)

Fig. 2. The impact of the cache replacement cost β. (a) The total operating
cost. (b) The cache replacement cost. (c) The number of cache replacement
times. (d) The operating cost of BS.

2 3 4 5 6 7 8 9 10

prediction window size, w

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

to
ta

l o
pe

ra
tin

g
co

st

105

RHC
CHC
AFHC
Offline

(a)

2 3 4 5 6 7 8 9 10

prediction window size, w

200

250

300

350

400

450

nu
m

be
r

of
 c

ac
he

 r
ep

la
ce

m
en

t

RHC
CHC
AFHC

(b)

Fig. 3. The impact of the predict window w. (a) The total operating cost.
(b) The number of cache replacement times.

25 30 35 40

SBS bandwidth capacity

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

to
ta

l o
pe

ra
tin

g
co

st

105

RHC
CHC
AFHC
Offline
LRFU

(a)

25 30 35 40

SBS bandwidth capacity

0

100

200

300

400

500

600

700

nu
m

be
r

of
 th

e
re

pl
ac

em
en

t

RHC
CHC
AFHC
LRFU

(b)

Fig. 4. The impact of the SBS bandwidth. (a) The total operating cost. (b)
The number of cache replacement times.

1) The performance of the online algorithms. In Fig. 2a, we

choose the point with β = 50. RHC, CHC and AFHC can

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

perturbation parameter

5

5.2

5.4

5.6

5.8

6

6.2

6.4

to
ta

l o
pe

ra
tin

g
co

st

105

RHC
CHC
AFHC
Offline
LRFU

Fig. 5. The impact of the perturbation parameter η

reduce the total operating cost significantly by 27%, 20%

and 17% respectively when compared with LRFU. The

cost ratio of RHC, CHC, AFHC and LRFU to offline is

1.02, 1.08, 1,11 and 1.3. The total operating cost of RHC

is very close to the offline. The performance of CHC and

AFHC is not as good as RHC because of the rounding

policy. As AFHC is the special case of CHC, CHC would

not be worse than AFHC, and the simulation results also

prove it.

2) The impact of the cache replacement cost β. In Fig. 2, we

shows the how total operating cost, the cache replacement

cost, the number of cache replacement times and the

operating cost of BS influenced by the replacement cost

parameter β. Fig. 2a exhibits that when the cache replace-

ment parameter β increases, the total offline operating cost

of proposed system, LRFU and online algorithms also

increase. However, the performance of online algorithms

is much better than LRFU, especially for RHC, the perfor-

mance of RHC is very close to the optimum which is the

offline. The total operating cost growth rate of LRFU is

larger than online algorithms and the offline. Fig. 2b and

Fig. 2c illustrate it. The number of cache replacement

times of online algorithms reduces with increase of the

β because when β is larger, the cache replacement cost

will have larger impact of the total operating cost. Hence,

the number of cache replacement times are adjusted to be

smaller to minimize the total operating cost. The number

of cache replacement times of LRFU is the same because

when requests of MUs follow the same request pattern,

the caching policy remains the same, the operating cost of

BS also remains the same, and only the cache replacement

cost increases linearly with β. In Fig. 2d, the operating

cost of BS is steady with the increase of β because online

algorithms minimize the total operating cost by reduce the

number of cache replacement times to make the impact

caused by β less.

3) The impact of prediction window w for online algorithms.
Fig. 3 compares the total operating cost and the number

of cache replacement times of RHC, AFHC and CHC

as the prediction window size w varies. In Fig. 3a, as

the prediction window becomes larger, all the online

algorithms move closer to the optimal offline, and in

Fig. 3b, the number of cache replacement times decrease.

RHC has the least cost. We can conclude that when

931

the system has more prediction information about MUs’

requests, the online algorithms perform better.

4) The impact of SBS bandwidth capacity. Fig. 4 depicts

how the total operating cost and the number of cache

replacement times vary when the SBS’s bandwidth ca-

pacity changes. When SBS’s bandwidth capacity becomes

larger which means SBS can send more items to satisfy

the requests of MUs as each time slot. The total operating

cost of offline, online algorithms and LRFU reduces. The

cost of LRFU reduces slowly. In Fig. 4b, the number of

cache replacement times of LRFU remains the same, but

for online algorithms, the number of cache replacement

times increases fast. The reason for that is when SBS’s

cache size is fixed, the caching policy of LRFU does not

change. However, for online algorithms, the number cache

replacement times will increase a lot to satisfy the MUs’

requests until SBS’s bandwidth capacity is large enough

to serve all the MUs’ requests.

5) The impact of the prediction noise. Fig. 5 exhibits the

total operating cost incurred by the predicted inputs with

different perturbation parameter η. The larger the η, the

more inaccurate for the predicted MUs’ requests. The total

operating cost of online algorithms is higher with the

increase of the η. The total operating cost for LRFU dose

not change because it implements the data of requests

without noise. When η = 0.5, AFHC has the same

performance with LRFU.

VI. RELATED WORK

In recent years, many studies about edge caching have

been conducted. The first type of caching systems relies

on rule-based cache replacement algorithms as FIFO, Least

Recently Used (LRU), Least Frequently Used (LFU), or their

variants [32]. These algorithms follow simplified rules and are

easy to be implemented in reality, but the fixed rules can hardly

adapt to the dynamic content access patterns.

Many previous works focus on edge caching in the 5G net-

work or the cellular network. Poularakis et al. define a network

consists of one BS and several SBSs, in [8], the operator of

BS leases the available cache and bandwidth resources to serve

the requests of MUs, the problem is formulated as a two-stage

Stackelberg game to minimize the total serving cost, in [9],

they minimize the latency of the layered videos, formulate the

optimization problem as a multiple-choice knapsack problem

and propose an approximation algorithm within a 2 factor

from the optimum. Li et al. [11] consider a edge optimization

problem for the adaptive video-on-demand system to maximize

the quality of experience. Du et al. [33] design the incentivized

traffic offloading and resource allocation contracts to motivate

SBS maximum their utility. In [10], the authors consider a

heterogeneous cellular network and they design a distributed

caching problem to minimize download latency via belief

propagation, but they simply solve a caching problem and do

no consider the transmission bandwidth constraints which is

not practical. Nevertheless, the storage cost and the system

replacement cost are not considered in the studies mentioned

above.

With the advancement of data analysis, forecast-based cache

replacement algorithms have been recently suggested in [13]–

[15] . These well-trained models with engineering feature can

achieve a high hit ratio. However, they require large amount

of historical data for training the results which are heavily

depend on the specific data set and is hardly adaptive. It is

also impractical for the operator of BS to adapt the cache

replacement policies because it may cost a long time for

training data, and results in the heavy computing load and low

adaptation for various system models.

Many works have been conducted to solve the online caching

problem in a period of time. Gu et al. [16] model the cache

replacement problem as the Markov decision process and

propose a Q-learing based caching policy, and minimize the

data transmission cost among the SBSs. In [17], the authors

propose a problem to minimize caching switching cost in

storage memory. Menache et al. [18] propose the problem how

multiply users allocate one caching memory, they develop an

online caching algorithm for arbitrary cost. The authors in [34]

consider the performance of coded caching in online system.

These works neglect either the storage cost or time-correlated

adjustment costs.

The time-correlated adjustment cost has got widespread

attention in many domains. In [12], the authors consider

edge caching in Cloud Radio Access Networks (C-RAN), the

problem is formulated as an integer programming. In [19], [20],

the authors propose the load balancing problem to minimize

the total data center cost in which the switch cost of servers

is considered.

VII. CONCLUDING REMARKS

This paper studies the problem of jointly optimize edge

caching and load balancing for mobile data offloading in 5G

networks. Compared to existing work, the new challenge is to

tackle the integer constraint in an online manner with limited

future information. We first propose a primal-dual decompo-

sition algorithm to solve the problem offline for the integer

constraint with guaranteed optimality, and then incorporate

various online algorithms for decision making with limited

information with performance guarantee. Extensive numerical

evaluations highlight the efficiency of the proposed algorithms.

In the future, we plan to develop distributed algorithms and

handle potential strategic behaviors of individual SBSs.

ACKNOWLEDGMENT

This work is supported in part by US National Science

Foundation under grant numbers 1513719 and 1730291.

REFERENCES

[1] D. M. Scott, The new rules of marketing and PR: How to use social
media, online video, mobile applications, blogs, news releases, and viral
marketing to reach buyers directly. John Wiley & Sons, 2015.

[2] V. N. I. Cisco, “Global mobile data traffic forecast update, 2015–2020
white paper,” Document ID, vol. 958959758, 2016.

932

[3] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the first annual
ACM SIGMM conference on Multimedia systems. ACM, 2010, pp. 35–
46.

[4] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and
emerging technologies,” IEEE access, vol. 3, pp. 1206–1232, 2015.

[5] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visot-
sky, T. A. Thomas, J. G. Andrews, P. Xia, H. S. Jo et al., “Heterogeneous
cellular networks: From theory to practice,” IEEE communications mag-
azine, vol. 50, no. 6, 2012.

[6] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.

[7] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[8] K. Poularakis, G. Iosifidis, and L. Tassiulas, “A framework for mobile
data offloading to leased cache-endowed small cell networks,” in Mobile
Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th International
Conference on. IEEE, 2014, pp. 327–335.

[9] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiu-
las, “Caching and operator cooperation policies for layered video content
delivery,” in INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, IEEE. IEEE, 2016, pp. 1–9.

[10] J. Li, Y. Chen, Z. Lin, W. Chen, B. Vucetic, and L. Hanzo, “Distributed
caching for data dissemination in the downlink of heterogeneous net-
works,” IEEE Transactions on Communications, vol. 63, no. 10, pp.
3553–3568, 2015.

[11] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile
edge caching placement for adaptive video streaming,” IEEE Transac-
tions in Multimedia, vol. 20, no. ARTICLE, pp. 965–984, 2018.

[12] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE Journal on Selected Areas
in Communications, 2018.

[13] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative edge
caching for 5g networks: A deep learning based approach.”

[14] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” arXiv preprint
arXiv:1804.05271, 2018.

[15] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, 2017.

[16] J. Gu, W. Wang, A. Huang, H. Shan, and Z. Zhang, “Distributed cache
replacement for caching-enable base stations in cellular networks,” in
Communications (ICC), 2014 IEEE International Conference on. IEEE,
2014, pp. 2648–2653.

[17] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, “Online edge
caching in fog-aided wireless networks,” in Information Theory (ISIT),
2017 IEEE International Symposium on. IEEE, 2017, pp. 1217–1221.

[18] I. Menache and M. Singh, “Online caching with convex costs,” in
Proceedings of the 27th ACM symposium on Parallelism in Algorithms
and Architectures. ACM, 2015, pp. 46–54.

[19] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online algorithms for
geographical load balancing,” in Green Computing Conference (IGCC),
2012 International. IEEE, 2012, pp. 1–10.

[20] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah,
and C. Hyser, “Renewable and cooling aware workload management for
sustainable data centers,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 1. ACM, 2012, pp. 175–186.

[21] N. Chen, J. Comden, Z. Liu, A. Gandhi, and A. Wierman, “Using
predictions in online optimization: Looking forward with an eye on the
past,” ACM SIGMETRICS Performance Evaluation Review, vol. 44, no. 1,
pp. 193–206, 2016.

[22] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 605–614.

[23] O. Arnold, F. Richter, G. Fettweis, and O. Blume, “Power consump-
tion modeling of different base station types in heterogeneous cellular
networks,” Future network and mobile summit, vol. 2010, pp. 1–8, 2010.

[24] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamentals
and applications. Oxford University Press, 1995.

[25] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[26] D. P. Bertsekas and A. Scientific, Convex optimization algorithms.
Athena Scientific Belmont, 2015.

[27] G. L. Nemhauser and L. A. Wolsey, “Integer programming and combi-
natorial optimization,” Wiley, Chichester. GL Nemhauser, MWP Savels-
bergh, GS Sigismondi (1992). Constraint Classification for Mixed Integer
Programming Formulations. COAL Bulletin, vol. 20, pp. 8–12, 1988.

[28] A. J. Hoffman and J. B. Kruskal, “Integral boundary points of convex
polyhedra,” in 50 Years of Integer Programming 1958-2008. Springer,
2010, pp. 49–76.

[29] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[30] W. Kwon and A. Pearson, “A modified quadratic cost problem and feed-
back stabilization of a linear system,” IEEE Transactions on Automatic
Control, vol. 22, no. 5, pp. 838–842, 1977.

[31] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE/ACM Transactions on network-
ing, vol. 16, no. 6, pp. 1447–1460, 2008.

[32] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[33] J. Du, E. Gelenbe, C. Jiang, H. Zhang, and Y. Ren, “Contract design for
traffic offloading and resource allocation in heterogeneous ultra-dense
networks,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2457–2467, 2017.

[34] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
IEEE/ACM Transactions on Networking (TON), vol. 24, no. 2, pp. 836–
845, 2016.

933

