
InstaMeasure: Instant Per-flow Detection Using
Large In-DRAM Working Set of Active Flows

Rhongho Jang

University of Central Florida

(UCF) & Inha University

r.h.jang@knights.ucf.edu

Seongkwang Moon

Inha University

Incheon, Korea

skmoon@isrl.kr

Youngtae Noh

Inha University

Incheon, Korea

ytnoh@inha.ac.kr

Aziz Mohaisen

University of Central Florida

Orlando, USA

mohaisen@ucf.edu

DaeHun Nyang

Inha University

Incheon, Korea

nyang@inha.ac.kr

Abstract—In the zettabyte era, per-flow measurement becomes
more challenging for the data center owing to the increment of
both traffic volumes and the number of flows. Also, the swiftness
of detection of anomalies (e.g., congestion, link failure, DDoS
attack, and so on) becomes paramount. For fast and accurate
traffic measurement, managing an accurate working set of active
flows (WSAF) from massive volumes of packet influxes at line
rates is a key challenge. WSAF is usually located in high-speed
but expensive memory, such as TCAM or SRAM, and thus the
number of entries to be stored is quite limited. To cope with
the scalability issue of WSAF, we propose to use In-DRAM
WSAF with scales, and put a compact data structure called
FlowRegulator in front of WSAF to compensate for DRAM’s slow
access time by substantially reducing massive influxes to WSAF
without compromising measurement accuracy. To verify its prac-
ticability, we further build a per-flow measurement system, called
InstaMeasure, on an off-the-shelf Atom (lightweight) processor
board. We evaluate our proposed system in a large scale real-
world experiment (monitoring our campus main gateway router
for 113 hours, and capturing 122.3 million flows). We verify that
InstaMeasure can detect heavy hitters (HHs) with 99% accuracy
and within 10 ms (detection is faster for heavier HHs) while
providing the one million flows record with only tens of MB
of DRAM memory. InstaMeasure’s various performance metrics
are further investigated by the packet trace-driven experiment
using one-hour CAIDA dataset, where the target of measurement
was all the 78 million L4 flows for one-hour.

Keywords-Anomaly detection; traffic measurement; sketch

I. INTRODUCTION

We are inching closer to the zettabyte era with ever-

increasing volumes of traffic on the Internet. According to

a Cisco’s report [1], the annual Internet traffic will reach

3.3ZB per year by 2021. To deal with the rapidly surging

demands on network bandwidth, per-port bandwidth now

reaches 100 Gbps, or even more. To improve the utilization

of the deployed network equipment (e.g., switch and router)

by traffic engineering and secure networks, the role of traffic

measurement becomes more important than ever, especially for

data centers, where large volumes of traffic are moved between

different sites or even with a single datacenter. Therefore, to

enable fine-grained network traffic control, per-flow measure-

ment (5-tuple: source IP address/port number, destination IP

address/port number, and protocol) and its treatment become

more crucial.

Thanks to the high-speed network traffic, measurement

algorithms now have to cope with enormous incoming data

rates (i.e., larger number of flows) with tight deadlines (i.e.,
real-time). We stress that instant measurement is highly neces-

sary for the data center traffic engineering (TE) and network

anomaly detection. For example, if denial of service (DoS)

attack causes an influx of packets at 100 Gbps, the detection

delay of 100 ms will cause 1.2GB data to hit a server or

a network. Therefore, to eschew large bandwidth payment,

instant anomaly detection is essential.

For per-flow measurement, sketch-based techniques have

been greatly enhanced over several decades, starting with

original proposals such as Flajolet-Martin (FM) sketch and

Alon et al.’s approximate frequency measurement [2], [3] [4]–

[10]. Unlike their counterparts (e.g., Netflow [11], sflow [12],

jflow [13], etc.), sketch-based counting algorithms only require

a small amount of memory to measure a large volume of

traffic in real-time. To decrease memory usage, most works

have used statistically shared counters [10], matrices [2], and

Bloom filters [8] as statistical noise from each estimation

can be removed at the time of estimation (or decoding). To

enhance estimation accuracy, maximum likelihood estimation

is usually adopted, thereby introducing a substantial amount

of additional computations. Due to their designs, most of

the sketch-based decoding algorithms involve hundreds of

hash calculations (i.e., computationally hard) and memory

accesses from statistically mixed random blocks [14] to obtain

meaningful statistics (e.g., heavy hitters, DDoS attack, flow

size distribution and entropy, etc.) [8]–[10]. For this reason,

offline decoding in a high-performance server is commonly

accepted in practice but inherently incurs huge network delay.

Particularly, for a software switch that is to be wildly used in a

data center server, remote decoding undoubtedly increases the

network congestion which degrades the user experience. Thus,

online decoding is highly necessary for instant measurement

and further timely detection.

To enable instant measurements, scalability, as well as

online decoding of measurement algorithms, are essential. This

is because sketches are quickly saturated, and cannot count

anymore when a flow grows, forcing the saturated sketch to

be sent to a remote collector over the network and resulting in

a high detection latency. For the scalability, instead of sending

out a saturated sketch to a collector, we can decode and store

the value into a table in a switch (or router) for hours or even

days. By doing that, a switch can always refer to the table that

2047

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00202

keeps track of flows and their sizes. However, this approach

requires not only online decoding capability of the underlying

sketch, but also the scalability of the table, because our target

time scale is very long—an hour to a week. Naturally, we

considered the working set of active flows (hereafter, WSAF),

which should be maintained by a switching fabric/software

(e.g., Openswitch) for measurement and further refinements

(e.g., routing, TE, and so forth). A WSAF is a type of cache

of a full flow table, which can be found usually in TCAM

(Ternary Content Addressable Memory), CAM, or sometimes

SRAM for fast switching (or forwarding) [15]. NetFlow uses

TCAM for storing WSAF in which an entry consists of a flow

ID and the counting value, while OpenSketch takes advantage

of TCAM and SRAM [11], [16]. The number of entries in

the table cannot be large because those types of memories

are quite expensive. To support scalability by increasing the

WSAF’s capacity, we can put WSAF in DRAM instead of

the expensive memory (i.e., incentive to cost-effectiveness).

However, there is a speed issue for In-DRAM WSAF: a packet

arrival rate is too fast to handle by In-DRAM WSAF, owing

to the DRAM’s speed and WSAF table’s hash collision.

Unfortunately, most sketch-based algorithms lack scalability

and online decoding capabilities. Our approach to solving

these two problems is 1) to use a counting algorithm that can

perform online decoding and 2) to put a flow regulator before

WSAF to slow down the incoming packet rate to WSAF. To

realize both ideas, we designed a highly scalable counting and

flow regulating algorithm called FlowRegulator. By design,

instead of directly inserting or updating every packet of flow

into the WSAF table, FlowRegulator (i.e., a small cache buffer)

retains a fraction of flow counts. By doing so, we can suppress

frequent WSAF updates in DRAM; thereby FlowRegulator can

support the large-scale influx of flows with the use of cost-

effective large DRAM. Consequently, FlowRegulator relaxes

the necessity of precious memories (TCAM or SRAM) for

maintaining large WSAF, and further enables us to build a

highly scalable and fast measurement system. We realize that

in a system called InstaMeasure, and deliver the following

contributions:

• We design FlowRegulator to overcome the lack of scal-

ability and online decoding capabilities. To verify its

practicability, we further build a large-scale per-flow

measurement system called InstaMeasure (Section III).

• To show InstaMeasure’s feasibility and practicability, we

implemented prototype of InstaMeasure using an off-the-

shelf Atom processor board, and extended InstaMeasure

to a multi-core measurement system (Section IV).

• We evaluate the performance of InstaMeasure in several

scenarios. First, we evaluate the estimation accuracy and

processing speed of InstaMeasure with 78 million L4

flows in one-hour CAIDA dataset by varying parameters

(e.g., memory usage, the number of cores, packet per

second, etc..). Second, we conduct a real-world cam-

pus network experiment for 113 hours by connecting

InstaMeasure to a mirroring port of the main gateway

router, capturing 9.11 billion packets, 122.3 million flows,

and 8.5TB bytes. InstaMeasure successfully measured the

whole L4 flows both in packets and in bytes where the

standard errors of both estimations were smaller than

0.65%. As one key application, InstaMeasure detected

heavy hitters with 99.8% accuracy within 10 ms in the

worst case—the prefix Insta comes from this tight time-

bound (Section V).

II. MOTIVATION

Our large WSAF in DRAM is in contrast to the small

WSAF in TCAM (i.e., industry practice), which uses a central

collector over the network at high rates. In DRAM, we can

store much more flows; thereby, we do not need a remote

collector for decoding. However, the downside is that we

cannot evade the “sluggishness” of DRAM.

Managing a WSAF at packet arrival rate: DRAM’s access

speed is limited to process packets arriving at a line rate (e.g.,

40 or 100 Gigabit Ethernet), so today’s online measurement

algorithms assume fast but expensive SRAM for processing

sketches. Due to SRAM’s prohibitive cost, only tens of

megabytes are available to a counting algorithm [16]. Thus,

instead of storing all the information of flows in SRAM, a

measurement algorithm stores only a sketch or a summary in

SRAM that does not have flow information (i.e., flow ID and

its 5-tuple). A set of flow IDs in a table, a mapping between

a sketch and a flow, or even a reversible sketch during a

measurement period are normally stored in DRAM. This use

of DRAM is necessary and common in practice [10], [16],

but managing flow IDs are quite challenging, and insertion-

per-second (hereafter, ips) to the structure should be as high

as packets-per-second (hereafter, pps). Also, in NetFlow, there

exists a WSAF table in which ips should be high enough to

process pps at a line rate. Under the constraint where {ips =

pps} (insertion and lookup at WSAF should be done at packet

arrival rate), it is hard for WSAF to keep up with the speed if

the traffic increases. Packet sampling might be a viable option,

which is used by NetFlow, SFlow, and many sketch-based

schemes. However, such an approach degrades the estimation

accuracy essentially. NetFlow uses both sampling and TCAM

to ensure speed, but the most popular switching silicon chips

have tables that can hold only up to thousands of route entries

in TCAM and CAM [15], which cannot support a large-scale

WSAF for instant measurement.

FlowRegulator to relax the {ips = pps} constraint: Instead

of using TCAM or SRAM, we can use DRAM for WSAF

by relaxing the ips requirement for the WSAF table. Thus,

instead of directly inserting or updating every flow packet

into the table, we put a small buffer called FlowRegulator to

retain a fraction of flow counts before WSAF. FlowRegulator

has a memory block (or a virtual vector initialized to all 0’s)

for every single flow, and whenever a packet comes in, the

corresponding block is updated by setting a random bit of the

block. When the block saturates (or a portion of the block

has set to 1’s), the resulting counting fraction (we note that

this is not the total size of flow) is added up to the WSAF

2048

0 10 20 30 40 50 60
Time (minute)

0K

100K

200K

300K
800K

1200K
1600K

Sa
tu

ra
tio

ns
 p

er
 s

ec
on

d

Actual pps (CAIDA) 8-bit RCC 16-bit RCC

Fig. 1. RCC’s saturation occurs in the speed of 12-19% of packet arrival
rate (the black solid line), which is too frequent to compensate for SRAM’s
speed margin over DRAM’s (5-10%) in CAIDA dataset.

(i.e., a hash table in DRAM). Because FlowRegulator retains

mice flows whose sizes are lower than the saturation condition,

not all the packets are fed into WSAF, but only the packets

that trigger the saturation condition are given to WSAF. This

design greatly reduces ips even under a high pps condition.

How to build FlowRegulator: To develop FlowRegulator,

we utilize sketch-based counting algorithms, because they can

encode packets at line rates, and can accurately estimate flows

with a small amount of memory. Additionally, they satisfy

our requirements: online decoding for adding up to WSAF

when the block is saturated and scalability to deal with a large

number of flows. A hitherto known solution is RCC proposed

by Nyang and Shin [17] because it already has online decoding

capability, and proven to be useful for measurement in the

wireless SDN environment [18]. To investigate its feasibility,

we have tested RCC for its rate regulation (defined as Output

ips/Input pps). Given that the access time of SRAM is 10-

20 times faster than DRAM’s (and even faster with TCAM),

RCC’s rate regulation should be less than 5%. However, its

regulation and retention capacity (the maximum number of

packets in a virtual vector) are not operationally sufficient. To

show that, we conducted an offline experiment using a CAIDA

dataset [19]. As shown in Fig. 1, the solid line shows the actual

packet arrival rate in pps, which is 1 mpps (million packets per

second) on average, but RCC’s saturation frequency is around

19% (output rate is about 190 kips (thousand ips) for the 8-bit

vector, and 12% for 16-bit vector, which is far higher than the

speed margin of SRAM over DRAM. Thus, it is impossible

to work with RCC for building FlowRegulator. One way to

increase the rate regulation is to give RCC a larger virtual

vector, but that does not expand the retention capacity. This

will further be investigated in evaluation Section V.

Two-layer design for higher rate regulation: Here, our ob-

servation is that enlarging the virtual vector size increases the

retention capacity just in an addictive manner, and thus, this is

not a viable (i.e., scalable) option. Instead, we designed a new

counting algorithm for FlowRegulator, which has two layers

of probabilistic counters to achieve the higher rate regulation.

Note that the multi-layer sketch is not first introduced by this

paper (e.g., [20]), but the only sketch-based data structure

that supports online decoding. Our FlowRegulator plays a

key role in retaining flows (from feeding into WSAF) for

a while as well as counting flows. In the two-layer design,

the second (higher) layer’s one bit encodes multiple packets

of a flow from a saturated sketch of the first (lower) layer.

This design has substantially improved the rate regulation

in a multiplicative manner. It enables higher rate regulation

while not being detrimental to accuracy and speed while being

scalable.

Saturation-based decoding for flows: Another aspect of

FlowRegulator is counting elephant flows. Whenever a packet

comes in a virtual vector, the estimation of the saturated

vector is calculated by online decoding, and if saturated, the

decoded counting value is finally accumulated to WSAF. This

is called “saturation-based decoding” in contrast to “packet-

arrival-based decoding”. The latter is for actual online count-

ing, and obviously, it is not feasible because of memory

and computation speed. Saturation-based decoding has the

property that it allows the only elephant flows (flow sizes

greater than retention capacities of the sketch) get through

FlowRegulator to reach the WSAF table, which prevents

WSAF from exploding from a huge number of incoming

mice flows. This is in contrast to NetFlow, which registers

every flow, if not sampled, in the table regardless of its

size. Owing to this, WSAF can keep the counters only for

active elephant flows, which means FlowRegulator helps to

maintain a WSAF with good quality. Notably, even though

our FlowRegulator filters mice flows well, there are still mice

flows that get through to WSAF (recall that FlowRegulator

is a probabilistic counter). We note, however, that it is es-

sential for some applications to have samples of mice flows

(e.g., DDoS attack, SuperSpreader and entropy etc.). However,

WSAF needs to evict the expired (or least significant) mice

flows when the table is full. For FlowRegulator, instead of

running a separate core periodically (NetFlow approach), when

a new flow is inserted, and an empty slot is searched by

hash chaining, garbage collection is performed. Using our

WSAF in DRAM, we can also analyze flow behavior for

long-term measurement. Considering that other sketch-based

schemes send a sketch and flow ID information periodically

to a remote collector for sketch decoding, the decoding can

be regarded as a “delegation-based decoding”. Comparing the

three different approaches, namely the delegation-based, the

packet-arrival-based (used as ground truth and a baseline), and

the saturation-based decoding, we note that the packet-arrival

decoding has the fastest detection time. However, the time

difference between packet-arrival-based and the saturation-

based decoding is within 10 ms, while the difference between

packet-arrival-based and delegation-based decoding is tens

of milliseconds (may increase depending on network delay).

Therefore, our saturation-based decoding is substantially faster

than delegation-based decoding.

III. FLOWREGULATOR DESIGN

Today’s Internet traffic follows a Zipf-like distribution [21],

and mice flows (e.g., 1-10 packets flows) are the majority of

network flows, which is the main reason for WSAF cache

saturation. The DRAM is relatively cheap; thus we have fewer

2049

(a) (b)

Fig. 2. Design of FlowRegulator: (a) Components of FlowRegulator (b)
Probing limit-based second-chance replacement policy of WSAF Table

constraints on its use, compared to SRAM and TCAM. To

overcome its slow read/write access time, we designed a

sketch-based FlowRegulator to regulate influx rates of packets

in front of WSAF by retaining mice flows until they overflow

(or saturate) sketches that they reside in. Note that most mice

flows do not grow enough to overflow their sketches.

A. Two-layer sketch-based counter

Fig. 2(a) illustrates our design of FlowRegulator. The L1

counter is a sketch-based data structure introduced in RCC

(Recyclable counter with confinement [17]). The authors of

RCC proved that a small virtual vector (8-bit) provides a

higher estimation accuracy. A major problem, however, is that

if we use RCC for FlowRegulator, the 8-bit virtual vector can

only count up to 9 packets in the best case. That means the

structure can retain mice flows up to 9 packets and insertion

operations of an elephant flow occur every 9 packets. This rate

regulation is still not acceptable for In-DRAM WSAF: Fig. 1

of RCC’s flow regulation rates for two vector sizes shows the

vector size increment, which does not effectively increase the

regulation rate. To address this problem, we use a two-layer

sketch strategy to increase FlowRegulator’s retention capacity

significantly by designing the second layer sketch to count

in multiple units of the first layer sketch. This multiplicative

approach enables FlowRegulator to retain larger mice and to

retain more packets of each elephant flow (up to around 100

packets for a single flow—10 times more than that of RCC).

As shown in Fig. 2(a), the L2 counter is a set of L1 counters.

We categorized L1’s estimation into three cases based on the

noise level (i.e., relevant to the number of bits set to 0). This

is, for an 8-bit virtual vector, a single flow can set at most

three bits (i.e., 70%) of the 8-bit virtual vector to 1’s; thus

the estimation can be divided into three cases. We use those

three different estimation values as the units of three counters

in layer-2. For example, when the estimation of L1 is 5, the

counter of unit 5 in L2 is chosen, and only one bit of the

counter is set. If the estimation of the counter of unit 5 in

L2 was 4, the total counting value would be 20 (=5×4). The

encoding and decoding processes of L2 counters are designed

Algorithm 1: Two-layer FlowRegulator

1 Init L1[]
2 Init L2[Noisemin][], ...,L2[Noisemax][]
3 forall Pkt f do
4 (idx f , vv f) ← Hash(Pkt f)
5 NoiseL1 ← RCC Encode(L1[idx f], vv f)
6
7 if NoiseL1 � NULL then
8 /*vv f saturated in L1*/
9 NoiseL2 ← RCC Encode(L2[NoiseL1][idx f], vv f)

10
11 if NoiseL2 � NULL then
12 /*vv f saturated in L2*/
13 unit ← RCC Decode(NoiseL1)
14 estpkt ← unit × RCC Decode(NoiseL2)
15 estbyte ← estpkt × Length(Pkt f)
16 ACCWSAF(f , estpkt, estbyte)
17 end
18 end
19 end

to be the same as that of L1, and even the memory layout

and the virtual vector’s bit positions of every flow are the

same (hash function reuse of L1 virtual vector). Thus, L2

counting only requires one additional memory access (in total,

two memory accesses and one hash including L1 counting).

By doing this, we obtained around 1.02% flow regulation rate;

thus the insertion request rate to WSAF table could be reduced

substantially (See Section V).

B. WSAF table management

Our FlowRegulator can retain most mice flows, but not all

of them. There still is a probability for mice flows to pass

through FlowRegulator and to be inserted into the WSAF

table owing to noise. These mice flows lead to memory

space wastes and frequent hash collisions (i.e., probing of

active flows increases). We address this problem by using a

probe limit-based and second-chance replacement algorithm

to evict mice flows from WSAF table to save memory space

and increase probing speed. Moreover, the probe limit-based

approach allows us to use specific parameters (i.e., table size

m = 2n, h(k, i) = hash(k) + 0.5i + 0.5i2 mod m) for probing

all table positions in [0,m − 1] to achieve a high load factor.

See Fig. 2(b).

C. Byte counter

InstaMeasure has another desirable feature that provides

packet and byte counting at the same time. Based on the packet

counting technique, we utilize a sampling-based approach to

perform byte estimation. When a flow f saturates FlowRegu-

lator, an estimated packet number (est) will be accumulated to

WSAF table using the fid . We use the size of the last arrived

packet len to multiply with est and accumulate len × est to

the byte counting field of WSAF table. Even though the idea

is straightforward, it works quite accurately (< 1% error rate,

see Section V.B) and efficiently (one extra multiplication).

2050

Fig. 3. InstaMeasure as a measurement device Fig. 4. Configuration of real-world experiment Fig. 5. Multi-core flow regulation

D. Algorithm

L1 counter of FlowRegulator has a simple word array

structure, where the size of each word is selectable (32 or

64 bits depending on processor). When a packet arrives from

flow f , FlowRegulator computes a hash function using 5-tuple

extracted from the packet (line 4). The hash value is used for

two purposes, 1) to extract virtual vector vv f (i.e., bit positions

confined in a word—virtual vector confinement technique as

in [17]), and 2) to determine vv f ’s word location (idx f)

at L1 counter (L1[idx f]). Once idx f and vv f are decided,

RCC Encode performs encoding of the sketch until vv f of

L1[idx f] saturates and returns a noise level (NoiseL1) (line

7). L2 is a set of L1 counters. When the saturation happens in

L1, one of the counters in L2 will be selected depending on

NoiseL1 to perform second layer counting using the same idx f

and vv f (line 9). When vv f is saturated in L2, FlowRegulator

estimates the total packet number (estpkt) by multiplying

RCC Decode(NoiseL1) and RCC Decode(NoiseL2), where

the former is the number of packets at L1 at the saturation

moment, and the latter is the frequency of saturation at L2

(lines 14-15). The estimation of byte volume (estbyte) is done

by the saturation-based sampling approach. That is, the byte

volume is calculated by multiplying estpkt with the size of

the packet that triggered the L2 saturation (line 15). Finally,

FlowRegulator accumulates estpkt and estbyte to the WSAF

table using flow ID f (line 16) either by insertion or by update.

IV. IMPLEMENTATION

We prototyped InstaMeasure in an off-the-shelf device with

8-Core Atom processors. The estimation accuracy and the

processing speed of InstaMeasure were evaluated by a packet-

driven experiment using 1-hour CAIDA dataset (1-4 cores

used). Further, we set up a real-world experiment using

InstaMeasure device at the backbone gateway router of our

campus network for 113 hours autonomously and ran a use

case: heavy hitter detection (1 core used).

A. Hardware description

Fig. 3 shows the hardware setup of our InstaMeasure device.

We used a Supermicro motherboard A1SRi-2758F that embeds

8-Core Intel Atom processor C2758 ($312) which has a

4MB cache memory (448KB for L1 cache and 4096KB for

L2 cache). In total, 16G (2x8G) DDR3 1600MHz memory

was used with a 200W power supply. We used a 128G

SSD for running Linux 16.04 server (x86) and 4T HDD to

record the network trace for offline analysis. For fast packet

processing, we implemented InstaMeasure based on DPDK

(version 17.11.2) to bypass the kernel. Note that our choice of

the CPU is reasonable as Atom series CPU appears in many

modern routers/switches including bare metal switches [22].

B. Real-world experiment setup

Our campus uses 2 Gbps bandwidth in total (1 Gbps

for up-link and 1 Gbps for downlink), and the backbone

gateway router uses a Juniper EX9208 switch, as shown in

Fig. 4. Since, for logistical reasons, the gateway could not be

programmed for this experiment, we used the mirroring port

of the gateway to perform our measurement. The purpose of

this experiment is to check InstaMeasure’s performance (CPU

and memory use) and scalability (accuracy for 113 hours) (See

section V.D for results). We also ran a use case of heavy hitter

detection. Because the mirroring port starts to drop packets

when port capacity is exceeded, the estimation accuracy was

evaluated by comparing results of InstaMeasure to results

obtained by the recorded traffic experiencing the same packet

drop. Due to the policy of our school, we were permitted to

access only the up-link although for a long time. Moreover, we

evaluated the processing speed and heavy hitter detection delay

using the CAIDA dataset and artificially-generated traffic, to

cope with non-deterministic mirroring delays caused by port

buffering in our real-world experiment.

C. Multi-core traffic measurement system

To perform faster encoding and decoding by taking ad-

vantage of the multi-core Atom processor, we implemented

InstaMeasure as a multi-core traffic measurement system.

Fig. 5 shows a case of the four-core model. As shown, we

allocate memory blocks exclusively to each worker core to

avoid memory collision, where each worker core maintains an

independent FlowRegulator structure with a FIFO task/packet

queue. A worker continuously monitors its task queue and

performs encoding and (if necessary) decoding whenever each

2051

packet arrives. An additional manager core is responsible for

allocating packets to a worker’s queue. To evenly distribute

packets to be processed, the number of 1 bit of source IP

address is used to determine which queue the packet goes

into. As will be shown in Section V.C, InstaMeasure scales

based on the number of core.

D. Parameters

The main component of FlowRegulator is the two-layer

counter. To construct FlowRegulator, we used a total of four

small counters, one for L1 and three for L2 as described in

section III. Thus, when we use a 32KB L1 counter, the total

size of the two-layer counter is 128KB. Moreover, in the multi-

core system, the total memory usage is M times of the number

of worker cores, where M is the memory allocated to the L1

counter. For the four-core system, the allocated memory will

be 128KB×4=512kB.

In a lab experiment, we evaluated the accuracy of a single

core FlowRegulator using the CAIDA dataset by varying the

memory usage of the L1 counter from 32KB to 512KB (in

total, we had 128KB-2048KB when including the three L2

counters for FlowRegulator). In the real-world experiment, we

used 128KB of memory with a single core worker. FlowReg-

ulator’s processing speed was shown to be fast enough to

process 10 Gbps link (see section V). For the memory usage

of the WSAF hash table, we fixed the total entry numbers to

220 for all experiments including the multi-core case.

As shown in Fig. 2(a), the size of each hash table entry

is 33 bytes to include a flow ID (32 bit hash of 5-tuple),

packet counter (32 bits), byte counter (32 bits), timestamp (64

bits) and the 5-tuple (104 bits). Thus, the total DRAM space

required for the hash table is only 33MB. If we allocate more

DRAM, e.g., 1GB, it can run for several days autonomously

and without interruptions on a 10 Gbps link.

V. EVALUATION

First, we evaluate the estimation accuracy and processing

speed of InstaMeasure with the CAIDA dataset by varying

parameters (e.g., memory usage, the number of cores, pps

(packets-per-second), ips (insertion-per-second) etc.). Second,

we demonstrate the feasibility of InstaMeasure by showing

results of real-world experiment.

A. Datasets

• CAIDA Anonymized Internet Trace 2016. [19] We

used one-hour (13:00-14:00, 6th of April, 2016) network

traffic trace that was collected at the Equinix-Chicago

data center on an OC-192 link (maximum load of 10

Gbps). We merged trace data of both directions (i.e.,
between Chicago and Seattle) in the order of timestamp

to evaluate InstaMeasure with larger-scale network trace.

As a result, our dataset contains 3.7 billion IPv4 packets

(include UDP, TCP, and ICMP), 78 million L4 flows, and

the highest speed was 1.5 mpps (million pps). This scale

is substantially large and beyond current sketch-based

(a) CAIDA (b) Backbone gateway of Campus

Fig. 6. Distribution of CAIDA dataset and 113 hours campus traffics.

measurement’s capability. See Fig. 6(a) for the traffics

distribution of the dataset.

• 113-hour backbone gateway traffic on campus net-
work. We implemented our InstaMeasure in an off-

the-shelf device and measured up-link traffics (1 Gbps

bandwidth) at the backbone gateway (Juniper EX9208

switch) of our campus for 113 hours in total. For further

analysis, we also recorded 5-tuple, the packet size and the

timestamp of every single packet. In total, about 8.5TB

of traffic, 9.1 billion packets (broken down into 6.4% of

UDP and 93.6% TCP) and 122.3 billion L4 flows were

observed in 113 hours. See Fig. 6(b) for the distribution.

B. Evaluation of FlowRegulator

WASF ips relaxation. In Fig. 7, the x-axis represents the

timeline of our merged CAIDA dataset, and the solid black line

on the top represents the actual pps of the trace. Below the pps

line, RCC’s and FlowRegulator’s regulation rates are shown in

red squares and blue diamonds, respectively. The figure shows

that RCC relaxes ips to feed packets to WSAF table at the

speed of 112 kips (thousand ips), which corresponds to 12%

regulation rate. FlowRegulator effectively regulated flows to

pass only 1.02% with 128KB DRAM memory, Considering

that WSAF is usually stored in SRAM or TCAM, and SRAM

is 10-20 times faster than DRAM, FlowRegulator has sufficient

margin, while RCC does not have as can be seen in Fig. 7.

Even for WSAF in TCAM, which is faster than SRAM,

FlowRegulator can be configured to have enough margin by

adjusting the vector size or even the number of layers.

Regulation rate vs. sketch size. Because FlowRegulator’s

role is to slow down the insertion request rate to WSAF, we

evaluate how effectively it achieved this goal. Fig. 8(a) shows

comparatively the retention capacity of each virtual vector by

varying its size. For RCC, the growth rate of the retention

capacity is very slow; thus its retention capacity is only 77

packets even with a 64-bit virtual vector. We note that to use

64-bit virtual vector the confinement size should be at least 256

bits, which incurs 8 memory accesses and 8 hash computations

for every packet in a 32-bit system, which is not acceptable for

FlowRegulator. Compared to RCC, FlowRegulator’s retention

capacity grows very quickly as the size increases, and thus

a 16-bit vector (8 bits for each layer) is enough to retain

a hundred flows. To fairly compare FlowRegulator of two

layers to RCC of a single layer, FlowRegulator’s vector size is

2052

0 10 20 30 40 50 60
Time (minute)

103

104

105

106
ip

s
of

 W
SA

F
ta

bl
e

Actual PPS (CAIDA) 16-bit RCC (3MB) 16-bit FlowRegulator (128KB)

Fig. 7. WASF relaxation: FlowRegulator (FR) and RCC ips of CAIDA dataset

(a) Flow retention capacity (b) Saturation frequency (c) Decode error per saturation

Fig. 8. FlowRegulator’s retention capacity and saturation frequency outperforms RCC’s, paying a little degradation of accuracy.

defined to include all the vectors where a packet can reside—

since we are interested in the number of packets retained by

a virtual vector. Since FlowRegulator’s design has two layers,

it would be twice of L1 counter’s virtual vector size. Fig. 8(b)

shows the saturation frequency of a sketch for a single flow

comparatively, which indicates that the insertion request rate

to WSAF is decreased (better for WSAF) as the frequency

becomes low. The figure shows that RCC with 64-bit virtual

vector seems to be barely comparable to FlowRegulator, but

it is impractical as we mentioned above. Also, in the real

world, a sketch accommodates a large number of flows, so

the saturation rate is much higher than that in the analysis as

shown in Fig. 7. Thus, even a larger vector for RCC should

be utilized. Consequently, as shown in Fig. 7, FlowRegulator

provides enough retention capacity to suppress the insertion

request frequency, which cannot be achieved by RCC.

On cost. Two-layer design of FlowRegulator, however, pays

a small penalty of accuracy degradation, which is shown in

Fig. 8(c). The overall accuracy of FlowRegulator is lower

than that of RCC with a single layer, but the difference is

very small except when the vector size is 8 bits (4 bits for

each layer). We note that FlowRegulator implementation for all

the experiment has 16-bit long vector. Another cost might be

the detection latency: because FlowRegulator relies on sketch

saturation-based decoding, an event such as heavy hitter cannot

be detected immediately, but when the flow is registered in the

WSAF table. This, in turn, delays the detection. However, as

shown in Fig. 9(b), the delay is less than 10 millisecond, which

is negligible compared to tens of milliseconds of delay in most

(a) Speed of FlowRegulator (b) Heavy hitter detection latency

Fig. 9. InstaMeasure’s processing speed scales well, and its detection latency
of heavy hitters is under 1 ms if a heavy hitter consumes more than 100 kpps.

frameworks (e.g., [23]). Also, in the same figure, we draw

that significant attackers use more bandwidth, and thus can be

caught earlier than slow attackers, who are less important in

volume-based attacks.

Processing speed of FlowRegulator. To evaluate the encoding

speed of FlowRegulator, we used our off-the-shelf device in

Fig. 3; it is equipped with an 8-core 2.4 GHz Atom processor

and 16G DRAM. We pre-loaded the CAIDA dataset into

memory and focused on how many packets FlowRegulator

can process per second. Fig. 9(a) shows the processing speed

of FlowRegulator by varying the number of cores. As shown,

FlowRegulator could process 18.88 mpps (on average) with a

single core. Clearly, a one-core FlowRegulator can measure the

OC-192 link of the CAIDA dataset even when the traffic is 64-

byte packets, The processing speed with 2 cores increased to

25.48 mpps. Three and four core FlowRegulator still achieved

higher processing speed: 36.19 mpps and 46.32 mpps, respec-

2053

(a) Error rate vs. memory usage (b) Quality of packet Top-K list

Fig. 10. Accuracy of packet counting (CAIDA one-hour trace)

(a) Error rate vs. memory usage (b) Quality of byte Top-K

Fig. 11. Accuracy of byte counting (CAIDA one-hour trace)

tively. We note that FlowRegulator’s memory usage does not

affect processing speed but only on the accuracy.

In conclusion, this experiment shows that FlowRegulator—

even using an Atom processor and DRAM– has enough

processing speed that can be sufficiently used for 10 Gbps

high-speed links without any packet loss.

Detection latency. We conducted an experiment to show the

heavy hitter detection delay caused by our FlowRegulator’s

saturation-based decoding in a 1 Gbps network environment.

We used a high-end desktop to generate traffic with various

speeds (10-200 kpps) to InstaMeasure device. At the same

time, our device performed heavy hitter detection in parallel.

A fixed threshold (T=0.05% of link capacity) was used to

detect heavy hitters and recorded the first detected time using

both packet-arrival-based and saturation-based decoding. As

shown in Fig. 9(b), when the traffic generator was in a low

transmission rate, the detection delay was more than 10 ms.

However, as the transmission rate increased, the detection

delay decreased sufficiently. When the speed was 10 kpps, the

average delay was around 10 ms and 1 ms at the rate of 130

kpps. Note that byte volume-based heavy hitter detection delay

is almost the same as with the packet counting-based one. This

is mainly because our byte volume counting depends on the

packet counting.

C. Accuracy of packet and byte counters

We used the one-hour CAIDA dataset and ran a single core

InstaMeasure to evaluate the estimation accuracy (packets and

bytes) while varying the memory usage of our L1 counter

(i.e., 32KB-512KB). Then, we compared each estimated flow

size (both in packets and in bytes) with the ground-truth. Since

InstaMeasure can measure a flow larger than a million packets,

we divided flows into three intervals depending on the size and

evaluated the average error of each interval.

Packet counter. Fig. 10(a) shows the averaged error rates of

all L4 flows of the packet counter after one-hour measurement.

When the total memory usage was 128KB, the average error

rate of flows that have more than 1000K packets was 0.56%

and 1.54% for 100K+ flows. For relatively small flows (10K+

flows), it was 3.48%. As shown in the figure, it decreased as

more memory was used. When we increased the memory to

256KB, InstaMeasure achieved 0.28% of average error rate for

1000K+ packet flows, 0.99% for 100K+ flows and 2.79% for

10K+ packet flows. Further, when the amount of memory was

2048KB, InstaMeasure achieved the highest accuracy, with

0.19% (1000K+), 0.58% (100K+) and 1.76% (10K+) error

rates, respectively.

Byte counter. Fig. 11(a) shows the averaged error rates of all

L4 flows of the byte counter. When the memory usage was

128KB, the average error rate of 1GB+ sized flows was 0.54%,

1.57% for 100MB+ sized flows, and 3.47% for 10MB+ sized

flows. Same as with the packet counter, the accuracy of the

byte counter also increased when more memory was given. For

128KB memory, the average error rates were 0.27%, 1.00%,

and 2.67% respectively. For 2048KB of memory, InstaMeasure

achieved 0.18% error rate for 1GB+ sized flows, 0.61% for

100MB+ sized flows and 1.66% for 10MB+ sized flows.

Top-K identification. Owing to InstaMeasure’s high accuracy

for millions of flows, Top-K identification problem can be

scaled up to Top-million. Moreover, InstaMeasure can provide

two kinds of Top-K flow lists at the same time: Packet Top-

K and Byte Top-K. For evaluation, we fixed the memory

usage of the counter to 10MB and used a standard recall

metric to measure the quality of packet number-based and

byte volume-based Top-100, 1K, 10K and 1M lists using the

CAIDA dataset, with updates done every 10 minutes. Fig. 10

and Fig. 11 show that the recall rates of byte/packet Top-K

are mostly above 95%.

Comparison. We also report that we conducted an experiment

with CSM [10] using 60MB, which corresponds to around two

times of the largest memory used in InstaMeasure. The vector

size of 10,000 was chosen to be large enough to count the

maximum flow size. However, decoding the entire dataset did

not terminate, and we failed to conduct experiments on one-

hour data. Instead, we ran CSM over one-minute data and

checked the accuracy. Instead of decoding all flows, we limited

our decoding to the top-100 and top-1,000 flows and checked

the accuracy. We found that the average error rate was 2.4%

for the top-100 and 8.53% for the top-1,000, which is much

higher compared to InstaMeasure using even one-hour data.

D. Monitoring in the wild

We observed that the traffic collected in our campus for 113

hours had the typical Zipf-like distribution as other network

traces did. During 113 hours, 9.1 billion packets of 122.3

billion L4 flows were measured simultaneously both in packets

and in bytes. InstaMeasure used a single Atom processor

2054

(a) Packet per second (kpps)

(b) Gigabit per second (Gbps)

(c) CPU load of 1 core InstaMeasure

Fig. 12. Monitoring in the wild

Fig. 13. Estimation result of 133 hour real-world experiment using 12MB
sketch. Accuracy of packet counting (left) and byte counting (right). Each
point stands for each flow. To see how accurate estimation is, check how
close every point is to the reference line y = x.

Fig. 14. False positive and false negative rates of packet heavy hitter detection
(left) and byte volume heavy hitter detection (right).

core, 128KB for the sketch, and 33MB for the WSAF table.

Sketches and WSAF table are all in DRAM.

Accuracy. Fig. 13 shows the estimation accuracy by standard

error for the real-world experiment. For packet counting, we

report 0.54% standard error over 350 flows of which size is

1000K+, 1.61% over 11,047 flows for 100K packets, 3.46%

over 104292 flows for 10K+ packets. For byte counting, we

report 0.63% over 414 flows of which byte size is 1G+, 1.74%

over 12,125 flows of 100MB+, 3.65% over 107,726 flows of

10MB+. This accuracy matches the accuracy observed in the

lab experiment with the CAIDA dataset.

Overheads. Our campus network’s traffic volume is shown

as a time series in Fig. 12(a). We observed that the amount

of traffic reached a peak during the daytime, whereas less

traffic was observed at the weekend and night. InstaMeasure’s

CPU workload and the queue memory usage during the 113

hours are shown in Fig. 12(c). the core’s workload matches

the traffic pattern, and the core usage did not go over 40% at

any point. As for the queue (represented in black diamonds in

the figure), it did not grow noticeably. The results confirmed

that InstaMeasure implemented on Atom board worked well

for the 1 Gbps network monitoring, and for a quite long time.

Heavy hitter detection. Fig. 14 shows InstaMeasure’s heavy

hitter detection accuracy in terms of false positive/negative

rate. Owing to InstaMeasure capability of counting both in

packets and in bytes, it can detect both packet heavy hitters

and byte heavy hitters. False negative rates in both cases are

negligible, and the false positive rates of packet/byte heavy

hitters are less than 0.1% and 0.2%, respectively.

VI. RELATED WORK

A large volume of works on sketch-based measurement

have been done to leverage its estimation accuracy for traffic

engineering and anomaly detection [5]–[10], [17]. Among

them, Estan and Varghese’s work was on heavy hitter detection

during a measurement period [4], which was followed by

several other works [5], [24]–[26]. Recently, Basat et al.
proposed an elephant-flow identification and a Top-K counting

2055

algorithms [27], [28]. Their Top-K is quite limited (up to top-

512). InstaMeasure is concerned with the larger scale of Top-

K, e.g., tens of thousands to millions.

Notable works on real-time measurement system include

OpenSketch, which utilized various sketches and specialized

hardware: e.g., TCAM and SRAM [16]. FlowRadar, which

took advantage of a recently proposed hash data structure

called IBLT (Invertible Bloom Lookup Table) to resolve the

hash collision problem [23], [29], and UnivMon, which uses

a single universal sketch [30]. Especially, FlowRadar’s view

on WSAF is similar to InstaMeasure, although it tried to

solve non-deterministic insertion time by IBLT’s constant time

insertion, instead of relaxing the {ips = pps} constraint.

VII. CONCLUSION

In this work, we have developed InstaMeasure for instant

flow detection, by counting of packets and bytes in high-

speed networks. Our approach is different from conventional

measurement frameworks in that we reduced detection delay

by introducing a new notion of very large In-DRAM working

set of active flows. As a result, we could obtain measurement

results with under 1 ms detection delay, which is negligibly

small compared to tens or even hundreds of milliseconds

in conventional approaches. We demonstrated InstaMeasure’s

performance and feasibility through extensive analyses, thus

opening a new direction in per-flow measurement.

ACKNOWLEDGEMENT

This research was supported by Grobal Research Laboratory

(GRL) Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Science and ICT

(NRF-2016K1A1A2912757). This work has supported by the

National Research Foundation of Korea (NRF) grant funded by

the Korea government (MSIT) (NRF-2017R1A2B4010657).

DaeHun Nyang and Aziz Mohaisen are the corresponding

authors.

REFERENCES

[1] , “The zettabyte era: Trends and analysis,”
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html.

[2] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer System Science, vol. 31,
pp. 182–209, 1985.

[3] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” J. Comput. Syst. Sci., vol. 58, no. 1,
pp. 137–147, 1999.

[4] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[5] X. A. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy
counting: an efficient algorithm for finding heavy hitters,” Computer
Communication Review, vol. 38, no. 1, p. 5, 2008.

[6] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proceedings of the
2003 ACM International Conference on Management of Data, SIGMOD
2003, San Diego, California, USA, June 9-12, 2003, 2003, pp. 241–252.

[7] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 12, pp. 2327–2339, 2006.

[8] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1092–
1105, 2014.

[9] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measure-
ment,” in Proceedings of the 2008 ACM International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2008,
Annapolis, MD, USA, June 2-6, 2008, 2008, pp. 121–132.

[10] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic
measurement through randomized counter sharing,” in Proceedings of
the 30th IEEE International Conference on Computer Communications,
INFOCOM 2011, 10-15 April 2011, Shanghai, China, 2011, pp. 1799–
1807.

[11] “NetFlow,” http://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html.

[12] “sFlow,” http://www.sflow.org/.
[13] “jFlow,” https://www.juniper.net/us/en/local/pdf/app-notes/3500204-

en.pdf.
[14] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and G. Zhang,

“Sketchvisor: Robust network measurement for software packet process-
ing,” in Proceedings of the 2017 ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-
25, 2017, 2017, pp. 113–126.

[15] “Td-routing: Supported route table entries,”
https://docs.cumulusnetworks.com/display/DOCS/Routing#Routing-
SupportedRouteTableEntries.

[16] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2013, Lombard,
IL, USA, April 2-5, 2013, 2013, pp. 29–42.

[17] D. Nyang and D. Shin, “Recyclable counter with confinement for real-
time per-flow measurement,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 3191–3203, 2016.

[18] R. Jang, D. Cho, Y. Noh, and D. Nyang, “Rflow+: An sdn-based
WLAN monitoring and management framework,” in Proceedings of
the 2017 IEEE International Conference on Computer Communications,
INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 1–9.

[19] “The cooperative association for internet data analysis, equinix chicago
data center,” https://www.caida.org, [Apr 06 2016].

[20] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 1249–1262, 2017.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proceedings of
the 1999 IEEE International Conference on Computer Communications,
INFOCOM 1999, New York, NY, USA, March 21-25, 1999, 1999, pp.
126–134.

[22] “All about bare metal switch,” https://bm-switch.com/.
[23] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for data

centers,” in Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, 2016, pp. 311–324.

[24] R. Karp, S. Shenker, and C. Papadimitriou, “A simple algorithm for
finding frequent elements in streams and bags,” ACM Transactions on
Database Systems, vol. 28, no. 1, pp. 51–55, 2003.

[25] N. Kamiyama and T. Mori, “Simple and accurate identification of high-
rate flows by packet sampling,” in Proceedings of the 2006 IEEE
International Conference on Computer Communications, INFOCOM
2006, 23-29 April 2006, Barcelona, Catalunya, Spain, 2006.

[26] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” TKDD, vol. 1, no. 4, pp.
2:1–2:48, 2008.

[27] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Random-
ized admission policy for efficient top-k and frequency estimation,” in
Proceedings of the 2017 IEEE International Conference on Computer
Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017,
2017, pp. 1–9.

[28] ——, “Optimal elephant flow detection,” in Proceedings of the 2017
IEEE International Conference on Computer Communications, INFO-
COM 2017, Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 1–9.

[29] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,”
in Proceedings of the 49th Annual Allerton Conference on Communica-
tion, Control, and Computing, Allerton 2011, Allerton Park & Retreat
Center, Monticello, IL, USA, 28-30 September, 2011, 2011, pp. 792–799.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM Special Interest Group on
Data Communication, SIGCOMM 2016, Florianopolis, Brazil, August
22-26, 2016, 2016, pp. 101–114.

2056

