
FRAME: Fault Tolerant and Real-Time Messaging
for Edge Computing

Chao Wang, Christopher Gill, Chenyang Lu

Department of Computer Science and Engineering

Washington University in St. Louis

Email: {chaowang, cdgill, lu}@wustl.edu

Abstract—Edge computing systems for Industrial Internet of
Things (IIoT) applications require reliable and timely message
delivery. Both latency discrepancies within edge clouds, and
heterogeneous loss-tolerance and latency requirements pose new
challenges for proper quality of service differentiation. Efficient
differentiated edge computing architectures are also needed, espe-
cially when common fault-tolerant mechanisms tend to introduce
additional latency, and when cloud traffic may impede local, time-
sensitive message delivery. In this paper, we introduce FRAME, a
fault-tolerant real-time messaging architecture. We first develop
timing bounds that capture the relation between traffic/service
parameters and loss-tolerance/latency requirements, and then
illustrate how such bounds can support proper differentiation
in a representative IIoT scenario. Specifically, FRAME leverages
those timing bounds to schedule message delivery and replication
actions to meet needed levels of assurance. FRAME is imple-
mented on top of the TAO real-time event service, and we present
empirical evaluations in a local edge computing test-bed and an
Amazon Virtual Private Cloud. The results of those evaluations
show that FRAME can efficiently meet different levels of message
loss-tolerance requirements, mitigate latency penalties caused by
fault recovery, and meet end-to-end soft deadlines during normal,
fault-free operation.

I. INTRODUCTION

The edge computing paradigm assigns specific roles to

local and remote computational resources. Typical examples

are seen in Industrial Internet-of-Things (IIoT) systems [1]–

[4], where latency-sensitive applications run locally in edge
servers, while computation-intensive and shareable tasks run

in a private cloud that supports multiple edges (Fig. 1).

Both an appropriate configuration and an efficient run-time

implementation are essential in such environments.

IIoT applications have requirements for message latency and

reliable delivery, and the needed levels of assurance are often

combined in heterogeneous ways. For example, emergency-

response applications may require both zero message loss and

tens of milliseconds end-to-end latency, monitoring applica-

tions may tolerate a small number of consecutive message

losses (e.g., by computing estimates using previous or subse-

quent messages) and require hundreds of milliseconds bounds

on latency, and logging applications may require zero message

loss but may only require sub-second latency.

Such systems must differentiate levels of latency and

loss-tolerance requirements. Without latency differentiation,
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Fig. 1. An Illustration of IIoT Edge Computing.

latency-sensitive messages may arrive too late; without loss-

tolerance differentiation, the system may demand excessive

resources since it must treat every message with the highest

requirement level. An edge computing system further needs to

consider both the discrepancy between traffic periods within

an edge (e.g., tens of milliseconds) and those to a cloud (e.g.,

at least sub-second), and the discrepancy between network

latency within an edge (e.g., sub-millisecond) and that to a

cloud (e.g., up to sub-second). Premature scheduling of cloud-

bound traffic may delay edge-bound, latency-sensitive traffic.

It is challenging to differentiate such heterogeneous require-

ments for both latency and loss tolerance efficiently. Differen-

tiating latency requirements alone at millisecond time scales

is nontrivial; enabling message loss-tolerance differentiation

adds further complexity, since fault-tolerant approaches in

general tend to slow down a system. In particular, systems

often adopt service replication to tolerate crash failures [5], [6].

Replication requires time-consuming mechanisms to maintain

message backups, and significant latency penalties may be

incurred due to system rollback upon fault recovery. Alter-

native replication methods may reduce latency at the expense

of greater resource consumption [7], [8]. To date, enabling and

efficiently managing such latency/loss-tolerance differentiation

remains a realistic and important open challenge.

In this paper, we propose the following problem formulation

to address those nuances of fault-tolerant real-time messaging

for edge computing: each message topic is associated with

a loss-tolerance level, in terms of the acceptable number of
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consecutive message losses, and an end-to-end latency dead-
line, and the system will process messages while (1) meeting

designated loss-tolerance levels at all times, (2) mitigating

latency penalties at fault recovery, and (3) meeting end-to-end

latency deadlines during fault-free operation. In this paper, we

focus on the scope of one edge and one cloud.

This paper makes three contributions to the state of the art

in fault-tolerant real-time middleware:

• A new fault-tolerant real-time messaging model. We

describe timing semantics for message delivery, identify

under what conditions a message may be lost, prove

timing bounds for real-time fault-tolerant actions in terms

of traffic/service parameters, and demonstrate how the

timing bounds can support efficient and appropriate mes-

sage differentiation to meet each requirement.

• FRAME: A differentiated Fault-tolerant ReAl-time
MEssaging architecture. We propose an edge computing

architecture that can perform appropriate differentiation

according to the model above. The FRAME architecture

also mitigates latency penalties caused by fault recovery,

via an online algorithm that prunes the set of messages

to be recovered.

• An efficient implementation and empirical evaluation. We

describe our implementation of FRAME within the TAO

real-time event service [9], a mature and widely-used

middleware. Empirical evaluation shows that FRAME can

efficiently meet both types of requirements and mitigate

the latency penalties caused by fault recovery.

The rest of this paper is organized as follows: In Section II,

we compare and contrast our approach to other related work.

In Section III, we describe FRAME’s fault-tolerant real-time

model, using an illustrative IIoT scenario. The architectural

design of FRAME is presented in Section IV, and its imple-

mentation is described in Section V. In Section VI, we present

an empirical evaluation of FRAME. Section VII summarizes

and presents conclusions.

II. RELATED WORK

Modern latency-sensitive applications have promoted the

need for edge computing, by which applications can respond to

local events in near real-time, while still using a cloud for man-

agement and storage [1], [10]. AWS Greengrass is a typical

edge computing platform1, where a Greengrass Core locally

provides a messaging service that bridges edge devices and the

cloud. Our model aligns with such an architecture. While there

is recent work [11] on a timely and reliable transport service in

the Internet domain using overlay networks, to our knowledge

we are the first to characterize and differentiate timeliness and

fault-tolerance for messaging in the edge computing domain.

Both real-time systems and fault-tolerant systems have been

studied extensively due to their relevance to real-world appli-

cations [5], [12]. For distributed real-time systems, the TAO

real-time event service [9] supports a configurable framework

for event filtering, correlation, and dispatching, along with a

1https://aws.amazon.com/greengrass/

TABLE 1
COMPARISON OF RELATED MIDDLEWARES AND STANDARDS.

Middleware/Standard Message-Loss Tolerance Strategies
Pub. Resend Local Disk Backup Broker

Flink [20] x x
Kafka [21] x x x
Spark Streaming [22] x x
NSQ2 x
DDS (Standard) [23] x
MQTT (Standard) [24] x
FRAME (This work) x x

scheduling service [13]. In this paper, we consider timing

aspects of message-loss tolerance and show that our new

model can be applied to address needs for efficient fault-

tolerant and real-time messaging.

Among fault-tolerance approaches, service replication has

been studied for reliable distributed systems. Delta-4 XPA [6]

coined the names active/passive/semi-active replication. In

active replication, also called the state-machine approach [7],

service requests are delivered to all host replicas, and the

responses from replicas are compared or suppressed and only

one result is returned. In passive replication, also known as the

primary-backup approach [14], only one primary host handles

requests, the other hosts synchronize to it, and one of the

synchronized hosts would replace the primary host should

a fault occur. Semi-active approaches have been applied to

real-time fault-tolerant systems to improve both delay pre-

dictability and latency performance [8]. A discussion regarding

conflicts between real-time and fault-tolerance capabilities is

available [15]. There are also recent studies for virtual ma-

chine fault-tolerance [16], [17] and for the recovery of faulty

replicas [18]. In this paper, we follow directions established

in the primary-backup approach.

A complementary research topic is fault-tolerant real-time

task allocation, where a set of real-time tasks and their

backup replicas are to be allocated to multiple processors, in

order to tolerate processor failures while meeting each task’s

soft real-time requirements. The DeCoRAM middleware [19]

achieved this by considering both primary and backup replicas’

execution times and failover ordering, and thereby reducing the

number of processors needed for replication. In contrast, the

work proposed in this paper considers end-to-end timeliness

of message delivery and tolerance of message loss, and via

timing analysis can reduce the need for replication itself.

Modern messaging solutions offer message-loss tolerance

in three ways: (1) publisher retention/resend: a publisher

keeps messages for re-sending; (2) local disk: message copies

are written to local hard disks; (3) backup brokers: like the

primary-backup approach, message copies are transferred to

other brokers; Table 1 lists the usage of these strategies

in modern solutions. We note that none of these solutions

explicitly addresses the impact of fault tolerance on timeliness.

In this paper, we introduce a timing analysis that gives insight

into how publisher retention and backup brokers relate to

2https://nsq.io
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Fig. 2. Example timelines within the scope of message creation and delivery,
and the relation between events happening in each component.

each other, and we demonstrate a trade-off in applying those

strategies. We chose not to examine the local disk strategy

because it performs relatively slowly.

III. FAULT-TOLERANT REAL-TIME MESSAGING MODEL

In this section, we present the constraints for a messaging

system to meet its fault-tolerant and real-time requirements.

We first give an overview of a messaging model and its

notation, followed by our assumptions and the requirements

for fault-tolerant and real-time messaging. We then describe

temporal semantics for such messaging and prove sufficient

timing bounds to meet the specified requirements. We con-

clude the section with a discussion of how the timing bounds

may be applied to drive system behaviors, using different

system configurations as examples.

A. Overview and Notation

We consider a common publish-subscribe messaging model,

with publishers, subscribers, and brokers. Each publisher

registers for a set of topics, and for each topic it publishes

a message sporadically. A message is delivered via a broker

to each subscriber of the topic. We define two types of

brokers, according to their roles in fault tolerance. The broker

delivering messages to subscribers is called the Primary, while

another broker that backs up messages is called the Backup.

The Backup is promoted to become a new Primary should

the original Primary crash. The Primary and its respective

Backup are assumed to be mapped to separate hosts. Each

publisher has connection to both the Primary and the Backup,

and it always sends messages to the current Primary. Each

subscriber has connection to both, too. We use the term

message interchangeably with topic.

Let I be the set of topics associated with a publisher. For

each topic i ∈ I , messages are created sporadically with

minimum inter-creation time Ti, also called the period of

topic i. For each message, within the time span between its

creation at a publisher and its final delivery at the appropriate

subscriber, there are seven time points of interest (Fig. 2): tc
the message creation time at the publisher, tp the message

arrival time at the Primary, ts the message arrival time at

the subscriber, te the time at which the publisher deleted the

message it had retained, tr the time at which the Primary sent

a replica of the message to the Backup, tb the time the Backup

received the message replica, and td the time the Primary

dispatched the message to the subscriber. Let ΔPB = tp−tc be

the latency from the publisher to its broker, ΔBS = ts−td the

latency from the broker to the subscriber, and ΔBB = tb− tr
the latency from the broker to its Backup.

B. Assumptions and Requirements

This study assumes the following fault model. Each bro-

ker host is subject to processor crash failures with fail-stop

behavior, and a system is designed to tolerate one broker

failure. We choose to focus on tolerating broker failure, since

a broker must accommodate all message streams and is a

performance bottleneck. Common fault-tolerance strategies

such as active replication may be used to ensure the availability

of both publishers and subscribers. The Primary broker host

and the Backup broker host are within close proximity (e.g.,

connected via a switch). The clocks of all hosts are sufficiently

synchronized3, and between the Primary and the Backup there

are reliable inter-connects with bounded latency. Publishers are

proxies for a collection of IIoT devices, such as sensors, and

aggregate messages from them.

For each topic i, its subscriber has a specific loss-tolerance
requirement and latency requirement. A loss-tolerance require-

ment is specified as an integer Li ≥ 0, saying that the sub-

scriber can tolerate at most Li consecutive message losses for

topic i. We note that such loss tolerance is specified because

in common cyber-physical semantics (e.g., monitoring and

tracking), a small number of transient losses may be acceptable

as they can be compensated for, using estimates from previous

or subsequent messages. A latency requirement is specified

as an integer Di ≥ 0, defining a soft end-to-end latency

constraint [12] of topic i from publisher to subscriber. For

multiple subscribers of the same topic, we choose the highest

requirements among the subscribers. Finally, we assume that

each publisher can retain the Ni ≥ 0 latest messages that it

has sent to the Primary. During fault recovery, a publisher

will send all Ni retained messages to its Backup. Let x be

a publisher’s fail-over time, which is defined as an interval

beginning at a broker failure until the publisher has redirected

its messaging traffic to the Backup.

C. Temporal Semantics and Timing Bounds

As illustrated in Fig. 2, within the interval from tc to ts,

a message may be loss-tolerant because either (1) it has a

copy retained in the publisher (over time interval [tc, te]) or

(2) a replica of the message has been sent to the Backup (over

time interval [tb, ts]). Nevertheless, there could be a time gap

in between those intervals during which the message can be

lost, because the publisher has deleted its copy (e.g., due to a

limited IIoT device capacity) and a replica has not yet been

sent to the Backup (time interval (te, tb)). Let Rr
i = tr −

tp be the response time for a job that replicates message i
to the Backup, and Rd

i = td − tp the response time for a

job that dispatches message i to the subscriber. Depending on

3For example, via PTP [25] and/or NTP [26] protocols; see Section VI-A
for our experimental setup.
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the specifications of Li and Ni, there are constraints on the

response time of message dispatching and message replication.

In the following, we prove an upper bound on the worst-case

response time for replicating and dispatching, respectively.

Lemma 1. Let Dr
i be the relative deadline for a replicating

job for topic i. To ensure that the subscriber will never
experience more than Li consecutive losses of messages in
the topic, it is sufficient that

Rr
i ≤ Dr

i = (Ni + Li)Ti −ΔPB −ΔBB − x. (1)

Proof. Without loss of generality, we consider a series of

message creation times for topic i, as shown in Fig. 3. Adding

ΔPB to each creation time, we have the release time of the

replicating job for each message. Suppose that the Primary

crashed at a certain time within (tk−1, tk]. We have two cases:

Case 1: Crash at a time within (tk−1, tk − x). In this

case, message ik will be sent to the Backup instead, since

the publisher has detected the crash of Primary. By definition,

the publisher would send the latest Ni messages to the Backup

once it detected failure of the Primary. Therefore, messages

ik−1, ik−2, ..., through ik−Ni
would be recovered and are

not considered lost. According to the requirement, topic i can

have no more than Li consecutive losses. Hence, message

ik−Ni−Li−1 had to be replicated to the Backup before the

Primary crashed, which means the response time of replicating

the message must be smaller than ((k − 1)− (k−Ni −Li −
1))Ti−ΔPB−ΔBB = (Ni+Li)Ti−ΔPB−ΔBB , supposing

that, in the worst case, the crash happened immediately after

the release of a replicating job for message ik−1.

Case 2: Crash at a time within [tk − x, tk]. In this case,

message ik will be lost and then recovered after the publisher

has detected the crash of the Primary. By definition, besides

ik, Ni−1 earlier messages will also be recovered. The earliest

message recovered by the publisher would be ik−(Ni−1). Sim-

ilar to Case 1, message ik−(Ni−1)−Li−1 had to be replicated

to the Backup before the Primary crashed, meaning that the

response time of replicating the message must be smaller than

(Ti−x)+((k−1)−(k−(Ni−1)−Li−1))Ti−ΔPB−ΔBB =
(Ni + Li)Ti −ΔPB −ΔBB − x.

Case 2 dominates, and hence the proof.

Lemma 2. Let Dd
i be the relative deadline for a dispatching

job for topic i. For the topic to meet its end-to-end deadline
Di, it is sufficient that

Rd
i ≤ Dd

i = Di −ΔPB −ΔBS . (2)

Proof. We prove by contradiction. Let r be the current amount

of time remaining before missing the end-to-end deadline,

TABLE 2
EXAMPLE TOPIC SPECIFICATIONS.

Topic Category Ti Di Li Ni Destination
0 50 50 0 2 Edge
1 50 50 3 0 Edge
2 100 100 0 1 Edge
3 100 100 3 0 Edge
4 100 100 ∞ 0 Edge
5 500 500 0 1 Cloud

and r = Di at message creation. When message i arrives

at the broker (time point tp), we have r = Di −ΔPB . Now,

suppose that it would take longer than Di − ΔPB − ΔBS

before the dispatch of message i (time point tb). We will

then have r < (Di − ΔPB) − (Di − ΔPB − ΔBS), i.e.,

r < ΔBS . By definition, the latency [td, ts] is at least ΔBS ,

and therefore by the time the message reached the subscriber

(time point ts), we will have r < 0, i.e., a deadline miss. Thus,

Dd
i = Di−ΔPB−ΔBS is an upper bound on the worst-case

response time for dispatching message i.

D. Enabling Differentiated Processing and Configuration

In the following, we give five applications of the timing

bounds in Lemmas 1 and 2. We define deadlines for message

dispatching and replication using Equations (1) and (2), and

we schedule both activities using the Earliest Deadline First

(EDF) policy [12]. Further, we propose a heuristic based on the

fact that a dispatched message no longer needs to be replicated,

and we show where the heuristic is useful.

Proposition 1. (Selective Replication) It is sufficient to sup-
press the replication of topic i if a system can meet dead-
line Dd

i and
Dd

i ≤ Dr
i . (3)

Following Proposition 1 we have a condition to judge

whether there is a need for replication: x + ΔBB − ΔBS >
(Ni + Li)Ti −Di.

As an illustration, we consider an IIoT scenario [1], where

publishers are proxies for edge sensors, subscribers are either

within an edge (e.g., in close proximity to publishers and

brokers) or in a cloud (e.g., in AWS Elastic Compute Cloud

(EC2)), and brokers are in closer proximity to publishers than

to subscribers. We consider six categories of topic specifi-

cation, as shown in Table 2. Categories 0 and 1 represent

highly latency-sensitive topics (e.g., for emergency-response

applications), with zero- and three-message-loss tolerance,

respectively. Categories 2, 3, and 4 represent moderately

latency-sensitive topics (e.g., for monitoring applications),

with different levels of loss tolerance. Li = ∞ means that

all subscribers of the topic only ask for best-effort delivery.

Category 5 represents weakly latency-sensitive topics (e.g., for

logging applications), with zero-message-loss tolerance. The

fifth column shows the minimum value of Ni that ensures Dr
i

is non-negative.

1) Admission test: Lemmas 1 and 2 provide a simple

admission test: both Dr
i ≥ 0 and Dd

i ≥ 0 must hold for any
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Fig. 4. The FRAME Architecture.

topic i. For example, if we are to meet a fault-tolerance re-

quirement Li = 0 (i.e., zero message loss), Equation (1) shows

that we must enable publisher message retention. Otherwise,

the message will be lost should the Primary crash immediately

after a message arrival. In general, to satisfy Dr
i ≥ 0, it follows

that (1) if message period Ti is small, it then requires a larger

value of Ni +Li; and (2) a higher loss-tolerance requirement

(i.e., a smaller Li) requires a larger value of Ni.

2) Differentiating topics with heterogeneous latency
(Di) and loss-tolerance (Li) requirements: Applying Equa-

tions (1) and (2), we have the following order over Dr
i and Dd

i ,

assuming ΔBS = 1 for subscribers within an edge and

ΔBS = 20 for subscribers in a cloud, ΔBB = 0.05, and

x = 50: {Dd
0 = Dd

1 < Dr
0 = Dr

2 < Dd
2 = Dd

3 = Dd
4 <

Dr
1 < Dr

3 < Dr
5 < Dd

5}, indexed by topic category. There is

no need for topic replication in category 4 since subscribers

only ask for best-effort delivery. Applying Proposition 1, we

can remove the need for replication in categories 0, 1, and 3,

and only need replication for categories 2 and 5. This lowers

system load and can help a system accommodate more topics.

We give empirical validation of this in Section VI.

3) Leveraging publisher message retention: While as-

suming the minimum admissible value of Ni for each category

allows one to study the most challenging case for a messaging

system to process such a topic set, the value of Ni in practice

may be tunable, for example, if a publisher is a proxy host

for a collection of devices. Also, a fault-tolerant system is

typically engineered with redundancies. Now, we increase the

value of Ni by one for categories 2 and 5. We will have

both Dd
2 < Dr

2 and Dd
5 < Dr

5, giving dispatching activities

a higher precedence. Applying Proposition 1, we may further

remove the need for replication in those categories as well.

In Section VI we will show the empirical benefit of such an

increase in publisher message retention.

4) Differentiating topics with latency requirements non-
equal to their periods: There can be messages that either

have Di < Ti or Di > Ti. Case Di < Ti applies to rare

but time-critical messages, such as for emergency notification.

In this case, without loss of generality we assume Ti = ∞
and Li = 0. The admissible value of Ni is greater-than-zero,

and Equation (3) suggests no need for replication as long as

message delivery can be made in time. Case Di > Ti applies

to messages with traveling time longer than their rate, such as

in multimedia streaming. In this case, Equation (3) suggests a

likely need for replication, unless ΔBS is small.

5) Differentiating edge-bound and cloud-bound traffic:
Traffic parameters within an edge and to a cloud are usually

of different orders of magnitude. While edge-bound traffic

periods may be tens of milliseconds, cloud-bound traffic

periods may be a sub-second or longer. For network latency,

we observed 0.5 ms round-trip time between a local broker

and a subscriber connected via a switch, and 44 ms round-trip

time between the broker and a subscriber in AWS EC2 cloud.

Lemmas 1 and 2 capture the relation between these parame-

ters. Cloud latency is less predictable, and we choose to use a

lower-bound of ΔBS , which can be obtained by measurement.

Proposition 1 ensures the same level of loss tolerance even if

at run-time there is an occasional increase in cloud latency.

A loss-tolerance guarantee would break if a system chose to

suppress a replication when it should not, but that will not

happen as we use a lower-bound of ΔBS . Although an under-

estimated cloud latency at run-time might delay the cloud

traffic (due to the use of EDF policy), edge computing clouds

do not have hard latency constraints. An over-estimation of

cloud latency could be undesirable, however, as it could both

preclude the use of selective replication and prematurely delay

other traffic.

IV. THE FRAME ARCHITECTURE

We now describe the FRAME architecture for differentiated

fault-tolerant real-time messaging. The key criteria are (1) to

meet both the fault-tolerant and real-time requirements for

each topic efficiently, and (2) to mitigate both latency penalties

during fault recovery and replication overhead during fault-

free operation. The FRAME architecture, shown in Fig. 4,

achieves both via (1) a configurable scheduling/recovery fa-

cility that differentiates message handling according to each

fault-tolerance and real-time requirement, and (2) a dispatch-

replicate coordination approach that tracks and prunes a valid

set of message copies and cancels unneeded operations.
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A. Configurable Scheduling/Recovery Facility

During initialization, FRAME takes an input configura-

tion and, accordingly, computes pseudo relative deadlines for

replication, Dr
i
′, and for dispatch, Dd

i
′, with Dr

i
′ = (Ni +

Li)Ti − ΔBB − x and Dd
i
′ = Di − ΔBS . The content of

the configuration includes values for Ni, Li, Ti, and Di,

per topic i, and values for x and ΔBS per subscriber. The

computed pseudo relative deadlines Dr
i
′ and Dd

i
′ are stored

in a module called the Message Proxy (see Fig. 4). At run-

time, for each message arrival, the Message Proxy first takes

the arriving message and copies it into a Message Buffer, and

then invokes its Job Generator along with a reference to the

message’s position in the Message Buffer. The Job Generator

then creates job(s) for message dispatching (replicating). The

Job Generator subtracts ΔPB from Dr
i
′ and Dd

i
′, obtaining

the relative deadlines Dr
i and Dd

i as defined in Lemmas 1

and 2, and then sets an absolute deadline for each dispatching

(replicating) job to tp +Dd
i (tp +Dr

i ). A replicating job will

not be created if Dd
i ≤ Dr

i , according to Proposition 1.

Scheduling of message delivery is performed using the EDF

policy. This is achieved by pushing jobs into a queue called

the EDF Job Queue, within which jobs are sorted according to

their deadlines. A Message Delivery module fetches a job from

the EDF Job Queue and delivers the message that the job refers

to, accordingly. A job for dispatching (replicating) is executed

by a Dispatcher (Replicator) in the module. A Dispatcher

pushes the message to a subscriber, and a Replicator pushes

a copy of the message to the Backup, where the message

copy will be stored in a Backup Buffer. For a topic subscribed

by multiple Subscribers, the Job Generator would create only

one dispatching (replicating) job for each message arrival. A

Dispatcher taking the job would push the message to each of

its subscribers.

Fault recovery is achieved as follows. The Backup tracks

the status of its Primary via periodic polling, and would

become a new Primary once it detected that its Primary had

crashed. Upon becoming the new Primary, the broker would

first dispatch a selected set of message copies in its Backup

Buffer. The dispatch procedure is the same as handling a new

message arrival, except that jobs now refer to the broker’s

Backup Buffer, not its Message Buffer, and ΔPB is increased

according to the arrival time of the message copy. Only those

message copies whose original copy have not been dispatched

will be selected for dispatch.

B. Dispatch-Replicate Coordination

During fault recovery, it would add both overhead to a

system and latency penalties to messages if we did not

differentiate message copies in the Backup Buffer. In FRAME,

differentiation is achieved by maintaining a dynamic set of

message copies in the Backup Buffer, and by skipping other

copies during fault recovery. To be specific, during fault-free

operation, once the Primary has dispatched a message, it will

(1) direct its Backup to prune the Backup Buffer for the topic,

and (2) cancel the pending job for the corresponding replica-

tion, if any. The coordination algorithm is given in Table 3.

TABLE 3
ALGORITHM FOR DISPATCH-REPLICATE COORDINATION.

Type of Operation Procedure
Dispatch 1. dispatch the message to the subscriber

2. set Dispatched to True
3. if Replicated is True, request the Backup to

set Discard to True
Replicate 1. if Dispatched is True, abort

2. replicate the message to the Backup
3. set Replicated to True

Recovery 1. if Discard is True, skip the message
(in the Backup) 2. create a dispatching job for the message

3. push the job into the EDF Job Queue
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Supplier Proxies

Event Correlation
Dispatching

Consumer Proxies

Message Proxy

m
e
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a
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g
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Message Delivery

Supplier Proxies

Consumer Proxies

Fig. 5. Implementation of FRAME within TAO’s Real-Time Event Service.

Flags (Dispatched, Replicated, Discard) are associated with

each entry in the Message Buffer/Backup Buffer that keeps

a message copy; for each new message copy, all flags are

initialized to False. If a topic has multiple subscribers, the

Primary would set the Dispatched flag to true only after the

message has been dispatched to all the subscribers.

V. FRAME IMPLEMENTATION

We implemented the FRAME architecture within the TAO

real-time event service [9], where messages were encapsulated

in events, publishers and subscribers were implemented as

event suppliers and consumers, and each broker was im-

plemented within an event channel. Prior to our work, the

TAO real-time event service only supported simple event

correlations (logical conjunction and disjunction). In contrast,

FRAME enables differentiated processing according to the

specified latency and loss-tolerance requirements. An event

channel in the original TAO middleware contains five modules,

as shown in Fig. 5(a). Fig. 5(b) illustrates our implemen-

tation: we preserved the original interfaces of the Supplier

Proxies and the Consumer Proxies, and replaced the Subscrip-

tion & Filtering, Event Correlation, and Dispatch modules with

FRAME’s Message Proxy and Message Delivery modules.

We connected the Supplier Proxies to the Message Proxy

module by a hook method within the push method of the

Supplier Proxies module. The Message Delivery module deliv-

ers messages by invoking the push method of the Consumer

Proxies module. We implemented Dispatchers and Replica-

tors using a pool of generic threads, with the total number

of threads equal to three times the number of CPU cores.

We implemented FRAME’s EDF Job Queue using C++11’s

standard priority-queue, and used C++11’s standard chrono
time library to timestamp and compare deadlines to determine

message priority. The Message Buffer, Backup Buffer, and

Retention Buffer are all implemented as ring buffers.
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Fig. 6. Topology for empirical evaluation. Dotted lines denote failover paths.

VI. EXPERIMENTAL RESULTS

We evaluate FRAME’s performance across three aspects:

(1) message loss-tolerance enforcement, (2) latency penalties

caused by fault recovery, and (3) end-to-end latency perfor-

mance. We adopted the specification shown in Table 2, with

ten topics each in categories 0 and 1, and five topics in

category 5. The timing values are in milliseconds. We evaluate

different levels of workload by increasing the number of topics

in categories 2–4. We chose to increase the workloads this way,

as in IIoT scenarios sensors often contribute to the majority of

the traffic load, and some losses are tolerable since lost data

may be estimated from previous or subsequent updates. The

payload size is 16 bytes per message of a topic. Publishers for

categories 0 and 1 were proxies of ten topics, publishers for

categories 2–4 were proxies of 50 topics, and each publisher

for category 5 published one topic. Each proxy sent messages

in a batch, one message per topic. The set of workloads we

have evaluated includes a total of 1525, 4525, 7525, 10525,

and 13525 topics, to cover a range of CPU utilization.

A. Experiment Setup

Our test-bed consists of seven hosts, as shown in Fig. 6:

One publisher host has an Intel Pentium Dual-Core 3.2 GHz

processor, running Ubuntu Linux with kernel v.3.19.0, and

another has an Intel Core i7-8700 4.6 GHz processor, running

Ubuntu Linux with kernel v.4.13.0; both broker hosts have

Intel i5-4590 3.3 GHz processors, running Ubuntu Linux

kernel v.4.15.0; one edge subscriber host has an Intel Pentium

Dual-Core 3.2 GHz processor, running Ubuntu Linux with

kernel v.3.13.0, and another has an Intel Core i7-8700 4.6 GHz

processor, running Ubuntu Linux with kernel v.4.13.0; the

cloud subscriber is a virtual machine instance in AWS EC2,

running Ubuntu Linux with kernel v.4.4.0. We connected all

local hosts via a Gigabit switch in a closed LAN. Both broker

hosts had two network interface controllers, and we used one

for local traffic and another for cloud traffic. In each broker

host, two CPU cores were dedicated for Message Delivery,

and one CPU core was dedicated for the Message Proxy.

We assigned real-time priority level 99 to all middleware

threads, and we disabled irqbalance [27]. We synchro-

nized our local hosts via PTPd4, an open source implemen-

tation of the PTP protocol [25]. The publisher hosts’ clock,

the edge subscriber hosts’ clock, and the Backup host’s clock

were synchronized to the clock of the Primary host, with

synchronization error within 0.05 milliseconds. The cloud

subscriber’s clock was synchronized to the Primary’s clock

4https://github.com/ptpd/ptpd

TABLE 4
SUCCESS RATE FOR LOSS-TOLERANCE REQUIREMENT (%).

Di Li FRAME+ FRAME FCFS FCFS-
Workload = 7525 Topics

50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 10525 Topics
50 0 100.0 100.0 0.0 100.0
50 3 100.0 100.0 0.0 100.0
100 0 100.0 100.0 0.0 100.0
100 3 100.0 100.0 0.0 100.0
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 100.0 0.0 100.0

Workload = 13525 Topics
50 0 100.0 80.0 ± 30.1 0.0 100.0
50 3 100.0 80.0 ± 30.1 0.0 100.0
100 0 100.0 73.2 ± 30.7 0.0 78.4 ± 13.3
100 3 100.0 79.3 ± 29.9 0.0 99.3 ± 0.5
100 ∞ 100.0 100.0 100.0 100.0
500 0 100.0 80.0 ± 30.1 0.0 100.0

using chrony5 that utilizes NTP [26], with synchronization

error in milliseconds. The latency measurement for ΔBS is

dominated by the communication latency to AWS EC2, which

was at least 20 milliseconds.

We compared four configurations: (1) FRAME;

(2) FRAME+, where we set Ni = 2 for categories 2

and 5, to evaluate publisher message retention; (3) FCFS
(First-Come-First-Serve), a baseline against FRAME, where

no differentiation is made and messages are handled in

their arrival orders; (4) FCFS-, which is FCFS without

dispatch-replicate coordination. In both FCFS and FCFS-, the

Primary first performed replication and then dispatch.

For each configuration we ran each test case ten times and

calculated the 95% confidence interval for each measurement.

We allowed 35 seconds for system initialization and warm-up.

The measuring phase spanned 60 seconds. We injected a crash

failure by sending signal SIGKILL to the Primary broker at

the 30th second, and studied the performance of failover to

the Backup. We also ran each test case without fault injection,

to obtain both end-to-end latency performance at fault-free

operation, and CPU usage in terms of utilization percentage,

for each module of the FRAME architecture.

B. Message Loss-Tolerance Enforcement

Table 4 shows the success rate of meeting loss-tolerance re-

quirements under increasing workload. All four configurations

had 100% success rate for 1525 and 4525 topics. FRAME

outperformed FCFS after the workload reached 7525 topics

and more, thanks to the selective replication of Proposition 1.

FRAME only performed the needed replications (topic cate-

gories 2 and 5) and suppressed the others (topic categories 0,

1, and 3), saving more than 50% in CPU utilization for the

Message Delivery module, compared with the result of FCFS

5https://help.ubuntu.com/lts/serverguide/NTP.html
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(a) Message Delivery Module in the Primary.

(b) Message Proxy Module in the Primary.

(c) Message Proxy Module in the Backup.

Fig. 7. CPU Utilization for Each Configuration.

for the case with 7525 topics (Fig. 7(a)). With FCFS, the

Primary was overloaded: the threads of the Message Delivery

module competed for the EDF Job Queue, and the thread of the

Message Proxy module was kept blocked (implied in Fig. 7(b))

each time it created jobs from arrivals of message batches.

To evaluate publisher message retention, we compared

FRAME with FRAME+. Leveraging Proposition 1, with

FRAME+ the Primary did not perform any replication to its

Backup, and loss tolerance was solely performed by publisher

re-sending the retained messages. As shown in Table 4,

FRAME+ met all loss-tolerance requirements in every case.

Further, the replication removal saved CPU usage in the

Primary broker host (Fig. 7(a)). The replication removal also

saved CPU usage in the Backup broker host (Fig. 7(c)),

because the Primary would send less traffic to it.

To evaluate the impact of dispatch-replicate coordination,

we compared FCFS with FCFS-. FCFS- outperformed FCFS

in loss-tolerance performance (Table 4), because with FCFS-

the Primary may replicate and deliver messages sooner since it

did not coordinate with the Backup. But that way the Primary

would miss opportunities to preclude latency penalties caused

by fault recovery. We evaluate this in the next subsection.

We further conducted a micro-benchmark to show that

FRAME can keep the same level of loss tolerance despite

Fig. 8. Value of ΔBS for a topic in category 5 through a 24-hour duration.

cloud latency variation. We ran the workload of 7525 topics

non-stop for 24 hours, using the FRAME configuration, and

we measured the run-time value of ΔBS for a topic in category

5 (Fig. 8)6. The setup value of ΔBS for Dd
5 was 20.7 ms,

which was the minimum value from an one-hour test run. As

a result, we observed no message loss throughout the 24 hours,

despite changes in the value of ΔBS .

C. Latency Penalties Caused by Fault Recovery

We evaluate the latency penalties in terms of the peak

message latency following a crash failure. We set the size of

the Backup Buffer to ten for each topic. Under the workload

of 1525 topics, all four configurations performed well, and at

higher workloads both FRAME and FRAME+ outperformed

FCFS and FCFS-. In the following, we evaluate a series of

end-to-end latency results under the workload of 7525 topics.

We only show results of distinct messages, differentiated by

their sequence numbers. Duplicated messages were discarded.

The result is shown in Fig. 9 with each column presenting

four configurations for a topic category.

In general, without dispatch-replicate coordination (demon-

strated by FCFS-), the number of messages affected by fault

recovery is lower-bounded by the size of the Backup Buffer,

since at run-time steady state the Backup Buffer is full,

and during fault recovery new message arrivals may need

to wait. With the proposed dispatch-replicate coordination

(demonstrated by FRAME+, FRAME, and FCFS), the amount

of work is decoupled from the buffer size and is instead equal

to the number of messages whose original copy has not yet

been dispatched.

Both FRAME and FRAME+ met the loss-tolerance require-

ments (zero message loss); for FRAME, although the Primary

did replication, the Backup Buffer was empty at the time

of fault recovery (all pruned), suggesting the effectiveness of

dispatch-replicate coordination; for FRAME+, the Primary did

no replication according to Proposition 1. FRAME+ success-

fully recovered one message for each of categories 0 and 2

by publishers re-sending their retained message copies. The

latency of FRAME+ during fault recovery was higher than

that of FRAME, because with FRAME+ the Backup would

6The +104 ms latency spike occurred at around 8am on Thursday.
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(a) Category 0, Ti = 50, Di = 50. (b) Category 2, Ti = 100, Di = 100. (c) Category 5, Ti = 500, Di = 500.

Fig. 9. End-to-end latency of a topic before, upon, and after fault recovery.

process one additional message copy per topic in categories 2

and 5, and that caused delay.

For FCFS, the system was overloaded, messages were

delayed (latency > 10 seconds) and many of them were lost:

206 losses for a topic in category 0, 103 losses for a topic

in category 2, and 20 losses for a topic in category 5. We

observed that dispatch-replication coordination was in effect,

as the Backup Buffer for those topics was empty at the time of

fault recovery. After switching to the Backup, message latency

sharply dropped. For example, for topic category 2 (Fig. 9(b)),

the Backup began processing at the 240th message.

For FCFS-, we observed that the Backup Buffer was full

at the time of fault recovery, because there was no dispatch-

replicate coordination. Therefore, there were large latency

penalties since the Backup needed to process all message

copies in the Backup Buffer. For example, shown in Fig. 9(b),

FCFS- had a peak latency above 500 ms, which was about

400 ms longer than the deadline. In contrast, FRAME had a

peak latency below 50 ms. The latency prior to the Primary

crash was low, because FCFS-, like FRAME and unlike

FCFS, did not overload the system (Fig. 7(a)). Finally, we

note that while FCFS- processed messages in the Backup

Buffer and caused great latency penalties, those messages were

all out-dated and unnecessary, and all the needed messages

were actually recovered by publishers re-sending their retained

copies; for the topic in category 5, there was no message loss

using FCFS- and the publisher re-sending was unnecessary,

and the two latency spikes were due to overhead in processing

unneeded copies (Fig. 9(c)).

D. Latency Performance During Fault-Free Operation
In addition to fault tolerance, it is critical that a system

performs well during fault-free operation. Good fault-free per-

formance implies an efficient fault-tolerance approach. Table 5

shows the success rate for meeting latency requirement Di.

All configurations performed well, except for FCFS at higher

workloads, in which cases the system was overloaded as

discussed in Section VI-B. This suggests that both the archi-

tecture and implementation are efficient, as even the FCFS

configuration performed well as long as the system was not

yet overloaded.
E. Key Lessons Learned

Here we summarize four key observations:

1) Applying replication removal as suggested by Proposi-

tion 1 can help a system accommodate more topics while

reducing CPU utilization (FRAME v.s. FCFS).

2) Pruning backup messages can reduce latency penalties

caused by fault recovery at a cost of nontrivial overhead

during fault-free operation (FCFS v.s. FCFS-).

3) Following the first two lessons, combining replication

removal and pruning can achieve better performance

both at fault recovery and during fault-free operation

(FRAME v.s. FCFS-).
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TABLE 5
SUCCESS RATE FOR LATENCY REQUIREMENT (%).

Di Li FRAME+ FRAME FCFS FCFS- FRAME+ FRAME FCFS FCFS-
Workload = 4525 Topics Workload = 10525 Topics

50 0 100.0 99.9 ± 2.5E-2 99.9 ± 5.0E-2 100.0 100.0 99.9 ± 5.7E-2 0.2 ± 5.3E-2 99.8 ± 8.1E-2
50 3 100.0 99.9 ± 3.0E-2 99.9 ± 4.1E-2 100.0 100.0 99.9 ± 5.6E-2 0.2 ± 5.5E-2 99.8 ± 6.8E-2
100 0 100.0 100.0 100.0 100.0 99.9 ± 5.4E-2 99.9 ± 4.0E-2 7.2E-2 ± 0.1 99.9 ± 3.1E-2
100 3 100.0 100.0 99.9 ± 1.1E-3 100.0 99.9 ± 5.2E-2 99.9 ± 3.9E-2 7.2E-2 ± 0.1 99.9 ± 2.9E-2
100 ∞ 100.0 100.0 99.9 ± 1.9E-3 100.0 99.9 ± 5.0E-2 99.9 ± 4.3E-2 6.9E-2 ± 0.1 99.9 ± 3.1E-2
500 0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0

Workload = 7525 Topics Workload = 13525 Topics
50 0 100.0 99.9 ± 4.4E-2 0.2 ± 0.1 99.9 ± 4.2E-2 98.4 ± 2.9 85.4 ± 21.7 0.1 ± 0.1 99.4 ± 3.6E-1
50 3 100.0 99.9 ± 3.9E-2 0.2 ± 0.1 99.9 ± 6.3E-2 98.4 ± 2.9 85.3 ± 21.7 0.2 ± 0.2 99.5 ± 2.3E-1
100 0 100.0 99.9 ± 8.8E-3 0.0 99.9 ± 1.4E-2 97.6 ± 4.4 83.7 ± 21.9 2.6E-4 ± 6.0E-4 98.3 ± 1.0
100 3 100.0 99.9 ± 5.6E-3 0.0 99.9 ± 1.3E-2 97.6 ± 4.4 83.8 ± 21.9 9.9E-4 ± 2.2E-3 98.3 ± 1.1
100 ∞ 100.0 99.9 ± 9.2E-3 0.0 99.9 ± 1.5E-2 97.6 ± 4.4 83.8 ± 21.9 6.6E-4 ± 1.5E-3 98.3 ± 1.1
500 0 100.0 100.0 0.0 100.0 98.6 ± 2.8 86.1 ± 21.8 0.0 100.0

Note: 100% success rate for all with 1525 topics.

4) Allowing a small increase in the level of publisher

message retention can enable large replication removal

and greatly improve efficiency (FRAME v.s. FRAME+).

VII. CONCLUSIONS

We introduced a new fault-tolerant real-time edge comput-

ing model and illustrated that the proved timing bounds can aid

in requirement differentiation. We then introduced the FRAME

architecture and its implementation. Empirical results suggest

that FRAME is performant both in fault-tolerant and fault-free

operation. Finally, we demonstrated in an IIoT scenario that

FRAME can keep the same level of message-loss tolerance

despite varied cloud latency, and we show that a small increase

in publisher message retention can both improve loss-tolerance

performance and reduce CPU usage.
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