
Memory Disaggregation: Research Problems and Opportunities
Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang+, Juhyun Bae, Yanzhao Wu

Geoegia Institute of Technology, Atlanta, GA30329, USA
 +IBM Thomas J. Watson Research, New York, USA

Abstract—Memory usage imbalance has been consistently
observed in many virtualized Clouds and production datacenters.
Such temporal memory utilization variance is a major root cause for
excessive paging and thrashing on virtual servers even though there
are sufficient idle memory on the same node or in the Cloud cluster.
Memory disaggregation is an emerging research and development
endeavor towards addressing these memory usage imbalance
problems. This paper first defines and characterizes the concept of
memory disaggregation, and discusses the demands and challenges
of efficient memory disaggregation in cloud datacenters. It then
examines some promising research issues, design choices and
directions to overcome some of the challenges posed by memory
disaggregation. Specifically, it proposes two major new research
challenges and solution directions for enabling elastic, on-demand
disaggregated memory orchestration: (1) virtual server memory and
node level memory co-design and (2) local memory and remote
memory co-design. A brief description of two ongoing research
projects is provided for both solution directions. The paper ends
with a brief discussion of other advanced and emerging memory and
storage technologies and potential opportunities for memory
disaggregation.

Keywords—Cloud computing, disaggregated memory, shared
memory, remote memory, virtualization

I. INTRODUCTION
Big data systems and analytics continue to fuel the in-
memory data processing research and development. On one
hand, to meet the growing demand of in-memory data
processing and increase the competitive edge in service
provisioning, Cloud providers have started to plan and
upgrade their Infrastructure as a Service (IaaS) to include
large memory virtual machines with terabytes (TBs) of
memory in their high-end offerings [1,2]. On the other hand,
memory utilization imbalance and temporal memory usage
variations are frequently observed and reported in virtualized
clouds [3-11] and production datacenters [12-16]. The
memory upgrade trend further exaggerates the memory
utilization imbalance problems.

Memory usage imbalance: opportunity and challenge.
Two primary factors may cause large temporal memory
usage variance at node level and severe memory utilization
imbalance across nodes in a cluster. First, Cloud systems
typically serve heterogeneous guest application workloads in
their clusters of physical nodes (machines). Second, many
guest applications have heterogeneous data access patterns
during runtime, represented by the big data powered iterative
machine learning (ML) workloads. Third, virtual machines
(VMs), containers or Java Virtual Machine (JVM) executors
are the three types of virtual servers popularly used in many

Cloud application deployment models. Each virtual server
(VM/container/JVM executor) is configured to accommodate
the peek memory usage (worst-case demand) either at the
initialization of the cluster or the initialization of each
VM/container/executor. The accurate estimation and
provisioning of server memory resources has been a long-
standing technical challenge since the working set size is not
always easy to predict and the DRAM allocation for each
VM/container/executor has to be determined at the compute
cluster installation time [14-16]. It is reported [11-12] that the
clusters experience severe memory utilization imbalance
with an average of 30% idle memory during 70% of the
running time, and of the 80% memory allocated, only 50%
on average is used. [17] shows that the aggregated memory
capacity of a data center cluster reached 437 TB on a typical
workday, which is only 69% of its overall allocated memory
capacity. Clearly, the heterogeneity of guest applications and
the peek-usage-estimation based allocation of per-node
memory will result in a pool of idle (unused) memory spaces
across the cluster, which presents substantial opportunities.
At the same time, such availability of free memory may
fluctuate in an unpredictable manner over the lifetime of the
cluster or the lifetime of per virtual server, which also
presents important challenges for disaggregated memory
orchestration.

Impact of memory utilization on server performance.
The memory resource is a vital performance bottleneck in
data-intensive computing system. Datacenters progressively
leverage virtualization to increase the resource utilization
efficiency. Data intensive, latency-demanding applications
enjoy high throughput and low latency if they are served
entirely from memory. However, actual estimation and
memory allocation are difficult [18]. When these applications
cannot fully fit their working sets in real memory of their
VMs/containers/executors, they suffer hefty performance
loss due to excess page faults. Even when idle memory is
present in other VMs, containers or JVM executors on the
same node or remote nodes in the same cluster, these
applications are unable to share those unused host and remote
memory.

In this paper, we first describe the existing efforts for
addressing large memory workloads. Then we define and
characterize the concept of memory disaggregation, as well
as the demands and challenges of efficient memory
disaggregation in cloud datacenters. We next examine some
promising research issues, design choices and directions to
overcome challenges posed by memory disaggregation at
either node-level or cluster-level. Specifically, we describe

1664

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00165

two major new research challenges and solution directions
for enabling elastic, on-demand disaggregated memory
orchestration: (1) virtual server memory and node level
memory co-design and (2) local and remote memory co-
design. We briefly describe our ongoing research results in
both directions. Finally, we discuss other advanced and
emerging memory and storage technologies (e.g., NVM,
SSD) and potential opportunities.

II. RELATED WORK

Existing effort for handling large memory workloads can be
broadly classified into three categories: (i) Estimation of
working set size for peak usage memory resource allocation,
(ii) memory-resident databases and key-value caching, and
(iii) increasing effective memory capacity.

A. Estimation for Peak Usage Memory Allocation
There are two inherent problems with the techniques for
estimating VM/application’s working set size. First, accurate
memory allocation is hard as peak memory variations happen
under different application types, workload inputs, data
characteristics and traffic patterns. Second, applications often
over-estimate their requirements or attempt to allocate for
peak memory usage [3,7,8,12], resulting in severely
imbalanced memory usage across virtual servers (e.g., VMs,
containers or executors), and underutilization on the local
host node and remote nodes across the cluster [11,18].

B. Memory-resident databases and caching
To overcome the disk I/O bottleneck, memory resident
databases and caching techniques have been proposed.
Facebook [19] caches the results of frequent database queries
using Memcached. This line of efforts by design embraces
the vision [20] that main memory will be viewed as
secondary storage and secondary caches to processors.
However, most of the in-memory systems to date rely on OS
virtual memory swap facility to keep the memory footprint of
those data that cannot fit in memory on swap disk provisioned
by OS. Thus, when an application or VM cannot fit their
working set in memory, they suffer from slow disk I/O for
OS paging events, as shown in Figure1(a). Several
technologies are designed to allow the NIC to send data
directly to end-host applications, bypassing the OS, such as
Intel DPDK, Open vSwitch, VMware’s vNetwork distributed
switch. These technologies remove the inherent overheads
due to traditional interrupt driven OS-level packet
processing. With DPDK and Single Root I/O Virtualization
(SR-IOV), multiple VMs can access the NIC via a virtual
function, namely a per-VM virtual PCI-based NIC.

C. Increasing effective memory capacity
In recent years, proposals for increasing effective memory
capacity have been put forward to promote the allocation of
global memory resource shared by all servers to increase their
effective memory capacities. These proposals promote new
architectures and new hardware design for memory

disaggregation [17], or new programming models [25]. But
they lack of desired transparency at OS, network stack, or
application level, hindering their practical applicability.
Recent efforts represented by Accelio, NBDX and
Infiniswap [26] exploit the Remote Direct Memory Access
(RDMA) networks to leverage the disk-network latency gap.
Examples are mainly using remote memory for certain
workloads, such as remote storage for key-value stores, swap
pages [34-37], RDD caching [38-40]. Most of these efforts
lack of desired transparency and none addresses the
opportunity and benefit of unused host memory sharing.

From developers’ perspective, domain-specific out-of-
core computation techniques [28] have been implemented to
juggle I/O and computation. Moreover, many large-scale web
applications [19] require access to disparate parts of massive
datasets for serving each user request while exhibiting little
spatial locality. Amazon produces a single Web page by
processing hundreds of internal requests, such multi-tier
software architecture for application serving accumulate and
aggregate the I/O latency at each tier. Given that the cost-per-
GB of DRAM increases non-linearly, it may not be viable for
many to simply buy or upgrade to specialized, large-memory
machines [1,2,29], which are too expensive to acquire and
manage in a cost-effective manner due to the hard problem of
accurate estimation of VM’s working set size.

III. MEMORY DISAGGREGATION: CHARACTERIZATION
Memory disaggregation decouples physical memory

allocated to virtual servers (e.g., VMs/containers/executors)
at their initialization time from the runtime management of
the memory. The decoupling aims at allowing the server
under high memory pressure to use the idle memory either
from other servers hosted on the same physical node (node
level memory disaggregation) or from remote nodes in the
same cluster (cluster level memory disaggregation).

Node-level v.s. Cluster-level Memory Disaggregation.
In the context of node-level memory disaggregation, a
portion of the memory of all the servers in a computer node
(VM/container/JVM executor) is transparently exposed as a
single shared memory pool to all the applications running on
the physical node (host). Similarly, the cluster-level memory
disaggregation refers to the capability that the memory of all
the nodes in a computer cluster is transparently exposed as a
single cluster-level shared memory pool for the discretion by
all the applications running on the same compute cluster.

By the principle of virtualization, VMs or containers or
JVM executors hosted on the same node are viewed by their
applications as independent virtual servers. Thus,
disaggregated memory at either node-level or cluster level
can be viewed as remote idle memory. However, memory
shared among virtual servers hosted on the same physical
node can be accessed at the DRAM speed if we can leverage
shared memory mechanisms to implement node level
memory disaggregation through the coordination between the
node shared memory manager and its client agent for each of

1665

the virtual servers. This allows us to enable access to node
level disaggregated memory at the DRAM speed instead of
the network I/O speed. As long as the gap between DRAM
access speed and network I/O speed exists and such
performance gap is non-negligible, we argue that it is
significantly beneficial to optimize the implementation of
disaggregated memory at node level using node-coordinated
shared memory mechanisms, and implement disaggregated
memory at cluster level using the high throughput and low
latency interconnection of servers, e.g., RDMA networks.

Full v.s. Partial Memory Disaggregation. We can further
categorize memory disaggregation capabilities into full
memory disaggregation and partial memory disaggregation.
Technologically speaking, full memory disaggregation is not
yet feasible today for a number of reasons. First, DRAM
memory had two main attributes that affect server
performance: memory capacity and memory speed. Second,
computer processors requires extremely fast access to
memory. Based on the state of art networking technologies,
local memory speed remains much faster than the network
I/O. Third, if a system is running slowly due to the lack of
local DRAM memory, and the processor can read data from
local memory or remote memory much faster than from an
external hard drive, then adding more memory or using
memory disaggregation presents an opportunistic solution.
This is because when a system runs short of DRAM memory
allocation, it must swap the overflowed data to the hard drive,
which can significantly slow down the system performance.
Thus, full memory disaggregation at cluster level will be
feasible when remote memory access speed is comparable to
local memory speed.

Partial memory disaggregation refers to the capability of
supporting memory disaggregation only for a selection of
memory utilities. This applies to both local memory at node-
level and remote memory at cluster level. For example, there
have been several research projects on disaggregated
memory over the last decade, from computer architecture
[21-23], computer networks [24-27], key-value systems.
Most of these efforts use disaggregated remote memory when
a server experiences shortage of its allocated memory.

Partial memory disaggregation at cluster level refers to the
capability of using idle memory on the remote nodes in the
same cluster. The rapid advance in high speed networks of
10/40/100 Gbps, compound with the Remote Direct Memory
Access (RDMA) technologies, such as InfiniBand, RoCE
(RDMA over Converged Ethernet), is the key enabling
technologies for efficient remote memory disaggregation,
thanks to high bandwidth and low latency interconnection of
servers in a RDMA cluster. By partial, we mean that if the
processor exceeds its memory capacity, and if it can write
data to (and read data from) remote memory much faster than
an external hard drive, then using cluster-level memory
disaggregation presents a viable opportunity for boosting
application performance. Existing research has shown that

memory swapping and key-value based memory caching are
the two killer applications for partial memory disaggregation.

Partial memory disaggregation at node level refers to the
capability of allowing a server (VM, container or JVM
executor) to meet its transient high memory pressure by
utilizing the idle memory from other VMs, containers, or
JVM executors on the same physical node (host). For
example, when a server can no longer fit its full working set
in memory, it must swap out some memory page to the hard
drive, which can cause applications to experience significant
performance degradation, even when there is idle memory on
other servers co-hosted on the same node. One example of
using partial memory disaggregation at node level is to
provide shared memory capability to allow swapping
memory pages to node-level coordinated shared memory
regions first before swapping to the hard drive.

IV. DISAGGREGATED MEMORY SYSTEM
In this section, we will discuss the system design objectives,
the general architecture for disaggregated memory systems,
including the interaction between memory disaggregation at
node level and memory disaggregation at cluster level, as
well as the alternative design decision choices.

A. System Design Objectives
In all general computing systems, the computing resources

are managed and tuned for all applications internally at either
the operating system kernel level or at the middleware level,
such as Spark, Hadoop, NoSQL systems. We argue that a
disaggregated memory system should be design to meet the
following objectives. First, the memory disaggregation
infrastructure should be made available without requiring
applications to be aware of when and where the disaggregated
memory is being used. Put differently, the use of
disaggregated memory should be made transparent to all the
applications running on any node of the computing cluster,
regardless whether they are running on a VM, a container or
a JVM executor. Applications do not need to know the exact
location of the disaggregated memory. Second, memory
disaggregation should be supported at either the OS level or
the middleware level, and it should not require any
involvement of applications. Third, the OS and the
middleware should shield applications from the complexity
of memory disaggregation at both node level and cluster
level. Fourth, the use of disaggregated memory should be
made transparent to both the applications and their runtime
environment such as the middleware and the guest OS. In
other words, VM/container/executor that uses disaggregated
memory should be able to run on unmodified applications,
unmodified middleware and unmodified guest OS.

B. General System Architecture
A disaggregated memory system is a distributed system

composed by node level disaggregated memory facilities and

1666

cluster level disaggregated memory facilities. Given a
compute cluster of N virtual servers, we will have n physical
nodes with n ≤ N, hosting these N virtual servers. Each node
can participate in the disaggregated memory system in two
roles at any given time: as a server by donating its idle
memory and as a client by using idle memory from other
node. Each node maintains three types disaggregated
memory pools: the shared memory pool coordinated by the
node manager and two cluster wide disaggregated memory
buffer pools: send buffer pool and receive buffer pool. Figure
1 shows the main functional components provided at each
node for supporting disaggregated memory at node level and
cluster level.

Memory disaggregation at node level. A typical node in
a Cloud cluster may host multiple virtual servers (VMs,
containers, or JVM executors). One widely adopted approach
to memory resource management is to allocate equal amount
of memory capacity to all virtual servers on a single node,
based on the estimated peak time demand at the cluster
initialization time. Given that most of applications are
running on a cluster of virtual servers, we assume without
loss of generality that applications can rent a disaggregated
memory enabled cluster. Thus, N virtual servers of this
cluster and their corresponding physical nodes will be the
participants of a disaggregated memory system. Thus, each
physical node in the cluster agrees to donate some portion of
its physical DRAM by registering some memory reserved for
RDMA network. This registered memory region will be used
for maintaining two types of disaggregated memory pools at
each node: the send buffer pool and the receive buffer pool.
Also, the N virtual servers agree to donate a system-defined
x% of their allocated memory as the shared memory resource,
which can be used on demand by any of these N virtual
servers. Note that it is possible that some virtual servers
hosted on the same physical node may not belong to this
cluster and thus will not be the participants in the
disaggregated memory system.

When a virtual server needs to use additional memory from
the disaggregated memory pool, such as experiencing page
fault [34], or performing in-memory caching of RDD in

Spark system or caching of key-value data in Memcached,
the local disaggregated memory client (LDMC) running on
the virtual server will send a put request to its corresponding
node level disaggregated memory sever (LDMS), which will
check if it has sufficient space in the node coordinated shared
memory pool to serve this put request. If not, this LDMS will
interact with the node manager to obtain additional free
memory slabs in the shared memory. When the put operation
is completed, the disaggregated memory page table
maintained by the node manager together with LDMS is also
updated. If there is insufficient free memory in the shared
memory pool, the node manager will communicate with the
remote disaggregated memory client (RDMC), which select
the remote node(s) in the same group for memory
disaggregation. The put request from the virtual server will
now be served by the chosen remote node through the RDMC
module running on the local node, as shown in Figure 1.

Memory disaggregation at cluster level. Consider a
simplified scenario: Let node A and node B are any two nodes
in the cluster. When a virtual server on node A needs to
expand its local memory to the node-coordinated
disaggregated memory, if node A decides to select node B as
the remote disaggregated memory to meet the memory
demand of this virtual server, then upon receiving the data
entry from the virtual server, node A will place the data in its
cluster-wide disaggregated memory (DM) send buffer pool.
In this case, node A serves as the cluster-wide disaggregated
memory client (RDMC) and node B will serve as its cluster-
level remote disaggregated memory server (RDMS). Node A
sends the data entry via RDMA write operation to the node
B’s remote disaggregated memory receive buffer pool. When
the virtual server later needs to read the data parked on node
B, it will send a read request with the data entry ID to its local
disaggregated memory server (LDMS) on node A, using its
disaggregated memory map, node A knows the data entry is
residing at node B, and thus issues an RDMA read request to
node B. Node B will locate and get the data to the
disaggregated memory receive buffer on node A. Figure 2
illustrates how node A uses the disaggregated memory
donated by node B.

Fig. 2. Accessing disaggregated memory between two nodes in a cluster

There are a number of important design decisions that need
to be made carefully to preserve the commonly desired

Fig. 1. Functional components of disaggregated memory system (per node view)

1667

system properties, including the performance, scalability,
reliability, memory balancing, memory registration and
eviction management, connect, correctness and consistency
management of the disaggregated memory system. We will
discuss these issues and the alternative design choices in the
subsequent sections.

C. Scalability Design Choices
A fundamental challenge for providing cluster-wide memory
disaggregation is to scale the system to terabytes of collective
memory in a cluster. However, to track where each data entry
(such as the swap-out page, the cache partition) is located in
the cluster, both the local and remote disaggregated memory
server modules (LDMS and RDMS) corresponding to a
virtual server (e.g., VM, container or JVM executor) needs to
maintain the metadata such as the virtual server ID, the
remote node ID and offset in the disaggregated memory map
for this data entry, indicating whether the data entry is parked
in the node-coordinated shared memory, the local RDMA
registered memory buffer pool, or on the remote node. Each
virtual server on the node needs to maintain such a memory
map, which is used to store the location of each of its data
entries in the cluster. This memory map is critical for the
virtual server to locate and track the whereabout of its data
entries in the entire cluster. However, using a single memory
map as such does not scale well for large-size clusters.

Consider a simple in-memory hash table to implement our
disaggregated memory map, and assuming that each entry is
4KB in size, and each location identifier metadata is 8 bytes,
then we will need 5 GB at each node to maintain the hash
table for the cluster-wide disaggregated memory of 2 TB, and
25 GB hash table per node for sharing 10 TB disaggregated
memory. Maintaining a hash table of such size for each
virtual server will incur prohibitively high cost to the local
memory of each node in the cluster. For the cluster with large
number of nodes, even though the cluster-wide disaggregated
memory is increasing, but this solution approach fails to scale
up.

One common approach to address the scalability challenge
of large size clusters is to adopt a group-based coordination
for disaggregated memory sharing. For example, the
hierarchical group sharing model allows the partitioning of
all nodes in a cluster into groups of smaller sizes and each
with similar number of nodes. Nodes within each group can
form a disaggregated memory sharing community. Nodes
from one group cannot share the disaggregated memory pools
of another group directly. One way to extend the flat structure
of the group based sharing model is to introduce two or more
tiers of hierarchical grouping algorithms. Each group in each
tier will elect a group leader to synchronize the coordination
among the server nodes in the group. A leader election
protocol [30] periodically elects the one that meets certain
constraints as the leader of a group, such as the one with the
maximum available memory. If the leader node crashes
(handshake time-out), a new leader election process will be
triggered. Also, a leader can request dynamic re-grouping

when its group experiences shortage of disaggregated
memory.

D. Supporting Fault Tolerance
When the local disaggregated memory client (LDMC) on a

virtual server is sending a write or read request to its
corresponding local disaggregated memory sever (LDMS), it
may encounter a number of failure scenarios.

Local node or virtual server failure. If the corresponding
virtual server or the host machine fails, by design the
disaggregated memory system should provide the same
failure semantics as the situation in which no disaggregated
memory is supported. For instance, consider the virtual server
is a VM, if we use the disaggregated memory system for
providing the fast swapping service to the applications
running on this VM, the disaggregated memory system
should provide the same failure resilience capability as the
guest OS swap facility today. Similarly, if the virtual server
is a JVM executor on a Spark cluster, then upon the node
failure or the executor failure, the disaggregated memory
system for RDD caching should provide the same failure
resilience semantics as the vanilla Spark.

Network connection, remote node or virtual server failure.
Similarly, in addition to the node manager, each node also
has the remote disaggregated memory client (RDMC) and the
remote disaggregated memory server (RDMS). The former is
sending a write or read request to a remote node, and the latter
is receiving a read or write request from a remote node. It is
important to handle unexpected failure scenarios due to
network connection (link) failure, or remote virtual server
failure, or remote node failures.

One can use centralized coordination or decentralized
coordination for managing network connection failure,
remote node or virtual server failures. The advantage of using
decentralized approach is obvious. By not requiring central
coordination, we can avoid single point of failure and
frequent message synchronization. In addition, if we replicate
each remote data write or read operation to or from more than
one remote nodes, then we can significantly reduce the
inconsistency caused by connection failure or node failure.
For example, triple replica modularity has been provided for
maintaining high reliability for Hadoop File System (HDFS).
We can offer the same degree of fault tolerance by enforcing
triple replica modularity for all remote read and write
operations. Finally, each remote write or read operation is
treated as an atomic transaction, all or nothing, and it is
recorded in the corresponding entry of the disaggregated
memory map maintained by the LDMS on the node, thus
removing the inconsistency due to remote connection failure
and unreachable server induced failure.

E. Memory Balancing and Eviction Management
Given a set of remote nodes that offer memory disaggregation
services, when a write service request is sent by a node (say
A), the node manager of A will need to select one primary
node and two other replica nodes to serve this request. By

1668

consulting with the leader node, one can identify a subset of
remote nodes that are candidates for such selection. Several
algorithms can be employed to minimize memory imbalance
across nodes in a cluster (or a group), such as random, round
robin (RR), weighted RR, or power of two choices [31].

F. Disaggregated Memory Registration and Eviction
To support disaggregated memory at node level and cluster

level, we need to reserve certain amount of memory based on
the assumption that comparing with the option of allocating
all the available memory on each node to all the virtual
servers hosted on the node, reserving some memory resource
for supporting disaggregated memory can greatly improve
the performance of applications running on each node and the
cluster.

The shared memory pool maintained at each node is
composed of a fraction of allocated memory from each virtual
server. It could be 10% initially and proactively increase to
40% or reduce to zero. It is a configurable system parameter
defined by each user of the disaggregated memory system.
Similarly, we can also proactively allocate memory slabs of
a given size and registers them as memory regions for RDMA
operations on remote servers.

Remote idle memory is monitored and when it drops below
certain threshold, remote memory slabs will be deregistered
preemptively through the remote slab eviction handler, and
updates the respective disaggregated memory maps
maintained on the nodes corresponding to the deregistered
slabs. At the same time, new remote memory servers will be
selected to host the evicted pages in order to maintain the
triple replica of the data entries hosted in the remote
disaggregated memory.

To best serve the applications running on a virtual server,
the following memory management policies are
recommended:

(1) If there are frequent requests to remote disaggregated
memory in the cluster, then it indicates that the node does not
have sufficient memory resource to serve its active virtual
servers. In this case, it is recommended to evict some memory
slabs from the RDMA receive buffer pool, which reduces the
proportion of the physical DRAM on this node being used for
serving as remote disaggregated memory.

(2) If a virtual server on some physical node is observed to
request disaggregated memory at node level or cluster level
frequently over a period of certain threshold, then it is
recommended to balloon more DRAM memory to this virtual
server by evicting some memory slab(s) from the node
coordinated shared memory pool or the RDMA send buffer
pool. This will consequently reduce the data overflow to the
disaggregated memory. Also based on our experiences with
using disaggregated memory system for memory paging [34]
and for RDD caching [38], maximizing the shared memory
pool will provide higher throughput and lower latency for
both big data and machine learning workloads. We share
some of these results in Section V.

G. Connection and Consistency Management
RDMA is the most preferred networking technology for

disaggregated memory systems to date. RDMA is
characterized by high throughput, low latency, high
messaging rate, low CPU utilization, low memory bus
contention, message boundaries preservation and
asynchronous operation. Three concrete implementations of
RDMA technologies are (i) InfiniBand (used by about 50%
of top 500 supercomputers), ranging from SDR 4x – 8Gbps,
DDR 4x – 16 Gbps, QDR 4x – 32 Gbps, FDR 4x – 54 Gbps;
(ii) RoCE – RDMA over converged Ethernet with 10 Gbps ~
40 Gbps; and (iii) iWrap (Internet Wide Area RDMA
protocol) with 10 Gbps. InfiniBand specification is written in
terms of verbs (syntax for functions, structures and types,
etc.). Open Fabrics Alliance (OFA) Verbs API is an effort to
unify InfiniBand market with implementations of OFA
Verbs for Linux, FreeBSD, Window. Although TCP and
RDMA both use the client-server model and require a
connection for reliable transport, TCP provides a reliable in-
order sequence of bytes and RDMA provides a reliable in-
order sequence of messages. Unlike TCP/IP, RDMA offers
zero copy (data transferred directly from virtual memory on
one node to virtual memory on another node), kernel by pass
(no OS involvement during data transfer), and asynchronous
operation (threads not blocked during I/O transfers). In
summary, the RDMA access model provides (1) messages,
preserving user’s message boundaries; (2) Asychronous, no
blocking during a transfer; (3) 1-sided (unpaired) and 2-sided
(paired) transfers; and (4) no data copying into system
buffers, as it ensures that order and timing of send() and
receive() are relevant and memory involved in transfer is
untouchable between start and completion of transfer.

Connection Management. To implement a disaggregated
memory system, we can use one-sided RDMA write/read
operations for data plane activities and RDMA send/receive
operations for control plane activities. For each individual
connection, two types of channels are established: RDMA
channel for maintaining the network connection and data
transfer, and the disaggregated memory system channel for
interacting with the remote node agent, maintaining the
system status, and performing placement and eviction
algorithms.

Consistency. For each virtual server (e.g., VM, container,
or JVM executor), the disaggregated memory system should
maintain a memory map which serves as a log table to track
of where a data entry is in the disaggregated memory system.
It can be at the node coordinated shared memory, or remote
memory of three remote nodes in the cluster, or an external
secondary storage (when no sufficient remote memory is
available to host the entire data entry). For each RDMA
channel, we can configure RC QP to guarantee that messages
are delivered from a requester to a responder at most once as
well as in order without correction, which avoids data

1669

corruption during transfer.

H. Optimizations
We discuss three types of optimizations that are helpful in our
disaggregated memory systems for in-memory swapping and
for in-memory caching Spark RDD partitions.

Memory page compression. In FastSwrap [34-37], four
granularity of page compressions are used to compress 4KB
pages: 512 B, 1 KB, 2 KB, and 4 KB. Figure 3 shows the
compression ratio for 10 machine learning (ML) workloads
using 2 compression granularity (2 page sizes) and using 4
compression granularity (4 different page sizes) in FastSwap
compared to Zswap [32], a compressed RAM cache for disk
based swap devices.

Fig. 3. Compression Ratio for 10 ML Workloads in FastSwap

Figure 4 shows the impact of 4 memory compressibility
ratios on application performance for logistic regression
workload in terms of completion time when 50% of the
working set can fit into memory. Figure 4(a) and Figure 4(b)
show the impact of compression when swapping-out least
recent pages to the remote memory v.s. to the disk
respectively when the shared memory pool is full on the local
node.

Fig. 4. Effect of compression ratio on remote memory and local disk

Figure 5 shows the impact of disaggregated memory
compression on application performance. These experiments
clearly show the advantage of memory page compression in
a disaggregated memory system.

Window based batch access to disaggregated memory.
Window based batchng can be effective for efficient access
to disaggregated memory at node level (i.e., the shared
memory buffer pool) and disaggregated memory at cluster
level (i.e., the remote RDMA send buffer pool and receive
buffer pool). For example, we implement a disaggregated

memory system for in-memory RDD partition caching, called
DAHI [37-38], on top of Accelio, an open source RPC library
on top of RDMA. In the first prototype of DAHI, we use the
default message size of 8 KB in Accelio for RDMA read and
write operations between two nodes by using a window size
d for batching d number of 8 KB messages in each RDMA
transfer. We found that such batch is much more effective
than per 8 KB messaging, when we need to cache large size
of RDD partitions, ranging from 1 MB, 10 MB to 1 GB.

Fig. 5. Disaggregated memory compression on application performance

Similarly, we implement our disaggregated memory

system for in-memory swapping in FastSwap [34-35]. By
providing batching in both swapping out and swapping in, we
show the performance improvement of our disaggregated
memory system compared with no batching optimization.
Figure 6 shows the completion time measurement
comparison on four systems for 4 sizes of disaggregated
memory workloads: FastSwap with proactive batch swap-in
(PBS), FastSwap without PBS, Infiniswap, a RDMA based
remote memory paging system [26], and Linux disk
swapping. This experiment shows the obvious advantage of
using batch swap-in.

Fig. 6. Effect of compression ratio on remote memory and local disk

The current implementation of FastSwap is on top of
NBDX, which is a block I/O device with 4 KB default
message size. Based on our experience of implementing the
disaggregated memory system for in-memory RDD caching
directly on top of Accelio RPC library, which provides
default message size of 8 KB and the max message size up to
1 MB, it is worth to experiment window based message
batching with both different window size d and different
message size m.

V. EXPERIMENTS AND OBSERVATIONS
In this section, ten popular memory-intensive applications are
used for evaluation (see Table 1). The working sets for the

1670

ten applications range from 25GB to 30GB and their input
dataset sizes range from 12GB to 20GB per virtual server.
Experiments are performed on a 32-machine, 56 Gbps
Infiniband cluster. Each machine has 32 core E5-2650v2
CPU, 64 GB memory, 2TB SATA 7.2K rpm hard drives, and
running KVM 1.2.0 with QEMU 2.0.0 as virtualization
platform. We use Linux 4.1.0 and Ubuntu 14.04 for both the
guest and host system. For most of the experiments unless
otherwise stated, we run 80 VMs on a 32-machine RDMA
cluster and created an equal number of VMs for each
application workload.

Table 3. Applications used in Experiments

A. Disaggregated Memory System for In-memory swapping
We use FastSwap [35], our in-memory swapping system for
virtual machines, as the hybrid disaggregated memory system
(both node-level and cluster-level). We compare it with
Linux disk swapping and Infiniswap, a remote memory
swapping system built on top of NBDX (a RDMA based
block I/O device). We first compare the three systems in
terms of completion time. Figure 7 shows the comparison
results. The experiment measures the FastSwap performance
on PageRank, LogisticRegression, TunkRank, Kmean, and
SVM and compares them to those using Infiniswap and
Linux. For 75% configuration (75% working set fits in
memory), FastSwap improves application completion time
by 24x on average and up to 83x over Linux, improves over
Infiniswap by 2.3x average. For 50% configuration,
FastSwap improves application completion time by 45x on
average and up to 85x over Linux, improves over Infiniswap
by 4.4x (best case) and 2.6x on average.

Next, we compare the performance impact of varying the
disaggregated memory distribution at node-level and cluster
level on application performance for all four systems: Linux,
Infiniswap, NBDX and Fastswap. Using 50% configuration,
we have 50% of working set sent to external disaggregated
memory via paging. For FastSwap, FS-SM denotes 100% of
paging events are handled in node-level shared memory pool.
FS-RDMA denotes 100% using remote memory via RDMA
network, and zero node level shared memory is reserved by
FastSwap. The remaining three node-level to cluster-level
distribution ratios are FS-9:1, FS-7:3, and FS-5:5. FS-9:1
denotes that 90% of swapping traffic is served in node-
coordinated shared memory pool and 10% is sent to the
remote memory pool.

(a) Linux

Fig. 7. Machine Learning Workloads Comparison

Figure 8 shows the throughput results. We highlight three
interesting observations. First, using FS-SM, throughputs of
Redis, Memcached and VoltDB increase by up to 571x, 171x,
and 240x respectively, compared with Linux, increase by
11.4x, 5.1x, and 2.0x compared with Infiniswap, and increase
by 10.5x, 4.9x, and 1.8x compared with NBDX.

Fig. 8. Varying distribution ratio of disaggregated memory access

Second, using FS-RDMA, throughput of Redis, Memcached
and VoltDB increase by 3.2x, 1.8x, and 1.6x respectively,
compared to Infiniswap, and increase by 2.9x, 1.8x, and 1.5x
respectively, compared to NBDX. Third, as the percentage of
remote memory increases in the swapping-out operations,
ranging from FS-SM, FS-9:1, FS-7:3, FS-5:5 to FS-RDMA,
throughputs of all three applications drop accordingly. Figure
9 shows the throughput measurement of 300 seconds for
Memcached ETC workload. We observe that using FastSwap
with PBS (proactive batch swap-in), Memcached throughput
performance quickly recovers to its optimal performance,
which is about 50-thousand ops/sec. Using FastSwap w/o
PBS, it takes more than 150 seconds for Memcached to
recover to its best performance. In comparison, Infiniswap
will take more than 2x longer than FastSwap w/o PBS. Also
using Infiniswap with 300 seconds measurement,
Memcached only recovers to 60% of its best performance at
the end of measurement.

()

1671

Fig. 9. Performance of Memcached (ETC, 50% configuration

B. Disaggregated Memory for In-memory RDD Caching
In this section, we show the experiments of the second
disaggregated memory system – DAHI [37-38], which we
developed for in-memory caching of Spark RDD partitions.

Spark is a well-known data processing platform for
memory-intensive applications. Resilient Distributed
Datasets (RDDs) [33] is a trademark of Spark. An RDD is an
abstraction representing a set of immutable objects. By
partitioning a large RDD into multiple partitions, we can
distribute the large dataset over the cluster for parallel
processing. RDDs can be created either from the data on the
stable storage or by transformation from other RDDs through
Spark operations, such as map, filter, join and so forth. Spark
makes use of RDD to enhance memory utilization. For
example, RDDs to be generated/used between consecutive
map operations are kept in memory. RDDs to be reused can
also be explicitly cached in memory. These enhancements
improve application performance by reducing disk access,
minimizing inter-process communication between Spark
executors, which also makes Spark greedy on memory usage.
When Spark can fit 100% of the working set in memory, its
applications can enjoy the peak time performance. However,
as soon as the working set cannot fully fit in memory, the
application running on Spark executors experiences server
performance degradation, causing imbalanced memory
utilization in Spark executors and premature spilling, even
though there are idle memory present in Spark executors [38].

DAHI is developed as a disaggregated memory system for
providing node-level shared memory pool and cluster-level
remote memory for in-memory caching RDD partitions.
Figure 10 shows the evaluates and compares the effect of
partial RDD caching on DAHI with vanilla Spark. This set of
experiments are performed using three different categories of
input datasets: small, medium, and large. For all applications,
using small category dataset, the RDDs generated can be
cached fully in memory, while using medium and large
category datasets exhibit partial caching, as some partitions
of the RDDs do not fit in memory.

Fig. 10. Vanilla Spark v.s. DAHI powered Spark [38]

It is observed that, using DAHI, the completion time of LR
obtains 1.7x and 4.3x speedup over vanilla Spark for medium
and large datasets respectively. The speedup with respect to
medium and large datasets for SVM is 3.3x and 5.8x, for K-
Means is 2.5x and 3.1x, and for CC is 1.3x and 1.9x. This set
of experiments shows the benefit of exploiting disaggregated
memory orchestration across executors through node level
and cluster level coordination via off-heap caching of the
RDD partitions that cannot fit in their executors’ memory.

VI. DISCUSSION
Traditional memory hierarchy consists of on-chip memory

(SRAM) with latency (cycles) of 1~30, off-chip (DRAM)
memory with latency of 100~300, Solid State Disk with
latency (25,000 ~ 2,000,000), to HDD with latency larger
than 5,000,000.

Emerging non-volatile memory (NVM) technologies, such
as Phase Change Memory (PCM), Intel 3D Xpoint memory
array, are making rapid advancement, though no-single NVM
technology dominates in terms of both energy and efficiency
(capacity and latency). At the same time, high throughput,
low latency network technologies, such as RDMA and its
family of technologies, are being deployed in many Cloud
datacenters.

These exciting technological trends have fueled the new
forms of convergence of memory, networking and storage.
Memory disaggregation is one step towards leveraging the
latency gap between network I/O and storage I/O to enable
DRAM memory to expand to the faster tier(s) in the memory
hierarchy before resorting to the slower external storage tier.
Many promising research problems are emerging, including
identify the killer applications for different types of memory
technologies and for different combination of memory,
networking, and storage technologies, to name a few.

1672

VII. CONCLUSION
We have described the problems and the challenges of

memory usage imbalance in virtualized Clouds and discussed
why efficient memory disaggregation can be a feasible
solution to the problems. We define and characterize the
concept of memory disaggregation, and discuss the
challenges of efficient memory disaggregation in cloud
datacenters. We have examined some research issues, design
choices and directions to overcome challenges posed by
memory disaggregation at both node-level and cluster-level.
Specifically, we have proposed two major new research
challenges and solution directions for enabling elastic, on-
demand disaggregated memory orchestration: (1) virtual
server memory and node level memory co-design and (2)
local memory and remote memory co-design. We illustrate
these two solution directions by presenting a brief description
and the experimental results of the two ongoing research
projects. We conclude with a brief discussion on other
advanced or emerging memory and storage technologies
(e.g., NVM, SSD) and potential opportunities for memory
disaggregation.

ACKNOWLEDGMENT
The source code and datasets of some of the works we have
discussed are available under open source software license at
https://github.com/git-disl/ [95-99]. This work is partially
sponsored by NSF grants 1564097, 1547102, 1115375,
1230740, IBM faculty awards during 2011-2017.

REFERENCES
[1] Amazon EC2 High Memory Instances. [Online]

https://aws.amazon.com/ec2/instance-types/high-memory/
[2] Google, “Google CloudPlatform machine types,” [Online].

https://cloud.google.com/compute/docs/machine-types/, 2018.
[3] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and

I. Stoica. Surviving failures in bandwidth-constrained datacenters.
In SIGCOMM, 2012.

[4] A.Ghodsi, M.Zaharia, B.Hindman, A.Konwinski, S.Shenker and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. NSDI, 2011.

[5] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy: Max-
min fair sharing for datacenter jobs with constraints. EuroSys,
2013.

[6] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A.
Akella. Multi-resource packing for cluster schedulers.
SIGCOMM, 2014.

[7] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G.
Varghese, G. M. Voelker, and A. Vahdat. Difference engine:
Harnessing memory redundancy in virtual machines. CACM
2010.

[8] M. R. Hines, A. Gordon, M. Silva, D. Da Silva, K. Ryu, and M.
Ben-Yehuda. Applications know best: Performance-driven
memory overcommit with ginkgo. In CloudCom, 2011.

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffic charac-
teristics of data centers in the wild. In SIGCOMM, 2010.

[10] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Sa- tria,
J. Adityatama, and K. J. Eliazar. Why does the cloud stop
computing?: Lessons from hundreds of service outages. In SoCC,
2016.

[11] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch. Heterogeneity and dynamicity of clouds at scale: Google

trace analysis. In SoCC, 2012.
[12] C. A. Reiss. Understanding Memory Configurations for In-

Memory Analytics. PhD thesis, UC Berkeley, 2016.
[13] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M.

Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al.
Apache hadoop yarn: Yet another resource negotiator. In SoCC,
2013.

[14] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E.Tune
and J. Wilkes. Large-scale cluster management at google with
borg. In EuroSys, 2015.

[15] J. Hwang, A. Uppal, T. Wood, and H. H. Huang. Mortar: Filling
the Gaps in Data Center Memory. ACM VEE 2014.

[16] P. S. Rao and G. Porter, “Is memory disaggregation feasible?: A
case study with spark SQL,” in Proc. Symp. Archit. Netw.
Commun. Syst., 2016, pp. 75–80.

[17] A. Samih, R. Wang, C. Maciocco, M. Kharbutli, and Y. Solihin,
“Collaborative memories in clusters: Opportunities and
challenges,” in Transactions on Computational Science XXII,
Berlin, Germany: Springer, 2014, pp. 17–41.

[18] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet,
and M. D. Corner. Memory buddies: exploiting page shar- ing for
smart colocation in virtualized data centers. In ACM SIGOPS
Operating Systems Review, 2009.

[19] Scaling memcached at Facebook,
http://www.facebook.com/note.php? note id=39391378919.

[20] J. Gray and F. Putzolu, “The 5 minute rule for trading memory for
disc accesses and the 10 byte rule for trading memory for CPU
time,” SIGMOD Rec., 16(3), pp. 395–398, 1987.

[21] HP: The Machine. http://www.labs.hpe.com/research/themachine.
[22] K.Lim,J.Chang,T.Mudge,P.Ranganathan,S.K.Reinhardt, and T. F.

Wenisch. Disaggregated memory for expansion and sharing in
blade servers. ISCA, 2009.

[23] K.Lim,Y.Turner,J.R.Santos,A.AuYoung,J.Chang,P.Ran-
ganathan, and T. F. Wenisch. System-level implications of dis-
aggregated memory. HPCA, 2012.

[24] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, P.
Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubramanian, and
M. Wei. Remote memory in the age of fast networks. SoCC 2017.

[25] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap: A
network swapping module for linux clusters. European
Conference on Parallel Processing, 2003.

[26] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. NSDI, 2017.

[27] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R.
Agarwal, S. Ratnasamy, and S. Shenker. Network requirements
for resource disaggregation. OSDI, 2016.

[28] J. S. Vitter, “External memory algorithms and data structures:
dealing with massive data,” ACM Comput. Surv., vol. 33, no. 2,
pp. 209–271, 2001.

[29] Cray Inc., Cray XT4 and XT3 Datasheet
http://www.cray.com/downloads/cray xt4 datasheet.pdf [online]

[30] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for internet-scale systems. Usenix ATC 2010.

[31] A. W. Richa, M. Mitzenmacher, and R. Sitaraman. The power of
two random choices: A survey of techniques and results.
Combinatorial Optimization, 2001.

[32] S Jennings. The zswap compressed swap cache, 2013.
[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. NSDI12.

[34] Wenqi Cao and Ling Liu. ``Dynamic and Transparent Memory
Sharing for Accelerating Big Data Analytics Workloads in
Virtualized Cloud'', Proceedings of IEEE 2018 International
Conference on Big Data. Seattle, USA, Dec. 10-13, 2018

[35] FastSwap, https://github.com/git-disl/FastSwap
[36] XMemPod, https://github.com/git-disl/XMemPod
[37] Semih Sahin, Wenqi Cao, Ling Liu. “Host and Remote Caching

of Spark RDD”, Technical Report. Dec. 2018.
[38] DAHI, https://github.com/git-disl/DAHI

1673

