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Abstract—Memory usage imbalance has been consistently 
observed in many virtualized Clouds and production datacenters. 
Such temporal memory utilization variance is a major root cause for 
excessive paging and thrashing on virtual servers even though there 
are sufficient idle memory on the same node or in the Cloud cluster. 
Memory disaggregation is an emerging research and development 
endeavor towards addressing these memory usage imbalance 
problems. This paper first defines and characterizes the concept of 
memory disaggregation,  and discusses the demands and challenges 
of efficient memory disaggregation in cloud datacenters. It then 
examines some promising research issues, design choices and 
directions to overcome some of the challenges posed by memory 
disaggregation. Specifically, it proposes two major new research 
challenges and solution directions for enabling elastic, on-demand 
disaggregated memory orchestration: (1) virtual server memory and 
node level memory co-design and (2) local memory and remote 
memory co-design. A brief description of two ongoing research 
projects is provided for both solution directions. The paper ends 
with a brief discussion of other advanced and emerging memory and 
storage technologies and potential opportunities for memory 
disaggregation. 

Keywords—Cloud computing, disaggregated memory, shared 
memory, remote memory, virtualization 

I. INTRODUCTION  
Big data systems and analytics continue to fuel the in-
memory data processing research and development. On one 
hand, to meet the growing demand of in-memory data 
processing and increase the competitive edge in service 
provisioning, Cloud providers have started to plan and 
upgrade their Infrastructure as a Service (IaaS) to include 
large memory virtual machines with terabytes (TBs) of 
memory in their high-end offerings [1,2]. On the other hand, 
memory utilization imbalance and temporal memory usage 
variations are frequently observed and reported in virtualized 
clouds [3-11] and production datacenters [12-16]. The 
memory upgrade trend further exaggerates the memory 
utilization imbalance problems.   

Memory usage imbalance: opportunity and challenge. 
Two primary factors may cause large temporal memory 
usage variance at node level and severe memory utilization 
imbalance across nodes in a cluster. First, Cloud systems 
typically serve heterogeneous guest application workloads in 
their clusters of physical nodes (machines). Second, many 
guest applications have heterogeneous data access patterns 
during runtime, represented by the big data powered iterative 
machine learning (ML) workloads. Third, virtual machines 
(VMs), containers or Java Virtual Machine (JVM) executors 
are the three types of virtual servers popularly used in many 

Cloud application deployment models. Each virtual server 
(VM/container/JVM executor) is configured to accommodate 
the peek memory usage (worst-case demand) either at the 
initialization of the cluster or the initialization of each 
VM/container/executor. The accurate estimation and 
provisioning of server memory resources has been a long-
standing technical challenge since the working set size is not 
always easy to predict and the DRAM allocation for each 
VM/container/executor has to be determined at the compute 
cluster installation time [14-16]. It is reported [11-12] that the 
clusters experience severe memory utilization imbalance 
with an average of 30% idle memory during 70% of the 
running time, and of the 80% memory allocated, only 50% 
on average is used. [17] shows that the aggregated memory 
capacity of a data center cluster reached 437 TB on a typical 
workday, which is only 69% of its overall allocated memory 
capacity. Clearly, the heterogeneity of guest applications and 
the peek-usage-estimation based allocation of per-node 
memory will result in a pool of idle (unused) memory spaces 
across the cluster, which presents substantial opportunities. 
At the same time, such availability of free memory may 
fluctuate in an unpredictable manner over the lifetime of the 
cluster or the lifetime of per virtual server, which also 
presents important challenges for disaggregated memory 
orchestration.   

Impact of memory utilization on server performance.  
The memory resource is a vital performance bottleneck in 
data-intensive computing system. Datacenters progressively 
leverage virtualization to increase the resource utilization 
efficiency. Data intensive, latency-demanding applications 
enjoy high throughput and low latency if they are served 
entirely from memory. However, actual estimation and 
memory allocation are difficult [18]. When these applications 
cannot fully fit their working sets in real memory of their 
VMs/containers/executors, they suffer hefty performance 
loss due to excess page faults. Even when idle memory is 
present in other VMs, containers or JVM executors on the 
same node or remote nodes in the same cluster, these 
applications are unable to share those unused host and remote 
memory.  

In this paper, we first describe the existing efforts for 
addressing large memory workloads. Then we define and 
characterize the concept of memory disaggregation, as well 
as the demands and challenges of efficient memory 
disaggregation in cloud datacenters. We next examine some 
promising research issues, design choices and directions to 
overcome challenges posed by memory disaggregation at 
either node-level or cluster-level. Specifically, we describe 
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two major new research challenges and solution directions 
for enabling elastic, on-demand disaggregated memory 
orchestration: (1) virtual server memory and node level 
memory co-design and (2) local and remote memory co-
design. We briefly describe our ongoing research results in 
both directions. Finally, we discuss other advanced and 
emerging memory and storage technologies (e.g., NVM, 
SSD) and potential opportunities.  

II. RELATED WORK 

Existing effort for handling large memory workloads can be 
broadly classified into three categories: (i) Estimation of  
working set size for peak usage memory resource allocation, 
(ii) memory-resident databases and key-value caching, and 
(iii) increasing effective memory capacity. 

A. Estimation for Peak Usage Memory Allocation 
There are two inherent problems with the techniques for 
estimating VM/application’s working set size. First, accurate 
memory allocation is hard as peak memory variations happen 
under different application types, workload inputs, data 
characteristics and traffic patterns. Second, applications often 
over-estimate their requirements or attempt to allocate for 
peak memory usage [3,7,8,12], resulting in severely 
imbalanced memory usage across virtual servers (e.g., VMs, 
containers or executors), and underutilization on the local 
host node and remote nodes across the cluster [11,18].  

B. Memory-resident databases and caching 
To overcome the disk I/O bottleneck, memory resident 
databases and caching techniques have been proposed. 
Facebook [19] caches the results of frequent database queries 
using Memcached. This line of efforts by design embraces 
the vision [20] that main memory will be viewed as 
secondary storage and secondary caches to processors. 
However, most of the in-memory systems to date rely on OS 
virtual memory swap facility to keep the memory footprint of 
those data that cannot fit in memory on swap disk provisioned 
by OS. Thus, when an application or VM cannot fit their 
working set in memory, they suffer from slow disk I/O for 
OS paging events, as shown in Figure1(a). Several 
technologies are designed to allow the NIC to send data 
directly to end-host applications,  bypassing the OS, such as 
Intel DPDK, Open vSwitch, VMware’s vNetwork distributed 
switch. These technologies remove the inherent overheads 
due to traditional interrupt driven OS-level packet 
processing. With DPDK and Single Root I/O Virtualization 
(SR-IOV),  multiple VMs can access the NIC via a virtual 
function, namely a per-VM virtual PCI-based NIC.  

C. Increasing effective memory capacity 
In recent years, proposals for increasing effective memory 
capacity have been put forward to promote the allocation of 
global memory resource shared by all servers to increase their 
effective memory capacities. These proposals promote new 
architectures and new hardware design for memory 

disaggregation [17], or new programming models [25]. But 
they lack of desired transparency at OS, network stack, or 
application level, hindering their practical applicability. 
Recent efforts represented by Accelio,  NBDX and 
Infiniswap [26] exploit the Remote Direct Memory Access 
(RDMA) networks to leverage the disk-network latency gap. 
Examples are mainly using remote memory for certain 
workloads, such as remote storage for key-value stores, swap 
pages [34-37], RDD caching [38-40]. Most of these efforts 
lack of desired transparency and none addresses the 
opportunity and benefit of unused host memory sharing.  

From developers’ perspective, domain-specific out-of-
core computation techniques [28] have been implemented to 
juggle I/O and computation. Moreover, many large-scale web 
applications [19] require access to disparate parts of massive 
datasets for serving each user request while exhibiting little 
spatial locality. Amazon produces a single Web page by 
processing hundreds of internal requests, such multi-tier 
software architecture for application serving accumulate and 
aggregate the I/O latency at each tier. Given that the cost-per-
GB of DRAM increases non-linearly, it may not be viable for 
many to simply buy or upgrade to specialized, large-memory 
machines [1,2,29], which are too expensive to acquire and 
manage in a cost-effective manner due to the hard problem of 
accurate estimation of VM’s working set size.  

III. MEMORY DISAGGREGATION: CHARACTERIZATION 
Memory disaggregation decouples physical memory 

allocated to virtual servers (e.g., VMs/containers/executors) 
at their initialization time from the runtime management of 
the memory. The decoupling aims at allowing the server 
under high memory pressure to use the idle memory either 
from other servers hosted on the same physical node (node 
level memory disaggregation) or from remote nodes in the 
same cluster (cluster level memory disaggregation).  

Node-level v.s. Cluster-level Memory Disaggregation. 
In the context of node-level memory disaggregation, a 
portion of the memory of all the servers in a computer node 
(VM/container/JVM executor) is transparently exposed as a 
single shared memory pool to all the applications running on 
the physical node (host). Similarly, the cluster-level memory 
disaggregation refers to the capability that the memory of all 
the nodes in a computer cluster is transparently exposed as a 
single cluster-level shared memory pool for the discretion by 
all the applications running on the same compute cluster. 

By the principle of virtualization, VMs or containers or 
JVM executors hosted on the same node are viewed by their 
applications as independent virtual servers. Thus, 
disaggregated memory at either node-level or cluster level 
can be viewed as remote idle memory. However, memory 
shared among virtual servers hosted on the same physical 
node can be accessed at the DRAM speed if we can leverage 
shared memory mechanisms to implement node level 
memory disaggregation through the coordination between the 
node shared memory manager and its client agent for each of 
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the virtual servers. This allows us to enable access to node 
level disaggregated memory at the DRAM speed instead of 
the network I/O speed. As long as the gap between DRAM 
access speed and network I/O speed exists and such 
performance gap is non-negligible, we argue that it is 
significantly beneficial to optimize the implementation of 
disaggregated memory at node level using node-coordinated 
shared memory mechanisms, and implement disaggregated 
memory at cluster level using the high throughput and low 
latency interconnection of servers, e.g., RDMA networks. 

Full v.s. Partial Memory Disaggregation. We can further 
categorize memory disaggregation capabilities into full 
memory disaggregation and partial memory disaggregation. 
Technologically speaking, full memory disaggregation is not 
yet feasible today for a number of reasons. First, DRAM 
memory had two main attributes that affect server 
performance: memory capacity and memory speed. Second, 
computer processors requires extremely fast access to 
memory. Based on the state of art networking technologies, 
local memory speed remains much faster than the network 
I/O. Third, if a system is running slowly due to the lack of 
local DRAM memory, and the processor can read data from 
local memory or remote memory much faster than from an 
external hard drive, then adding more memory or using 
memory disaggregation presents an opportunistic solution. 
This is because when a system runs short of DRAM memory 
allocation, it must swap the overflowed data to the hard drive, 
which can significantly slow down the system performance. 
Thus, full memory disaggregation at cluster level will be 
feasible when remote memory access speed is comparable to 
local memory speed. 

Partial memory disaggregation refers to the capability of 
supporting memory disaggregation only for a selection of 
memory utilities. This applies to both local memory at node-
level and remote memory at cluster level. For example, there 
have been several research projects on disaggregated 
memory over the last decade, from computer architecture 
[21-23], computer networks [24-27], key-value systems. 
Most of these efforts use disaggregated remote memory when 
a server experiences shortage of its allocated memory.  

Partial memory disaggregation at cluster level refers to the 
capability of using idle memory on the remote nodes in the 
same cluster. The rapid advance in high speed networks of 
10/40/100 Gbps, compound with the Remote Direct Memory 
Access (RDMA) technologies, such as InfiniBand, RoCE 
(RDMA over Converged Ethernet), is the key enabling 
technologies for efficient remote memory disaggregation, 
thanks to high bandwidth and low latency interconnection of 
servers in a RDMA cluster. By partial, we mean that if the 
processor exceeds its memory capacity, and if it can write 
data to (and read data from) remote memory much faster than 
an external hard drive, then using cluster-level memory 
disaggregation presents a viable opportunity for boosting 
application performance. Existing research has shown that 

memory swapping and key-value based memory caching are 
the two killer applications for partial memory disaggregation.  

Partial memory disaggregation at node level refers to the 
capability of allowing a server (VM, container or JVM 
executor) to meet its transient high memory pressure by 
utilizing the idle memory from other VMs, containers, or 
JVM executors on the same physical node (host). For 
example, when a server can no longer fit its full working set 
in memory, it must swap out some memory page to the hard 
drive, which can cause applications to experience significant 
performance degradation, even when there is idle memory on 
other servers co-hosted on the same node. One example of 
using partial memory disaggregation at node level is to 
provide shared memory capability to allow swapping 
memory pages to node-level coordinated shared memory 
regions first before swapping to the hard drive. 

IV. DISAGGREGATED MEMORY SYSTEM  
In this section, we will discuss the system design objectives, 
the general architecture for disaggregated memory systems, 
including the interaction between memory disaggregation at 
node level and memory disaggregation at cluster level, as 
well as the alternative design decision choices.  

A. System Design Objectives 
In all general computing systems, the computing resources 

are managed and tuned for all applications internally at either 
the operating system kernel level or at the middleware level, 
such as Spark, Hadoop, NoSQL systems. We argue that a 
disaggregated memory system should be design to meet the 
following objectives. First, the memory disaggregation 
infrastructure should be made available without requiring 
applications to be aware of when and where the disaggregated 
memory is being used. Put differently, the use of 
disaggregated memory should be made transparent to all the 
applications running on any node of the computing cluster, 
regardless whether they are running on a VM, a container or 
a JVM executor. Applications do not need to know the exact 
location of the disaggregated memory. Second, memory 
disaggregation should be supported at either the OS level or 
the middleware level, and it should not require any 
involvement of applications. Third, the OS and the 
middleware should shield applications from the complexity 
of memory disaggregation at both node level and cluster 
level. Fourth, the use of disaggregated memory should be 
made transparent to both the applications and their runtime 
environment such as the middleware and the guest OS. In 
other words, VM/container/executor that uses disaggregated 
memory should be able to run on unmodified applications, 
unmodified middleware and unmodified guest OS.  

B. General System Architecture 
A disaggregated memory system is a distributed system 

composed by node level disaggregated memory facilities and 
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cluster level disaggregated memory facilities. Given a 
compute cluster of N virtual servers, we will have n physical 
nodes with n ≤ N, hosting these N virtual servers. Each node 
can participate in the disaggregated memory system in two 
roles at any given time: as a server by donating its idle 
memory and as a client by using idle memory from other 
node. Each node maintains three types disaggregated 
memory pools: the shared memory pool coordinated by the 
node manager and two cluster wide disaggregated memory 
buffer pools: send buffer pool and receive buffer pool. Figure 
1 shows the main functional components provided at each 
node for supporting disaggregated memory at node level and 
cluster level. 

Memory disaggregation at node level. A typical node in 
a Cloud cluster may host multiple virtual servers (VMs, 
containers, or JVM executors). One widely adopted approach 
to memory resource management is to allocate equal amount 
of memory capacity to all virtual servers on a single node, 
based on the estimated peak time demand at the cluster 
initialization time. Given that most of applications are 
running on a cluster of virtual servers, we assume without 
loss of generality that applications can rent a disaggregated 
memory enabled cluster. Thus, N virtual servers of this 
cluster and their corresponding physical nodes will be the 
participants of a disaggregated memory system. Thus, each 
physical node in the cluster agrees to donate some portion of 
its physical DRAM by registering some memory reserved for 
RDMA network. This registered memory region will be used 
for maintaining two types of disaggregated memory pools at 
each node: the send buffer pool and the receive buffer pool. 
Also, the N virtual servers agree to donate a system-defined 
x% of their allocated memory as the shared memory resource, 
which can be used on demand by any of these N virtual 
servers. Note that it is possible that some virtual servers 
hosted on the same physical node may not belong to this 
cluster and thus will not be the participants in the 
disaggregated memory system.  

When a virtual server needs to use additional memory from 
the disaggregated memory pool, such as experiencing page 
fault [34], or performing in-memory caching of RDD in 

Spark system or caching of key-value data in Memcached, 
the local disaggregated memory client (LDMC) running on 
the virtual server will send a put request to its corresponding 
node level disaggregated memory sever (LDMS), which will 
check if it has sufficient space in the node coordinated shared 
memory pool to serve this put request. If not, this LDMS will 
interact with the node manager to obtain additional free 
memory slabs in the shared memory. When the put operation 
is completed, the disaggregated memory page table 
maintained by the node manager together with LDMS is also 
updated. If there is insufficient free memory in the shared 
memory pool, the node manager will communicate with the 
remote disaggregated memory client (RDMC), which select 
the remote node(s) in the same group for memory 
disaggregation. The put request from the virtual server will 
now be served by the chosen remote node through the RDMC 
module running on the local node, as shown in Figure 1.  

Memory disaggregation at cluster level. Consider a 
simplified scenario: Let node A and node B are any two nodes 
in the cluster. When a virtual server on node A needs to 
expand its local memory to the node-coordinated 
disaggregated memory, if node A decides to select node B as 
the remote disaggregated memory to meet the memory 
demand of this virtual server, then upon receiving the data 
entry from the virtual server, node A will place the data in its 
cluster-wide disaggregated memory (DM) send buffer pool. 
In this case, node A serves as the cluster-wide disaggregated 
memory client (RDMC) and node B will serve as its cluster-
level remote disaggregated memory server (RDMS). Node A 
sends the data entry via RDMA write operation to the node 
B’s remote disaggregated memory receive buffer pool. When 
the virtual server later needs to read the data parked on node 
B, it will send a read request with the data entry ID to its local 
disaggregated memory server (LDMS) on node A, using its 
disaggregated memory map, node A knows the data entry is 
residing at node B, and thus issues an RDMA read request to 
node B. Node B will locate and get the data to the 
disaggregated memory receive buffer on node A. Figure 2 
illustrates how node A uses the disaggregated memory 
donated by node B. 

 
Fig. 2.  Accessing disaggregated memory between two nodes in a cluster 
 

There are a number of important design decisions that need 
to be made carefully to preserve the commonly desired 

 
Fig. 1.  Functional components of disaggregated memory system (per node view) 
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system properties, including the performance, scalability, 
reliability, memory balancing, memory registration and 
eviction management, connect, correctness and consistency 
management of the disaggregated memory system. We will 
discuss these issues and the alternative design choices in the 
subsequent sections. 

C. Scalability Design Choices 
A fundamental challenge for providing cluster-wide memory 
disaggregation is to scale the system to terabytes of collective 
memory in a cluster. However, to track where each data entry 
(such as the swap-out page, the cache partition) is located in 
the cluster, both the local and remote disaggregated memory 
server modules (LDMS and RDMS)  corresponding to a 
virtual server (e.g., VM, container or JVM executor) needs to 
maintain the metadata such as the virtual server ID, the 
remote node ID and offset in the disaggregated memory map 
for this data entry, indicating whether the data entry is parked 
in the node-coordinated shared memory, the local RDMA 
registered memory buffer pool, or on the remote node. Each 
virtual server on the node needs to maintain such a memory 
map, which is used to store the location of each of its data 
entries in the cluster. This memory map is critical for the 
virtual server to locate and track the whereabout of its data 
entries in the entire cluster. However, using a single memory 
map as such does not scale well for large-size clusters.   

Consider a simple in-memory hash table to implement our 
disaggregated memory map, and assuming that each entry is 
4KB in size, and each location identifier metadata is 8 bytes, 
then we will need 5 GB at each node to maintain the hash 
table for the cluster-wide disaggregated memory of 2 TB, and 
25 GB hash table per node for sharing 10 TB disaggregated 
memory. Maintaining a hash table of such size for each 
virtual server will incur prohibitively high cost to the local 
memory of each node in the cluster. For the cluster with large 
number of nodes, even though the cluster-wide disaggregated 
memory is increasing, but this solution approach fails to scale 
up.  

One common approach to address the scalability challenge 
of large size clusters is to adopt a group-based coordination 
for disaggregated memory sharing. For example, the 
hierarchical group sharing model allows the partitioning of 
all nodes in a cluster into groups of smaller sizes and each 
with similar number of nodes. Nodes within each group can 
form a disaggregated memory sharing community. Nodes 
from one group cannot share the disaggregated memory pools 
of another group directly. One way to extend the flat structure 
of the group based sharing model is to introduce two or more 
tiers of hierarchical grouping algorithms. Each group in each 
tier will elect a group leader to synchronize the coordination 
among the server nodes in the group. A leader election 
protocol [30] periodically elects the one that meets certain 
constraints as the leader of a group, such as the one with the 
maximum available memory. If the leader node crashes 
(handshake time-out), a new leader election process will be 
triggered. Also, a leader can request dynamic re-grouping 

when its group experiences shortage of disaggregated 
memory.  

D. Supporting Fault Tolerance  
When the local disaggregated memory client (LDMC) on a 

virtual server is sending a write or read request to its 
corresponding local disaggregated memory sever (LDMS), it 
may encounter a number of failure scenarios.  

Local node or virtual server failure. If the corresponding 
virtual server or the host machine fails, by design the 
disaggregated memory system should provide the same 
failure semantics as the situation in which no disaggregated 
memory is supported. For instance, consider the virtual server 
is a VM, if we use the disaggregated memory system for 
providing the fast swapping service to the applications 
running on this VM, the disaggregated memory system 
should provide the same failure resilience capability as the 
guest OS swap facility today. Similarly, if the virtual server 
is a JVM executor on a Spark cluster, then upon the node 
failure or the executor failure, the disaggregated memory 
system for RDD caching should provide the same failure 
resilience semantics as the vanilla Spark. 

Network connection, remote node or virtual server failure. 
Similarly, in addition to the node manager, each node also 
has the remote disaggregated memory client (RDMC) and the 
remote disaggregated memory server (RDMS). The former is 
sending a write or read request to a remote node, and the latter 
is receiving a read or write request from a remote node. It is 
important to handle unexpected failure scenarios due to 
network connection (link) failure, or remote virtual server 
failure, or remote node failures.  

One can use centralized coordination or decentralized 
coordination for managing network connection failure, 
remote node or virtual server failures. The advantage of using 
decentralized approach is obvious. By not requiring central 
coordination, we can avoid single point of failure and 
frequent message synchronization. In addition, if we replicate 
each remote data write or read operation to or from more than 
one remote nodes, then we can significantly reduce the 
inconsistency caused by connection failure or node failure. 
For example, triple replica modularity has been provided for 
maintaining high reliability for Hadoop File System (HDFS). 
We can offer the same degree of fault tolerance by enforcing 
triple replica modularity for all remote read and write 
operations. Finally, each remote write or read operation is 
treated as an atomic transaction, all or nothing, and it is 
recorded in the corresponding entry of the disaggregated 
memory map maintained by the LDMS on the node, thus 
removing the inconsistency due to remote connection failure 
and unreachable server induced failure.  

E. Memory Balancing and Eviction Management 
Given a set of remote nodes that offer memory disaggregation 
services, when a write service request is sent by a node (say 
A), the node manager of A will need to select one primary 
node and two other replica nodes to serve this request. By 
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consulting with the leader node, one can identify a subset of 
remote nodes that are candidates for such selection. Several 
algorithms can be employed to minimize memory imbalance 
across nodes in a cluster (or a group), such as random, round 
robin (RR), weighted RR, or power of two choices [31].  

F. Disaggregated Memory Registration and Eviction 
To support disaggregated memory at node level and cluster 

level, we need to reserve certain amount of memory based on 
the assumption that comparing with the option of allocating 
all the available memory on each node to all the virtual 
servers hosted on the node, reserving some memory resource 
for supporting disaggregated memory can greatly improve 
the performance of applications running on each node and the 
cluster.  

The shared memory pool maintained at each node is 
composed of a fraction of allocated memory from each virtual 
server. It could be 10% initially and proactively increase to 
40% or reduce to zero. It is a configurable system parameter 
defined by each user of the disaggregated memory system. 
Similarly, we can also proactively allocate memory slabs of 
a given size and registers them as memory regions for RDMA 
operations on remote servers.   

Remote idle memory is monitored and when it drops below 
certain threshold, remote memory slabs will be deregistered 
preemptively through the remote slab eviction handler, and 
updates the respective disaggregated memory maps 
maintained on the nodes corresponding to the deregistered 
slabs. At the same time, new remote memory servers will be 
selected to host the evicted pages in order to maintain the 
triple replica of the data entries hosted in the remote 
disaggregated memory.  

To best serve the applications running on a virtual server, 
the following memory management policies are 
recommended:  

(1) If there are frequent requests to remote disaggregated 
memory in the cluster, then it indicates that the node does not 
have sufficient memory resource to serve its active virtual 
servers. In this case, it is recommended to evict some memory 
slabs from the RDMA receive buffer pool, which reduces the 
proportion of the physical DRAM on this node being used for 
serving as remote disaggregated memory.   

(2) If a virtual server on some physical node is observed to 
request disaggregated memory at node level or cluster level 
frequently over a period of certain threshold, then it is 
recommended to balloon more DRAM memory to this virtual 
server by evicting some memory slab(s) from the node 
coordinated shared memory pool or the RDMA send buffer 
pool. This will consequently reduce the data overflow to the 
disaggregated memory. Also based on our experiences with 
using disaggregated memory system for memory paging [34] 
and for RDD caching [38], maximizing the shared memory 
pool will provide higher throughput and lower latency for 
both big data and machine learning workloads. We share 
some of these results in Section V.  

G. Connection and Consistency Management 
RDMA is the most preferred networking technology for 

disaggregated memory systems to date. RDMA is 
characterized by high throughput, low latency, high 
messaging rate, low CPU utilization, low memory bus 
contention, message boundaries preservation and 
asynchronous operation. Three concrete implementations of 
RDMA technologies are (i) InfiniBand (used by about 50% 
of top 500 supercomputers), ranging from SDR 4x – 8Gbps, 
DDR 4x – 16 Gbps, QDR 4x – 32 Gbps, FDR 4x – 54 Gbps; 
(ii) RoCE – RDMA over converged Ethernet with 10 Gbps ~ 
40 Gbps; and (iii) iWrap (Internet Wide Area RDMA 
protocol) with 10 Gbps. InfiniBand specification is written in 
terms of verbs (syntax for functions, structures and types, 
etc.). Open Fabrics Alliance (OFA) Verbs API is an effort to 
unify InfiniBand market with implementations of  OFA 
Verbs for Linux, FreeBSD, Window. Although TCP and 
RDMA both use the client-server model and require a 
connection for reliable transport, TCP provides a reliable in-
order sequence of bytes and RDMA provides a reliable in-
order sequence of messages. Unlike TCP/IP, RDMA offers 
zero copy (data transferred directly from virtual memory on 
one node to virtual memory on another node), kernel by pass 
(no OS involvement during data transfer), and asynchronous 
operation (threads not blocked during I/O transfers). In 
summary, the RDMA access model provides (1) messages, 
preserving user’s message boundaries; (2) Asychronous, no 
blocking during a transfer; (3) 1-sided (unpaired) and 2-sided 
(paired) transfers; and (4) no data copying into system 
buffers, as it ensures that order and timing of send() and 
receive() are relevant and memory involved in transfer is 
untouchable between start and completion of transfer.  

Connection Management. To implement a disaggregated 
memory system, we can use one-sided RDMA write/read 
operations for data plane activities and RDMA send/receive 
operations for control plane activities. For each individual 
connection, two types of channels are established: RDMA 
channel for maintaining the network connection and data 
transfer, and the disaggregated memory system channel for 
interacting with the remote node agent, maintaining the 
system status, and performing placement and eviction 
algorithms.  

Consistency. For each virtual server (e.g., VM, container, 
or JVM executor), the disaggregated memory system should 
maintain a memory map which serves as a log table to track 
of where a data entry is in the disaggregated memory system. 
It can be at the node coordinated shared memory, or remote 
memory of three remote nodes in the cluster, or an external 
secondary storage (when no sufficient remote memory is 
available to host the entire data entry). For each RDMA 
channel, we can configure RC QP to guarantee that messages 
are delivered from a requester to a responder at most once as 
well as in order without correction, which avoids data 
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corruption during transfer. 

H. Optimizations 
We discuss three types of optimizations that are helpful in our 
disaggregated memory systems for in-memory swapping and 
for in-memory caching Spark RDD partitions.  

Memory page compression. In FastSwrap [34-37], four 
granularity of page compressions are used to compress 4KB 
pages: 512 B, 1 KB, 2 KB, and 4 KB. Figure 3 shows the 
compression ratio for 10 machine learning (ML) workloads 
using 2 compression granularity (2 page sizes) and using 4 
compression granularity (4 different page sizes) in FastSwap 
compared to Zswap [32], a compressed RAM cache for disk 
based swap devices.  

 
Fig. 3. Compression Ratio for 10 ML Workloads in FastSwap  

Figure 4 shows the impact of 4 memory compressibility 
ratios on application performance for logistic regression 
workload in terms of completion time when 50% of the 
working set can fit into memory.  Figure 4(a) and Figure 4(b) 
show the impact of compression when swapping-out least 
recent pages to the remote memory v.s. to the disk 
respectively when the shared memory pool is full on the local 
node.  

 
Fig. 4. Effect of compression ratio on remote memory and local disk  

Figure 5 shows the impact of disaggregated memory 
compression on application performance. These experiments 
clearly show the advantage of memory page compression in 
a disaggregated memory system. 

Window based batch access to disaggregated memory. 
Window based batchng can be effective for efficient access 
to disaggregated memory at node level (i.e., the shared 
memory buffer pool) and disaggregated memory at cluster 
level (i.e., the remote RDMA send buffer pool and receive 
buffer pool). For example, we implement a disaggregated 

memory system for in-memory RDD partition caching, called 
DAHI [37-38], on top of Accelio, an open source RPC library 
on top of RDMA. In the first prototype of DAHI, we use the 
default message size of 8 KB in Accelio for RDMA read and 
write operations between two nodes by using a window size 
d for batching d number of 8 KB messages in each RDMA 
transfer. We found that such batch is much more effective 
than per 8 KB messaging, when we need to cache large size 
of RDD partitions, ranging from 1 MB, 10 MB to 1 GB.  

 
Fig. 5. Disaggregated memory compression on application performance  

 
Similarly, we implement our disaggregated memory 

system for in-memory swapping in FastSwap [34-35]. By 
providing batching in both swapping out and swapping in, we 
show the performance improvement of our disaggregated 
memory system compared with no batching optimization. 
Figure 6 shows the completion time measurement 
comparison on four systems for 4 sizes of disaggregated 
memory workloads: FastSwap with proactive batch swap-in 
(PBS), FastSwap without PBS, Infiniswap, a RDMA based 
remote memory paging system [26], and Linux disk 
swapping. This experiment shows the obvious advantage of 
using batch swap-in.  

 
Fig. 6. Effect of compression ratio on remote memory and local disk  

 

The current implementation of FastSwap is on top of 
NBDX, which is a block I/O device with 4 KB default 
message size. Based on our experience of implementing the 
disaggregated memory system for in-memory RDD caching 
directly on top of Accelio RPC library, which provides 
default message size of 8 KB and the max message size up to 
1 MB, it is worth to experiment window based message 
batching with both different window size d and different 
message size m.   

V. EXPERIMENTS AND OBSERVATIONS 
In this section, ten popular memory-intensive applications are 
used for evaluation (see Table 1). The working sets for the 
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ten applications range from 25GB to 30GB and their input 
dataset sizes range from 12GB to 20GB per virtual server. 
Experiments are performed on a 32-machine, 56 Gbps 
Infiniband cluster. Each machine has 32 core E5-2650v2 
CPU, 64 GB memory, 2TB SATA 7.2K rpm hard drives, and 
running KVM 1.2.0 with QEMU 2.0.0 as virtualization 
platform. We use Linux 4.1.0 and Ubuntu 14.04 for both the 
guest and host system. For most of the experiments unless 
otherwise stated, we run 80 VMs on a 32-machine RDMA 
cluster and created an equal number of VMs for each 
application workload.  

 
Table 3. Applications used in Experiments 

A. Disaggregated Memory System for In-memory swapping 
We use FastSwap [35], our in-memory swapping system for 
virtual machines, as the hybrid disaggregated memory system 
(both node-level and cluster-level). We  compare it with 
Linux disk swapping and Infiniswap, a remote memory 
swapping system built on top of NBDX (a RDMA based 
block I/O device). We first compare the three systems in 
terms of completion time. Figure 7 shows the comparison 
results. The experiment measures the FastSwap performance 
on PageRank, LogisticRegression, TunkRank, Kmean, and 
SVM and compares them to those using Infiniswap and 
Linux. For 75% configuration (75% working set fits in 
memory), FastSwap improves application completion time 
by 24x on average and up to 83x over Linux, improves over 
Infiniswap by 2.3x average. For 50% configuration, 
FastSwap improves application completion time by 45x on 
average and up to 85x over Linux, improves over Infiniswap 
by 4.4x (best case) and 2.6x on average.  

Next, we compare the performance impact of varying the 
disaggregated memory distribution at node-level and cluster 
level on application performance for all four systems: Linux, 
Infiniswap, NBDX and Fastswap. Using 50% configuration,  
we have 50% of working set sent to external disaggregated 
memory via paging. For FastSwap, FS-SM denotes 100% of 
paging events are handled in node-level shared memory pool. 
FS-RDMA denotes 100% using remote memory via RDMA 
network, and zero node level shared memory is reserved by 
FastSwap. The remaining three node-level to cluster-level 
distribution ratios are FS-9:1, FS-7:3, and FS-5:5. FS-9:1 
denotes that 90% of swapping traffic is served in node-
coordinated  shared memory pool and 10% is sent to the 
remote memory pool.  

 
(a) Linux 

 
Fig. 7. Machine Learning Workloads Comparison  

 

Figure 8 shows the throughput results. We highlight three 
interesting observations. First, using FS-SM, throughputs of 
Redis, Memcached and VoltDB increase by up to 571x, 171x, 
and 240x respectively, compared with Linux, increase by 
11.4x, 5.1x, and 2.0x compared with Infiniswap, and increase 
by 10.5x, 4.9x, and 1.8x compared with NBDX.  

 
Fig. 8. Varying distribution ratio of disaggregated memory access 

 

Second, using FS-RDMA, throughput of Redis, Memcached 
and VoltDB increase by 3.2x, 1.8x, and 1.6x respectively, 
compared to Infiniswap, and increase by 2.9x, 1.8x, and 1.5x 
respectively, compared to NBDX. Third, as the percentage of 
remote memory increases in the swapping-out operations, 
ranging from FS-SM, FS-9:1, FS-7:3, FS-5:5 to FS-RDMA, 
throughputs of all three applications drop accordingly. Figure 
9 shows the throughput measurement of 300 seconds for 
Memcached ETC workload. We observe that using FastSwap 
with PBS (proactive batch swap-in), Memcached throughput 
performance quickly recovers to its optimal performance, 
which is about 50-thousand ops/sec. Using FastSwap w/o 
PBS, it takes more than 150 seconds for Memcached to 
recover to its best performance. In comparison, Infiniswap 
will take more than 2x longer than FastSwap w/o PBS. Also 
using Infiniswap with 300 seconds measurement, 
Memcached only recovers to 60% of its best performance at 
the end of measurement.  

( )
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Fig. 9. Performance of Memcached (ETC, 50% configuration 

B. Disaggregated Memory for In-memory RDD Caching 
In this section, we show the experiments of the second 
disaggregated memory system – DAHI [37-38], which we 
developed for in-memory caching of Spark RDD partitions.  

Spark is a well-known data processing platform for 
memory-intensive applications. Resilient Distributed 
Datasets (RDDs) [33] is a trademark of Spark. An RDD is an 
abstraction representing a set of immutable objects. By 
partitioning a large RDD into multiple partitions, we can 
distribute the large dataset over the cluster for parallel 
processing. RDDs can be created either from the data on the 
stable storage or by transformation from other RDDs through 
Spark operations, such as map, filter, join and so forth. Spark 
makes use of RDD to enhance memory utilization. For 
example, RDDs to be generated/used between consecutive 
map operations are kept in memory. RDDs to be reused can 
also be explicitly cached in memory. These enhancements 
improve application performance by reducing disk access, 
minimizing inter-process communication between Spark 
executors, which also makes Spark greedy on memory usage. 
When Spark can fit 100% of the working set in memory, its 
applications can enjoy the peak time performance. However, 
as soon as the working set cannot fully fit in memory, the 
application running on Spark executors experiences server 
performance degradation, causing imbalanced memory 
utilization in Spark executors and premature spilling, even 
though there are idle memory present in Spark executors [38].  

DAHI is developed as a disaggregated memory system for 
providing node-level shared memory pool and cluster-level 
remote memory for in-memory caching RDD partitions. 
Figure 10 shows the evaluates and compares the effect of 
partial RDD caching on DAHI with vanilla Spark. This set of 
experiments are performed using three different categories of 
input datasets: small, medium, and large. For all applications, 
using small category dataset, the RDDs generated can be 
cached fully in memory, while using medium and large 
category datasets exhibit partial caching, as some partitions 
of the RDDs do not fit in memory.  

 

 

 
Fig. 10. Vanilla Spark v.s. DAHI powered Spark [38] 

 

It is observed that, using DAHI, the completion time of LR 
obtains 1.7x and 4.3x speedup over vanilla Spark for medium 
and large datasets respectively. The speedup with respect to 
medium and large datasets for SVM is 3.3x and 5.8x, for K-
Means is 2.5x and 3.1x, and for CC is 1.3x and 1.9x. This set 
of experiments shows the benefit of exploiting disaggregated 
memory orchestration across executors through node level 
and cluster level coordination via off-heap caching of the 
RDD partitions that cannot fit in their executors’ memory.  

VI. DISCUSSION 
Traditional memory hierarchy consists of on-chip memory 

(SRAM) with latency (cycles) of 1~30, off-chip (DRAM) 
memory with latency of 100~300, Solid State Disk with 
latency (25,000 ~ 2,000,000), to HDD with latency larger 
than 5,000,000.  

Emerging non-volatile memory (NVM) technologies, such 
as Phase Change Memory (PCM), Intel 3D Xpoint memory 
array, are making rapid advancement, though no-single NVM 
technology dominates in terms of both energy and efficiency 
(capacity and latency). At the same time, high throughput, 
low latency network technologies, such as RDMA and its 
family of technologies, are being deployed in many Cloud 
datacenters.  

These exciting technological trends have fueled the new 
forms of convergence of memory, networking and storage. 
Memory disaggregation is one step towards leveraging the 
latency gap between network I/O and storage I/O to enable 
DRAM memory to expand to the faster tier(s) in the memory 
hierarchy before resorting to the slower external storage tier. 
Many promising research problems are emerging, including 
identify the killer applications for different types of memory 
technologies and for different combination of memory, 
networking, and storage technologies, to name a few.  
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VII. CONCLUSION 
We have described the problems and the challenges of 

memory usage imbalance in virtualized Clouds and discussed 
why efficient memory disaggregation can be a feasible 
solution to the problems. We define and characterize the 
concept of memory disaggregation, and discuss the 
challenges of efficient memory disaggregation in cloud 
datacenters. We have examined some research issues, design 
choices and directions to overcome challenges posed by 
memory disaggregation at both node-level and cluster-level. 
Specifically, we have proposed two major new research 
challenges and solution directions for enabling elastic, on-
demand disaggregated memory orchestration: (1) virtual 
server memory and node level memory co-design and (2) 
local memory and remote memory co-design. We illustrate 
these two solution directions by presenting a brief description 
and the experimental results of the two ongoing research 
projects. We conclude with a brief discussion on other 
advanced or emerging memory and storage technologies 
(e.g., NVM, SSD) and potential opportunities for memory 
disaggregation.  
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