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Abstract—New age smartphones are equipped with high pro-
cessing power and internet connectivity. Hence, smartphones
are capable of executing applications, which were only possible
by desktops or laptops until recently. Some examples of such
applications are email, banking, flight booking etc. People
prefer to use mobile devices for these applications due to the
usability and portability of mobile devices. However, because
of hardware limitations, mobiles have limited resources such
as battery life, power and capacity. Researchers are constantly
looking for ways to maximize the usage of these resources.
The execution of any application on mobile, needs storage
capacity of mobile to store, battery life of mobile to keep
running and processing capacity of mobile to process. Thus,
more resources are needed to run more applications on these
devices. To reduce the load of applications on mobile devices
and use the resources efficiently, it is necessary to move some
load of applications to remote cloud server in such a way that
the applications will run seamlessly. Computation offloading
for mobile-edge computing (MEC) is a mechanism to utilize
mobile resources well by moving resource-intensive applica-
tions to cloud server at network edge. In the case of multiple
users, the total computing capacity of the server needs to be
taken into consideration for allocating resources to multiple
users. The key to efficient computation offloading is allocating
applications to mobile and remote server in such a way that
minimizes transmission energy. In this paper, we formulate
the computation offloading problem as graph cut problem and
propose a solution based on spectral clustering computation.
First, for the applications on mobile a corresponding network
flow graph model is defined. Then, label propagation theory
is applied on the network graph and the network graph is
simplified by compressing and combining. Finally, the optimal
solution is obtained by computation using spectral clustering
algorithm. Experiments show that the algorithm is effective
in handling programs with loosely coupled as well as highly
coupled functions.

Keywords — Mobile-edge computing, Computation Of-
floading, Multiple users, Spectral Graph Theory.

I. INTRODUCTION

Smart devices have become integral part of the daily
lives of people. Applications such as emails, videos, games,
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shopping, social networking can be easily accessible with
the touch of a fingertip on mobile screen. Smart phones are
embedded with new technologies such as face recognition,
natural language processing, interactive games, virtual real-
ity etc. These technologies provide rich user experience. Due
to mobile devices’ size and weight, mobile terminals are lim-
ited in processing power, storage capacity, network connec-
tivity, computing resources and battery capacity. In addition,
demanding applications consume high battery power. This is
a serious obstacle that limits users from fully utilizing their
devices. A recent survey showed that nearly half of respon-
ders were dissatisfied with the battery power of their mobile
phones. They need twice as much power as they have now
[8]. The trade-off between resource-intensive applications
and resource-constrained mobile devices pose challenge for
mobile platform development [2]. These factors motivate the
concept of transferring or offloading some applications from
mobile to remote cloud.

In last decade, Mobile Cloud Computing (MCC) became
popular because it helped to reduce load on mobiles by trans-
ferring computationally exhausting applications to remote
cloud server [3]. But transferring applications to remote
servers result in adding latency and security or privacy
issues. This led to think researchers about other possible
options such as MEC [6, 17], cooperate computing [24],
etc. One milestone in this direction is transferring some
applications from mobile and run those on server at the
network edge with cloud server like capabilities and services
[6]. This technique is called MEC. MEC brings several
advantages over MCC such as: 1) achieving lower latency,
2) having better privacy and security for mobile applications,
3) saving more energy for mobile devices, and 4) supporting
context-aware computing [13]. Therefore, MEC is a promis-
ing technology for expanding mobile terminal resources and
capability.

Until now, much progress has been made in the research
of computation offloading methods. Partitioning applications
and offloading large scale computing task to the edge is
a promising direction in this research [19]. Ou and others
proposed an adaptive partitioning algorithm for partitioning
application into offloadable and unoffloadable partitions..
Experiments indicated the efficiency and cost-effectiveness
of this technique [14]. Liu and others proposed a Dynamic
Programming based Offloading Algorithm (DPOA) [11] that
can quickly find the optimal partition among the executable
sub-components of mobile applications. A crucial point
here is that, calculating offloadable partition of application
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requires access to resource-rich servers over wired or wire-
less networks for a short time [1]. These servers can use
virtualization to provide the ability to compute partitions
in isolation and protect data. Based on the analysis of
the average delay of data transmission and the average
power consumption of mobile devices, [10] proposed an
efficient one-dimensional search algorithm, which can find
out the optimal task scheduling strategy. Methods [16], [23],
and [22] are some other common methods for selecting tasks
to offload.

However, all these known methods continue to have their
own limitations. First, most of them partition the original
program into coarse modules like components [10], layers
[9], etc. This can effectively reduce the amount of calculation
of the partition algorithms. But partitioning into course
modules can lead to inaccuracy in some cases. For example,
there may be a component that cannot be offloaded to the
edge server just because it has a function that needs to collect
data directly from local sensors. It may also have some other
functions with lot of calculation and rare communication
with other functions. The offloading of such functions might
be beneficial to the system from computation point of
view. However, the function cannot be offloaded and hence
the whole component cannot be offloaded. Second, many
proposed heuristics and approximation methods can get the
partition fast, but there are some inaccuracies involved.

In this paper, we consider the computation offloading
problem for MEC system with multi-user (COPMECS)
based on function level. The original application is rep-
resented as function call graph. Various factors are taken
into consideration before offloading. The optimal offloading
decision depends on the balance between computation and
communication. The final decision is made by considering
all computing nodes at the same time. The graph is first
compressed in size by merging highly coupled nodes. Then
we modelled the offloading problem as the minimum cut
searching problem of the compressed graph. Finally, the
spectral clustering method is used to get the accurate of-
floading scheme.

The following are the detailed contributions of this paper:
• We model the original application as its function call

graph and formulate the COPMECS as a constrained
double-objective optimization problem.

• We design a novel function call graph compression
method. Considering the amount of computation of
each function and the amount of communication be-
tween each pair of functions, we design a special label
rule. Based on this rule, we divide the function call
graph into multiple sub-graphs using label propagation
theory. The nodes in each sub-graph that satisfy the
compression condition are merged to compress the
original graph.

• After transferring the objective function to the mini-
mum cut searching problem of the compressed graph,

the spectral clustering method is introduced to get the
accurate offloading scheme.

• Experiments are conducted using Spark framework to
prove the accuracy and efficiency of our novel algo-
rithms which is better than heuristic algorithms.

Rest of the paper is organized in following manner. In
Section 2, system model definition and objective formu-
lation is discussed. In Section 3, we introduce our label
rule and label propagation theory-based function call graph
compression algorithm. The spectral clustering method is
also introduced to get the accurate computation offloading
scheme. In Section 4, we provide the experiments that
compare the performance of our novel algorithms with
some traditional algorithms. Finally, Section 5 concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As already mentioned above, we consider the COPMECS
based on function level. Therefore, we must generate the
function data flow graph of the application first. Unfortu-
nately, we usually can only get the compiled executable
file of normal applications. Here, we use Soot [20] to get
the internal functions and their calling relationships from
the compiled executable of the application. Then we can
easily generate the function data flow graph. However, not all
functions in the application program are suitable for remote
execution. Some funcitons participate in large amount of
data exchange with other functions and their execution
highly depends on local data interaction like sensors’ data
reading, local I/O devices accessing, etc. We call these
functions as unoffloaded functions. These functions will be
excluded from the function data flow graph.
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…
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      d=f5( );    \\|d|=7      
…
}
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Figure 1. An function data flow graph example of a program

We use weighted un-directed graph Gi = (V i, F i) to
represent the function data flow graph of a mobile applica-
tion Ai of user ui. We assume that all users are served by
one single edge server S. Vi = {vi1, vi2, ..., vin} is the node
set of Gi with each node vij represents the jth function
of Ai. F i is the edge set of Gi. If function vij needs
to exchange data with vil , there will be an edge between
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vij and vil . we use f ij,l to represent the edge between vij
and vil . The weight of each node represents the amount of
computation of its corresponding function. The weight of
each edge represents the amount of communication between
the functions corresponding to the two ends of this edge. We
use V ic to denote the functions of Ai that are needed to be
executed locally, and V is to denote the functions of Ai that
can be offloaded to the edge server. Obviously, V i = V ic ∪V is
and V ic ∩ V is = ∅. Figure 1 shows an example of function
data flow graph of a program.

We assume that tic represents the computing time for all
functions that should be computed locally. tis represents the
computing time for all functions that should be computed
remotely. Iic represents the available computing resources of
the mobile device of user ui. Iis represents the available
computing resources of ui assigned by S. Then we can
calculate tic and tis by formula (1) and formula (2). Here wij
represents the weight of the node vij . Here wtij represents the
time consumed by vij when waiting for the resource allocated
by S.

tic =

∑
vij∈V i

c
wij

Iic
(1)

tis =

∑
vij∈V i

s
wij

Iis
+w tij (2)

We use pic to denote the unit power consumption of
user ui. eic represents the energy consumption of local
computation of user ui. We can calculate eic by formula
(3).

eic = tic · pic (3)

We can get the transmission energy consumption eit be-
tween V ic and V is as formula (4) and the transmission time
consumption between them as formula (5).

eit =

∑
vij∈V i

c

∑
vil∈V i

s
s(vij , v

i
l) · pit

bi
(4)

tit =

∑
vij∈V i

c

∑
vil∈V i

s
s(vij , v

i
l)

bi
(5)

Here pit represents the unit energy consumption of trans-
mission from user ui to S. s(vij , v

i
l) denotes the weight of

edge f ij,1. bi denotes the transmission bandwidth between
ui and S. For the simplicity of discussion, we assume that
∀ui, bi = b, pis = ps, and pic = pc.

Considering all computing requirements from all users
at the same time, the offloading scheme should be decided
based on the consumption balance between local computa-
tion and communication. Therefore, our objective function
can be formulated by formula (6). E =

∑
i e
i
c +

∑
i e
i
t

represents the total computing energy consumption of the

system. T =
∑
i t
i
c +

∑
i t
i
s +

∑
i t
i
w represents the total

transmission energy consumption of the system.{
min(E)
min(T )

(6)

III. OFFLOADING SCHEME BASED ON GRAPH
COMPRESSION AND GRAPH SPECTRUM

Generally, the unit energy consumption for wireless trans-
mission (pit) is far larger than the unit energy consumption
of local computing (pic). Therefore, The value of E mainly
depends on

∑
i e
i
t. If we want to minimize E, we should

reduce communication which results from offloading. At
the same time, the value of T mainly depends on

∑
i t
i
c

and
∑
i t
i
s. We know that, the resources of edge servers

are always limited because of the construction cost. Too
much offloading will inevitably increase the load of S, and
then

∑
i t
i
s or transmission energy consumption will also

increase significantly. But too small offloading will increase∑
i t
i
c or local energy consumption. Therefore, we should

balance between local computation and communication to
achieve the optimal offloading scheme. On the other hand,
we consider the problem based on the function level. This
will make the size of the data flow graph exponential.

In this section, we design a novel offloading scheme.
First, we compress the size of the function data flow graph.
Second, we transfer the objective problem to the minimum
cut searching problem and introduce the spectral graph
theory to solve it. Finally, we get the optimal offloading
scheme based on greedy algorithm.

A. Graph Compression

In this section, we introduce the label propagation al-
gorithm [26] (LPA) to compress the size of the original
function data flow graph effectively. Considering the trans-
mission consumption between functions, we design a special
label rule which can lead the label propagation process to
find highly coupled functions. Then we split the graph into
component based sub-graphs and design a parallel label
propagation process. Finally, we define nodes merging rule
to compress highly coupled functions based on the clustering
results of the parallel label propagation process.

LPA is a semi-supervised learning method for graph
clustering which was proposed in 2002. It randomly assigns
labels to some nodes in the graph and propagate these
labels to the unlabeled nodes throughout the course of the
algorithm. Nodes with the same label will be seen as be-
longing the same class at the end. It has received widespread
attention from scholars because it is easy to implement [15].
In the following, we will present our compression algorithm
in details.

Graph Partition: The objective of compression is to
reduce the size of the function data flow graph by merg-
ing some highly coupled functions. However, the coupling
degree of two functions from two different components
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Figure 2. An example of sub-graph compression. a, original graph. b, first round of propagation. c, second round of propagation. d, clustering result. e,
compression result.

must be small. Therefore, the functional data flow sub-graph
corresponding to each component can perform compression
independently. In the beginning, we divide the original
functional data flow graph into a set of sub-graphs based on
component boundaries. We use cGi = (Gi1, G

i
2, · · · , Gim) to

represent the partition result of Ai with each Gij represents
a sub-graph corresponding to one component.The following
steps will be performed in parallel.

Label initialization and propagation: It is difficult to
guarantee the availability of the final classification result by
randomly assigning the initial label. In order to accelerate
the process of propagation, we choose the node which
has the maximum out-degree as the starter node of the
propagation. After label propagation, we aim to have same
label for functions with highly coupling degree. Here we
use the weight of an edge to denote the coupling degree
between the two functions associated with this edge. We set
a weight threshold w. If the weight of an edge associated
with a labeled node is larger than w, and the another end
of this edge is unlabeled, the unlabeled node will be given
the same label, Otherwise, it will be given different label.
Starting with the starter, all nodes will be labeled one by one
according to depth-first or breadth-first policies. We call this
process a propagation process. As the propagation continues,
more and more functions will be labeled. This process will
be repeated until the end condition is met.

End of propagation: We set two end conditions for the
propagation process. If either one is satisfied then the whole
process will end. First, we define the rate of label updating
α as formula (7). updatenum represents the number of
functions whose label were updated in one propagation
process. totalnum represents the total function number of
sub-graph Gij . When α ≤ αt, the whole process will be
terminated. αt is the pre-set threshold of α. Second, we set
the highest iteration number βt, when the total number of
propagation processes is larger than βt, the whole process
will be terminated.

α =
updatenum
totalnum

(7)

Compression: After the label propagation, the original
graph Gi will be partitioned into many different clusters.
Nodes with the same label will be in the same cluster. Nodes

with different labels will be in the different clusters. Any
two nodes which are in the same cluster and are connected
directly will be merged into one node. This merging process
is the so-called compression. This compression process can
guarantee that highly coupled functions be executed in the
same device (U i or S). This can avoid the offloading which
can generate huge transmission cost.

Figure 2 shows an example of a sub-graph compression.
From figure 2a to figure 2c the original sub-graph experi-
ences two propagation processes. figure 2d shows the nodes
which can be merged and figure 2e shows the result after
compression. The size of the sub-graph reduced from 10 to
3.

All details of the graph compression algorithm are shown
in Algorithm 1. All un-offloadable functions are removed
from the original graph in Line 1. The graph is split into
some smaller graphs based on the boundary of components
(Line 2 to Line 4). For each sub-graph, the node with the
largest out-degree is found and labeled as the starter first
(Line 6). One new process will be generated for each sub-
graph (Line 6). All propagation processes will be executed
in parallel. The label propagation process starts from the
starter until one end condition is satisfied (Line 8 to 15).
The functions with the same label and connecting directly
to each other will be compressed in each labeled sub-graph
(Line 16).

B. Graph Spectrum based Offloading Scheme Generation

In this section, we design an offloading scheme generation
algorithm. First we transfer the original object to a series
of graph minimum cut searching problem. Second, we
introduce the Spectral Graph Theory to get the minimum
cut of sub-graphs. Finally, we design an offloading scheme
generation algorithm based on greedy strategy.

Object transmission: As already mentioned, we aim
to minimize the energy consumption of the system which
mainly depends on the transmission that results from of-
floading. As we all know, the communication between two
devices includes the data transmission and some necessary
control messages transmission. The amount of control mes-
sages transmission depends on the number of data transmis-
sion other than the amount of data that needs to be trans-
ferred. Sometimes, a series of smaller data transmission may
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consume more energy than one bigger data transmission.
Therefore, we should control the number of transmission
that results from offloading.

We assume that crG
i
j represents the compressed graph of

sub-graph cGij . After the graph compression process, we get
a set of compressed sub-graphs crG

i = (crG
i
1,
c
r Gi2, · · · ,cr Gin).

The weight of any edge of any sub-graph c
rG

i
j is usually not

too large because of the compression. To reduce the number
in the communication of the final offloading scheme, we
just partition each sub-graph c

rG
i
j into two parts such that

they have the minimum communication amount. One part
executes locally, and another part executes remotely. In other
words, we need find the minimum cut of each sub-graph
c
rG

i
j .
Graph spectrum based minimum cut searching: We

assume that one compressed sub-graph c
rG

i
j is partitioned

into two parts c
rG

i
j,1 and c

rG
i
j,2. The cut corresponding to

these two parts CUT (crG
i
j,1,

c
r Gij,2) represent as formula (8).

CUT (crG
i
j,1,

c
r Gij,2) =

∑
vij∈c

rGi
j,1,v

i
l∈c

rGi
j,2

s(vij , v
i
l) (8)

Our object in this step is to find the minimum cut of rcG
i
j .

It can be formulated as formula (9).

argminr
cGi

j,1,
r
cGi

j,2
CUT (rcG

i
j,1,

r
c Gij,2) (9)

Methods based on the graph spectrum theory are popular
in a wide range of applications like data analysis, graph
clustering, and applied mathematics due to their strong
underlying theory and good performance [12]. This theory
is based on the eigenvalues and eigenvectors of the Laplace
matrix which is associated with the graph [5]. The spec-
tral cut features of the graph can be quantified based on
these eigenvectors. We introduce this theory to search the
minimum cut of each compressed sub-graph. We assume

that qi=
{

1 i ∈rc Gij,1
−1 i ∈rc Gij,2

, L represents the Laplace matrix

of rcG
i
j . We can get Theorem 1.

Theorem 1. The minimum cut of rcG
i
j equals to its second

smallest eigenvalue.

To prove Theorem 1, we should know two other theorems
first.

Theorem 2. For any cut of graph c
rG

i
j and some constants

d1 and d2, formula (10) is true.

CUT (rcG
i
j,1,

r
c Gij,2) =

qTLq

(d1 − d2)2
(10)

Theorem 3. Each extreme point of CUT (crG
i
j,1,

c
r Gij,2) is

corresponding to one eigenvector of L. Here L is the Laplace
matrix of crG

i
j .

Algorithm 1 Graph Compression Algorithm
Input G = (G1, G2, .., Gn), n max, r min
OutPut: c

rG
0: Gi = remove unoffloaded(Gi)
0: for all Gi do
0: cGi = componentSplit(Gi)
0: end for
0: for all cGij ∈c Gi do
0: create new process
0: v = Largest outdegree(cGij)
0: total num = 0
0: update num = 0
0: rate = 1
0: while total num < n max or rate > r min do
0: update num,c Gij = label propagation(v)

0: rate = update num
node num(crGi

j)

0: total num = total num+ 1
0: end while
0: c

rG
i
j = compress(cGij)

0: Inesrt(crG
i
j ,
c
r G)

0: end for
0: return c

rG
=0

Algorithm 2 Offloading Scheme Generation
Input G = (G1, G2, .., Gn), n max, r min
OutPut: V1, V2

0: c
rG = Graph Compress(G,n max, r min)

0: for all crG
i
j ∈cr G do

0: λ = second smallest engivalue(crG
i
j)

0: c
rG

i
j,1,

c
r Gij,2 = split(crG

i
j , λ)

0: Inesrt(crG
i
j,1,

c
r Gij,2, V2)

0: end for
0: Inesrt(V

′

2 , V1)
0: Remove(V

′

2 , V2)
0: E1 = T1 =∞
0: E1 = energy comsup(V1, V2)
0: T1 = time comsup(V1, V2)
0: while Et + Tt < Et−1 + Tt−1 do
0: for all V i2 ∈ V2 do
0: Eit = energy comsup(V1 + V i2 , V2 − V i2 )
0: T it = time comsup(V1 + V i2 , V2 − V i2 )
0: end for
0: v = find smallest(Eit + T it )
0: Inesrt(V i2 , V1)
0: Remove(V i2 , V2)
0: t = t+ 1
0: Et = Eit
0: Tt = T it
0: end while
0: return V1, V2 =0
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λmin < minr
cGi

j,1+
r
cGi

j,2=
r
cGi

j
CUT (rcG

i
j,1,

r
c Gij,2) < λmax

(11)
The proof of Theorem 2 and Theorem 3 will be shown

in Appendix. From Theorem 3, we know that formula (11)
is true. Because one CUT (crG

i
j,1,

c
r Gij,2) corresponds to one

eigenvalue of L and the smallest eigenvalue of L is 0, we
know that Theorem 1 is true. Therefore, if we can get the
second smallest eigenvalue and its eigenvector, we can get
the minimum cut and its corresponding sub-graphs. But
the calculation of eigenvalue is very time consuming. In
this paper, we calculate the eigenvalues of L using Spark
framework which can significantly reduce the computing
time. The corresponding two parts of the cut can be gotten
from the eigenvector corresponding to the second smallest
eigenvalue.

Offloading scheme generation: We can get the minimum
cut of each compressed sub-graph r

cG
i
j from the eigenvector

calculation. Then all compressed sub-graphs will be split
into two parts. The last step is how to find the optimal alloca-
tion scheme of these parts such that the energy consumption
and time consumption can be minimized (formula (6)). We
do this based on the greedy strategy [4].

We design an offloading scheme generation algorithm
which is shown in Algorithm 2.

We first compress all user’s function data flow graph (Line
1). For each compressed sub-graph which is corresponding
to one component, we find its minimum cut and split it into
two parts (Line 2 to Line 6). The optimal offloading scheme
will be generated based on greedy searching in all parts
(Line 7 to Line 12).

IV. EXPERIMENTS

In this section, some experiments are conducted to prove
the performance and accuracy of our algorithms. First, the
compression algorithm is tested. Second, for the offloading
scheme, three algorithms are selected separately. In addition
to our algorithm, we chose the maximum flow minimum cut
algorithm and the Kernighan–Lin algorithm for comparison.
These two algorithms are proven as effective algorithms for
graph partition and briefly introduced in following para-
graph.

The Ford-fulkerson algorithm for maximum flow mini-
mum cut and Kernighan-Lin algorithm are briefly introduced
here. Ford-fulkerson algorithm which is used to solve maxi-
mum flow finding from source node s to target or sink node
t. A specialized Ford-Fulkerson algorithm, also called as
Edmond-Karp algorithm guarantees to find maximum flow
in limited number of iterations. In Ford-Fulkerson algo-
rithm [27], if the capacities are rational, then the algorithm
does give result in limited iterations. Except for s and t, for
all other nodes the incoming flow is equal to the outgoing
flow. Flow at any edge is always less than the capacity of

the edge. When flow f passes through the capacity c of an
edge then the residual capacity becomes c−f . An edge with
available capacity is called as augmenting path. The idea is
to find augmented path from s to t in such a way that the
flow is maximized.

Kernighan-Lin algorithm is mainly used for partitioning
of network graph. Kernighan-Lin algorithm is a heuristic
algorithm for graph partitioning problem [7]. This algorithm
is a feasible algorithm for graph partition. Kernighan-Lin
algorithm is used to partition a network node graph into
two sets based on some constraints. One example of such
constraint might be connecting edges between the two sets in
which this graph is partitioned should have minimum weight.
Another possible constraint can be maximizing the function
gain after partitioning. Let Q be the function gain after par-
titioning. Which node should remain local and which should
be offloaded is decided based on the arrangement producing
maximum value of Q. The Kernighan-Lin algorithm has
been successfully applied to the partition of graphs and we
have simulated it [21].

We use NETGEN [18] to generate experimental data.
NETGEN is a fast tool for randomly generating network
graph based on the number of nodes, the number of edges
and the weight of edges provided by users. We set the
number of edges and values of weights in the graph so that
the generated random graph is similar to the actual function
data flow graph of mobile applications.

Experiment on graph compression algorithm: Table
I reflects the result of our graph compression algorithm.
The scale of the original graphs is reduced a lot. With the
increase of graph size, the compression ratio also increases.
When the graph node number is 5000, the number of nodes
can be reduced is more than 90%.
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Figure 3. Local energy consumption.

Experiments on offloading scheme generation algo-
rithm: We conduct a series of experiments on offloading
scheme generation algorithms. We change the minimum cut
calculation process by the above mentioned three algorithms
and compare their results.

We control the number of users to one and observe the
energy consumption of the mobile terminal in the result
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Table I
GRAPH COMPRESSION RESULTS

Network function number edge number function number after compression edge number after compression

Network1 250 1214 39 107
Network2 500 2643 93 284
Network3 1000 4912 154 597
Network4 2000 9578 258 1220
Network5 5000 40243 489 2651

schemes. We use three algorithms to cut graphs of different
sizes. As can be seen from figure 2, with the increase of the
scale of the original graph, the local consumption is also
increasing, because more functions will execute locally. The
transmission energy consumption and the total consumption
have the same trend (figure 4 and figure 5). Through
comparison, our algorithm has the best performance either
on local energy consumption (figure 3) or on transmission
energy consumption (figure 4). Therefore, its total energy
consumption is also the least (figure 5).
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Figure 4. Transmission energy consumption.
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Figure 5. Total energy consumption.

We set the function number of graph to 1000 and observe
the change of local energy consumption (figure 6), trans-
mission energy consumption (figure 7) and the total energy
consumption (figure 8) by increasing the number of users.
The results are consistent with the single user situation
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Figure 6. Local energy consumption under multi-user conditions.
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Figure 7. Transmission energy consumption under multi-user conditions.

We continuously increase the scale of graphs to observe
the running time of these three algorithms. As can be seen
from figure 9, the running time of our algorithm without
using Spark framework is significantly greater than that of
the other two algorithms when the scale of the graph keep
increasing. Most of the running time is wasted on lots of
matrix multiplications about the graph spectrum calculation.
When we use Spark to do the matrix multiplications [25],
the running time is close to the other two algorithms.

V. CONCLUSIONS

Computation offloading is very promising technique for
enhancing the capabilities of mobile devices by transferring
offloadable applications or functions to edge servers. In this
paper, Computation is tackled using algorithms based on
the label propagation theory and graph spectral theory. For
successful offloading of partial functions, we have identified
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Figure 8. Total energy consumption under multi-user conditions.
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Figure 9. Execution time under multi-user condition.

the offloadable and unoffloadable part of function first.
Then the offloading problem is represented in graphical
form where nodes represent functions and edges represent
the communication between functions. In order to achieve
the optimal offloading scheme, the original function data
flow graph is compressed and the problem is transformed
into optimal cut searching problem. We design a series
of label rule, propagation rule and compression rule for
the label propagation based graph compression algorithm.
We use graph spectrum theory to solve the optimal cut
problem of the graph. The optimal offloading scheme is
generated by greedy searching. Experiments are carried out
using Spark technology to accelerate the speed and improve
overall performance of the propsed algorithm. Evaluation
results indicate that our algorithm also produces better
results in reducing transmission consumption and energy
consumption during offloading. In future, we plan to explore
different ways to reduce the computational complexity of our
algorithm.
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APPENDIX A.
PROOF OF THEOREM 2

Proof:
We assume that L represent the Laplace matrix of crG

i
j .

q = (q1, q2, ..., qn)
T is a vector. For any element qi

in q, qi =

{
d1, via ∈ Gij,1
d2, via ∈ Gij,2

. via represents the ath

node

of crG
i
j . We can get:

CUT (crG
i
j,1,

c
r Gij,2) =

∑n
a=1

∑n
b=1 s(v

i
a,v

i
b)(qa−qb)

2

2(d1−d2)2

= qTLq
(d1−d2)2

APPENDIX B.
PROOF OF THEOREM 3

Proof:
From Theorem 2, we know that:

CUT (crG
i
j,1,

c
r Gij,2) =

qTLq
(d1−d2)2

so CUT (crG
i
j,1,

c
r Gij,2) has the same extreme points to

qTLq
(d1−d2)2 .

then CUT (crG
i
j,1,

c
r Gij,2) has the same extreme points

to qTLq.

Assume that γ is a constant, and γ 6= 0. We know
that

(γq)TL(γq) = γ2qTLq

so (γq)TL(γq) has the same extreme points to qTLq.

Therefore, we can assume that
∥∥q∥∥ = qT q = 1. When

this condition is not true, the following result is still

true.
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From the method of Lagrange multipliers, we can get

ι(q) = qTLq − λ(qT q − 1)

so dι(q)
dq = 0

<=> 2qTL− 2λqT = 0

<=> 2Lq − 2λq = 0

<=> 2Lq − 2λq = 0

<=> Lq = λq.

Therefore, Theorem 3 is true.
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