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Abstract—The emerging hardware-assisted security technolo-
gies facilitate the deployment of secure and trustworthy ap-
plications in today’s cloud computing infrastructure. Despite
promising, the advantages appear to diminish due to limited
resources of trusted execution environments and ever-increasing
workload to be processed inside. Different from existing task-
specific and system-level optimizations, our key observation is
that those redundant computations occur commonly among
several applications when handling the same input data.

In light of this, we propose SPEED, a secure and generic
computation deduplication system in the context of Intel SGX.
It allows SGX-enabled applications to identify redundant com-
putations and reuse computation results, while protecting the
confidentiality and integrity of code, inputs, and results. To
maximize the benefit of computation deduplication, we design
a cross-application deduplication scheme, empowering multiple
applications to securely utilize the shared results as long as they
perform identical computations. To ease the use of SPEED, we
implement a fully functional prototype and provide a concise and
expressive API for developers to deduplicate rich computations
with minimal effort, as few as 2 lines of code per function call.
Extensive evaluations of four popular applications demonstrate
that SPEED improves performance by up to 400 times. The
source code is available on GitHub for public use.

I. INTRODUCTION

Under rapid commoditization of hardware-assisted security

technologies, especially Intel SGX [1], today’s cloud vendors

are reacting swiftly by bringing Trusted Execution Environ-

ments (TEEs) to their next-generation security infrastructures,

like IBM Cloud Data Guard [2] and Azure Confidential

Computing [3]. Along with this trend are the growing interests

in migrating various applications or computation tasks to TEEs

(namely enclave) featured by SGX, such as anonymity net-

work [4], network middlebox [5], and big data analytics [6]–

[8]. Despite promising, the performance could become a severe

issue due to relatively limited secure resources and ever-

increasing workload to be fed into these enclave applica-

tions [9]–[11], especially when running on shared physical

machines in this cloud computing paradigm.

To accelerate enclave applications inside TEEs, a lot of

efforts has been made recently, e.g., using asynchronous

system calls to reduce the performance impact of thread

∗Most of the work was done when Helei Cui was a postdoc at CityU.

synchronization [9], and involving exit-less remote procedure

calls to mitigate the cost of enclave exit [10]. While the

system-level optimizations may work effectively, there remains

a need to further accelerate these applications from a new

angle, by eliminating redundant computations appeared in

some enclave applications. This often happens when a cloud-

based application encounters repeated input data (even from

different requesters), such as VirusTotal Scanner [12], Turnitin

Plagiarism Checker [13], and Google Safe Browsing [14].

Besides that, incrementally updated datasets are constantly

being processed by the same or similar computing tasks, such

as feature extraction for machine learning, index building for

fast queries, and data aggregation for truth discovery. It is

obviously crucial to cache and reuse the results of previous

computations whenever possible.

In the literature, such technique, namely memoization [15]

or computation deduplication [16], has been intensively stud-

ied. Though the detailed implementations and the targeted

application scenarios might be different, the general idea is

to check if a function call with the same (or similar) input

data has been done before and the result can be directly

obtained without re-execution. For example, the design pro-

posed by Tang and Yang [16] targets the general computation

deduplication across multiple applications or tasks, which

binds a specified function’s name (or code), input data, and

output result together via a collision-resistance hash func-

tion. Besides that, many prior systems focus on a specific

application for optimizing incremental bulk data processing,

e.g., MapReduce [17], [18], C/C++ compiler [19], [20], and

DryadLINQ [21]. In addition, there is also a line of work

(e.g., [22]–[24]) extend this idea to approximate computation

deduplication, i.e., some error-resilient applications (e.g., the

emerging recognition, mining, and synthesis applications) can

share the common processing results when facing highly-

correlated (or similar) input data.

In light of these, we believe bringing the benefit of com-

putation deduplication to the emerging cloud-based security

infrastructures is a promising way to accelerate enclave ap-

plications running inside TEEs. However, enabling secure and

generic computation deduplication in the context of hardware

enclaves is still a non-trivial task for the following reasons.
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First of all, we need to consider how to bind a particular

computation to its result, so as to enable an enclave application

to identify and reuse previously computed results directly

rather than re-compute them. Different from data deduplication

where the duplicates are identified via the data hash only,

determining whether two deterministic computations (i.e.,

given the same input, it always produces the same result)

are identical requires considering both function’s code and

input data [16]. During runtime, a tag can be derived from

the combination of code and input data for each function call

(computation). Two computations are considered duplicated if

their tags are identical. The results of all fresh computation are

stored once, and can be reused for any subsequently detected

duplicates without re-executing the computations.

Second, we need to consider how to manage reusable results

efficiently and securely. Ideally, the results and associated

metadata containing sensitive information could naturally re-

side in an enclave and hence be protected there. But apparently,

it is not scalable to maintain such data, which grows as more

computations are executed, within the highly constrained en-

clave space, where the protected memory space (i.e., Enclave

Page Cache (EPC)) is very limited for maintaining a small

trusted computing base (TCB) [9]. To this end, we need to

encrypt these reusable results as well as metadata, and store

them outside the enclave. Relevant entries are loaded to the

enclave in an on-demand manner.

And finally, we need to consider how to share these en-

crypted results between different applications for maximizing

the result utilization, while limiting the availability to the ones

who indeed perform the same computation, i.e., owning the

same function’s code and input data. We note that a straight-

forward approach by sharing a system-wide secret key among

all applications would be vulnerable to the potential single

point of compromise. Thus, we resort to the most prominent

cryptographic primitive in secure data deduplication, namely

message-locked encryption (MLE) [25]. Different from data

deduplication, both the tag for duplicate checking and the

key for result encryption are derived from the combination

of a function’s code and input data. Thus, this can avoid the

procedure of key agreement in computation deduplication.

Taking all these into account, this paper presents SPEED,

a secure and generic computation deduplication system in

the context of Intel SGX. Particularly, SPEED consists of

two major components: a secure deduplication runtime as

a trusted library linked against application enclaves, and a

generic encrypted result store. SPEED also provides a concise

and expressive API for developers to securely deduplicate rich

computations in their SGX-enabled applications with minimal

effort. Developers can enjoy truly transparent development

experience when importing such an attractive feature. The

major contributions are listed as follows:

•We propose the first secure and generic computation dedu-

plication system SPEED for accelerating the SGX-enabled

applications. SPEED can protect and reuse computation results

across multiple applications.

•We implement a fully functional prototype with Intel SGX

Fig. 1. An overview of SPEED workflow.

SDK. It minimizes the developer effort in deduplicating rich

computations among these SGX-enabled applications. As few

as 2 lines of code modifications are needed for each function

call of target computation.

•We provide concrete case studies on four popular applica-

tions, i.e., image feature extraction, data compression, pattern

matching, and bag-of-words (BoW) computation. Extensive

evaluations on real SGX-enabled machines show that SPEED

is more suitable for those time-consuming computations, e.g.,

up to 90× speedups for SIFT feature extraction [26] and 400×
speedups for pattern matching [27].

II. SYSTEM OVERVIEW

A. System Model

Fig. 1 overviews the workflow of SPEED, which involves

four major entities: SGX-enabled application, application de-

veloper, secure deduplication runtime (abbr. DedupRuntime),

and encrypted result store (abbr. ResultStore). In order to

improve the security and privacy of cloud-based applications,

the developers are willing to harden their applications with the

recent advancement in hardware-assisted security technologies

(especially Intel SGX [1]). Next, these applications will be

deployed on physical or even virtual machines (e.g., today’s

cloud computing infrastructure enables flexible deployment of

various applications as virtual appliances running on shared

hardware [28]) with the support of hardware enclaves. And

then they will be run in the trusted execution environments.

This is a popular trend with the rapid commoditization of

SGX-enabled CPUs [4]–[8].

Meanwhile, we observe that it is very likely to find re-

peated or overlapped computations among these cloud-based

applications, e.g., pattern matching may occur repeatedly

over redundant files in an online virus scanner. Based on

this, we consider if a particular computation is deterministic

yet time-consuming (e.g., either the underlying algorithm is

computational complex or the input size is relatively large),

it would be more efficient to cache and reuse the same (and

preferably small-sized) result rather than re-computing it [16].

Therefore, when implementing such an SGX-enabled ap-

plication, the developer needs to mark those computations by

modifying the function calls with our concise and expressive

API. When reaching the marked function during the execu-

tion of the application, the secure DedupRuntime, which is

associated with the application and responsible for duplicate
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checking, will first generate a tag from the combination of the

function’s code and input data to represent the computation.

Then the tag will be forwarded to an encrypted ResultStore,

which manages previous computation results, to check whether

the computation has been done before. If the answer is “no”,

it means that the result of the target computation has not been

stored yet; therefore, the application will compute the result,

then encrypt it properly with DedupRuntime, and eventually

store it at the encrypted ResultStore for later use. Otherwise,

the corresponding result will be decrypted and reused directly.
For ease of presentation, we use result ← func(input)

to represent a generic computation, where “func” implies the

actual code of the function call, and the parameter is also

viewed as a part of input data.
Discussion on usage scenario. SPEED aims to help the de-

velopers (or users) to deduplicate these potentially repeated or

overlapped computations of SGX-enabled applications during

the runtime in the public cloud. A developer can flexibly

decide which computation (function call) needs to be marked

with SPEED API. During the runtime, SPEED will only cache

and reuse the results of those marked computations. Remark-

ably, the cached results will be encrypted and only be available

to applications that also perform the same computations.

B. Threat Model and Assumptions
Like previous work [6], [7], [29], we assume a powerful

adversary who has the ability to control the software stack of

physical machines, including hypervisor and OS, but is unable

to compromise the trusted hardware enclaves and relevant

enclave keys. Particularly, it can exploit a vulnerability in the

kernel or gain root access to the OS to observe and modify the

encrypted results outside the trusted enclaves. It also attempts

to obtain the result via a piece of short information about

a computation, explicitly the tag derived from its underlying

function’s code and input.
Besides, we assume that the SGX-enabled application devel-

opers use our SPEED API correctly and focus on the common

computations with deterministic results. This is consistent with

all prior computation deduplication work (e.g., [15], [16]). We

also assume that the integrity of an application is correctly

verified before actually running with hardware enclaves, so

the result will be correctly computed inside enclaves. And

this can be achieved by the attestation mechanism of Intel

SGX. In particular, the current SGX architecture supports two

forms of attestation: one is a basic (local or intra-platform)

assertion between enclaves running on the same platform; and

the other one allows an enclave of a particular remote device to

present reliable evidence about the running code, where only

unmodified code can be run on a genuine processor.
Lastly, like many prior SGX systems [4], [9], [30], we

do not consider the recently disclosed side-channel attacks

(e.g., [31]) in this work. They can be orthogonally addressed

by corresponding countermeasures (e.g., [32]).

C. Design Goals
• Confidentiality and integrity. SPEED has to protect the

function’s code, input data, and computation results, even after

they leave the protected memory boundary of the originally

trusted enclave. Note that by using the deduplication function-

ality of SPEED, an application will inevitably know whether

an intended computation has been done before. Yet, SPEED

has to ensure that this is the only information known to it

beyond the computation result. ResultStore is also aware of

such deduplication result, which is consistent with other secure

deduplication schemes (e.g., [25], [33]–[35]). Also, note that

the stored computation result should only be available to the

application that can indeed perform the computation.

• Generality and extensibility. SPEED has to be designed

and implemented in a function-agnostic way with a uniform

serialization interface, so as to be compatible with different

functions intended for deduplication. Meanwhile, to support

a new function, the developer effort should be minimized,

e.g., creating a “deduplicable” version of the function via

a concise and expressive wrapper API. These are important

because significant re-implementing of the entire application

would definitely reduce the usability of SPEED.

D. Preliminaries

• Hardware enclaves. The recent advance in hardware en-

claves of computer processor makes it possible to execute

arbitrary application code over sensitive data at native speed

without requiring trust in anything but the processor and the

application. Despite the underlying implementations varying

among different platforms (e.g., Intel SGX [1] and AMD

TrustZone [36]), they all provide isolated execution environ-

ments. That is, a running enclave is protected by the processor,

where its memory cannot be read or wrote by other processes

on the same processor outside the enclave, not even the OS

and hypervisor. Without losing generality, we focus on Intel

SGX in this paper because of its popularity in academia and

industry. We believe our high-level idea is also compatible

with other platforms.

•Message-locked encryption (MLE). MLE [25] is originally

formalized for ensuring data confidentiality in secure data

deduplication, where the ciphertexts of unpredictable messages

cannot be distinguished by an efficient attacker except with

negligible probability. In brief, MLE ensures that the same data

always result in identical tags for the use of duplicate checking,

where the ciphertext could be randomized in some construc-

tions, e.g., randomized convergent encryption (RCE) [25].

• Authenticated encryption. Authenticated encryption or its

variant authenticated encryption with associated data (AEAD)

is a kind of encryption scheme that simultaneously provides

confidentiality, integrity, and authenticity assurances on the

data. In brief, AEAD encrypts and authenticates plaintext data

together with authenticated-only data, and produces ciphertext

with an authentication code. Later, when performing the

decryption and verification routine, any modifications would

be detected. Here, we use AES in GCM mode [37], which is a

high-performance AEAD scheme and is also provided by the

crypto library shipped with Intel SGX SDK.
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III. OUR PROPOSED DESIGN

A. Design Intuition

Our design intuition mainly introduces how to accelerate

generic computations of an outsourced application inside the

trusted execution environments (i.e., hardware enclaves) via

securely reusing previous computation results, where these

results are well protected and can be accessed by eligible

applications that indeed perform the same computations, i.e.,

owning the same function’s code and input data. As mentioned

before, we focus on the common and repeated computations

either in a single application or among different ones, where

each computation can be viewed as a combination of code (of

a particular function) and input data [16], i.e., “func(input)”.

Hence, different from conventional data deduplication, where

the redundant copies can be identified via the hash of the

data only, determining whether two computations are identical

requires considering both the function’s code and its input

data.

In this direction, we first consider how to make an appli-
cation aware of these redundant computations during its
runtime (i.e., deduplication occurs before actually executing
the underlying functions). As is often the case, calling a

popular function from a third-party library within different

applications or even a self-defined but reusable function within

a single application will cause redundant computations when

facing the same input data. Therefore, when implementing

an SGX-enabled application, the developer should be able

to mark those potentially common and repeated computations

with a generic software framework, which contains a secure

DedupRuntime for transparently handling the underlying

deduplication operations, and an encrypted ResultStore for

result management. Later, when the application starts running,

DedupRuntime can intercept the marked computation, and

query ResultStore with a tag derived from the combination

of the function’s code and input for duplicate checking, as

shown in Fig. 2. Note that two computations are considered

duplicated if their tags are identical.

Regarding those reusable results managed by ResultStore,

we prefer keeping only small-sized metadata inside the en-

claves and storing their actual content outside due to the

limited protected memory resource. So we need to consider

how to protect these valuable results and make them avail-
able to applications that perform the same computation.

Remarkably, with the strong protection of hardware enclaves,

the confidentiality and integrity of computation results can be

guaranteed, where they are encrypted and authenticated before

leaving the trusted environment. Thus, a basic idea is to share

a system-wide secret key among all trusted applications as

adopted in [16]. However, this approach would be vulnerable

to the potential single point of compromise.

To resolve this tension, we need to leverage an encryption

scheme, of which the key is derived from computation itself;

hence the application that performs the same computation can

recover the key without agreeing on a single key in advance.

MLE [25] is such a scheme with the keyless property, which

Fig. 2. A high-level idea of SPEED: The result of a fresh computation is
encrypted and stored once, and can be reused for the subsequently detected
duplicates without re-executing the computation.

enables subsequent uploaders to derive the same encryption

key from the same data. However, as it was originally de-

signed for secure data deduplication, we still need to make

it suitable for our target computation deduplication scenario

and compatible with the standard encryption scheme in SGX

(more details in Section III-C). In what follows, we start from

a basic design that a single secret key is used for the result

encryption, regardless of the number of applications that can

access the encrypted ResultStore.

B. Our Basic Design

For ease of exposition, we begin with a basic design as

our starting point to introduce the general procedure of our

proposed computation deduplication system SPEED. That is,

in order to store these reusable results outside enclaves, they

will be encrypted with a secret key k before leaving the

originally trusted enclaves, and later they can be utilized by

the same application or others as long as it owns the same

key. Regarding the encryption scheme, we select a standard

authenticated encryption scheme, e.g., AES in GCM mode,

which provides data confidentiality as well as integrity. Here,

we use [res] to represent the result ciphertext, which covers

its authentication code and initialization vector.

We now present the major routine of our computation dedu-

plication design during the runtime of a deployed application,

and leave the details on how to mark a target computation by

developers to Section IV-C.

Specifically, before executing a computation func(m)
marked by the developer, the secure DedupRuntime of the

application first generates a hash tag t from the combination

of the function’s code and its input data m, i.e., t ←
Hash(func,m), where Hash(·) is a collision-resistant hash

function, e.g., SHA-256. Then the tag t is sent to the encrypted

ResultStore via a secure channel for duplicate checking.

To record those reusable results, the encrypted ResultStore
maintains a metadata dictionary D in the enclave, where each

entry is indexed by the tag t and its value is the corresponding

result ciphertext [res]. Particularly, the actual content of [res]
is stored outside enclave for space efficiency, just keeping a

pointer in the metadata dictionary. So, if the target computation

has not been done before, i.e., null ← D.get(t), then the

application will execute the function with its input, and obtain

the result, i.e., res ← func(m). Later, the result will be

encrypted with the key k, i.e., [res] ← AES.Enc(k, res),
and forwarded to ResultStore for updating the metadata
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Algorithm 1 Initial Computation with SPEED

Input: A computation func(m) in an application, where m
is the input data; and a metadata dictionary D managed

by the encrypted ResultStore of SPEED.

Output: Computation result res, and updated D.

Inside the enclave of an application:
1: t← Hash(func,m);
2: Send t to the encrypted ResultStore via a secure channel;

3: Obtain false as the response, which indicates the result

of the target computation has not been stored yet, i.e.,

null← D.get(t);
4: res← func(m); // Compute the result
5: Pick a randomness r

R← {0, 1}∗;

6: h← Hash(func,m, r);
7: k ← AES.KeyGen(1λ);
8: [res]← AES.Enc(k, res); // Encrypt the result
9: [k]← k ⊕ h; // Protect the key

10: Send (r, [k], [res]) to the encrypted ResultStore;

11: return res;

Inside the enclave of ResultStore:
12: Update the dictionary via D.put(t, (r, [k], [res])), where

the actual content of [res] is stored outside the trusted

enclave for space efficiency;

dictionary, i.e., D.put(t, [res]). Otherwise, if ResultStore can

locate the corresponding result, i.e., [res] ← D.get(t), then

the application owning the key k can directly obtain the result

via res← AES.Dec(k, [res]).

Discussion. We note that this single key design is useful

when targeting the repeated computations within a single

application. However, it is not robust enough when deduplicat-

ing the redundant computations among multiple applications,

because agreeing on a single secret key will make the involved

applications extremely brittle in the case of a single point of

compromise [33]. To address this issue, we will present our

main design of SPEED with an efficient encryption scheme

that does not need to share a key for deduplication purpose.

C. Support Cross-Application Computation Deduplication

In order to maximize the utilization of those reusable results,

we desire to make them available to all eligible applications

without sharing a system-wide secret key in advance. To

achieve this, we resort to the most efficient construction of

MLE, i.e., RCE1, and make it compatible with the standard

encryption scheme in SGX. The detailed procedures for han-

dling the initial computation and the subsequent computation

are shown in Algorithm 1 and Algorithm 2, respectively.

Different from the above basic design, when performing

the result encryption, the application does not require to

use a system-wide secret key. Instead, it uses a randomly

generated key via a standard key generation method, i.e.,

1Roughly, the encryption procedure in RCE is accomplished by first picking
a random symmetric encryption key and then encrypting the message with that
key. At last, this message encryption key is encrypted with another key, which
is deterministically derived from the message itself, as a one-time pad [25].

Algorithm 2 Subsequent Computation with SPEED

Input: A computation func(m) in an application, where m
is the input data; and a metadata dictionary D managed

by the encrypted ResultStore of SPEED.

Output: Computation result res.

Inside the enclave of an application:
1: t← Hash(func,m);
2: Send t to the encrypted ResultStore via a secure channel;

3: Obtain true together with (r, [res], [k]) as the response,

which indicates such computation result has been stored,

i.e., (r, [res], [k])← D.get(t);
4: h← Hash(func,m, r);
5: k ← [k]⊕ h; // Recover the key
6: res← AES.Dec(k, [res]); // Decrypt the result
7: return res;

k ← AES.KeyGen(1λ). Then this random encryption key k
is encrypted via XORing a secondary key h, i.e., [k]← k⊕h.

Specifically, to obtain h, the DedupRuntime of the applica-

tion picks a randomness r
R← {0, 1}∗ as a challenge message,

then attaches it with the combination of function’s code and

input data m, and computes it via Hash(func,m, r). Finally,

DedupRuntime needs to send (r, [k], [res]) for updating the

metadata of reusable results at the encrypted ResultStore.

In the above design, the results can still be encrypted with a

standard authenticated encryption scheme as our basic design

(e.g., AES in GCM mode), which protects the confidentiality

and integrity simultaneously. And this also ensures that the

applications, performing the same computation, can always

recover the corresponding random encryption key k, so as to

decrypt the result ciphertext. But different from the original

RCE scheme, the involved challenge message r further ensures

that the encrypted result can be decrypted correctly if and only

if the application indeed performs the identical computation,

i.e., owning the same function’s code and input data. And this

is verified by DedupRuntime executed in the enclave of the

application, as shown in Fig. 3. In brief, if the application is

not capable of computing the result by itself, then it cannot

succeed in result decryption.

D. Security Analysis

In the following part, we analyze the security strength of

SPEED. First of all, the security of the applications relies

mainly on hardware enclaves, which guarantees the confi-

dentiality and integrity of involved code, inputs, and results

inside the trusted execution environments. Besides, the data

flow outside enclaves, which are involved in our deduplication

procedure, such as the tag t, the challenge message r, and the

result ciphertext [res], are all encrypted and authenticated with

standard cryptographic tools (e.g., AES in GCM mode). And

this also prevents the cache poisoning attack [16], where an

adversary attempts to poison ResultStore with bad results.

Therefore, we turn our focus on the security of the result

encryption scheme for the support of cross-application com-

putation deduplication in Section III-C.
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Secure DedupRuntime Encrypted ResultStore

(r, [res], [k])← D.get(t)
r,[res],[k]←−−−−−−

If no func(m):

Ret false

h′ ← Hash(func,m, r)

k′ ← [k]⊕ h′

If ⊥← Dec(k′, [res]):

Ret false

Else: Ret true & res

Fig. 3. The verification protocol running inside the trusted enclaves of
SPEED. If the query application does not have the code “func” and its input
“m”, then it will not be able to recover the correct key k and decrypt the
result ciphertext “[res]” (the symbol “⊥” indicates the attempted decryption
does not pass the authenticity check).

Our result encryption scheme is built on top of RCE scheme,

which is a randomized MLE scheme that achieves the best

possible privacy for deduplication, i.e., the encryption of

an unpredictable message must be indistinguishable from a

random string of the same length [25]. The difference lies in

two aspects: First, the tag t for computation deduplication is

derived from the combination of the function’s code and input

data, instead of a message as in data deduplication. Second, the

secondary key h for protecting the random symmetric encryp-

tion key k is computed with an additional challenge message

r, which is randomly chosen by the initial computation and

securely kept inside enclaves.

Therefore, the result ciphertext stored at ResultStore (even

outside enclaves) is encrypted and authenticated. Meanwhile,

even if a malicious application can obtain the result ciphertext

[res] together with [k] and r by using some short information

about the computation (i.e., the tag t), it still cannot correctly

decrypt them unless it indeed performs the same computation

(i.e., owning the same function’s code and input data). We

note that this allows SPEED to defend against the query

forging attack [16] even in a leakage setting where the tag

of a computation could be leaked.

In summary, our result encryption scheme does not degrade

the security strength of the original RCE scheme, but further

provides a verification mechanism, similar to [34]. So the

equality information about the deduplicated computations can

be limited to the applications with the same computations.

Additionally, we note that the offline brute-force dictionary

attack [33] over predictable computation (i.e., both the under-

lying function’s code and its input data are predictable) cannot

be launched by an attacker who compromises the machine of

ResultStore, because both the tag and the challenge message

are protected with hardware enclaves in our target scenario.

Mitigating denial-of-service attacks. To deal with a rea-

sonably high request volume, the design of our encrypted

ResultStore is light-weight. However, a malicious application

may issue a large number of “update” requests for polluting

the ResultStore with useless results. To defend against it,

we can adopt the rate-limiting strategy into SPEED, which

involves a quota mechanism to limit the cache space for each

application [16].

Discussion on controlled deduplication. In the above design,

an application that performs the same computation can always

derive the encryption key, so as to decrypt the corresponding

result. However, such a “keyless” encryption scheme does not

naturally provide flexible access control mechanism. To ensure

that only authorized applications can access ResultStore, it

requires an additional authorization mechanism [33].

Discussion on memory access pattern. Even though the

reusable results are always encrypted outside enclaves, it may

still raise the concern of leaking memory access pattern [7].

That is, the clear data inside enclaves (e.g., the result res and

the corresponding random key k generated at the application,

and the challenge message r stored at ResultStore) may be

extracted via software side-channels [29]. We are aware that

this issue can be addressed by integrating existing oblivious

memory access solutions [29], [38]. However, this inevitably

incurs extra overhead, and we will explore a good balance

between security and performance in our future work.

IV. IMPLEMENTATION DETAILS

A. SGX Programming Model

To facilitate the understanding of our implementation de-

tails, we first give a brief introduction to the SGX pro-

gramming model. In general, hardening an application with

hardware enclaves requires the developer to reconstruct and

recompile the code with Intel SGX SDK. Specifically, these

SGX-enabled applications must be partitioned into two coun-

terparts: a trusted enclave for running critical code on sensitive

data, and an untrusted host for running noncritical code and

enclave management, such as creation, deconstruction, and

communication. The enclave and the host interact with each

other via two types of well-defined secure API, i.e., ECALL and

OCALL. The former is called by the host to enter the enclave,

and the latter is called by the enclave to access system utilities

that are prohibited inside the enclave.

B. SPEED Core

At the heart of our SGX-enabled SPEED system is a secure

DedupRuntime for transparently handling the underlying

deduplication operations, and an encrypted ResultStore for

managing previously computed results. Remarkably, they are

both implemented in a function-agnostic way, so as to mini-

mize the developer effort (see Section IV-C). We now present

the implementation details of the two major components in

our SPEED prototype.

• Secure deduplication runtime. It implements the main

deduplication functionalities, e.g., intercepting marked func-

tion calls, querying ResultStore, and retrieving the possible

computation results. As a trusted library linked against applica-

tion enclaves, most code of DedupRuntime is executed in the

enclave. It covers a set of function parsers for serialization, and

customized OCALLs wrapping request and networking logic.
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The main routine of DedupRuntime is to generate a hash

tag from the combination of the target function’s code and in-

put data for duplicate checking. To this end, a direct approach

is to connect the code and data together, and then compute the

tag via a hash function. But in practice, this might become less

effective when considering the difference caused by developer

or compiler, e.g., the same code may be compiled into dif-

ferent executable files in different compilation environment.

Therefore, to enhance the adaptability, our DedupRuntime
takes the following two inputs. The first one is the description
of a marked function, which includes library family, version

number, function signature, and other relevant information,

e.g., ("zlib", "1.2.11", int deflate(· · ·)). With

these, DedupRuntime can verify that the application indeed

owns the actual code of the function by scanning the under-

lying trust library, and derive a universally unique value for

function identification. The second input of this routine is the

input data of the marked function, e.g., a file for compression.

Then a hash tag t is computed via Hash(·) with the two inputs.

After that, the control is passed to an OCALL, which prepares

and sends a GET_REQUEST with the tag t to ResultStore
for duplicate checking.

In our SPEED prototype, we implement synchronous com-

munication. So the same OCALL needs to wait until receiv-

ing corresponding GET_RESPONSE replied by ResultStore.

Once the OCALL returns and the control switches back to

the enclave, if the response is positive, the associated data

will be parsed, verified and decrypted. Otherwise, the input

function is parsed and executed2; the results are authenticated,

encrypted, and sent to the ResultStore as an asynchronous

PUT_REQUEST via another OCALL in a similar way.

We note that the parsers, OCALLs and related data structures

(e.g., XXX_REQUEST and XXX_RESPONSE) are implemented

in a function-agnostic way with uniform serialization interface,

so they are capable of handling different functions intended

for deduplication. To support new function, for example from

another trusted library, the only step is to associate it with

a proper parser from existing ones or create a new one with

customized serialization for the function’s input and output.

• Encrypted result store. The implementation of Result-
Store is relatively straightforward. The main data structure

used here is an enclave-protected dictionary storing previous

computation results keyed by the tag t. To maximize the utility

of limited enclave memory, the dictionary entry is designed to

be small: it maintains some metadata (e.g., challenge message

r and authentication MAC), and a pointer to the real result

ciphertexts that are kept outside the enclave.

Unlike DedupRuntime, the main body of encrypted Re-
sultStore runs outside the enclave. Upon receiving a request,

ResultStore first applies preliminary parsing, and then dele-

gates the request to one of two customized ECALLs dependent

on whether it is a GET_REQUEST or PUT_REQUEST. The

duty of the ECALL is to marshal data at enclave boundary and

2Note that the required library itself (e.g., zlib) should be available as a
trusted library, i.e., properly ported, at the applications.

access the dictionary inside the trusted enclave. After it returns,

ResultStore prepares a corresponding GET_RESPONSE or

PUT_RESPONSE, which is sent back to the requesting

DedupRuntime.

Remark. Similar to the prior work [16], we consider de-

ploying ResultStore at the same machine of the outsourced

applications. We can also deploy a master ResultStore on a

dedicated server, which periodically synchronizes the popular

(i.e., frequently appeared) results from different machines.

The application may not be able to access the latest com-

puted results from others on different machines, and needs to

compute and encrypt the result with a self-selected random

key. Nevertheless, we emphasize that this will not cause

redundancy at the master ResultStore. Because the tags

of underlying computations are deterministic and only one

version of result ciphertext (associated with corresponding [k]
and r) needs to be stored. And later, such result ciphertext can

still be decrypted correctly by eligible applications that indeed

perform the same computations.

C. API and Use Cases

To ease the use of our proposed deduplication system

SPEED, we expose a concise and expressive API to the de-

veloper of SGX-enabled applications. The API is centered on

a Deduplicable object, which wraps the interaction with

underlying trusted DedupRuntime, conversion between data

formats, and all other intermediate operations. Our current pro-

totype uses extensive C++ template features in the design and

implementation of Deduplicable, allowing it to accept, in

principle, any functions3. To make a function deduplicable,

the developer only needs to create a Deduplicable version

by providing the aforementioned simple description, and then

uses the new version as normal. This usually requires a change

of only 2 lines of code per function call. Four concrete

examples are shown in Fig. 4.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

All experiments are run on two SGX-enabled machines with

Intel Xeon E3-1505 v5 (4 cores @2.80GHz, 8MB cache) with

16GB of RAM, where the OS is Ubuntu 16.04 LTS and the

SGX SDK4 is v1.8. Particularly, we use gcc-5.4.0 to compile

the SGX applications, and the enclave memory is set to the

maximum 128MB (90MB usable). Regarding the required

collision-resistant hash function and authenticated encryption

scheme, we use SHA-256 and AES-GCM-128, respectively, both

are provided by the crypto library shipped with SGX SDK.

For demonstration purpose, we select four popular basic

applications existed in many other applications, and port them

to SGX enclaves. The first one is the SIFT [26] feature

extraction, which is a famous algorithm in computer vision

applications, such as object recognition, image stitching, and

3While the current API is in C++, SPEED can support C language as well
via function pointers. We leave this feature to future work.

4Intel SGX SDK: https://software.intel.com/en-us/sgx-sdk/download
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Fig. 4. Code snippets of our four use cases: 1) image feature extraction via
libsiftpp; 2) data compression via zlib; 3) text pattern matching via
libpcre; 4) BoW computation via mapreduce. The function signature is
passed as template parameters. Note: the wrapper functions in Case 1, 2, and
3 are used for normalizing/simplifying the underlying function calls, which
can be customized by developers and are not restricted by SPEED.

3D scene modeling. The second one is the data compression,

which is often used for bandwidth optimization [39]. The third

one is the pattern matching, which appears in virus scanners

(e.g., ClamAV [40]) and many other searching scenarios. The

last one is the BoW computation on top of MapReduce frame-

work, which is widely used in natural language processing and

information retrieval [41].

Particularly, the exact functions we are going to deduplicate

are sift(·) from the library libsiftpp5, deflate(·) from

5A lightweight C++ implementation of SIFT: http://vision.ucla.edu/
∼vedaldi/code/siftpp.html

the library zlib6, pcre exec(·) from the library libpcre7,

and bow mapper(·) customized from the Mapper(·) function

of the library mapreduce8, respectively. Regarding the test

data of Case 1 and 2, we randomly select different sized

images from the Internet and text files from the Boost Library9.

For Case 3, we select over 4 million valid network packets

from the m57-Patents Scenario dataset10 and 4SICS-2015

dataset11 as input, and use over 3,700 patterns from Snort

rules12 in the matching task. For Case 4, we randomly select

300,000 web pages from the CommonCrawl dataset13. All

experimental results represent the mean of 10 trials.

B. Evaluation

• Developer effort. To make a function deduplicable with

SPEED, a developer needs to convert the original function call

into the Deduplicable version. Fig. 4 has shown the actual

modifications of four deduplicable functions in our exemplary

applications. Recall that we mainly target the functions that

will be executed in trusted environments, i.e., the original

function should come from an SGX-enabled trusted library,

provided by a third party or the developer herself. Never-

theless, we emphasize that this kind of development effort

is inevitable if the function will be run inside the enclaves.

Therefore, to deduplicate a wide range of computations in

trusted enclaves, it only requires very little modifications, as

few as 2 lines of code per function call.

• Application performance. To demonstrate the effectiveness

of SPEED, we compare the running time of our ported four

exemplary applications in three cases: without using SPEED

(the baseline); initial computation with using SPEED (i.e.,

deduplication is not executed); and subsequent computation

with using SPEED (i.e., deduplication is executed).

Fig. 5 shows the relative running time comparison under

different input size/volume, e.g., about 76−94× speedups for

the SIFT feature extraction and 316−412× speedups for the

pattern matching (with over 3,700 rules), but only 3.8−4×
speedups for the data compression and 3.7−4× speedups

for the BoW computation. It can be shown that the fea-

ture extraction and pattern matching benefit more from the

deduplication procedure, and the involved overhead for the

initial computation varies for different applications, e.g., up

to 34% delay for the BoW computation but less than 2%

delay for the feature extraction. This is because the two

tasks in Case 1 and 3 are relatively slow compared with

the extra cost for results encryption, but the speed of the

remaining two tasks are relatively fast that is on the same

level as the introduced cryptographic operations (as shown in

6Data compression library: https://zlib.net
7PCRE (Perl compatible regular expressions) library: http://www.pcre.org
8A C++ MapReduce library: https://github.com/nmandal/MapReduce
9Boost performance comparison: http://www.boost.org/doc/libs/1 41 0/

libs/regex/doc/gcc-performance.html
10m57-Patents Scenario: a public trace file released by an IDS system Bro,

http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
114SICS 2015 dataset: https://www.netresec.com/?page=PCAP4SICS
12Snort rules: https://www.snort.org/downloads\#rules
13WET files of October 2018 crawl archive: http://commoncrawl.org/
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(a) Feature extraction via

libsiftpp
(b) Data compression via

zlib

(c) Pattern matching via

libpcre
(d) BoW computation via

mapreduce

Fig. 5. The relative running time of four applications under different input size. The y-axis is the running time relative to the original application, where the
red dashed line at 100% indicates its running time without applying SPEED. Note: “Init. Comp.” (initial computation) represents the computation time cost
(including the time for secure storing result) without deduplication, but “Subsq. Comp.” (subsequent computation) is the time that deduplication is executed.

TABLE I
EXEMPLARY EVALUATION OF CRYPTOGRAPHIC OPERATIONS IN

DEDUPRUNTIME UNDER FOUR DIFFERENT SIZED INPUT.

Input Tag Gen. Key Gen. Key Rec. Result Result

(KB) (ms) (ms) (ms) Enc. (ms) Dec. (ms)

1 0.028 0.062 0.048 0.015 0.021

10 0.186 0.159 0.145 0.031 0.022

100 1.198 1.182 1.169 0.188 0.049

1024 6.008 2.779 2.775 1.731 0.257

Table I). Thus, we conclude that SPEED is more suitable for

deduplicating a time-consuming function (preferably with a

small-sized result) in practice, which could be a single but

complex computational algorithm or a sequence of processing

tasks. And we emphasize that SPEED is with maximum

generality and extensibility, which allows the developers to

deduplicate their rich computations in SGX context.

• Cryptographic operations. To better understand the latency

introduced to the application when applying our SGX-enabled

computation deduplication system SPEED, we provide an

exemplary evaluation of the performance of the major crypto-

graphic operations in the secure DedupRuntime. As shown in

Table I, the processing times of these operations are in linear to

the size of input data, and the potential overhead is relatively

small because the selected schemes are efficient. For example,

it takes about 1.198 ms to generate a tag from a function

with 100KB input data, and another 1.169 ms to recover the

encryption key (shortened as “Key Rec.”) if the result can be

found. Meanwhile, the result encryption and decryption (the

last two columns) are even faster with the same sized input,

literally an order of magnitude. In addition, we note that once

the result is computed by the application in the case of initial

computation, the remaining “PUT” operations (including key

generation and protection (shortened as “Key Gen.”), result

encryption, and update at ResultStore) can be processed in a

separated thread for better efficiency.

• Throughput evaluation. To evaluate the throughput of our

encrypted ResultStore, we use four different sized data (from

Fig. 6. Throughput evaluation and comparison of two major operations of
ResultStore. Note that the both operations in SPEED are with SGX.

1KB to 1MB) to measure the time cost of processing the two

types of request, i.e., GET_REQUEST and PUT_REQUEST.

Fig. 6 shows the time cost of processing 100 times of each

operation at ResultStore, where the incoming data are all

different. It can be shown that both operations with SGX (i.e.,

the upper two lines) are very fast, and quite close. Meanwhile,

Fig. 6 also shows the performance of the same operations

without using SGX technique, i.e., running outside enclaves.

From the results, we observe that the speed of each operation

with SGX is much slower when facing a small sized result,

e.g., 1KB. Note that the additional cost in SGX comes from the

underlying control switches in OCALL and ECALL as mentioned

in Section IV-B, and the gap is getting smaller with the growth

of result size. To mitigate such overhead, we can further

adopt off-the-shelf system-level optimization techniques, e.g.,

asynchronous system call mechanism [9] or exit-less remote

procedure call mechanism [10].

VI. RELATED WORK

• Redundancy elimination in network traffic and compu-
tation. In the literature, the concept of redundancy elimination

has been widely adopted in the areas of network traffic

alleviation and computation speedup. For example, Anand

et al. [42] designed a coordinated packet-level redundancy

elimination architecture for the network traffic. Hua et al. [43]

proposed to eliminate duplicate data within the network by
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checking the data fingerprints in the SDN controller. Also, a

similar idea has appeared in near-duplicate detection systems

for high-quality content-centric applications [44], [45].

Apart from these, the techniques for computation dedupli-

cation have been explored for decades, where the core idea

is to cache and reuse computation results. The early concept,

which uses a global cache separated from a subject application

to record results of potentially repeated computations, was

proposed by Michie [15]. Later, several studies (e.g., [17]–

[21], [46], [47]) extended this idea into different application

scenarios with various caching strategies. Recently, Tang and

Yang brought this idea to a more generic scenario and pro-

posed UNIC [16], which enables applications to deduplicate

their rich computations. However, UNIC mainly operates in

plaintext domain except using a system-wide key to ensure the

correctness of result, and does not consider the confidentiality

of the cached results, which are stored unencrypted.

Different from prior designs, our work targets the SGX-

enabled applications, and provides a secure and generic com-

putation deduplication system, where the confidentiality and

integrity of involved code, inputs, and stored results are well

protected.

• Deduplication over encrypted data. Our work is also

closely related to the studies on cross-user data deduplication

over encrypted data (just to list a few) [25], [33]–[35], [48].

In [25], Bellare et al. introduced a cryptographic primitive

message-locked encryption (MLE), and provided a formal

definition to capture the best possible security for the purpose

of secure deduplication. Despite very promising, MLE and

its variants are inherently vulnerable to offline brute-force

attacks over predictable data [25]. To resist this, the follow-up

studies (e.g., [33], [48]) resort to an additional independent

key server to obliviously provide message-derived encryption

keys. Besides these, Liu et al. [49] proposed the first single-

server scheme to defend such attacks, where a number of

online users with the matched short hash would play the role

of the additional server via the password authenticated key

exchange (PAKE) protocol.

Different from these designs for data storage saving, our

work aims to provide a secure computation deduplication

system for accelerating the computations in the context of

trusted enclaves.

• Secure systems based on Intel SGX. With the widespread

deployment of Intel SGX-enabled CPU (since Skylake mi-

croarchitecture), there is an emerging trend towards secur-

ing different types of applications via hardware enclaves on

untrusted platforms. Just to name a few, Schuster et al.
implemented VC3 [6] that secures MapReduce applications

in Hadoop framework. Kim et al. showed possible security

enhancements in network applications [50], such as SGX-

enabled software-defined inter-domain routing, P2P anonymity

networks (Tor), and middleboxes. Hunt et al. introduced

Ryoan [30] that allows users to run untrusted applications

in a distributed sandbox while protecting their secret data.

Recently, Zheng et al. designed Opaque [7] that is a secure

outsourced data analytics platform on Spark SQL without

suffering from access pattern leakage.

Given such popularity, how to reduce the performance

overhead of SGX has become a demanding topic. One line of

studies manages to eliminate the expensive context switches

in enclave applications [51]. The idea is typically to perform

OCALLs and ECALLs with multiple threads via some shared

buffer, in an asynchronous way [52]. Another attempt is

to design more efficient memory management scheme, for

example by maintaining user-level page table in enclave for

exit-less paging [10], or by customizing compact and cache-

friendly data structures for fine-grained state management [53].

Since the current EPC has a limited size, yet another approach

tries to just enlarge the usable EPC (without paging) in an

efficient way. For instance, to facilitate growing EPC to the

size of physical memory, a recent work improves the data

structure for integrity verification [54].

Different from all of them, we look at the performance issue

of SGX application from a new angle. That is, the potential

redundancy in the computation itself. By deduplicating the

repeated and often time-consuming computation, our approach

has demonstrated notable performance gain in a wide range of

applications protected by SGX. We believe it to be a valuable

complement to the literature.

VII. CONCLUSION

In this paper, we propose SPEED, a generic system that

enables secure computation deduplication over SGX-enabled

applications. It enables these applications to identify redundant

computations and reuse computation results, while protecting

the confidentiality and integrity of the involved code, inputs,

and results. To maximize the result utilization, our extended

cross-application deduplication scheme empowers other appli-

cations to securely utilize the shared results, without sharing

a system-wide key. To ease the use of SPEED, our fully

functional prototype provides a concise and expressive API

for developers to deduplicate rich computations with minimal

effort, as few as 2 lines of code per function call. Extensive

evaluations of four popular applications show that SPEED is

more suitable for those time-consuming computations. The

source code14 is available on GitHub for public use.

As a future direction, we will explore an automatic ex-

tension to enable the application to adjust its deduplication

strategy via dynamic analyzing the underlying computations

during its runtime.
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