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Abstract—This paper presents a data analytics system which
determines optimal analytics algorithms by selectively testing a
wide range of different algorithms and optimizing parameters
using Transformer-Estimator Graphs. Our system is applicable to
situations in which multiple clients need to perform calculations
on the same data sets. Our system allows clients to cooperate in
performing analytics calculations by sharing results and avoiding
redundant calculations. Computations may be distributed across
multiple nodes, including both client and server nodes. We
provide multiple options for dealing with changes to data sets
depending upon the data consistency requirements of applica-
tions. Another key contribution of our work is the Transformer-
Estimator Graph, a system for specifying a wide variety of
options to use for machine learning modeling and prediction.
We show how Transformer-Estimator Graphs can be used for
analyzing time series data. A key feature that we provide for
making our system easy to use is solution templates which are
customized to problems in specific domains.

Index Terms—artificial intelligence, data analytics, machine
learning

I. INTRODUCTION

Many fields have started making extensive use of enhanced

data analytics and machine learning techniques that have be-

come prevalent in recent years. Science, health care, business,

finance, and many other fields have benefited enormously from

increasing usage of powerful data analytics systems which

use machine learning and artificial intelligence. In order for

applications to take advantage of advanced data analytics

systems, the applications must produce a sufficient amount

of quality data data for the analytics to yield useful results.

Several frameworks have been developed for building data

analytics and machine learning applications including scikit-

learn [1], TensorFlow [2], PyTorch [3], Caffe [4], Keras [5],

and MXNet [6]. Distributed processing frameworks such as

Apache Spark [7] and Hadoop [8] can also be used to

scale up data analytics calculations. These machine learning

frameworks are freely available as open source software and

can readily be used by software developers and data scientists

using programming languages such as Python.

In addition to these machine learning frameworks, there

are Web services offered by IBM [9], Microsoft [10], Ama-

zon [11], Google [12], and others which provide machine

learning and artificial intelligence capabilities such as natural

language understanding, speech recognition, and visual analy-

sis. These AI Web services are accessed via http. While some

of them are offered for free, getting premium service typically

requires paying money.

While these open source machine learning frameworks

and Web services make it feasible to build advanced AI

applications, there still is often a considerable amount of work

that needs to be done to be done to build substantial machine

learning and data analytics applications. The data needs to be

managed in an appropriate way. Getting a sufficient amount

of data can be a problem. Furthermore, the data may need

to be preprocessed in order to get meaningful results. Data

which constitute erroneous and/or outlying values may need

to be identified and discarded. Missing data may need to be

imputed by an appropriate method. The data may be constantly

changing. When this is the case, appropriate methods are

needed to determine how frequently and when to perform

updated analytics calculations. Data privacy issues can also

be an important factor.

In this paper, we present an end-to-end data analytics

system which provides a broad range of machine learning

algorithms. Our system can test wide variety of different

machine learning algorithms to identify the best ones. It can

also handle data which is distributed across multiple nodes

and may be changing.

Another key aspect of our system is the Transformer-
Estimator Graph which provides users with a methodology

for specifying multiple possibilities for end-to-end machine

learning computations using graphs. Our system can pick

the best performing path (s) in the graph, while optimizing

parameters.

Transformer-Estimator Graphs are inspired by common

methodologies data scientists have started using while solving

AI modeling problems. Given a data set and type of modeling

activity (such as classification, regression, clustering, etc) to

be performed, data scientists may follow a series of steps such

as feature scaling, feature transformation, feature selection,

model learning, etc to find the best approach for the data sets.

The machine learning community refers to such a series of

steps as a “Pipeline”. Note that for each step in a Pipeline,

there are multiple options (i.e., methods/models) available for

trial. For example, the feature scaling step can be done using

a standard scaler, 0-1 normalization, an outlier-aware robust

scaler, etc. Similarly, there are multiple machine learning algo-

rithms available for building supervised classification models.

It is often not possible to know in advance what options will
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work well for a given data set. Thus, an efficient tool like ours

that allows data scientists to easily explore multiple options is

needed.

This paper makes the following contributions:

• We present a distributed system for analyzing data using

machine learning and AI techniques which allows multi-

ple clients to cooperate across different nodes. Computa-

tions may take place across both client and cloud server

nodes. We provide a novel method for the nodes in the

system to cooperate in performing machine learning and

AI computations so that they are aware of computations

performed by other nodes, and redundant computations

can be avoided. Our system also provides consistent data

storage and allows updates to data while maintaining

consistency across different nodes. We provide delta

encoding to minimize data transfers.

• We present the Transformer-Estimator graph, a new

framework for organizing machine learning and AI

computations into multiple stages. Transformer-Estimator

Graphs allow different computational options to be spec-

ified at different stages in the pipeline. They allow users

to determine an optimal set of steps from a wide range

of possibilities. Transformer-Estimator Graphs provide

a powerful new tool to optimize an end-to-end data

analytics task.

• We show how graphs can be configured for analyzing

time series data based on real data analytics problems

from heavy industry. In order to make our system usable

by non-experts, we have developed solution templates

which are targeted to specific problem domains and are

considerably easier to use than general-purpose machine

learning frameworks such as scikit-learn or TensorFlow.

We describe some of the solution templates which are

useful for data analytics problems in heavy industry.

• We present an overview of the research and technical

challenges for providing usable systems for data analytics

using machine learning. We also discuss some of the real

challenges we have faced in analyzing data from real

customers.

The remainder of this paper is structured as follows. Sec-

tion II discusses research and technical challenges in develop-

ing machine learning frameworks which are readily usable by

nonexperts as well as some of the real difficulties encountered

when analyzing real data. Section III describes the overall

architecture of our system. Section IV describes Transformer-

Estimator Graphs. Section V presents related work. Finally,

Section VI concludes the paper.

II. RESEARCH AND TECHNICAL CHALLENGES

We are concerned with providing usable data analytics

systems that people who are not experts in data science

and software engineering can use. There are several existing

machine learning frameworks which are widely used, as men-

tioned earlier. A key problem is that while these frameworks

are certainly useful to data scientists and software engineers

with enough knowledge of the field they are analyzing data

for, there are many others with interest in analyzing data

who simply do not have the required knowledge and skills

to properly use these machine learning frameworks. There is

thus a need for machine learning frameworks which are easier

to use.

It should be noted that it is extremely difficult to provide a

machine learning framework which is both readily consumable

by non-experts and provides the range of features of a general

framework such as scikit-learn. Thus, in order to make a

framework or tool easier to use, it may be necessary to restrict

it to solving a narrower range of problems and use cases. We

have taken this approach in designing AI solution templates
which are customized to solving data analytics problems faced

by customers in heavy industry (Section IV-E).

The range of machine learning algorithms which can be

applied can be significant. This may necessitate trying out

multiple different algorithms. Furthermore, machine learning

algorithms typically have parameter settings which can be

varied. Methods are needed both to optimize parameters and

systematically test several algorithms on the data sets. We

have developed the Transformer-Estimator Graph, a powerful

and versatile tool which allows users to easily test out a

wide range of data analytics algorithms and parameter settings

(Section IV).

Computational overhead can be a major issue. Analysis of

large data sets can have high overhead. Deep learning can

require significant computing resources which is a key reason

that GPUs are often used. Even if a data set is not inordinately

large and no one particular computationally intensive analysis

approach is being used, computational overhead can arise from

running several different algorithms, each with many different

parameter settings. It is often possible to run multiple analytics

tasks in parallel to reduce completion times.

Another key issue is that the data analytics platform itself

may be distributed across several nodes. This is discussed

further in Section III. Crucial data may reside on nodes

which do not have much computational power. It may be

necessary to perform analytics computations on a node without

a high degree of processing power as communication with a

significantly more powerful computer would incur latency and

may not be possible if connectivity is poor. How to optimize

computational resources in such a distributed system is a major

challenge. Maintaining data consistency across different nodes

can also be a problem. In Section III, we discuss these issues

further and present an approach for allowing several distributed

clients to cooperate and avoid duplicating the same analytics

calculations. Our system also provides data consistency.

There are several practical considerations in analyzing real

data sets that need to be taken into consideration. Simply

applying the latest machine learning or AI algorithms to the

data at hand will often not give very meaningful results.

Apart from choosing a model based on its accuracy (on a

test set or cross-validation error), one must consider whether

the model is interpretable: (1) can it be described using simple

rules? (2) can it provide sensitivity analysis—i.e., how much

contribution a factor is making to the predicted value, or how
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does it compare to another factor in terms of importance? For

example, some ensemble methods and neural networks fall

short on this count. A key point is that simply making a data

prediction is not sufficient. Explanations behind the prediction

and sensitivity analysis may be just as important.

Another consideration is whether the model includes ac-
tionable factors. When it does, does the model allow root-
cause analysis (what factors contributed to the outcome) ,

intervention (what factors, and by how much, should I change

to get a desired outcome) and what-if analysis (what would

have happened if this factor were not effective).

The nature and the availability of the data impose some

considerations. There may only be limited training data which

makes it difficult to draw definitive conclusions. The data

may be incomplete, in which case data imputation may be

needed. The data may be inaccurate. In some cases, the data

may not be representative for the modeling problem at hand.

For example, human data samples might be biased towards

certain subgroups and may not be representative of the general

population as a whole. Sometimes there are class imbalances
— e.g., rare failure cases, but many successful cases. There

is the issue of censored data. Obtaining labeled data for

supervised learning may be costly or error prone. Apart from

these, data cleansing issues can be significant.

In some domains, a lot of domain knowledge may be

available without doing sophisticated data analysis and ma-

chine learning. This may help offset the issue of lack of

data and reduce training times. How to integrate this domain

knowledge with data analytics and machine learning is a key

issue. Modeling should effectively utilize available domain
knowledge. Yet another practical issue is convincing the human

domain experts. If the model corroborates their thinking, they

may under-appreciate the value of the model. On the other

hand, if the model results are far or novel from the way they

think, they may dismiss the model as being too esoteric. It

may require the modeler to work with the experts to convince

them.

Yet another consideration is regarding managing model
life-cycles in which data analytics and machine learning are

performed over a long period of time. Availability of more

data may require the model to be retrained or even changed.

The frequency of retraining (or changing) models needs to

be properly selected. Too frequent retraining can result in

high overhead, while too infrequent retraining can result in

obsolete models which are less accurate. There may be concept

drifts. Equipment or environments may change. Some new

metrics may become available, and some previous metrics

may become unavailable. This means that the data which

are available can change over time, as can the both the

computational requirements and computational resources for

analyzing data.

III. SYSTEM ARCHITECTURE

Figure 1 depicts the overall architecture of our system which

allows analytics calculations to take place from several client

nodes. This is an important computational paradigm when

Cloud Analytics
Servers

AI Web Services 1

Data Source 1

Data Source 2

Client 1

Client 2

Client 3 Client 4

AI Web Serivces 2

AI Web Serivces 3

Data Analytics Results
Repository (DARR)

Fig. 1. Our distributed data analytics system.

multiple clients who are geographically distributed need to

access a common data set. The data may be replicated across

multiple geographic areas for high availability and disaster

recovery in case one site fails.

The data analytics calculations can be performed on one

or more cloud virtual machines remote from the client. These

virtual machines reside in the cloud analytics servers depicted

in Figure 1. In this case, the cloud virtual machines can be

scaled as needed to handle the computations. Users need to

generate multiple predictive models to determine which ones

work best. Different predictive models can be run in parallel.

The same predictive models may also need to be run with mul-

tiple parameter sets to optimize the parameter settings. These

parameter optimizations can be done via parallel invocations.

Our system is distributed, so the client nodes in Figure 1 can

perform data analytics calculations remotely from the cloud

analytics servers. That can reduce the latency since the client

will not have to communicate with remote cloud nodes. It also

allows the client to develop individualized analytics algorithms

which do not have to be implemented on the cloud nodes. It

also allows the client to perform analytics calculations when

it does not have connectivity with the cloud.

Figure 1 depicts multiple AI Web services. These corre-

spond to AI services offered over the Web such as IBM Wat-

son, Microsoft Azure Cognitive Services, Amazon Machine

Learning on AWS, and Google Cloud AI products. These Web

services complement the machine learning capabilities at the

clients and cloud analytics servers. Clients benefit by having

the full range of analytics capabilities from multiple parties

depicted in the figure.

Our data prediction system supports distributed compu-

tations across multiple nodes. In the computational model,

there is a main database. That database might be in a cen-

tral location. Alternatively, the database might be distributed

across multiple nodes. Figure 1 depicts multiple data sources

providing input to the analytics calculations, and data can

reside on any of the nodes. A key aspect is that the data may

be changing. As the data changes, analytics calculations may

need to be executed over the updated data. Therefore, our

data analytics system is integrated with the data management

system. The data are monitored for changes. When the amount
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of change in the data exceeds a threshold, then analytics

calculations are recalculated on the data. There are a number

of ways to determine if data has changed enough to warrant

updated analytics calculations:

• The number of updates since the last time analytics

calculations were run exceeds a threshold.

• The total size of updates since the last time analytics

calculations were run exceeds a threshold.

• Application-specific methods can be applied to determine

how much the data have changed. This is the best way

to determine when to perform updated analytics calcula-

tions. However, it is harder to implement this option than

the previous ones.

The computational overhead for data analytics calculations

is also an important factor that should be considered in

making decisions to perform analytics calculations. If the

computational overhead is low, it becomes more feasible to

perform analytics calculations more frequently, and vice versa.
Integration of the data store with the data analytics software

is a key area of future research. Existing machine learning

frameworks such as scikit-learn, TensorFlow, and PyTorch

focus on providing machine learning algorithms but not on

providing an efficient data tier. Future research in general-

purpose machine learning frameworks should look at better

ways of integrating data management. This would allow an-

alytics calculations to take place at exactly the right times

in response to data updates. It would also allow data to

be processed most efficiently. In a distributed computing

environment, obtaining data remotely can entail high overhead.

A better solution is to have data close to the computational

nodes. This can be accomplished using appropriate choices for

data stores as well as using techniques such as caching.
There are a wide variety of machine learning frameworks

and Web services that are available. Open source frameworks

such as scikit-learn, TensorFlow, and PyTorch provide power-

ful machine learning capabilities which are constantly being

updated and improved as the technical community advances.

Several companies offer machine learning via Web services.

It is important for data scientists to be aware of the latest

tools and techniques so that they can properly take advantage

of them. The plethora of existing analytics tools means that

data scientists can often use existing software for their core

algorithms and not have to implement substantially new ones.

However, building analytics platforms for real systems is still

often a substantial effort due to the fact that the analytics

platforms need to be customized to the applications at hand.

Getting the data in the right format so that it can be properly

analyzed often involves substantial work. The data has to

be obtained from the right data sources and preprocessed to

remove erroneous data and outliers. There can be missing data,

and data imputation techniques for dealing with the missing

data are crucially important. The appropriate transformations

to make the data most amenable for analysis can be substantial.
A key feature of our system is its mechanisms for keeping

data at the various nodes consistently updated. The update

rate can be high. It may not be feasible to send updates

to clients every time they are available due to the overhead

this entails. Data are comprised of objects. An object has a

version number associated with it. Each time an object is

updated, its version number increases. Each data object has an

associated home data store which contains the current version

of an object and its version number. The home data store

can send complete versions of an object o1 to other nodes.

Alternatively, it uses delta encoding to send deltas between

a previous version of an object and the latest version. Delta

encoding can significantly reduce the overhead for updating

objects. The key idea is for the home data source to send the

delta between the latest version of o1 and a previous version of

o1. d(o1, 2, 3) represents a delta between version 2 and version

3 of object o1. This delta may be considerably smaller than

version 3 of o1. If this is the case, then sending d(o1, 2, 3) to a

node which already has version 2 of o1 will save considerable

bandwidth over sending the entire copy of o1.

Suppose the latest version of o1 is k. The home data store

maintains recent versions of o1 as well as deltas between the

latest version of o1 and these recent versions, d(o1, k− 1, k),
d(o1, k − 2, k), d(o1, k − 3, k). . . When a remote node n1
requests the latest version of o1 from o1's home data store

and n1 has an earlier version e of o1, n1 passes the version

number, e, to the home data store. If the home data store has

a delta between version k and version e of o1 and that delta

is considerably smaller than version k of o1, the home data

store passes the delta to n1. Otherwise, the home data store

passes version k (i.e. the latest version) of o1 to n1.

Clients can obtain updated data from home data stores using

either a pull or a push paradigm. In a pull paradigm, the

client is responsible for querying a home data store when it

wants to obtain updated data. In a push paradigm, clients can

subscribe to updates for data objects from home data stores

for a specified period of times. Such subscriptions have also

been referred to as leases in the literature [13]. After a lease

expires, the client must contact the home data store to renew

the lease to continue receiving update messages. A client is

also expected to cancel its leases early for data for which it

no longer needs to automatically receive information about

updates.

In the push paradigm, after o1 is updated, the home data

stores can send either the entire current value of o1 or a delta

between a previous version and the current one. However,

either of these approaches may be inefficient if the client does

not need the updated data immediately. Another approach is

for the home data store to send information about the update

to the client, such as the new version number and how much

the new version differs from the previous one. The client can

then decide if and when it needs to obtain the latest version

from the home data store.

Our system allows multiple clients to cooperate on perform-

ing data analytics calculations on common data sets. That way,

the clients can share the results with each other and not have

to repeat calculations. Clients can place their data analytics

results, along with an explanation of how the results were

achieved, in a data analytics results repository (DARR) in the
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Data Set Imputation 
Method

Analytics 
Algorithm

Parameters Results

D1 Average Random forest … …
D2 Median Decision trees … …
D3 None CNN … …
D4 MICE Linear 

regression
--- ---

Data Analytics Results Repository (DARR)

Client 1 Client 2

Client 4
Client 3

Fig. 2. Clients can share analytics results in the data analytics results
repository (DARR).

cloud. The DARR can be accessed and written to by multiple

clients, allowing them to both store and retrieve analytics

information (Figure 2).

In some cases, clients will be performing analytics using

well-defined methods. For example, the steps could include

cleaning the data and removing outliers using one or more

of a fixed set of techniques and performing data imputation

using one or more of a fixed set of techniques (e.g. mean,

median, mode, multiple imputation by chained equations,

matrix factorization, k nearest neighbors, etc.).

Machine learning algorithms can use a variety of techniques

for training models, such as linear regression, neural networks,

random forest, decision trees, k nearest neighbors, gradient

boosting, and others. Various methods can be used to deter-

mine how well a model fits the training data. For example, we

can perform k-fold cross validation on the training data and

use metrics such as mean absolute error, mean squared error,

median absolute log error, mean squared log error, root mean

squared error, root mean squared log error, etc.

Once a model has been trained, it has to be tested on data.

Various methods can be used to determine how well a model

predicts a test set, such as mean squared error, coefficient of

determination (R2), mean absolute error, root mean squared

error, etc.

Our system implements a pre-defined set of methods for

various steps in data analytics, including data cleansing, outlier

detection, data imputation, model training, and model testing.

Users can specify the options that they want for each step,

as well as the input parameters and output results to collect.

The system will then run the appropriate data analytics cal-

culations and optionally store the results in the data analytics

results repository (DARR). When these types of structured

calculations are run, the DARR can keep track of all analytics

calculations that have been run for a particular data set. The

total number of possible calculations for a data set is generally

too large to exhaustively determine. This is particularly true

given the large number of parameter settings.

Therefore, the DARR provides a wide variety of data

analytics results which can be used by multiple clients. Users

can determine from the DARR which calculations have been

run for a certain data set. Clients can then use previous

results stored in the DARR. They can also perform additional

calculations which do not overlap with those already stored in

the DARR. Using this approach, different clients can cooperate

to solve data analytics problems.

IV. TRANSFORMER-ESTIMATOR GRAPH

Typically during the exploratory stages of a machine learn-

ing problem, data scientists iterate through dozens of features

and model combinations. In Table I, we have highlighted a

typical thinking process a data scientist might have for a

regression task.

Steps Component
(Transformer or Estimator)

Select Features Select K-Best
Information Gain
Entropy

Feature Normalization Min-Max Normalization
Standard Scalar

Feature Transformation PCA
kernal-PCA
LDA

Model Training Random Forest
CNN
Linear Regression

Model Evaluation k-fold cross-validation
monte-carlo simulation

Model Score Root mean square error
Mean Average Percentage Error

TABLE I
DIFFERENT STEPS IN MACHINE LEARNING MODELING

Several open source frameworks for machine learning have

been developed which ensure that model training and testing

go through a similar process. Scikit and SparkML are two

popular libraries for machine learning model building. These

open source development frameworks have designed their

libraries based on a “Pipeline” construct. A pipeline construct

gives a declarative interface where it is easy to see the entire

data extraction, transformation, and model training workflow.

In particular, a (spark or scikit) Pipeline is constructed that

specifies a sequence of stages, and each stage is either a

Transformer or an Estimator. These stages are run in order,

and the input data (mostly tabular) is transformed as it passes

through each stage. The pipeline, transformer, and estimator

are three important constructs in machine learning modeling

and are defined subsequently in this paper.

In a co-operative data analytic framework, multiple data

scientists try different pipelines on the same dataset, and

it is highly possible that some pipeline stages are common

across different pipelines. Thus, it is important to define a new

construct that can effectively summarize the pipelines designed

by different data scientists. In this paper, we describe a new

programming model which can be facilitated to capture an

end-to-end machine learning pipeline for collaborative explo-

ration. Our programming model provides an API to define a

Transformer-Estimator Graph that can be implemented across

one or more of the nodes depicted in Figure 1. A Transformer-
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Estimator Graph has the capability to specify multiple options

at each stage.

Figure 3 provides a graphical representation of a

Transformer-Estimator Graph created for a regression task. In

this regression task, the user is setting multiple operations

in stages: i) feature scaling, ii) feature selection, and iii)

regression models. The feature scaling stage contains standard

methods: MinMaxScaler, RobustScaler, StandardScaler and an

option to exclude the stage (i.e., no operation). Next, feature

selection uses co-variance based principal component analysis

(PCA), SelectKBest or no operation. The final stage consists of

the regression model, where the user wants to try a number of

well-known classifiers such as Random Forest, MLP Regres-

sion, and Decision Trees. In summary, Transformer-Estimator

Graph provides a neat and clean way of managing dozens of

feature engineering steps and feature scaling operations criss-

crossed with pre-selected hand-tuned models.

A Transformer-Estimator Graph, denoted as G(V,E), is a

directed acyclic rooted graph (DAG) with a set V of vertices

and a set E of edges. Each vertex vi ∈ V in the graph

represents a meaningful AI/ML operation to be performed on

the in-coming data, and edge ei ∈ E in the graph represents

data/function flow between vertices. Each vertex vi in graph

G consists of its name and the operation it performs, and

is represented by a tuple vi = (namei, operationi). For

example, tuple (“pca′′, PCA()) represents a node, with name

“pca”, that performs principle component analysis. Each node

in Figure 3 represents the node name. The name given to

each node in the pipeline graph should be unique and is a

placeholder that enables users to supply external information

(e.g. parameters) that can be used to control/change the node

operation.

For example, if users want to try “PCA()” with a different

number of components (n components), they can specify the

value using “pca n components”. The naming convention

“pca n components” (node name followed by two under-

score “ ” sign followed by attribute name) is adopted from

sklearn.

The operation performed by a node is one of two types:

Transform( .transform) or Estimate( .fit). An Estimate oper-

ation is typically applied to a collection of data items to

produce a trained model. A Transform operation uses a trained

model on individual data items or a collection of items to

produce a new data item. For example, learning a direction

of a principal component is done using an estimate operation,

whereas projecting a data point to a new dimension is done

using a “transform” operation. Ideally, an estimate operation

is performed first. In our above example, tuple (“pca′′, PCA)
is type of Transform operation.

A. Pipeline

A Pipeline is a sequence of adjacent connected graph

nodes that starts from root node vroot and ends at leaf node

vk. Briefly, a pipeline chains together meaningful machine

learning operations to build a machine learning Pipeline. For

example, one of the Pipelines in Figure 3 is given as follow:

P1 = {Input→ robustscaler → Select−K → DecisionTree}
The total number of Pipelines for our working example

given in Figure 3 is 36. In summary, graphs provide a

convenient way for end users to specify multiple options to

be tried in each stage of the modelling process.

Listing 1 shows an example of constructing a graph for

a regression task using Python. There should be multi-

ple such methods to add the different operators. For ex-

ample, method ‘add feature selector’ takes a list of trans-

formers to enable the feature selection. In summary, these

methods allow users to configure stages in a graph, where

each stage provide a list of options to be tested. In

this example, we discussed three stages by calling dif-

ferent methods: feature scaling (‘add feature scaler’), fea-

ture selection (‘add feature selector’), and classification

(‘add regression model’).

def prepare_graph():
Task = TransformerEstimatorGraph()
Task.add_feature_scalers([MinMaxScaler(),

StandardScaler(),RobustScaler(),NoOp()])
Task.add_feature_selector([[Covariance(),

PCA()], SelectKBest(), NoOp()])
Task.add_regression_models([DecisionTree(),

MLPRegressor(), RandomForest()])
Task.create_graph()
return Task

Listing 1: A programming construct to generate a regression

graph

The feature scaling stage contains three popular methods:

MinMaxScaler(), RobustScaler(), StandardScaler() and one

NoOp() operation. The NoOp operation allows users to skip

the operation in that stage. The second stage is feature se-

lection using PCA(), a SelectKBest() method or a NoOp()

operation. The final stage is the regression stage, where users

try a number of well-known regression models. Users can add

any model compatible with sklearn's pipeline construct. The

design is flexible, and users are free to add as many stages

and as many options per stage as they prefer.

In the final line of Listing 1, the method “create graph”

generates a graph for visual inspection. The output would be

similar to Figure 3.

B. Model Validation and Selection

Given a dataset D and a Transformer-Estimator Graph G,

the objective of model validation and selection process is to

identify a pipeline from the Transformer-Estimator Graph that

performs reasonably well for a given dataset. Basically, each

pipeline in a Graph is evaluated for a given dataset D, and

a path with good model performance is selected. The model

selection process requires an agreement across users in terms

of the scoring mechanism. The scoring mechanisms are task

dependent and calculated using cross validation. For example,

Accuracy, Area under the Curve (AUC), and F1-score are
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Fig. 3. Example of a Transformer-Estimator Graph for a Regression Task.

commonly used performance measures for classification tasks.

Similarly, root mean square error (RMSE), mean square error

(MAE), and r2 are performance measures for regression tasks,

etc.

The model performance of a pipeline is calculated using

cross validation methodology. Some examples of cross valida-

tions include K-fold, Nested K-fold, and Monte-carlo. Figure 4

outlines the process of calculating the performance measure

using K-Fold cross validation. A K-fold cross validation strat-

egy is a widely used cross validation technique for independent

and identically distributed (iid) data. In K-fold cross validation,

input dataset D is randomly partitioned into K equally sized

folds without replacement. Next, the data from K − 1 folds

are used to train a given pipeline, and data from the remaining

(single) fold is used to obtain predictions using trained paths.

The process is repeated for all the other folds one by one,

and average performance is computed as a final performance

measure. In summary, we obtain K models and K performance

estimates. Then, we take their average as the final performance

estimate. We can apply K-fold cross validation to either the

hyperparameter tuning, performance reporting, or both. Some

alternate cross validation strategies are Train-Test Split, Time

Series Split, etc.

Fig. 4. Example of K-Fold Cross-validation based evaluation

Note that the cross-validation strategy needs each pipeline

to support two important operations, namely training and

prediction. For the working example given in Figure 3, the

total number of Pipelines for evaluation, using a K-Fold cross-

validation strategy, is now K times higher.
1) Training and Prediction of Pipeline: Figure 5 visually

explains training (pipeline.fit) and prediction (pipeline.predict)

operations performed on sample pipeline: Pi = {start →
robustscaler → Select − k → MLPRegressor}. The

training operation should precede the prediction operation.

As shown in Figure 5, the training operation takes input

dataset (X) and class label information (Y). Next, input data

(X,Y) is passed through the pipeline nodes in turn. In the

training operation, the internal nodes of the pipeline path

perform “fit & transform” operations, whereas the last node

performs “fit” operations. The “fit & transform” operation

on internal nodes refresh the data for subsequent modeling.

The end result of the training operation is a trained machine

learning model.

The predict operation takes only input dataset (X) and

passes dataset X through a trained model to generate the

prediction (class label, real value, etc). Input data X is also

passed through the pipeline nodes in turn. For this operation,

the internal nodes of the pipeline path perform “transform”

operations to generate the prediction.
2) API for Pipeline Graph Evaluation.: Listing 2 shows

an example of a method implementing pipeline graph eval-

uation written in Python. Methods ‘set cross validation’ and

‘set accuracy’ are used to adjust the parameters based on the

task at hand. In this example, we are interested in 10 fold

cross-validation and f1-score as an accuracy measure.

def pipeline_evaluation(Task,D):
Task.set_cross_validation(k=10)
Task.set_accuracy('f1-score')
Execute Task
return model, best_score, best_path

Listing 2: Pipeline Evaluation
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Fig. 5. Training and prediction operation on a sample pipeline

C. AI Functions for Transformer-Estimator graphs

Previously, we discussed traditional sklearn-based trans-

formers and estimator components that are mostly designed for

iid data. In this section, we introduce an advanced version that

can deal with complex data such as Time Series Data. We call

the advanced version of these components as an AI function.

To explain details of AI functions, we choose one of our main

widely used pipelines, the Time Series Prediction pipeline, to

show how it benefits from the Transformer-Estimator graphs.

This pipeline has major applications in the industrial domain

and is a good example of the utility of Transformer-Estimator

graphs.

An AI function involves a set of activities which are asso-

ciated with training and validating a time series model. From

the name, it is suggested that the transformer and estimators

are prime examples of such AI functions. Transformers are

AI functions that can handle the scaling and preprocessing

for a dataset satisfying individual model requirements. After

the transformation, the modelling is done by the Estimators,

and the top performing model is selected from this stage. For

each AI function, there is a set of parameters defined, and

the performance of a path in the graph is evaluated using

time series. These AI functions can be connected to form

large graphs with an API for Transformer-Estimator Graph

evaluation.

In the next section, we shall define the the components of

the graph in the context of Time Series Prediction.

We summarize various state of the art time series prediction

models from the literature. For time series prediction models,

we mainly observed three types of estimators: standard deep

neural networks, temporal deep neural networks, and the

traditional statistical models.

1) Statistical Models.: The statistical models include al-

gorithms like Zero model, which acts as the baseline model

for our prediction problem. This model basically outputs the

previous timestamp’s ground truth at the next timestamp’s

prediction. Another model in this category is ARIMA. We

did not use this model due to complexity in adding the time

series prediction pipeline.

2) Temporal Models.: Temporal deep neural networks in-

clude Long Short Term Memory (LSTM) networks and tradi-

tional Convolutional Neural Networks (CNN) and its variants

WaveNet and SeriesNet.

Long Short-Term Memory (LSTM). Long short-term

memory (LSTM) networks have gained popularity in recent

years due to their ability to model the sequence in the given

data. They provide a scalable and effective way to train as

they have recurrent units that are good at handling exploding

and vanishing gradients [14]. For our use case, we have built

two different architectures for the LSTM models based on

the complexity. Both these architectures are generic enough

to encompass a wide variety of time series prediction tasks

in industrial datasets and model them effectively. The two

architectures used here follow a similar structure - repetition of

a LSTM layer followed by a dropout layer. The first model is

a simple architecture which just has one LSTM layer followed

by a dropout layer, whereas the other model is more complex

as it has four LSTM layers, each followed by their own

dropout layers. Both these architectures have a fully connected

linear activation layer at the end.

Convolutional neural network (CNN). In recent years,

convolutional neural networks have proven to perform well

on tasks like image classification [15]. They are effective

at capturing internal patterns in the data, and hence they

can also be applied to time series data. They provide faster

performance when compared to LSTMs and also take temporal

characteristics into consideration.

We have implemented a convolutional neural network

(CNN) in the time series prediction pipeline. It consists of

multiple hidden layers and convolutional layers. It is essen-

tially a feed-forward neural network in which the convolution

of the sequence is calculated internally. The max pooling layer

helps in reducing the dimension of the input sequence. Similar

to LSTMs and standard DNNs, we have made use of simple

as well as deep architectures of the Convolutional Neural

Networks. Both of these architectures have layers such as a 1D

convolutional layer, a max pooling layer, a dense non-linear

layer with ReLU activation, and a densely connected linear

layer [16]. The deep CNN is a more complex implementation

of the simple CNN explained above. Along with the standard

CNN, we have also implemented other popular CNN based

models described below.

WaveNet. It is a deep learning network which was devel-

oped to process speech data. The architecture was built to learn

the probabilistic distribution from samples of audio data and

generate speech mimicking human speech with high accuracy

[17].

SeriesNet. SeriesNet is based on the WaveNet architecture

and provides state of the art performance when it comes

to time series prediction. It provides similar results to top

performing models even without having data pre-processing

and ensemble methods [18].

3) IID Models.: Finally, we have also incorporated non-

timeseries deep learning models in the pipeline like standard

neural networks. These models ignore the temporal char-
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acteristics of the data but sometimes provide good models

depending on the nature of the data. Each estimator needs

special data pre-processing and is discussed subsequently.

Deep Neural Network (DNN): The Deep Neural Net-

works sometimes provide good performance if the time series

data has transactional characteristics. They treat the data as

Independent and identically distributed (IID) variables by

not considering the sequence in them. The DNNs we are

leveraging here have two different architectures. Similar to the

case in LSTMs, we have simple and complex architectures

based on the number of hidden layers. The simple network

is 2 hidden layers and dropout layers, whereas, the complex

network is made of 4 hidden layers and dropout layers. One

of the advantage standard DNNs offer over LSTMs is their

much faster speed of execution compared to LSTMs.

4) Time Series Transformers: Transformers are defined as

the AI functions that modify the data before the modelling

step using the above mentioned estimators. They are used to

perform one of the two activities- improve the data quality

so the estimators are able to build better models or modify

the data so that estimators are able to ingest the data for

modelling. In this section, we provide descriptions of the

transformers used in the Time Series Prediction Pipeline. They

are either Data Scalers used for normalizing the data or Data

Preprocessors used for modelling time series data for estimator

consumption.

Fig. 6. Multivariate time series data

In time series data, many complications arise in machine

learning modelling due to the temporal nature of the data.

The underlying assumption that data is independently and

identically distributed is no longer valid, requiring careful

data manipulation in the pipeline. For typical multivariate time

series data as shown in Figure 6, a prediction task is to look

at a history of the time series data, usually for a fixed window

size called history window of length p, and try to predict the

value of the next few timestamps, called prediction window
of a particular variable which has not been observed yet. Since

the input to the model here is multivariate time series data (v
variables) for some history window (p), the input data becomes

2-dimensional with the shape (v ∗ p). Since estimators have

different methods for consuming data, we need to transform

this 2D data to comply to these methods. Hence, we make

use of Transformers to address the three challenges which

arise when building the Transformer-Estimator graphs for time

series prediction:

1) Normalization or Standardization of the data.

2) Addressing the data ingesting policies for different esti-

mators

3) Preserving the temporal nature of the data.

Data Scalers: Normalization and Standardization of the

time series data are important steps in the model building

process. Standardization of data typically involves converting

the mean of the time series to 0 and the standard deviation to

1. We leverage scikit-learn’s implementation of the ‘Standard-

Scaler’, ‘MinMaxScaler’ and ‘RobustScaler’ for performing

data scaling.

Data Preprocessing: We have defined custom time trans-

formers for our pipeline. They address the challenges 2 and

3 in the above list. Descriptions of the these transformers are

provided below.

Fig. 7. Time Series Cascaded Windows

Cascaded Windows: In this, the time series data is trans-

formed into a series of cascaded windows as shown in Figure

7. This is used for the Temporal DNN models like LSTMs

and CNNs. They contain the temporal history of the data and

preserve the order of the time series data.

Fig. 8. Flat Time Series Windowing

Flat Windowing: In this, the time series window from the

‘Cascaded Windows’ step are flattened. For example, if we

have built L − p cascaded windows of shape (p ∗ v), after

flattening it, we will have L− p windows of shape (1 ∗ pv) as

shown in Figure 8. This is done for the standard DNN which
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takes transactional data as input. It provides temporal history

to the estimator; however, the ordering is lost.

Fig. 9. Time Series as Transactional data

Time Series as transactional data (TS-as-IID): This is

also consumed by the standard DNN models but no informa-

tion about the recent history or temporal order is preserved.

Each time stamp is provided to the model as an independently

and identically distributed data point as shown in Figure 9.

Fig. 10. Time Series with no operation

Time Series with no operation (TS-as-is): In this, the

time series is passed to the models which don’t require data

transformations like Zero model and ARIMA Model as shown

in Figure 10.

D. Time Series Prediction Pipeline

The Time Series Prediction pipeline is built on the

Transformer-Estimator graphs with the AI functions men-

tioned above. Using the DAG based graph definition APIs,

the multiple AI functions can be connected to form a coherent

pipeline for performing time series prediction. This pipeline

fulfills a major requirement in the heavy industry domain.

Table II provides a high level overview of the various stages of

the pipeline along with the AI functions and other components

used inside it.

The graph for the Time Series Prediction graph is displayed

in Figure 11. The three major layers in the pipeline are:

1) The Data Scaling stage applies various standardization

and normalization transformations on the data, such as

Standard scaling and Min-max scaling as described in

Section IV-C4.

2) In the Data Preprocessing stage, we transform the

data based on the model requirements. The three model

Steps Component
(Transformer or Estimator)

Data Scaling Min-Max Scaling
Robust Scaling
No Scaling
Standard Scalar

Data Preorocessing Cascaded Windowing
Flat Windowing
TS-as-IID
TS-as-is

Model Training Temporal DNN
IID DNN
Statistical Models

Model Evaluation TimeSeriesSlidingSplit
Model Score Root mean square error

Mean Average Percentage Error

TABLE II
DIFFERENT STEPS IN TIME SERIES PREDICTION PIPELINE

categories defined - Temporal DNN, Standard DNN and

Statistical models have their separate data inputs. The

Transformers defined above address these conditions and

prepare the data accordingly.

3) In the Modelling stage, we finally train the models with

the appropriate data inputs from the data preprocessing

stage. The model with the top performance is provided

by the pipeline as the output.

The Transformer-Estimator graph enables us to build the

pipeline and connect these separate AI functions with ease.

The Data Scaling stage allows us to connect with each of the

other paths to help us find which data scaling approach yields

the best result. The output of the data scaling stage is sent to

the Data Preprocessing stage. In this stage, each AI function is

selectively connected to the estimators in the next stage. The

CascadedWindows is connected to the TemporalDNNs,

the FlatWindowing and TS − as − IID are connected to

StandardDNNs and finally the TS−as−is is connected to

Statistical models. This complex connect graph is automated

with the help of the Transformer-Estimator graphs and allows

us to build a tool for automatic discovery of the best modelling

path for a given time series data set.

When it comes to modelling of time series data, we need to

address the cross-validation strategies which can be applied. It

is more critical to address in time series applications due to the

fact that the test data should have not any information from

the training data for a model training. To address this, we

have used the T imeSeriesSlidingSplit as cross validation

strategy. In this cross-validation technique, we use the size of

a training and validation set with a buffer window between

them as shown in Figure 12. The windows slide across time

to include future data in the training and validation sets for k
iterations.

This enables us to trust the results of our Time Series

Prediction pipeline.

E. Solution Templates for Domain-Specific Data Analytics

In industrial applications, there is a need for solving unique

problems with AI and Machine Learning in a repeatable

manner. Although, when actual efforts are made to enable
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Fig. 11. The time series prediction pipeline graph consisting of three stages: ’Data Scaling’, ’Data Preprocessing’ and ’Modelling’. The output of the model
is the best performing set of Transformers and Estimators.

Fig. 12. Cross Validation: Time Series Sliding Split

such solutions in an industrial setting, challenges are faced

to develop and adopt such systems. Often the people involved

in building, operating and understanding such machine learn-

ing frameworks are managers, operators, data scientists and

software developers. But building domain specific industrial

solutions which leverage AI can be a daunting challenge even

for a large organization due to the high skill set requirement

for such tasks. We often encounter cases where a customer

does not have the prerequisite knowledge to leverage advanced

machine learning and AI tools available in the market. With

our experience working with IBM clients in different domains,

we have addressed this gap by providing industry specific

solution templates which solve commonly observed problems

in that industry. We leverage the Transformer-Estimator graphs

to build such industry specific solution templates quickly.

Some of such solutions commonly used in different industries

include:

• Failure Prediction Analysis (FPA): This solution pattern

allows users to leverage historical sensor data and failure

logs to build machine learning models to predict immi-

nent failures.

• Root Cause Analysis (RCA): This solution pattern enables

operators to get a better understanding into the statistical

reasons for favourable and unfavourable outcomes in

industrial processes.

• Anomaly Analysis: This solution pattern builds a model

to flag data as corresponding to a normal operation mode

or an anomalous mode.

• Cohort Analysis (CA): This solution pattern leverages

historical sensor data from multiple assets to model

their behaviour. Based on the similar patterns, assets are

grouped in different buckets or cohorts allowing for a

better understanding of industrial asset behavior.

These solution patterns have been implemented as Jupyter

notebooks [19]. With such readily available solutions, the goal

is to speed up the task of building Data Analytics and AI

solutions quickly. The flexibility and easy of use provided by

the Transformer-Estimator graphs makes the task of building

such solutions considerably easier.

These solution templates provide consumable machine

learning and AI capabilities to non-expert users. They are a

key component in expanding the range of people who can

take advantage of AI and machine learning capabilities. We

believe that the use of domain-specific solution templates will

become increasingly common as more people use AI and
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machine learning techniques to analyze data in a wide variety

of disciplines.

V. RELATED WORK

There have been several open source machine learning

frameworks which have become widely used in recent years.

The data analytics algorithms provided by these frameworks

can be used by our system. However, none of these frame-

works provide the novel features of our system such as the

ability to coordinate computations across multiple clients and

to achieve cooperative data analytics across multiple clients

and cloud analytics servers. We also offer unique capabilities

to identify the best performing data analytics algorithms using

Transformer-Estimator Graphs. Our work is complementary to

these machine learning frameworks, and by leveraging their

capabilities, our system can improve as these frameworks

evolve and incorporate improvements in algorithms.

Scikit-learn is a widely used open source framework pro-

viding machine learning capabilities [1], [20], [21]. It provides

several classification, regression and clustering algorithms

including support vector machines, random forests, gradient

boosting, k-means and DBSCAN. It is designed to interoperate

with the Python numerical and scientific libraries NumPy and

SciPy. Much of scikit-learn is written in Python, while some

of the core algorithms are written in Cython for improved

performance.

TensorFlow is an open source framework from Google for

building machine learning models [2], [21]. It is at a lower

level than scikit-learn. It is frequently used for neural networks

and deep learning and provides GPU support. Keras is a neural

networks API written in Python and capable of running on

top of TensorFlow, the Microsoft Cognitive Toolkit (CNTK),

or Theano [5]. The Keras API is at a higher level than the

TensorFlow API. People will often use the Keras API on top of

TensorFlow. Keras makes it easier to analyze data using neural

nets compared with the raw TensorFlow API. On the other

hand, the raw TensorFlow API may be needed for users who

need to customize computations beyond what Keras provides.

Torch is a machine learning library providing a variety

of deep learning algorithms [22]. It is implemented in C++,

but it is used via the Lua scripting language. As of 2018,

Torch is no longer in active development. PyTorch is a Python

package based on Torch that provides tensor computation (like

NumPy), GPU acceleration and deep neural networks built on

a tape-based autograd system [3]. PyTorch and TensorFlow

are both widely used for deep learning. PyTorch is generally

easier to use, but there are advantages to both frameworks.

Theano is a Python library for defining, optimizing,

and evaluating mathematical expressions involving multi-

dimensional arrays efficiently [23]–[25]. It is no longer being

developed and enhanced. CAFFE (Convolutional Architecture

for Fast Feature Embedding) is a deep learning framework

written in C++ but with a Python interface [4]. Caffe2,

which was announced by Facebook in March 2017, includes

additional features such as Recurrent Neural Networks. Caffe2

was merged into PyTorch after March 2018. The Microsoft

Cognitive Toolkit (CNTK) is a deep learning toolkit that

describes neural networks as a series of computational steps

via a directed graph [26].

Several companies offer Web services which provide ma-

chine learning capabilities using an HTTP interface, including

IBM [9], Amazon [11], Google [12], H2O.ai [27] and Mi-

crosoft [10].

GraphLab is a parallel framework for machine learning

using a graph-based data model for representing data and

computational dependencies [28], [29]. It is targeted for sparse

iterative graph algorithms. Spark MLlib [30] is a distributed

machine learning framework for Apache Spark [7] built on top

of the Spark Core. Apache Mahout is a project of the Apache

Software Foundation containing scalable machine learning

algorithms focused primarily in the areas of collaborative

filtering, clustering and classification [31].

VI. SUMMARY AND CONCLUSION

We have presented a distributed system for performing data

analytics and machine learning. Our system allows multiple

users to cooperate in performing data analytics computations

to scale out processing and avoid redundant computations.

We introduced the Transformer-Estimator Graph, a powerful

framework for determining optimal models for analyzing data

sets. We showed how graphs can be effectively used for

analyzing time series data common in heavy industry. In

order to make our system easily usable by non-experts, we

provide solution templates which are customized to problems

in specific domains.
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