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Abstract—Mobile Edge Computing (MEC) is a burgeoning
paradigm that pushes data and services away from remote clouds
to distributed Base Stations (BSs) equipped with MEC servers,
which are deployed by Service Providers (SPs) at the edge of
cellular networks. Normally, a SP prefers to use its own BSs,
instead of those deployed by other SPs, to provide data and
storage services. This can not only improve the quality of user
experience but also increase its own revenue. In a densely-
deployed MEC network where a User Equipment (UE) tends to
be covered by multiple BSs from varied SPs, how to allocate the
resources in the BSs to provide the best service is a challenging
problem. In this paper, we propose a novel resource allocation
scheme, Decentralized Multi-SP Resource Allocation (DMRA),
for densely-deployed MEC networks in order to maximize the
total profit of all SPs and provide high-quality services. Our ex-
perimental results indicate that the proposed scheme outperforms
the existing resource allocation algorithms for MEC.

Index Terms—Mobile Edge Computing, Resource Allocation,
Profit Maximization

I. INTRODUCTION

The integration of cloud computing and mobile computing

leads to a novel computation paradigm, Mobile Cloud Com-

puting (MCC). MCC is capable of providing computation and

storage resources for mobile devices in a centralized manner

[1]. However, over the past years, MCC has encountered

a series of challenges. One of the challenges is associated

with latency-sensitive applications. Specifically, for applica-

tions such as Virtual/Augmented Reality (VR/AR) [2], video

streaming [3] and Internet of Things (IoT) [4], MCC can

hardly guarantee the quality of services [5]. In order to solve

this problem with MCC, Mobile Edge Computing (MEC) was

proposed. The main idea adopted by MEC is to push data and

services away from remote centralized clouds to distributed

nodes with computing and storage resources. For example,

Base Stations (BSs) equipped with MEC servers are deployed

at the edge of mobile networks, which is closer to User

Equipments (UEs) compared with remote clouds [6]. With

this new approach, applications with low latency tolerance

can deploy their services on MEC servers, which can not

only achieve lower latency and reduce traffic load in backbone

networks but also greatly alleviate the constraints of UEs (e.g.

computation and energy limitation).

With the development of MEC, more and more Service

Providers (SPs), such as China Mobile and China Unicom,
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are expected to deploy their own BSs and MEC servers. Each

MEC server hosts a set of services, which are used to process

the computing tasks offloaded by UEs. In order to guarantee

the quality of service, all SPs desire to deploy BSs in popular

areas to meet the requirements of their users. Consequently,

the coverage of the BSs from different SPs is likely to overlap

and therefore UEs tend to be able to receive the signals from

multiple BSs at the same time. In this scenario, a UE should

choose one of the available BSs and thereafter offload its

computation task to the selected BS. However, a UE is not

authorized to access the resources in BSs or remote clouds

directly. It has to resort to the SP that it subscribes to in order

to complete the offloading task. If the nearby BS does not have

enough resources, the offloaded task needs to be forwarded

to remote clouds, which increases the transmission delay [7].

Note that it is more cost-efficient for a SP to forward the

offloaded task to the BSs deployed by itself than to those

deployed by other SPs. Hence, the resource allocation scheme

directly determines the profit of each SP.
In our research, we focus on the resource allocation problem

in this multi-UE multi-SP environment. Our goal is to find

an optimal resource allocation scheme to maximize the total

profit of all SPs and provide high-quality services to UEs.

The allocation optimization problem in the multi-UE multi-

SP environment involves the following two important aspects.

First of all, each SP has its own preferred BSs. The impact

of UE, BS, and SP on resource allocation has to be taken

into consideration. Secondly, the computing tasks offloaded

by UEs consume both computing and radio resources of BSs.

Therefore, we should jointly consider the limited computing

and radio resources that are available in BSs.
Technically, we propose a Decentralized Multi-SP Resource

Allocation (DMRA) scheme to find the optimal resource

allocation for UEs’ computing tasks in a densely-deployed

network. With DMRA, the total profit of all SPs is maximized.

The main contributions of this paper are presented as follows.

• We formally formulate the resource allocation problem in

a densely-deployed network, aiming to maximize the total

profit of all SPs. In the formulated problem, the impact of

UE, BS and SP on the performance of resource allocation

is jointly taken into account.

• We propose a novel resource allocation scheme, which

takes a series of factors into consideration. The consid-

ered factors include the distance between UE and BS,

390

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00046



the number of BSs that a UE can reach, the amount of

remaining computing and radio resources in BS, and the

diversity of services requested by UE.

• We devise a decentralized algorithm to solve the resource

allocation problem. Based on the matching theory [8] [9],

the proposed algorithm is capable of maximizing the total

profit of SPs through transforming the resource allocation

problem into a UE-BS matching problem.

The rest of this paper is organized as follows. Section II

includes the related work. We describe the system model

in Section III and formulate the problem of total SP profit

maximization in Section IV. The details of the proposed

algorithm are presented in Section V. Section VI includes our

simulation results. Finally, Section VII concludes this paper.

II. RELATED WORK

MEC has drawn a wide range of attention both in the

academic and industrial community in recent years. The

concept of pulling computing resources from remote clouds

to edge clouds which are closer to users has been widely

considered in previous work. Islam et al. [10] proposed the

idea of introducing cloud computing facility at the edge of the

Internet to leverage the benefits of virtual-clients in the future

Internet architecture in conjunction with increasing focus on

content production and delivery. They designed an application

‘surrogate’ running on top of the cloud to support virtual-

clients, which was able to simplify the management of the

network, giving SPs more opportunities to be directly involved

in service delivery, and support services in an efficient way.

Ceselli et al. [11] designed a mobile edge cloud network

architecture for mobile access metropolitan area networks.

They considered both static and dynamic status of the network,

aiming to correctly place cloudlet on available sites and assign

sets of access points. Tong et al. [12] proposed to deploy cloud

servers at the edge of the network and designed it as a tree-

based hierarchy of geo-distributed servers. This architecture

aggregated the peak loads across different tiers of the cloud,

aiming to maximize the amount of mobile loads being served.

Furthermore, a workload placement algorithm was proposed

by them to ensure the utilization of cloud resources. Mu et
al. [13] studied the real-time pricing proplem for local power

supplier in smart community. Other than the computation

offloading problem [14] [15], service migration problem [16]

[17], computation caching problem [18] [19] have been studied

in prior works. Resources allocation is another important issue

in MEC that should be studied to guarantee the quality of

services provided by SPs.

There are a few existing studies that focus on the resource

allocation problem to improve the quality of service in MEC.

In [20], Sardellitti et al. studied the densely-deployed MIMO

multi-cell system, in which multiple UEs asked for computa-

tion offloading. They formulated a resource optimization prob-

lem, aiming at minimizing the energy consumption of users,

and both radio and computing resources were considered in the

resource allocation process to achieve the joint optimization

Fig. 1. System architecture

of the system. In [21], You et al. investigated the energy-

efficient resource allocation problem in multi-user MEC of-

floading system based on TDMA/OFDMA. They discussed the

performance of the system when clouds have infinite or finite

capacity. The aim of this paper was minimizing the sum of mo-

bile energy consumption. However, the above two papers only

consider the system with single MEC server. With the increase

of the number of latency-sensitive tasks and the complexity

of small-cell networks, computing resources supplied by only

single MEC server is not enough. So some studies have

focused on MEC with multi-user and multi-server in recent

years. Tianze et al. [22] designed a task scheduling mechanism

for ad-hoc based MEC, aiming to minimize the overhead of

each UE. They indicated that UEs could cooperate with each

other and developed a potential game for their model. Four

factors, energy consumption, opportunity consumption, time

delay and monetary cost, were taken into account in their

work. Xie et al. [23] proposed a multi-dimensional pricing

scheme based on a two-side market game. In the study, three

types of prices are given by them, and a distributed price-

adjustment algorithm for resource allocation and QoS-aware

offloading scheduling were proposed based on the three prices.

The price based mechanism can significantly improve the per-

formance of the system. Zhang et al. [24] studied the resource

allocation problem in a multi-tier LTE unlicensed network,

through combining the Stackelberg game and the bargaining

together. In [25], the authors studied computing resources

allocation problem to obtain joint optimization among FN

(fog nodes), data service subscribers (DSS) and data service

operators (DSO) in the three-tier IoT fog network. In this

system, DSO got resources from FNs to serve their DSSs.

BSs equipped with MEC servers were deployed by SPs in

the densely deployed IoT network. Each SP had preference to
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allocate resources in BSs to UEs subscribing to it. They used

the matching theory to solve the FN-DSS pairing problem. But

this method can not be used in cellular network directly. To

the best of our knowledge, no existing work has studied the

problem of multi-SP resource allocation in cellular network

under consideration of the relationship between UEs, SPs and

BSs.

III. SYSTEM MODEL

In this section, the model of the system under investigation

is described in detail. We first give an overview of the

system model. Then we discuss the details of three aspects

of the system under investigation: computing resources, radio

resources, and SP utility.

A. System Overview

Fig. 1 includes a generic network architecture that consists

of four layers, including UE layer, SP layer, Edge Computing

(EC) layer and remote cloud layer. With this architecture, UEs

offload their computing tasks to the SPs that they subscribe

to. BSs equipped with MECs servers are deployed by SPs to

provide MEC services for UEs in EC layer. The offloading

tasks that cannot be processed by EC layer will be forwarded

to the remote cloud.

Table I includes the notations used in our research. Specif-

ically, ς , U , B and S denote the set of SPs, UEs , BSs and

services respectively. In our research, we assume that each

UE u ∈ U subscribes to one SP k ∈ ς and each BS i ∈ B
is deployed by one SP k ∈ ς . Each BS equipped with a

MEC server, which has limited computing and radio resources,

provides MEC services to the UEs in its coverage area. Note

that, for simplicity, the term “BS” and the term “MEC server”

are used interchangeably in this paper. Computing resources

in BSs are used to handle the computation tasks offloaded by

UEs. Radio resources in BSs are used to receive the offloading-

related data from UEs and return the computed results back

to them. Each MEC server hosts a service subset Si ⊆ S. In

our research, we use the symbol zi,j ∈ {0, 1} to denote the

relationship between BS i ∈ B and service j ∈ S. If BS i
hosts service j, then zi,j = 1; otherwise zi,j = 0.

In a densely-deployed network, the BSs from multiple SPs

could be installed to cover the same area. Namely, the coverage

area of some BSs might overlap. In this scenario, UEs should

choose one of the reachable BSs that host the requested

service. In our research, we assume that each UE can only

request one MEC service and can only be served by one BS

at a time.

Furthermore, we assume that UEs have no authorization

to access BSs directly. They need to subscribe to a SP and

use the virtual service provided by the SP to offload their

computing tasks to BSs. Namely, SPs, as a middle layer,

controls the behavior of UEs and BSs. With the coordination

of SPs, the resources for each service provided by BSs are

allocated to handle the offloaded computing tasks from UEs.

To avoid potential network congestion and ensure fast response

time, each SP prefers to assign the offloaded computing task

TABLE I
LIST OF NOTATIONS

symbol definition
ς the set of SPs
U the set of UEs
B the set of BSs
S the set of services
zi,j zi,j = 1 means BS i host service j, otherwise zi,j = 0
CRU computing resource unit
ci,j the number of CRU allocated by BS i to service j

U
′
i the set of UEs served by BS i

cuj
the number of CRU of service j needed to process the
computing task offloaded by UE u

Wsub the bandwidth of RRB
Wi the uplink bandwidth of BS i
Ni the maximum number of RRBs can allocated by BS i
Ri the total number of RRBs that are allocated by BS i
wu the required data rate for UE u to get service
eu,i The reveived data rate for each RRB of BS i from UE u
nu,i the number of RRBs allocated by BS i to UE u

Uk
the set of UEs subscribing to SP k and task processed
by BS nearby

au,i
au,i = 1 means task of UE u is served by BS i,
otherwise au,i = 0

Wk the revenue function of SP k at MEC laye

W r
k

the total revenue that SP k receives from UE u
for its service

WS
k the total other cost for SP k to serve UE

WB
k the total payment from SP k to all BSs

mk the price of unit CRU set by SP k
pi,u the price of unit CRU set by BS i to UE u
di,u the distance between BS i and UE u

Ju,j
Ju,j = 1 means UE u request service j,
otherwise Ju,j = 0

to nearby BSs instead of the remote cloud. When all the

available BSs do not have the appropriate resources to process

the offloaded computing task, the offloading request will be

forwarded to the remote cloud, whose capacity is assumed to

be unlimited.

B. Computing Resources

An MEC server can provide computation services to multi-

ple UEs with different service requests concurrently. However,

as the capacity of an MEC server is limited, it can only provide

a subset of the services in S. The offloaded computation task

cannot be forwarded to an MEC server that does not provide

the corresponding service. In our research, we use ’Computing

Resource Unit (CRU)’ as the unit to describe the computing

resource allocation in an MEC server. Specifically, we use

ci,j to denote the number of CRUs that BS i ∈ B allocates

to service j ∈ S. If ci,j > 0, then MEC server i can provide

service j. If MEC server i is designed not to handle service

j, then ci,j = 0. Furthermore, we use U
′
i to denote the set of

UEs served by BS i ∈ B (obviously, U
′
i ⊆ U ); and we use

cuj (c
u
j ≥ 0) to denote the amount of CRUs required to process

the computing task offloaded by UE u, which corresponds to

service j (obviously, u ∈ U
′
i ). At any time, the total amount of

CRUs allocated by BS i to handle service-j-related computing

tasks are limited by ci,j . Namely, we have:∑
u∈U

′
i

cuj ≤ ci,j , ∀i ∈ B, j ∈ S (1)
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C. Radio Resources

Each BS has limited radio resources that can be used to

transmit data between UE and BS. In our research, we only

consider the uplink radio resource consumption because the

size of the task data is usually much larger than that of the

result data. In addition, we consider a system with Orthogonal

Frequency Division Multiple Access (OFDMA) being the

access scheme. The basic unit of radio resource allocation is

denoted as Radio Resource Block (RRB). The bandwidth of

it is denoted as Wsub. Let Wi denote the uplink bandwidth of

BS i ∈ B. The maximum number of RRBs in BS i that can

be used to process the computing tasks offloaded by UEs is

Ni.

The number of RRBs allocated by BSs to UEs is influenced

by the data rate requested by UEs. We use wu to denote the

required data rate for UE u to get service. The Signal-to-

Interference-plus-Noise-Ratio (SINR) from UE u to BS i is

denoted as λu,i. The received data rate for each RRB of BS i
from UE u is

eu,i = Wsublog2(1 + λu,i) (2)

The number of RRBs that should be be allocated by BS i to

UE u is

nu,i = �wu/eu,i� (3)

eu,i is determined by transmit power of UE u, interference

power of the other signals in the network and some noise term.

The interference power increases with the distance between

UE u and BS i. When interference power increases, eu,i will

decrease. So when wu is fixed, the farther the distance between

UE u and BS i, the more number of RRB in BS i is needed

by UE u.

So the total number of RRBs that are allocated by BS i can

be modeled as

Ri =
∑
u∈U

′
i

nu,i (4)

The total number of RRBs allocated by BS i to UE u ∈ U
′
i

cannot exceed Ni.

D. SP Utility

For each SP, the cost of using the resources in the BSs

deployed by itself is lower than that of using the resources in

the BSs deployed by other SPs. Therefore, the scheme of an

SP preferentially allocating resources in the BSs deployed by

itself to its own UEs can not only improve the user experience

of its UEs, but also increase its own revenue.

UEs need to pay SPs for the service, and SPs have to

pay BSs and remote clouds for using their resources. Let

Uk denotes the set of UEs subscribing to SP k and whose

computing task processed by nearby BSs. We define the

variable au,i ∈ {0, 1} for BS i ∈ B , UE u ∈ U . If the

offloaded task of UE u is served by BS i, then au,i = 1;

otherwise au,i = 0. The utility function of SP k ∈ ς at MEC

layer is defined as:

Wk = W r
k −WB

k −WS
K (5)

W r
k =

∑
u∈Uk

∑
j∈S

cujmk (6)

WB
k =

∑
u∈Uk

∑
i∈B

∑
j∈S

au,ipi,uc
u
j (7)

WS
K =

∑
u∈Uk

∑
j∈S

cujm
o
k (8)

where W r
k is the total revenue that SP k receives from UE

u ∈ Uk for its service; mk denotes the CRU price set by SP

k; WS
k is the total other cost for SP k to serve UE u ∈ Uk;

mo
k denotes the price of CRU of other cost for SP k. mk and

mo
k are two constants; WB

k denotes the total payment from

SP k to all BSs; pi,u is the CRU price set by BS i to UE u
and it satisfies mk > pi,u +mo

k. pi,u can be calculated using

the following equation:

pi,u =

{
b+ dσi,ub u and i from same SP (9)

ιb+ dσi,ub u and i from different SP (10)

Here, both computing resource price and transmission price

are taken into consideration. When UE u and BS i belong to

the same SP, the price of one CRU of computing resource is b;
otherwise the price is ιb (ι > 1). It is much cheaper for SPs to

use resources of their own than those belonging to other SPs

when the requested services are the same. Using resources

in remote clouds is the most expensive option, because the

cost of time and energy used to transmit the offloaded task

of UEs to the clouds is much higher than that for nearby

BSs. di,u is the distance between BS i and UE u, which

has increases with the transmission cost in a linear fashion.

The farther the distance between UE and BS, the higher the

energy consumption of the transmission (i.e. the higher the

transmission price). Furthermore, ι and σ are two weight

parameters.

IV. PROBLEM FORMULATION

With the proposed architecture, SPs prefer to assign the

computing tasks offloaded by UEs to the EC layer rather than

the remote cloud in order to avoid potential network con-

gestion, ensure fast response time, and improve the provided

Quality of Service (QoS) and Quality of Experience (QoE).

SPs, as a middle layer in the proposed architecture, controls

the interaction behavior of UEs and BSs. As mentioned

previously, each SP preferentially allocates the resources in

the BSs deployed by itself to its own UEs to ensure the QoE

of the UEs subscribing to itself. For SP k, the cost of using

the resources in BS i ∈ B deployed by itself to process the

computing task offloaded by UE u who subscribes to it is

lower than that of using the resources in BS i
′ ∈ B deployed

by other SPs when the distance between UE u and BS i is

equal to that between UE u and BS i
′
.

For a batch of UEs with computing tasks, their location and

requested services are known. In our research, we define the

variable Ju,j ∈ {0, 1} for UE u ∈ U and service j ∈ S. If UE
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u requests service j, then Ju,j = 1; otherwise Ju,j = 0. The

scheme of allocating limited computing resources and radio

resources of the BSs to UEs directly affects the revenue of

SPs.

Consequently, each SP attempts to maximize its profit

through using the optimal resource allocation scheme to al-

locate resources to UEs with offloading computing tasks and

subscribing to it. The problem we concern is determining the

value of au,i. Our goal is to find an optimal UE-BS association

scheme to maximize the total profit of all SPs at the MEC

layer. The Total Profit Maximization problem (TPM) can be

defined as follows.

Definition 1: The Total Profit Maximization problem (TP-

M) can be formulated as the following optimization problem:

max
au,i,∀u∈U,∀j∈S

∑
k∈ς

Wk (11)

s.t.
∑
u∈U

′
i

cuj ≤ ci,j , ∀i ∈ B, j ∈ S (12)

au,i ≤ zi,jJu,j , ∀i ∈ B, ∀j ∈ S, ∀u ∈ δ (13)∑
u∈U

′
i

nu,i ≤ Ni (14)

∑
i∈B

au,i ≤ 1, ∀u ∈ U (15)

mk > pi,u +mo
k, ∀j ∈ S, ∀u ∈ Uk, ∀k ∈ ς (16)

Technically, there are five constraints involved in the op-

timization problem. The constraint corresponding to Notation

(12) shows that the amount of CRUs from BS i used to process

computing tasks offloaded by UEs must satisfy the capacity

constraint of BS i. The constraint corresponding to Notation

(13) states that the premise that BS i can be associated with

UE u is that BS i has the service j requested by UE u.

The constraint corresponding to Notation (14) shows that the

total number of RRBs allocated by BS cannot exceed its

maximum capacity. The constraint corresponding to Notation

(15) indicates that the computing task offloaded by each

UE can be processed by at most one BS. The constraint

corresponding to Notation (16) shows that it is profitable for

each SP to provide service to its users.

V. DMRA: A DECENTRALIZED SCHEME

The key to the TPM problem is to find out the best associ-

ation scheme for UEs and BSs. To find the best association,

we need to try all possible combinations of UEs, BSs and

remote cloud, which is impractical for large-scale distributed

networks without a centralized control center. Another obstacle

is that each SP needs to adjust its resource allocation strategy

in real time to adapt its network to the changing environment.

Namely, the best association changes over time.

The association between UEs and BSs can be regarded as

a matching problem. In this paper, we propose an improved

matching algorithm, Decentralized Multi-SP Resource Allo-

cation (DMRA), to solve the TPM problem. The matching

problem for UEs and BSs is similar to the classic Stable

Marriage Problem (SMP) in mathematics although there are

a couple of differences. The first difference between them is

that the preference list of men and women in SMP is fixed

while the preference list of UEs and BSs vary over time. The

second difference is that each UE only needs to pay attention

to the BSs that are reachable and can provide the requested

service. It does not need to consider all BSs.
An overview of DMRA is presented as follows. With

DMRA, SPs, as the middle layer, receive the computing tasks

offloaded by UEs and help each UE be associated with an

appropriate BS or remote cloud via multiple iterations. In each

iteration, unserved UE first proposes its most preferred BS.

Each BS builds a preference list for each provided service.

The list includes the UEs that have proposed to the BS as

the most preferred one. Once the list is available, the BS

associates itself with its most preferred UE in this list. It

is profitable for BSs to provide service to UEs. The cost

of using resources in remote cloud is much more expensive

than that of using resources in BSs. In addition, the distance

between UE and BS determines the transmission delay and

user experience. Therefore, SPs should forward the computing

tasks offloaded by UEs to nearby BSs whenever possible. We

consider two factors when we determine the preference of UEs

for BSs. The first factor is the price of CRU set by BS. The

second factor is the remaining radio resources and computing

resources corresponding to the service requested by UE. Let

vu,i denote the preference of UE u for BS i, then we have:

vu,i = pi,u + ρ/[(ci,j −
∑
u∈U

′
i

cuj ) + (Ni −
∑
u∈U

′
i

nu,i)] (17)

where ρ is a parameter that determine the choice of BS. The

more the amount of remaining computing and radio resources

in BSs, the greater the probability that UE’s task will be

processed by nearby BSs. In each iteration, UE u proposes to

BS i with the smallest vu,i. Each service in a BS preferentially

selects one UE belonging to the same SP. Let fu denote the

number of BSs which can cover UE u and have available

computing and radio resources. When there are multiple UEs

that satisfy the condition, we select the UE with smallest fu.

If there are more than one UE that can be selected, we choose

the UE u with smallest (nu,i + cuj ).
The details of the proposed decentralized algorithm are

summarized as Alg. 1. Each UE u ∈ U initializes a set Bu,

which includes all BSs which it can reach and host the service

requested by it. If Bu is empty, it means there is no BS that can

be associated with the UE, and the request of the UE will be

forwarded to remote cloud. In each iteration, the UEs whose

Bu is not empty and that have not been associated with BSs

in the previous iteration will firstly choose its most preferred

BS i
′

in set Bu (Lines 3-10). If the chosen BS has enough

computing and radio resources to process the task offloaded by

UE u, then UE u will propose to BS i
′

and send its service

request, which includes the information about the location,

service demands of u, the number of BSs which can cover u
and the SP that u subscribes to. Otherwise, delete BS i

′
from

set Bu and choose another BS in set Bu, as the resources in
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BS cannot increase, the BS i
′

cannot be associated with UE

u in subsequent iterations. If the appropriate BS is not found

until Bu is empty, the computing task offloaded by UE u will

be forwarded to remote clouds for processing.

Each service in each BS maintains a preference list. These

lists are set to be empty at first, because no UE has chosen

a BS at that time. When BSs receive new service requests

in each iteration, they will build their candidate UEs-set U c
i,j

after all UEs u ∈ U have sent their service requests. Service

j in BS i prefers to make a proposal to UEs u ∈ U c
i,j

belonging to the same SP. When there are more than one UE

maintain this, we will choose the UE with the smallest fu.

If there are more than one UE in set U
′
, we will choose UE

u with the smallest (nu,i + cuj ) (refer to line 13-21 of Alg.

1). After all services in BS have selected their most preferred

UE, then add the selected UEs into UE set U∗. We need to

check whether the sum of radio resources requested by UE

u ∈ U∗ exceeds the remaining amount of radio resources of

the BS i. If not, associate these UEs with BS i and update

the remaining amount of resources in each service of BS i;
otherwise, calculate the preferences of BS i for UEs u ∈ U∗

and sort them in descending order. Select the first few UEs

meeting radio resource constraint of BS i and associate these

UEs with BS i (refer to line 22-25 of Alg. 1). Finally, BS i
broadcasts the connection information to the UEs covered by

itself. The iteration continues until there is no UE that sends

service request.

Let |U |, |B|, |S| denote the number of elements in set U ,

B, S respectively. The complexity for UEs to propose to BSs

is O(|U |), the complexity for services in BSs to propose to

UEs is O(|B ∗ S|). In terms of the interaction between BSs

and UEs, the complexity is O(|B ∗ U |). So the complexity of

algorithm DMRA is O(|u|2 ∗ |B|+ |B|2 ∗ |U | ∗ |S|).

VI. EXPERIMENTAL RESULTS

In this section, we present the configuration of our simula-

tions and the details of the experimental results.

A. Simulation Setup

In our simulations, we consider a densely-deployed network.

Specifically, there are 5 SPs in the experimental network.

Each SP deploys 5 BSs, each of which provides six services.

Two different BS placement methods are considered in our

simulation. With the first placement method, BSs are placed

regularly, with the inter-site distance being 300 meters. With

the second placement method, BSs are placed randomly in

a 1200m x 1200m rectangle. UEs with a variety of different

service requests are distributed randomly in the network. The

number of CRBs allocated by BS i to service j is set to a

number in the range of 100 to 150. The number of CRBs

used to process the computing request offloaded by UE u
varies from 3 to 5. The required data rate wu for UE u is in

the range of 2Mbps to 6Mbps. The bandwidth of the uplink

channel for each BS is 10MHz. The bandwidth of each RRB

is 180kHz. The transmission power of a UE is 10dBm and

Algorithm 1: Decentralized Multi-SP Resource Allocation

(DMRA)

Input: U , B, S, δ, ci,j , cuj , Ju,j , zi,j , Ni, wu, λu,i,

∀u ∈ U , ∀i ∈ B, ∀j ∈ S, ∀k ∈ δ
Output: au,i, ∀u ∈ U , ∀i ∈ B

1 initialize au,i = 0, flagi = 0, U∗ = φ, compute the set

Bu of BSs which can cover UE u and provide the

service UE requests, ∀u ∈ U , ∀i ∈ B;

2 repeat
3 for u ∈ U do
4 while Bu 
= φ and

∑
i∈Bu

au,i = 0 do
5 select i

′
= argmin vu,i, i ∈ Bu, u ∈ U ;

6 if ci′ ,j ≥ cuj and Ni′ ≥ wu then
7 send service request to BS i

′
;

8 break;

9 else
10 Bu = Bu −

{
i
′
}

;

11 for i ∈ B do
12 if there is any new incoming service request then
13 summarize the service set S

′
i of BS i

requested by UEs and the set U c
i,j of

candidate UEs that send service requests to

BS i for service j;

14 for j ∈ S
′
i do

15 Divide u ∈ U c
i,j into two sets U1 and U2,

u ∈ U1 with BS i belong to the same SP;

u ∈ U2 with BS i belong to different SP;

16 if U1 
= φ then
17 compute the set U

′ ⊆ U1 of UEs with

argminfu, u ∈ U1;

u
′
= argmin(nu,i + cuj ), u ∈ U

′
;

18 else
19 compute the set U

′ ⊆ U2 of UEs with

argminfu, u ∈ U2 ;

20 u
′
= argmin(nu,i + cuj ), u ∈ U

′
;

21 U∗ = U∗ +
{
u

′
}

; w = w + wu′ ; c
′
j = cu

′

j ;

22 if w ≤ Ni then
23 Ni = Ni − w; ci,j = ci,j − c

′
j , ∀j ∈ Si;

24 else
25 rank UE u ∈ U∗ according to the preference

of BS i to the UE u in ascending order and

remove u ∈ U∗ in order until∑
u∈U∗ wu ≤ Ni; Ni = Ni −

∑
u∈U∗ wu; get

the service set S∗ requested by UE u ∈ U∗;

ci,j = ci,j − c
′
j , ∀j ∈ S∗;

26 U∗ = φ; set au,i = 1 and send the message to

UEs u, u ∈ U∗; Broadcast the remaining

resousrces ci,j , ∀j ∈ S and Ni of BS i to UEs

covered by it;

27 until No UE send service request;
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Fig. 2. Total profit of SPs vs. number of UEs (ι = 2, regular BS placement)
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Fig. 3. Total profit of SPs vs. number of UEs (ι = 2, random BS placement)

the uplink channel follows the distance-dependent pass-loss

model, which is:

140.7 + 36.7log10di,u(km) (18)

The noise in the uplink channel is -170dBm. In addition, we

set the weight parameter σ = 0.01.

B. Details of Experimental Results

In our research, we compared the proposed scheme, DM-

RA, with two state-of-the-art resource allocation methods:

Decentralized Collaboration Service Placement (DCSP) [26]

and Non-Collaboration (NonCo) algorithm. Technically, DCSP

jointly considers service placement and UE association. Each

time, UE proposes to BS with the lowest resource occupation,

and BS proposes to UE with the smallest number of BSs that

can cover it. If more than one UE satisfy the condition, BS

chooses the UE which consumes the least amount of radio

resources. The iteration is repeated until no UE sends service

requests any more. With NonCo, each UE proposes to BS with

the maximum SINR in the uplink channel. Each BS prefers

to be associated with the UE consuming the least number of

RRBs. The collaboration of BSs is not taken into consideration

in this algorism.
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Fig. 4. Total profit of SPs vs. number of UEs (ι = 1.1, regular BS placement)
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Fig. 5. Total profit of SPs vs. number of UEs (ι = 1.1, random BS
placement)

Fig. 2-5 shows the performance of the schemes under

investigation from the perspective of the total profit of SPs

vs. the number of UEs, by using algorithm DMRA, NonCo

and DCSP respectively. The BS placement method used in

the scenarios corresponding to Fig. 2 and 4 are the regular

approach, while those corresponding to Fig. 3 and 5 are

the random approach. Our experimental results indicate that,

for all the schemes under investigation, the total profit of

SPs increases with the number of UEs requesting computing

services. As the number of UEs requesting services goes up

from 400 to 900, the increase rate of the total profit of SPs

becomes smaller. That is because, with the increase of the

number of computing tasks offloaded by UE, the amount of

resources available in nearby BSs decreases gradually. As a

result, more and more requests are forwarded to remote clouds.

When the resources in BSs are used up, the profit of SP

remains unchanged. The weight parameter ι influences the

price of using the resources in BSs. The greater the parameter

ι, the less pi,u is determined by the distance between BSs and

UEs, which means more SPs prefer to choose BSs deployed

by themselves. When the weight parameter ι = 1, pi,u is only

determined by the distance between BSs and UEs. Note that,

in all the scenarios under investigation, DMRA leads to the

396



5 10 15 20 25

102.95

102.96

102.97

ρ

T
o

ta
l

P
ro

fi
t

o
f

S
P

s DMRA-Regular-Placement

Fig. 6. Total profit of SPs vs. ρ (ι = 2, number of UEs=1000)

5 10 15 20 25

102.2

102.3

102.4

ρ

T
o

ta
l

F
o

rw
ar

d
ed

T
ra

ffi
c

L
o

ad
(M

b
p

s)

DMRA-Regular-Placement

Fig. 7. Total forwarded traffic load vs. ρ (ι = 1.1, number of UEs=1000)

highest total profit of SPs, which clearly shows the advantage

of DMRA over DCSP and NonCo.

Fig. 6 and Fig. 7 shows the performance of DMRA in terms

of the total profit of SPs and the total forwarded traffic load

respectively. The BS placement method adopted in these two

simulations are the regular approach. The total number of tasks

offloaded by UE is 1000. As there are many UEs requesting

resources at the same time, the resources in nearby BSs are not

enough. Consequently, part of computation requests offloaded

by UEs are forwarded to remote clouds. The weight factor ρ
influences the preference of UEs. The greater the weight factor

ρ, the higher the number of UEs that prefer to propose to the

BSs with more available resources and pay less attention to

the price of using resources in BS. As a result, more tasks will

be processed by nearby BSs; the total amount of forwarded

traffic load will decrease; and the total profit of SPs will go

up, which is consistent with the results in Fig. 6 and 7.

VII. CONCLUSION

In this paper, we study the resource allocation problem in a

densely-deployed MEC network. Our goal is to maximize the

total profit of all SPs in EC layer. Technically, we transform the

resource allocation problem into a UE-BS matching problem,

then a decentralized algorithm, DMRA, is proposed to solve

the problem. DMRA can continuously adjust the resource

allocation scheme according to the demands of the UEs

and the remaining amount of resources in the BSs through

recalculating the preference relationship between UEs and BSs

during each iteration. Our experimental results indicate that the

proposed scheme outperforms the existing resource allocation

algorithms for MEC.
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