
Adaptive Network Alignment with Unsupervised
and Multi-order Convolutional Networks

Huynh Thanh Trung1, Tong Van Vinh2, Nguyen Thanh Tam3, Hongzhi Yin4*,
Matthias Weidlich5, Nguyen Quoc Viet Hung1

1Griffith University, 2Hanoi University of Science and Technology (HUST), 3Ho Chi Minh City University of Technology (HUTECH),
4The University of Queensland, 5Humboldt-Universität zu Berlin

Abstract—Network alignment is the problem of pairing nodes
between two graphs such that the paired nodes are structurally
and semantically similar. A well-known application of network
alignment is to identify which accounts in different social net-
works belong to the same person. Existing alignment techniques,
however, lack scalability, cannot incorporate multi-dimensional
information without training data, and are limited in the con-
sistency constraints enforced by an alignment. In this paper,
we propose a fully unsupervised network alignment framework
based on a multi-order embedding model. The model learns the
embeddings of each node using a graph convolutional neural
representation, which we prove to satisfy consistency constraints.
We further design a data augmentation method and a refinement
mechanism to make the model adaptive to consistency violations
and noise. Extensive experiments on real and synthetic datasets
show that our model outperforms state-of-the-art alignment
techniques. We also demonstrate the robustness of our model
against adversarial conditions, such as structural noises, attribute
noises, graph size imbalance, and hyper-parameter sensitivity.

Index Terms—network alignment, network embedding, GCN

I. INTRODUCTION

Networks, aka graphs, are structures that naturally capture
relations between entities in data domains and information
systems. Many applications, however, analyse not one, but
multiple networks, e.g., for data discovery [11], social network
analytics [29], knowledge graph reconciliation [40], and pat-
tern matching in protein networks [25]. Network alignment,
the task of pairing nodes between two isomorphic or near-
isomorphic networks such that the paired nodes are simi-
lar w.r.t. network structure and attribute information, is the
foundation to extract valuable knowledge in these applica-
tions [34]. For example, in social networks, the detection
of different accounts (e.g., Facebook, Twitter) of the same
user facilitates personalized advertisement, friend suggestion,
and content recommendation [39]. In bioinformatics, aligning
protein networks may reveal new patterns of protein-protein
interactions, such as cross-species gene prioritization [25].

Network alignment faces challenges related to efficiency,
the richness of incorporated information, and the strictness of
alignment constraints. Network alignment is often formulated
as a maximum bipartite matching problem. Yet, many of its
variants, such as the maximum common subgraph problem,
are NP-hard [2]. Hence, many approaches resort to a matrix
factorization formulation, e.g., IsoRank [32], NetAlign [2],

*Corresponding author

UniAlign [21], FINAL [39], and REGAL [16]. Such spectral
methods fail to deal with very large networks, since the
required computational effort grows quickly with the network
size (e.g., cubic growths for FINAL [39]).

Moreover, networks often comprise heterogeneous infor-
mation including network structure and node features. While
different types of information may be useful for network align-
ment, the lack of a common modality imposes challenges [33].
Information integration may be guided by path-based con-
straints and proximity rules [29]. Yet, such approaches are
domain-specific and require manual user efforts.

Concerning the constraints used for alignment, most tech-
niques employ some strict notion of structural consistency,
e.g., the relation between pairs of nodes shall always be
maintained across two aligned networks. However, such strict
constraints are sensitive to network perturbations. For example,
a person may have more connections in one social network
(e.g., Facebook) than in others (e.g., LinkedIn, YouTube).
Moreover, node pairings can also be one-to-many, especially
for networks with different sizes. In that case, alignment
heuristics that employ strict notions of structural consistency,
such as a one-to-one constraint [25], are no longer applicable.

To address the outlined challenges, this paper proposes
an embedding-based network alignment model. In essence,
our idea is to embed nodes of two networks into multi-
order feature vectors and then align the networks based on
the similarity of their node embeddings. We realize this idea
through the design of a graph convolutional network (GCN)
to learn the embeddings. More specifically, we summarize our
contributions as follows:

• We propose GAlign, a framework for unsupervised net-
work alignment without any prior knowledge on the
relation of the networks (aka anchor links). Since this
framework is grounded in multi-dimensional embeddings,
rich network information (network structure, node fea-
tures) can be represented, regardless of its modality.

• We develop the theoretical background for exploiting the
multi-order nature of GCN for network alignment. We
show that the consistency constraints used separately by
existing techniques can be unified in the same GCN
model. This enables us to incorporate these constraints
directly during node embedding, thereby supporting ex-
pressive constraints beyond strict structural consistency.

• Using this theory, we design a specific GCN model for

85

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00015

network alignment. Unlike existing methods [23, 24, 41]
that separate embedding and alignment, we learn embed-
dings jointly for the networks. Hence, reconciliation of
their embedding spaces is no longer needed.

• We propose an augmented learning process to make the
model adaptive to noise (e.g. violations of consistency
constraints), which are common in real-world networks.
The process includes the design of a perturbation-based
data augmentation and a noise-adaptive loss function.

We evaluate our proposal in extensive experiments on real and
synthetic networks. Our framework not only achieves superior
performance compared to baseline techniques but also exhibits
robustness to noise and network size imbalance.

The remainder is organized as follows. §II introduces a
model and problem statement for network alignment. §III
provides an overview of our approach. §IV discusses the
theoretical background for the design of our specific GCN
embedding model. §V describes how to transform the original
networks into multi-order embeddings. §VI shows how to com-
pute and refine the alignment matrix from the unsupervised
embeddings. Evaluation results are given in §VII, before §VIII
reviews the related work and §IX concludes the paper.

II. MODEL AND PROBLEM STATEMENT

A. Attributed network

An attributed network (or graph) is a data structure that
can be represented as G = (V,A, F), where V is a set of
nodes. A ∈ {0, 1}n×n is an adjacency matrix representing
connections/edges in a graph; i.e. A(u, v) = 1 if there is an
edge from u to v, and A(u, v) = 0 otherwise. F ∈ Rn×m

is a node attribute matrix, assuming the number of nodes
is n and each node has an m-dimensional attribute. Each
row in the attribute matrix F encodes the semantics of the
respective node (e.g., age and marital status of users in social
networks or category of protein in protein-protein interaction
networks). Note that these are attributes that originate from the
application domain. They are not synthetic features produced
by embedding techniques or hand-crafted by experts. Hence,
they do not include any network topology information.

TABLE I: Notation Summary

Symbols Definition

G = (V,A, F) an attributed network
Â adjacency matrix with self loop

N̂(v) set of neighbors of node v include itself
D̂ diagonal degree matrix with D̂i,i = j Âi,j

k number of GCN layers
d(l) embedding dimension at l-th layer
W (l) weight matrix at layer l
H(l) node embeddings at layer l

S alignment matrix

B. Network alignment

Network alignment is the task of identifying corresponding
nodes between two different networks. Without loss of gener-
ality, we select one network as the source network, Gs, and
the other one as the target network, Gt. For each node in

the source network, we aim to recognize, if there are any, its
counterparts in the target network.
Alignment matrix. Network alignment techniques calculate
an alignment matrix S ∈ Rn1×n2 , where n1 and n2 are
the numbers of nodes in Gs and Gt, respectively. S(v, v�)
represents the matching degree between v ∈ Vs and v� ∈ Vt.
Anchor links. Given two networks Gs = (Vs, As, Fs) and
Gt = (Vt, At, Ft), a node pair (v, v�), with v ∈ Vs, v

� ∈ Vt,
is an anchor link, if v is aligned to v�. We refer to v and v�

as anchor nodes. The goal of network alignment is to produce
all potential anchor links, given that little or no ground-truth
information on anchor links is available.

Problem Definition (Alignment matrix computation)
Given two attributed networks Gs = (Vs, As, Fs) and
Gt = (Vt, At, Ft), the problem of network alignment is to
calculate an alignment matrix S where S(v, v�) represents
the matching degree between a node v ∈ Vs and v� ∈ Vt.

This above formulation has two advantages. (i) it enables
scalable calculation, since anchor links can be inferred from
the alignment matrix through ranking rules [16, 20]; and (ii)
it provides flexibility since node pairings can be one-to-many,
which is important for differently sized networks [18, 25, 34].

C. Alignment constraints

Existing works observed two types of constraints that should
hold for anchor links for good alignment performance [16, 39].

Fig. 1: Structural and attribute consistency example

Structural consistency. This constraint is often referred as
the homophily rule: If two nodes have close relation in the
topology in one network, their anchor nodes in the other
network shall maintain this relation [24]. For example, if two
persons are friends in one social network, they are likely to
connect in another social network (Fig. 1). Mathematically, if
v, u are close neighbours in Gs and (u, u�) and (v, v�) are
anchor links, then v�, u� shall be close in Gt.
Attribute consistency. This constraint states that correspond-
ing nodes shall share the same attribute values [16, 39]. For
example, the profile information (e.g., age, email address) of
a single person in different social networks shall be similar
(Fig. 1). Formally, if (v, v�) is an anchor link, then it should
hold that Fs(v) = Ft(v

�) (implying |Fs(v)| = |Ft(v
�)|).

Most existing alignment techniques cannot satisfy these two
consistency constraints at the same time, though, due to their
differences in modality [39]. While there are a few notable
exceptions, they still consider both types of consistencies
in separate steps [16]. In this paper, we show theoretically

86

and empirically that the properties of GCN can be used
to enforce structural consistency and attribute consistency
simultaneously. Moreover, we show that, in practice, these
consistency constraints may sometimes be violated, so that
the model shall be made robust against minor violations.

III. APPROACH OVERVIEW

A. Motivation

From characteristics of real-world datasets [19] and empir-
ical results of the state-of-the-art [16, 21, 39], we argue that
a high-quality network alignment solution should respect:
(R1) Consistency: Structural consistency and attribute consis-

tency shall be respected since these constraints help to
find true anchor links [16, 39]. False positives could
hamper downstream applications, such as personalized
advertisement and friend suggestion. For our setting
(§II-B), this also eliminates false negatives since the
output must compute an anchor for every node.

(R2) Adaptivity: Performance of alignment techniques often
degrades when consistency constraints are violated. In
practice, this is often the case, e.g., topology perturba-
tions that violate structural consistency are common in
social networks. Attribute noise is common as well, e.g.
social network users can register multiple accounts with
different or missing attribute values due to typos, asyn-
chronicity, laziness, privacy, or platform incompatibility.

(R3) Unsupervised: Many existing alignment techniques re-
quire large training data. However, such ground-truth in-
formation is rarely available in real-world networks due
to high labelling costs [29]. For instance, checking users’
background and pairing their accounts manually in social
networks is very time-consuming. Hence, unsupervised
network alignment is desirable.

Several challenges need to be overcome to satisfy these guide-
lines. First, learning of an alignment model has to alleviate the
presence of structural and attribute noise, although the target
network is a permuted version of the source network in ideal
cases [21]. Second, existing embedding-based techniques often
vectorize the two networks independently and create even
more noises since the vectorization is inherently imperfect [4].
They fix the issue by an additional vector-space reconciliation
step, which is however still an approximate process [35].
Third, unsupervised learning is typically more prone to noise
than supervised learning [36]. However, data augmentation
methods to achieve such adaptability over unlabelled graph
data the context of network alignment is still missing.

B. Solution Sketch

In this work, we go beyond the state-of-the-art by devel-
oping an end-to-end network alignment framework, where the
source and the target networks are embedded by a GCN-based
model while satisfying consistency constraints simultaneously.
We provide theoretical motivations (§IV) of using GCN-based
model to unify the attribute and structural information of the
network nodes by vector representations, where the vector-
similarity of two anchor nodes depend on both the topological

and semantic properties. Moreover, we design a consistency
loss to guarantee that the learnt embeddings satisfying (R1).

Thanks to GCN properties, we show that the network
permutation does not affect the embedding of each network
node in §IV. Based on this observation, we develop a data
augmentation method for graph data by adding structural and
attribute noises to the original networks. Then, we design
an adaptivity loss, which measures the distance between the
embeddings of original network and its augmented versions,
to make sure that the alignment can be fully unsupervised (R3)
while being robust to noises (R2).

We train the same GCN-based model for both source and
target networks by a weight-sharing mechanism. This allows
their embeddings to be in a common space without any
labelled data, avoiding the reconciliation step and maximising
the noise tolerance of the model, satisfying (R3).

C. End-to-end network alignment framework

Fig. 2 presents an overview of our model. We first forward
the source and target network through a GCN-based model to
embed network nodes to feature spaces, in which embeddings
are hidden features capturing all structural and attribute infor-
mation. With this structure, our model requires the realisation
of the following functionalities:

Multi-order embedding. In this step, we design a specific
GCN-based model for learning the representations of network
nodes. The model contains several layers; each layer learns
hidden features at a different order of neighbourhood structure
for network nodes (deeper layer, larger neighbourhood). The
model is guaranteed to satisfy consistency constraints via a
consistency loss function. The detailed process of constructing
these multi-order representations is described in §V.

Data augmenter. We utilize data augmentation to improve the
adaptivity of the model, thus boosting the performance of our
unsupervised network alignment. More precisely, we add small
perturbations to the original network to simulate structural
noises and attribute noises. An adaptivity loss function is
defined to minimize the difference between the embeddings
of the original network and its perturbed versions. Details of
this functionality can be found in §V.

Alignment Instantiation. Instead of using only the last-layer
embedding as in existing works, we employ the features at
all layers to determine the alignment result. More precisely,
we first calculate the layer-wise alignment matrix for each
GCN layer and then we fuse these alignment matrices by a
weighted-sum that characterises the importance of each layer
into the final alignment output. The detail is described in §VI.

Alignment Refinement. Before producing the final alignment
matrix, we develop an iterative refinement process to avoid
the effects of real-world noises. First, we determine the stable
nodes (nodes with no noises) by comparing the current embed-
dings across GCN layers. Then, using the current alignment
output as a reference, we adjust the embeddings by amplifying
the influence of stable nodes over time. Details are in §VI.

87

Fig. 2: Overview of GAlign framework

IV. GCN FOR CONSISTENT NETWORK ALIGNMENT

In this section, we provide theoretical motivations to design
a specific GCN model for network alignment, in which GCN
properties guarantee alignment consistency constraints.

A. GCN Model

GCN is a deep neural network model of k layers, denoted
as �f,W 	 where W = {W (1), . . . ,W (k)}, that allows end-
to-end representation learning of graph nodes [5]. Given node
attributes and the structure of a network G, GCN encodes
simultaneously these two type of information into the hidden
features at each layer, which can be used as individual infor-
mation of the network nodes. Formally, the feed-forward pass
is: f (k)(f (k−1)(. . . f (1)(G) . . .)), where the layer l produces
the embedding H(l) = f (l)(.). GCN employs a neighborhood
aggregation scheme f(.) across all layers: the hidden features
of the previous layer construct the features of the next layer:

H(l) = f(G,H(l−1),W (l)) = σ(CH(l−1)W (l)) (1)

where 1 ≤ l ≤ k, C = D̂− 1
2 ÂD̂− 1

2 is the normalized
Laplacian matrix, H(l) is the |V | × d(l) embedding matrix
(H(0) = F), d(l) is the embedding dimension at layer l
(d(0) = m), Â = A + In is the adjacency matrix with
self-connections; In is the identity matrix, D̂ is a diagonal
matrix that D̂i,i = j Âi,j , W (l) ∈ Rd(l−1)×d(l)

is a
trainable weight matrix at layer l, and σ(.) is an activation
function. ReLU is not suitable for alignment task since it
does not distinguish negative values from positive values (i.e.
ReLU(−x) = ReLU(x)). Since activate function has to be
bijective, we use tanh to avoid the loss of information.

B. Permutation Immunity

The target network can be modeled as a permuted version
of the source network [21]. Given the adjacency matrices of
source network As and the target network At, these works
aim to find the permutation matrix P ∗ that minimize the cost
function fcost which captures the consistency constraints:

P ∗ = min
P

fcost(P) = min
P

||PAsP
T −At||F (2)

However, this approach is prone to consistency noise and
restricted to 1-1 alignment. We show that using GCN can
achieve similar or better efficiency with more flexibility.

Proposition 1 Embedding generated by GCN is immune to
the permutation factor. Given At = PAsP

T for a particular
permutation matrix P , we prove that H

(l)
t = PH

(l)
s , where

H
(l)
s and H

(l)
t are the embedding matrices at the layer l of

the model of source and target network, respectively.

Proof: First, we already have H
(0)
t = PH

(0)
s , as the

embeddings at the first layer of network nodes are their
original attribute. Suppose that for layer l, H(l)

t = PH
(l)
s is

true, we will prove that H(l+1)
t = PH

(l+1)
s . We have:

H
(l+1)
t = σ(D̂

− 1
2

t ÂtD̂
− 1

2
t H

(l)
t W (l)) (3)

Because of permutation assumption, we have At = PAsP
T

and Dt = PDsP
T . The Eq. 3 is then equivalent to:

H
(l+1)
t = σ[(PD̂sP

T)−
1
2 (PÂsP

T)(PD̂sP
T)−

1
2PH(l)

s W (l)]

= σ(PD̂
− 1

2
s PTPÂsP

TPD̂
− 1

2
s PTPH(l)

s W (l)) (4)

As P is an orthogonal matrix, PPT = PTP = I . We can
rewrite Eq. 4 as: H

(l+1)
t = σ[P (D̂

− 1
2

s ÂsD̂
− 1

2
s H

(l)
s W (l))] =

Pσ(D̂
− 1

2
s ÂsD̂

− 1
2

s H
(l)
s W (l)) = PH

(l+1)
s

C. From consistency to embedding

We prove that GCN is not only immune to permutation but
also naturally supports the structural and attribute consistency
constraints. In other words, two anchor nodes which share
the same attribute and topology information (i.e. node degree,
neighbours) will have same embeddings at every layer.

Proposition 2 If two nodes v ∈ Gs, v� ∈ Gt have same
degree (deg(v) = deg(v�)) and there exists a matching
M = {(t, t�)|t ∈ N̂s(v), t

� ∈ N̂t(v
�)} between the neighbor

sets of two nodes such that for every matched pairs (t, t’):
• Degree is equal: deg(t) = deg(t�)
• Embedding at the layer l is equal: H(l)

s (t) = H
(l)
t (t�)

Then embeddings of v and v� at layer l + 1 are the same,
which means: H(l+1)

s (t) = H
(l+1)
t (t�).

88

Proof: At layer (l + 1) the embedding of v and v� is:

H(l+1)
s (v) = σ g(v)

t∈N̂s(v)

g(t)H(l)
s (t)W (l) (5)

H
(l+1)
t (v�) = σ g(v�)

t�∈N̂s(v�)

g(t�)H(l)
t (t�)W (l) (6)

where g(t) = deg(t)−
1
2 . Since H

(l)
s (t) = H

(l)
t (t�) and g(t) =

g(t�), we have H
(l+1)
s (v) = H

(l+1)
t (v�).

V. MULTI-ORDER EMBEDDING

In this section, we design a specific GCN model to embed
the nodes of the source and target networks into a unified
vector space, in which the embeddings of true anchor nodes are
similar, allowing us to retrieve the alignment result efficiently.

A. GCN-based embedding model

The model contains k layers; each layer learns hidden fea-
tures at a different order of neighbourhood structure for each
network node. Starting from the lowest embedding H(0) that
presents the node attributes, the model iteratively aggregate
the hidden feature of every node in one layer with features of
its adjacent nodes to produce the hidden feature for this node
in the next layer H(1), and so on (see Eq. 1). This message-
passing scheme allows the model to unify attribute information
with topology information at different orders [8].

Existing works use only the embeddings in the final layer
H(k) of GCN for representing the network nodes [4]. How-
ever, there is a trade-off: deeper layers contain more struc-
tural information but prone to structural noises and vice-
versa (shallower layers focus on more attribute consistency
but prone to attribute noises). Indeed, the hidden features
H(l) can be considered as the collective information of l-hop
neighbourhood of nodes [5]; and thus, a larger neighbourhood
would hinder individual information of each node.

For this reason, we leverage embeddings at all layers.
Formally, each node v is associated with a set of embeddings
{H(0)(v), . . . , H(k)(v)}, or so-called multi-order features.
Using all layers leverage the structural information locally
and globally (from short-range to long-range neighbourhood).
However, the number of GCN layers k is still a hyperparameter
and we show how to choose a suitable k in the experiments.

B. Consistency loss

To make the embedding satisfy the consistency constraints
(see R1), we design a consistency loss function that encourages
the nodes that have similar neighbourhood structure to have
similar embeddings while making those of unrelated nodes
highly distinctive from each other. On the one hand, lower-
order embeddings (shallower layers) capture local information
of a node such as neighbourhood structure. However, since
there could be many nodes with the same local information
in a network, the lower-order embeddings of different nodes
are often similar even if they are far away from each other
or, making the alignment difficult. On the other hand, high-
order embeddings might collapse the embedding distribution.

Embedding at deeper layers can be seen as the result of aver-
aging large number of nodes into one vector, leading to similar
embeddings due to the law of large number. Nevertheless,
taking neighbours within a large number of hops means the
information of many nodes can appear in each other’s context,
pulling their feature vectors closer in the embedding space.
Balancing this trade-off, we compute the loss function from
the embeddings at all layers to complement each other:

Jc(G) =
l∈[1...k]

||D̂− 1
2 ÂD̂− 1

2 −H(l)H(l)T ||F (7)

where ||.||F denotes the Frobenius norm. We use normalized
Laplacian matrix instead of adjacency matrix with the aim to
enrich the embeddings with more topology information, which
avoids collapsing the embedding space.

C. Adaptivity loss

Perturbation-based Network Augmentation. We utilize data
augmentation to enforce the adaptivity of the model with
the noises. Intuitively, violations of consistency constraints
are only caused by local differences (noises) in the network
topology or node attributes. For example, two friends in a
social network might not be friends in another social network.
We follow a perturbation-based augmentation approach [36]
to simulate structural and attribute violations. The original
network is injected with small perturbations by adding or
removing edges randomly (structural noises) and changing the
node attributes randomly (attribute noises). This allows the
model to be robust for various types of noises, as they can
appear in an unpredictable manner, by enforcing the model to
perform good alignments for all noisy versions.

Formally, starting from an original network G = (V,A, F)
(source or target network), we produce an augmented network
Gp = (Vp, Ap, Fp) with adjacency matrix Ap by:

Ap = PAPT (8)

where P is a random permutation matrix, with Pij = 1 means
that node i from the original network corresponds to node j
in the augmented network, otherwise Pij = 0.

On the one hand, we add structural noises to Gp by
removing or adding edges with probability ps (via element-
wise multiplication of adjacency matrix with a zero-mask
matrix). On the other hand, we add attribute noises to a
random node v depending on the type of attributes. For binary
attributes, we randomly change the position of non-zero entries
of each attribute vector Fi with probability pa. For real-value
attributes, we adjust each element Fij in each attribute vector
Fi by a random amount in the range [0, pa ∗ Fij].

Noise-adaptive loss function. Intuitively, the source network
should align with both the target network and its perturbed
versions, and vice-versa. This helps the alignment to be robust
to consistency violations (see R2). To this end, we design
a noise-adaptive loss function that minimizes the difference

89

between the multi-order features of the network nodes before
and after perturbation. Formally, the adaptivity loss is:

Ja(G,G∗) =
v∈G,v∗∈G∗ l∈1..k

σ<(||H(l)(v)−H(l)(v∗)||F)
(9)

where v and v∗ are the corresponding nodes in original
network G and augmented network G∗. Here, we apply a
confidence-based mechanism to mask out the cases when the
perturbation becomes uncontrollable. In particular, σ<(x) is
an activation function, which is equal to x if x is less than a
perturbation threshold and 0 otherwise. This is because large
perturbation could destroy the neighbourhood structure of a
node; and thus, create undesirable embedding differences that
might affect the sanity of the whole model.

D. Put It Altogether

Finally, we combine two loss functions as follow:

J(G) = γJc(G) + (1− γ)
G∗

Ja(G,G∗) (10)

where γ is a hyper-parameter used to balance the losses.
Alg. 1 illustrates the whole multi-order feature construction

process. The core idea of our training algorithm is the weight-
sharing mechanism, in which the GCNs of the source network,
the target network, and the augmented networks use the same
weight matrix W (l) at every layer l. Otherwise, the learnt
embeddings of different networks will end-up in different
embedding spaces, breaking the alignment purposes in the first
place. Moreover, the weight-sharing mechanism guarantees
that the consistency constraints are satisfied, as proven in §IV.

Algorithm 1 Augmented learning for multi-order embedding
1: Input: Source network Gs, target network Gt

2: Output: Multi-order node embeddings of Gs and Gt

3: Construct GCN model �f,W �
4: Construct augment graphs {G∗}s for Gs

5: Construct augment graphs {G∗}t for Gt

6: for G = (V,A, F) in {Gs, Gt} ∪ {G∗}s ∪ {G∗}t do
7: Initialize layer-0 embeddings H

(0)
G = F

8: for some epochs do
9: for G in {Gs, Gt} ∪ {G∗}s ∪ {G∗}t do

10: Compute multi-order embeddings H(l)
G s = f(G,H

(l−1)
G ,W) for

1 ≤ l ≤ k by Eq. 1
11: for G in {Gs, Gt} do
12: Compute the loss function J(G) by Eq. 10
13: Update parameters W by back propagation
14: return Hs and Ht

VI. ALIGNMENT COMPUTATION

In this section, we show how to exploit the learnt multi-
order embeddings to compute the alignment matrix effectively.

A. Alignment Instantiation

As aforementioned, the embeddings at different GCN lay-
ers represent feature information of each node at different
topological order. Shallow layers tend to handle local neigh-
bourhood information, while deeper layers tend to capture
global network topology. Combining all layers simultaneously

is beneficial as true anchor nodes should have not only similar
local features but also similar global features.

However, there are issues to implement this idea. First, the
layers could be not equally important. For example, the first
layer carries neighbourhood structure of each node, but easily
suffer from structural noises. Deeper layers are more robust to
structural noises since they consider a larger range of topology
information, but might be less useful for aligning individual
nodes. Second, the node features of the source network and
target network might not have the same embedding space.
Existing alignment frameworks often perform an additional
reconciliation step, which however still have discrepancy and
cause instability of alignment output [23, 24, 35, 41].

Layer-wise alignment matrix. To mitigate these issues, we
first define the layer-wise alignment matrix aggregated from
the embeddings at each layer l ∈ [0, k]:

S(l) = H(l)
s H

(l)
t

T
(11)

As the weights of the GCN models are shared between the two
networks, their embedding spaces are the same and thus their
alignment can be measured directly by the analogy of their
embeddings. Each layer-wise alignment matrix represents the
alignment scores for all pairs of nodes between the source and
target networks. In other words, it captures, for each node, the
alignment candidates according to all embedded structural and
attribute information at the current layer.

Aggregated alignment matrix. We aggregate all layer-wise
alignment matrices into a single alignment matrix:

S =

k

l=0

θ(l)S(l) (12)

where θ(l) is the importance of layer l and we treat them as
hyper-parameters. For one-to-one network alignment setting,
the anchor links can be instantiated straightforwardly by taking
the top-1 target node (highest alignment score) for each source
node. Other alignment settings such as one-to-many can be
instantiated as well, but out of the scope of our paper.

B. Alignment Refinement

Another issue when computing alignment from embeddings
is the effect of adversarial conditions (or noises, for short),
which refers to structural and attribute noises as well as
constraint violations and graph size imbalance. Intuitively,
nodes with noises will bring instability in their embeddings
over neighbouring nodes. As a result, noises will make the
embeddings of true anchor nodes different, leading to incorrect
alignment scores. However, the vice-versa is not true since the
embedding difference is only caused by noises and we do not
know the true alignment before-hand. We design an iterative
refinement process to detect and mitigate the effects of noises
on the aggregation of embeddings into alignment matrix.

Stability of embeddings. The first step is to evaluate the
stability of node embeddings. As aforementioned in §IV-B, the
target network can be considered as a permuted version of the

90

source network with the noises added. Since GCN embedding
is immune to permutation (Prop. 1), the embedding difference
between two true anchor nodes is only caused by consistency
noises. Thanks to this property, we define stability as follows.
Given a node v and their corresponding embeddings at all
layers H(1), . . . , H(k), we want to determine if node v is a
stable node or not. A node v ∈ Vs is defined as stable if
its anchor nodes (highest alignment scores of v) in all layer-
wise alignment matrices are the same and the corresponding
alignment scores must be higher than a confident factor λ:

argmaxu�∈Vt
S(l)(v, u�) = v� ∀0 ≤ l ≤ k

maxu�∈Vt S
(l)(v, u�) > λ ∀0 ≤ l ≤ k

(13)

The motivation behind this formulation is that if a node is
stable, its anchor node should be stable as well. In other words,
a pair of anchor nodes is stable if they have similar embeddings
at any layer of the model. On the other hand, nodes that do
not satisfy Eq. 13 are called unstable nodes.

Noise-aware propagation of embeddings. In terms of GCN
aggregation, we do not want unstable nodes to aggregate their
information into neighbouring nodes. We propose a weighted
propagation mechanism for GCN embeddings such that more
stable nodes have greater influence and vice-versa:

AGGw X(l) = α(v)g(v)

t∈N̂(v)

α(t)g(t)H(l−1)(t)W (l)

where X(l) = {H(l)(t), ∀t ∈ N̂(v)} and g(t) = deg(t)−
1
2 .

α(v) is the influence factor of node v. Intuitively, if v is a
stable node, its influence should be intensified:

α(v) = β × α(v) (14)

where β > 1 is an accumulation constant. Put it altogether,
the new aggregation rule of GCN is:

H(l+1) = σ(D̂q
− 1

2 ÂD̂q
− 1

2H(l)W (l)) (15)

where D̂q = D̂Q and Q is a diagonal matrix (Q(v, v) = α(v)).

Alignment Algorithm. The whole process of alignment al-
gorithm is put altogether as Alg. 2. At the beginning, we
aggregate the embeddings into layer-wise alignment matrices
as in §VI-A. Then, the alignment is refined by a searching
strategy. First, we initialise the influence factor of each node to
1. Next, an iterative process is performed. On the one hand, we
use the current alignment matrices as reference anchor links
(highest alignment scores) to detect stable nodes. The influence
factors of those nodes in turn are increased. On the other hand,
those factors are used to refine the current embeddings, which
is then aggregated into new alignment matrices. However, the
search space of this iterative process is not uniform since there
is no supervision information. We employ a greedy selection
based on the criterion that true anchor nodes should have
embeddings close to each other as much as possible. More
precisely, we keep track the sum of top-1 alignment scores for
each refined alignment matrix, i.e. g(S) = v∈Vs

max(S(v)),
and return the one with best score in the end.

Algorithm 2 Alignment computation with stability refinement
1: Input: Gs and Gt: source and target graphs

Source embeddings H
(0)
s , . . . , H

(k)
s

Target embeddings H
(0)
t , . . . , H

(k)
t

2: Output: Fine-tuned alignment matrix S
3: Compute layer-wise alignment matrices {S(l)}kl=0 from embeddings

{H(l)
s , H

(l)
t }kl=0 by Eq. 11

4: Qinit
s = I[ns×ns], Q

init
t = I[nt×nt] � Initialize all influence factors

to 1
5: Initialize gbest = −1, Sbest = 0[ns×nt]
6: for some iterations do
7: Find stable nodes Us and Ut using Eq. 13
8: for v ∈ Us, v� ∈ Ut do
9: Update Qs(v, v) and Qt(v�, v�) using Eq. 14

10: Update embeddings {H(l)
s , H

(l)
t }kl=1 using Eq. 15

11: Update {S(l)}kl=0 from {H(l)
s , H

(l)
t }kl=0 using Eq. 11

12: Compute aggregated alignment matrix S by Eq. 12
13: if g(S) = v∈Vs

max(S(v)) > gbest then
14: gbest = g(S) Sbest = S

15: return Sbest

C. Complexity Analysis

Without loss of generality, we rely on: n as the number of
nodes, d as the number of feature dimensions, and e as the
number of edges (non-zero entries of adjacency matrix).

Time Complexity. There are two steps to analyse:
• Multi-order embedding: the normalized Laplacian matrix
C is computed once. Since the adjacency matrix Â is
sparse and D̂ is diagonal matrix, the time complexity for
calculating C is O(e). Therefore, the propagation of k
GCN layers takes O(k(ed+ nd2)) = O(ed+ nd2).

• Alignment computation: first the refinement process relies
on the forward pass, which takes O(ed+ nd2) as above.
Second, finding stables nodes take O(kn2). Updating the
influence factors of stable nodes in worst case is O(n)
(all nodes are stable).

Therefore, the total time complexity is O(ed+ n(d2 + 1)).

Space Complexity. There are also two steps to analyse:
• Multi-order embedding: First, we need to store embed-

dings at every layer, which takes O(knd). Second, we
need to store trainable parameters at every layer, which
takes O(kd2). Third, the normalized sparse Laplacian
matrix C takes O(e) space complexity. Put it all together,
the space complexity of embedding step is O(nd+d2+e).

• Alignment computation: We do not need to store the
whole alignment matrix S in memory. All operations we
use on S is finding stable nodes, which can be done by
separately iterating the rows of S. In other words, we only
need to compute and store one-row vector of S from the
embeddings at each iteration, which takes O(n) space.

In sum, the total space complexity is O(n(d+1)+d2+ e).

VII. EXPERIMENTAL EVALUATION

Our experiments answer the following research questions:
(RQ1) Does our model outperform the baseline methods?
(RQ2) How does each component of our model matter?
(RQ3) Is our model adaptive to adversarial conditions?

91

(RQ4) Is our model sensitive to hyper-parameters?
(RQ5) Can our technique be interpreted qualitatively?

In the remainder, we first describe our experimental setting
(§VII-A). Then we present our empirical evaluations, includ-
ing end-to-end comparison (§VII-B), adaptivity to adversarial
conditions (§VII-D), and hyperparameter sensitivity (§VII-E).

A. Experimental setup

Real datasets. We use three state-of-the-art alignment datasets
of 6 real-world networks with different domains.

• Douban Online vs Douban offline: Douban network is a
Chinese social network with nodes as users and edges as
friendships [38], containing 1118 anchor links [39].

• Flickr vs Myspace: The alignment ground-truth between
subnetworks of Flickr and Myspace is extracted and
validated by [39], containing 323 anchor links.

• Allmovie vs Imdb. Allmovie network is constructed from
Rotten Tomatoes website1. Two films have an edge con-
necting them if they have at least one common actors.
Imdb network is constructed in a similar way from Imdb
website2. The alignment output is constructed by the
identity of the film, containing 5176 anchor links.

TABLE II: Statistics of real-world networks

Networks #Nodes #Edges #Attributes
Douban Online 3906 8164 538
Douban Offline 1118 1511 538
Flickr 5740 8977 3
Myspace 4504 5507 3
Allmovie 6011 124709 14
Tmdb 5713 119073 14
Bn 1781 9016 20
Econ 1258 7619 20
Email 1133 5451 20

Synthetic data. We further synthesise alignment data to
comprehensively evaluate adversarial conditions such as noises
or graph size imbalance. The adversary level is controlled by a
synthesis procedure similar to §V-C. For an original network,
we generate a noisy version and perform network alignment
between the two versions (node identity is preserved, indi-
cating the alignment ground-truth). We apply the following
real-world networks as they do not have alignment data yet.

• bn: represents a part of brain structure [1]. Each node of
the network depicts a brain voxel, and the edge represent
one fibre tract that connects two voxels.

• econ: represents an economic model of Victoria state,
Australia during the banking crisis in 1880 [30]. The
nodes represent the organisations located in the state
(e.g. firms, banks), and the edge represent the contractual
relationships between them.

• email: is generated from email data of European univer-
sities [30]. The nodes represent the email addresses, and
the edges between the any two addresses are formed if
they both sent and received emails from each other.

Table II summarises the networks used for alignment.

1https://www.kaggle.com/ayushkalla1/rotten-tomatoes-movie-database
2https://www.kaggle.com/jyoti1706/imdbmoviesdataset

Baseline methods. We study five representative methods:

1) REGAL: is a spectral method which models alignment
matrix by topology and nodes’ feature similarity then
employs low-rank matrix approximation speed-up [16].

2) IsoRank: is a spectral approach which propagates the pair-
wise node similarity over the network with the homophily
principle assumption, which states that two corresponding
nodes in two networks connect to similar characteristic
neighbours [32].

3) FINAL: is a spectral technique which defines a model
with three criteria, namely structure consistency, node
feature consistency and edge feature consistency to tackle
alignment problem on attributed networks [39].

4) PALE: is an embedding-based technique which learns
nodes embedding by maximising the co-occurrence like-
lihood of edge’s vertices then applies linear or multi-layer
perceptron (MLP) as mapping function [24].

5) CENALP: is an embedding-based model that unifies
network alignment and link prediction tasks in a unified
model, which first leverages a tailored biased random-
walk strategy across the networks, then learns nodes
embedding by maximising the co-occurrence likelihood
of nodes within the walks [7].

It is worth noting some baselines require supervision data
in the form of prior alignment matrix (FINAL and IsoRank)
and partial ground truth to reconcile embedding spaces (PALE
and CENALP). To respect their original settings (even though
our model is handicapping), we use 10% of ground truth
for training (PALE and CENALP) and generating the prior
alignment matrix if it is not available (FINAL and IsoRank).

Metrics. We evaluate network alignment with state-of-the-art
metrics in both prediction perspective and ranking perspec-
tive [31]. For prediction perspective, we employ Success@q
(aka Accuracy@q [39]), which indicates whether the true
positive match occurs in top-q candidates. More precisely, for
each anchor pair (v∗s , v

∗
t) in the ground-truth, if the alignment

score S(v∗s , v
∗
t) is within the q-highest values in the row S(v∗s)

of the alignment matrix S, the alignment output for node v∗s
is recorded as a successful case:

Success@q =
v∗
s∈Vs

1S(v∗
s , v

∗
t) ∈ top-q S(v∗

s)

#{True anchor links} (16)

For ranking perspective, we use Mean Average Precision [24]
(aka Mean Reciprocal Rank under pair-wise setting):

MAP = mean
1

ra
(17)

where ra is the rank of true anchor target in the sorted list of
anchor candidates. Another popular ranking metric is AUC,
which reflects the trade-off between precision and recall. In
network alignment setting where the output must yield an
anchor link for every node, AUC can be simplified to [31]:

AUC =
#{Negative match}+ 1− ra

#{Negative match} (18)

92

Hyperparameter tuning. If not stated otherwise, the hyper-
parameters are set as follows: γ = 0.8 (balancing factor
between consistency loss and adaptivity loss), β = 1.1
(accumulation factor of stable nodes), λ = 0.94 (embedding
stability threshold), k = 2 (number of GCN layers), the
importance weights θ(l) of all GCN layers are equal (= 1

k+1).
Embedding size of all GCN layers d(l) = 200. On the other
hand, we also study hyper-parameter sensitivity in §VII-E. For
baseline methods, we report the best performance following
the parameter tuning of their original papers.
Reproducibility environment. The results are averaged over
50 runs to mitigate randomness. All experiments are conducted
on an AMD Ryzen ThreadRipper 3.8 GHz system with 64 GB
of main memory and four GTX Titan X graphic cards. We use
Pytorch for implementation and Adam as gradient optimiser.

B. End-to-end comparison

Effectiveness. Table III answers (RQ1) by showing the end-
to-end comparison of our alignment model against baseline
methods. In general, our model outperforms all the baselines
across all datasets in terms of MAP, AUC, and Success@1
metrics. FINAL is the best method among the baselines and
emerges to compete our model in Allmovie-IMDB dataset in
terms of Success@10. This is because FINAL is a state-of-
the-art method that, similar to us, takes into account structural
information and node attribute information. Moreover, FINAL
also considers the supervision data in the form of prior
alignment matrix, while ours do not examine any.

A key finding is that alignment methods ill-perform signifi-
cantly in Flickr - Myspace dataset. This could be explained by
the fact that the networks are sparse with average degree less
than five, making the structural consistency often being vio-
lated. Methods that strictly follow this consistency constraint
would fail in such cases. For example, it is normal for two
peoples to be friends on Facebook but not connected to each
other on Twitter; or one person could use different profile
attributes for different social network accounts.
Efficiency. The running time of alignment techniques is shown
in Table III. REGAL is the fastest because of low-rank matrix
approximation. Our model stays in top-3 with less than 6 min.

C. Ablation test
We answer (RQ2) by comparing our model and its variants:
• GAlign-1: No data augmentation for adaptivity. The loss

function contains only the consistency term (Eq. 7).
• GAlign-2: The refinement step (§VI-B) is removed. The

learned multi-order embeddings are used directly to com-
pute the alignment matrix (§VI-A).

• GAlign-3: Only the embeddings at the final layer of GCN
is used (as in traditional works) instead of using the multi-
order embeddings (§VI-A).

Table IV presents the result with only important metrics and
datasets due to space limitation. It can be seen that our original
model GAlign outperforms other variants, which proves the
importance of our data augmentation and refinement mecha-
nisms. In particular, GAlign has Success@1 ≈20% better than

GAlign-3, which confirms the correctness of using multi-order
embeddings over traditional single-order embeddings.

D. Adaptivity to adversarial conditions

We answer (RQ3) by evaluating several adversarial factors.

Structural noises. In this experiment, we study the effect of
structural noises. The noises are added by removing edges
randomly. Fig. 3 illustrates the Success@1 results, where the
ratio of edge removal is varied from 10% to 50%. In general,
all methods suffer performance drop when the noise level
increases. Our model outperforms the baseline methods, with
the success@1 goes from nearly 100% to around 80% when
the edges removal ratio goes from 10% to 50%. Our model
keeps the margin of 20% with the runner-up (FINAL). The
performance of the two models PALE and REGAL drop more
dramatically than the others. IsoRank does not perform well
even when the noise level is low, as IsoRank may need more
prior supervised information.

Attribute noises. This experiment studies the effect of at-
tribute noises. The noises are added by changing the nodes’
attribute randomly. Fig. 4 depicts the results with the attribute
noise level varies from 10% to 50%. We only consider
REGAL, FINAL and CENALP as baselines because other
methods do not utilise attribute information. In general, the
alignment output is worse when the noise ratio increases.
Interestingly, our model maintains superior performance at all
levels of noise and across datasets, with the Success@1 drops
from nearly 100% to 60% when the noises go up to 50%. It
is worth noting that the attribute noise has more effect on our
model than the structural noise. For the baselines, REGAL are
more robust to attribute noise than FINAL and CENALP.

Isomorphic level. This experiment investigates whether align-
ment methods can be used for an orthogonal problem of
reconciling different types of networks (e.g. social network
vs citation network). Fig. 8 depicts the result, where we vary
the isomorphic level by synthesising the source and target
networks from an original network such that two of them share
a ratio of original nodes as overlap. In general, the alignment
performance drops when the isomorphic level is small. How-
ever, our model outperforms in all cases, with a Success@1
margin of 30% better than the runner-up (REGAL).

E. Hyperparameter sensitivity

This experiment answers (RQ4). Only important hyperpa-
rameters are shown due to space limitation.

Number of GCN layers. Fig. 6 shows the effect of the
number of GCN layers k, on our model performance, where
{H(l)}kl=1 column represents our multi-layer approach and
other columns represent the cases of using the embeddings
at that layer only. While k = 2 produces the best result, it is
interesting to see that using more number of layers does not
increase alignment performance. This result confirms existing
empirical evaluations [37], which point out the paradox that
too deep GCNs are often worse than 2-layer models.

93

TABLE III: Network alignment comparison on real-world datasets

Dataset Metric GAlign CENALP PALE REGAL IsoRank FINAL

Douban Online-Offline

MAP 0.5632 0.3537 0.1901 0.1005 0.1299 0.5539
AUC 0.9917 0.7429 0.8899 0.9107 0.9005 0.9872
Success@1 0.4526 0.2572 0.0775 0.0456 0.0903 0.4383
Success@10 0.7800 0.4618 0.4479 0.2030 0.2048 0.7710
Time(s) 26.7 10157.2 68.1 14.3 25.5 198.7

Flickr-Myspace

MAP 0.1608 0.1322 0.0059 0.0990 0.0085 0.0429
AUC 0.9738 0.8670 0.5444 0.9692 0.6470 0.6130
Success@1 0.0774 0.0687 0.0000 0.0464 0.0000 0.0206
Success@10 0.3127 0.2302 0.0206 0.1950 0.0275 0.0722
Time(s) 93.1 25520.0 123.0 33.9 222.6 249.1

Allmovie-Imdb

MAP 0.8496 0.5693 0.7601 0.1888 0.5271 0.8459
AUC 0.9971 0.9581 0.9868 0.9862 0.9596 0.9885
Success@1 0.8214 0.4866 0.6947 0.0953 0.4653 0.7647
Success@10 0.9003 0.8327 0.7159 0.3869 0.6427 0.9609
Time(s) 336.5 57401.0 1679.7 76.1 323.7 353.3

(a) BN (b) Econ (c) Email
Fig. 3: Robustness against structural noises

(a) BN (b) Econ (c) Email
Fig. 4: Robustness against attribute noises

(a) BN (b) Econ (c) Email
Fig. 5: Robustness against isomorphic level

TABLE IV: Ablation test

Dataset Metric GAlign GAlign-1 GAlign-2 GAlign-3

Douban MAP 0.5632 0.5577 0.5622 0.3467
Success@1 0.4526 0.4472 0.4453 0.2290

Allmovie-Imdb MAP 0.8496 0.8466 0.6894 0.6934
Success@1 0.8214 0.8170 0.6100 0.6376

Importance of GCN layers. Table V shows the alignment

performance with different setup of importance weights θ(l)

of GCN layers. Here, the weights represent the relative im-
portance of one layer over another (their sum is 1). It can
be seen that using only one layer (corresponding weight = 1)
does not lead to the best performance and sometimes degrades
the alignment output significantly (especially when using only
node attributes). Interestingly, the best case happens when
we put most of importance in the middle layer (θ1 = 0.5),

94

less importance in the deeper layer (θ2 = 0.166), and more
importance in the shallower layer (θ0 = 0.33). This is because
each network has a particular structural degree (e.g. diameter,
communities, node degrees); and thus, finding the right amount
of neighbouring information is important.

Embedding dimension. Fig. 7 studies the sensitivity of the
embedding dimension of GCN layers. In general, users should
not choose a high number of dimensions as it does not increase
the performance (Success@1) significantly while the time and
space complexity definitely become larger.

F. Qualitative study

We answer (RQ5) by demonstrating our whole pipeline
on a toy dataset, which is extracted from 10 movie pairs
of the AllMovie - IMDB dataset. The node attribute is the
movie categories. The multi-order embedding step (§V) is
visualised by t-SNE in: (i) Fig. 8a for embeddings at final
layer (traditional), (ii) Fig. 8b for the multi-order embeddings
(the embeddings at all layers are concatenated). It can be seen
that the multi-order approach produces closer embeddings for
anchor nodes. The refinement step (§VI-B) is visualised in
Fig. 8c, which improves the result by making the embeddings
of anchor nodes more distinctive to others (e.g. embeddings
of ”School Ties” and ”Duets” are separated after refinement).

VIII. RELATED WORK

The comparative network analysis has been studied for
decades [10]. One classical problem is network matching,
where the similarity level of two networks are determined,
with various techniques such as network distances [3], network
properties [14] and network kernels [17]. Another problem
is network reconciliation, where two different networks are
connected for data integration [22, 26]. Our work solves the
recent network alignment problem, which finds anchor links
between an original network and its variants [2, 29, 32, 34].

A. Network alignment

Classical approach. Basic methods use string distance metrics
to compare the name or the description of the nodes (e.g. TF-
IDF, Jaccard, Levanstein, Euclidean) [6, 27]. However, they are
prone to textual noise and fail to utilize the topology informa-
tion. Some other techniques consider external knowledge [15]
or internal structure-based constraints [12]. However, they are
domain-specific and requires intensive feature engineering.
Instead of such trial-and-error, our model is end-to-end, saving
human efforts and adapting to various adversarial conditions.

Spectral (Matrix factorisation) approach. Many approaches
use matrix factorisation to compute the alignment matrix
directly [34]. The classic IsoRank [32] propagates the pairwise
node similarity along with structural consistency over the
network. NetAlign [2] models the alignment problem as an
integer quadratic programing problem and solves by a belief
propagation. FINAL [39] leverages network structure, node
feature and edge feature. REGAL [16] employs low-rank
matrix approximation to speed up calculation. However, these

approaches struggle to deal with large-scale networks due to
the sparsity and massive size of the adjacency matrices.
Embedding-based approach. With the appearance of network
embedding techniques [13]; alignment techniques leverage
their scalability to deal with large networks. PALE [24]
learns nodes embedding by maximising the co-occurrence
likelihood of edge’s vertices then applies linear or multi-layer
perceptron (MLP) as mapping function. IONE [23] uses the
same mapping function as PALE, but its embedding process
takes into account second-order node similarity. DeepLink
[41] employs unbiased random walk to generate embeddings
using skip-gram then using auto-encoder and MLP to construct
mapping function. However, these methods rely only topology
information and therefore remain vulnerable to structure noise,
which is very common in real-world networks.

Our work goes beyond the state-of-the-art theoretically and
empirically by leveraging multi-order properties of GCN for
consistent and unsupervised network alignment. Similar to our
approach is [4]; however, they do not consider the violation
cases of consistency constraints, which is common in real-
world networks. We are the first to make the alignment model
adapt to different types of noises via network augmentation.

B. Network embedding

Network embedding maps network nodes to a low-
dimensional embedding space [5, 13], whose vectors can be
used as features for various machine learning tasks such as net-
work alignment [23, 24]. Matrix-factorization methods attempt
to represent the topological relationship of network nodes
in a matrix (e.g. node adjacency matrix, Laplacian matrix),
then adopt factorization techniques directly on this matrix to
obtain the embeddings [13]. Random-walk methods generate
the random walks rooted from the network nodes, then learn
the embeddings for the nodes so that the embeddings can
capture the nodes’ co-occurrences in the walks [28]. Deep
learning methods leverage neural architectures, such as graph
neural network and autoencoder, to incoporate node features
and inductive capability in the same model [5, 9].

In this paper, we develop a specific network embedding
model for network alignment by multi-order GCN. Unlike
existing embedding-based techniques, our framework is fully
unsupervised, which minimises human efforts.

IX. CONCLUSION

Our paper proposes a novel framework of fully unsupervised
network alignment for attributed networks It is built on top of
a multi-order embedding model that leverages the properties
of GCN to guarantee consistency constraints. Moreover, the
model is augmented with a data perturbation method to make
the alignment adaptive to noises and consistency violations,
which are all neglected by existing baselines. Especially, we
propose an alignment refinement to detect potential noises, ad-
just the embedding accordingly, and make the alignment out-
put robust to structural differences and attribute mismatches.
The experiments show the superiority of our model, especially
in Success@1, which are crucial for high-quality applications.

95

Fig. 6: Effects of #GCN-layers against Success@1
(w.r.t. embeddings used to compute alignment matrix)

TABLE V: Layer Weights
θ0 θ1 θ2 Success@1

0.33 0.33 0.33 0.8214
0.33 0.50 0.17 0.8002
0.33 0.17 0.50 0.8179

0.00 0.67 0.33 0.7120
0.67 0.00 0.33 0.7820
0.33 0.67 0.00 0.7298

0.00 1.00 0.00 0.6082
0.00 0.00 1.00 0.6469
1.00 0.00 0.00 0.0027

Fig. 7: Embedding dimension

(a) Traditional embeddings (b) Multi-order embeddings (c) Multi-order embeddings after refinement
Fig. 8: Qualitative study

REFERENCES

[1] K. Amunts, C. Lepage, et al. “BigBrain: an ultrahigh-resolution 3D
human brain model”. In: Science (2013), pp. 1472–1475.

[2] M. Bayati, M. Gerritsen, et al. “Algorithms for large, sparse network
alignment problems”. In: ICDM. 2009, pp. 705–710.

[3] H. Bunke. “Recent developments in graph matching”. In: ICPR. 2000,
pp. 117–124.

[4] C. Chen, W. Xie, et al. “Unsupervised Adversarial Graph Alignment
with Graph Embedding”. In: arXiv preprint arXiv:1907.00544 (2019).

[5] H. Chen, H. Yin, et al. “Exploiting Centrality Information with Graph
Convolutions for Network Representation Learning”. In: ICDE. 2019,
pp. 590–601.

[6] W. W. Cohen, P. Ravikumar, et al. “A Comparison of String Distance
Metrics for Name-Matching Tasks.” In: IIWeb. 2003, pp. 73–78.

[7] X. Du, J. Yan, et al. “Joint Link Prediction and Network Alignment
via Cross-graph Embedding”. In: IJCAI. 2019, pp. 2251–2257.

[8] C. T. Duong, T. D. Hoang, et al. “On Node Features for Graph Neural
Networks”. In: arXiv preprint arXiv:1911.08795 (2019).

[9] C. T. Duong, H. Yin, et al. “Parallel Computation of Graph Embed-
dings”. In: arXiv preprint arXiv:1909.02977 (2019).

[10] F. Emmert-Streib, M. Dehmer, et al. “Fifty years of graph matching,
network alignment and network comparison”. In: Inf. Sci (2016),
pp. 180–197.

[11] R. C. Fernandez, E. Mansour, et al. “Seeping semantics: Linking
datasets using word embeddings for data discovery”. In: ICDE. 2018,
pp. 989–1000.

[12] F. K. Glückstad. “Terminological ontology and cognitive processes in
translation”. In: PACLIC. 2010, pp. 629–636.

[13] P. Goyal and E. Ferrara. “Graph embedding techniques, applications,
and performance: A survey”. In: KBS (2018), pp. 78–94.

[14] W. Hayes, K. Sun, et al. “Graphlet-based measures are suitable for
biological network comparison”. In: Bioinformatics (2013), pp. 483–
491.

[15] W. He, X. Yang, et al. “A hybrid approach for measuring semantic
similarity between ontologies based on wordnet”. In: KSEM. 2011,
pp. 68–78.

[16] M. Heimann, H. Shen, et al. “REGAL: Representation Learning-based
Graph Alignment”. In: CIKM. 2018, pp. 117–126.

[17] T. Horváth, T. Gärtner, et al. “Cyclic pattern kernels for predictive
graph mining”. In: KDD. 2004, pp. 158–167.

[18] T. T. Huynh, C. T. Duong, et al. “Network Alignment by Repre-
sentation Learning on Structure and Attribute”. In: PRICAI. 2019,
pp. 698–711.

[19] K. Kim and J. Altmann. “Effect of homophily on network formation”.
In: Comm. Nonlinear Sci. Numer. (2017), pp. 482–494.

[20] G. Kollias, S. Mohammadi, et al. “Network Similarity Decomposition
(NSD): A Fast and Scalable Approach to Network Alignment”. In:
TKDE (2012), pp. 2232–2243.

[21] D. Koutra, H. Tong, et al. “Big-align: Fast bipartite graph alignment”.
In: ICDM. 2013, pp. 389–398.

[22] M. Lenzerini. “Data integration: A theoretical perspective”. In: PODS.
2002, pp. 233–246.

[23] L. Liu, W. K. Cheung, et al. “Aligning Users across Social Networks
Using Network Embedding.” In: IJCAI. 2016, pp. 1774–1780.

[24] T. Man, H. Shen, et al. “Predict Anchor Links across Social Networks
via an Embedding Approach”. In: IJCAI. 2016, pp. 1823–1829.

[25] H. Nassar, N. Veldt, et al. “Low rank spectral network alignment”. In:
WWW. 2018, pp. 619–628.

[26] Q. V. H. Nguyen, T. T. Nguyen, et al. “Pay-as-you-go reconciliation
in schema matching networks”. In: ICDE. 2014, pp. 220–231.

[27] L. Otero-Cerdeira, F. J. Rodrı́guez-Martı́nez, et al. “Ontology match-
ing: A literature review”. In: ESWA (2015), pp. 949–971.

[28] B. Perozzi, R. Al-Rfou, et al. “Deepwalk: Online learning of social
representations”. In: KDD. 2014, pp. 701–710.

[29] Y. Ren, C. C. Aggarwal, et al. “Meta diagram based active social
networks alignment”. In: ICDE. 2019, pp. 1690–1693.

[30] R. Rossi and N. Ahmed. “The network data repository with interactive
graph analytics and visualization”. In: AAAI. 2015.

[31] K. Shu, S. Wang, et al. “User Identity Linkage Across Online Social
Networks: A Review”. In: KDD EN (2017), pp. 5–17.

[32] R. Singh, J. Xu, et al. “Global alignment of multiple protein interaction
networks with application to functional orthology detection”. In: PNAS
(2008), pp. 12763–12768.

[33] N. T. Tam, M. Weidlich, et al. “From anomaly detection to rumour
detection using data streams of social platforms”. In: PVLDB (2019),
pp. 1016–1029.

[34] H. T. Trung, N. T. Toan, et al. “A comparative study on network
alignment techniques”. In: ESWA (2020), p. 112883.

[35] Z. Wang, Q. Lv, et al. “Cross-lingual knowledge graph alignment via
graph convolutional networks”. In: EMNLP. 2018, pp. 349–357.

[36] Q. Xie, Z. Dai, et al. “Unsupervised data augmentation”. In: arXiv
preprint arXiv:1904.12848 (2019).

[37] K. Xu, C. Li, et al. “Representation learning on graphs with jumping
knowledge networks”. In: arXiv preprint arXiv:1806.03536 (2018).

[38] H. Yin, L. Zou, et al. “Joint event-partner recommendation in event-
based social networks”. In: ICDE. 2018, pp. 929–940.

[39] S. Zhang and H. Tong. “Final: Fast attributed network alignment”. In:
KDD. 2016, pp. 1345–1354.

[40] Y. Zhang, Q. Yao, et al. “NSCaching: simple and efficient negative
sampling for knowledge graph embedding”. In: ICDE. 2019, pp. 614–
625.

[41] F. Zhou, L. Liu, et al. “DeepLink: A Deep Learning Approach for
User Identity Linkage”. In: INFOCOM. 2018, pp. 1313–1321.

96

