
A Natural Language Interface for Database:
Achieving Transfer-learnability Using Adversarial

Method for Question Understanding

Wenlu Wang
Auburn University

wenluwang@auburn.edu

Yingtao Tian
Stony Brook University

yittian@cs.stonybrook.edu

Haixun Wang
WeWork Research

haixun.wang@wework.com

Wei-Shinn Ku
Auburn University

weishinn@auburn.edu

Abstract—Relational database management systems
(RDBMSs) are powerful because they are able to optimize and
execute queries against relational databases. However, when it
comes to NLIDB (natural language interface for databases),
the entire system is often custom-made for a particular
database. Overcoming the complexity and expressiveness of
natural languages so that a single NLI can support a variety
of databases is an unsolved problem. In this work, we show
that it is possible to separate data specific components from
latent semantic structures in expressing relational queries in
a natural language. With the separation, transferring an NLI
from one database to another becomes possible. We develop
a neural network classifier to detect data specific components
and an adversarial mechanism to locate them in a natural
language question. We then introduce a general purpose
transfer-learnable NLI that focuses on the latent semantic
structure. We devise a deep sequence model that translates the
latent semantic structure to an SQL query. Experiments show
that our approach outperforms previous NLI methods on the
WikiSQL [49] dataset, and the model we learned can be applied
to other benchmark datasets without retraining.

I. INTRODUCTION

The majority of business data is relational data. Many ap-

plications are built on relational databases, including customer

relationship management systems [29], financial fraud detec-

tion systems [28], and systems for knowledge discovery in

medicine [6], etc. In order to make databases more accessible

to the general public, much effort has been devoted to the study

of natural language interfaces to database [1], or NLIDB.

An NLIDB translates a natural language question to a

structured query (e.g., an SQL query) that can be executed

by a database engine. Figure 1 shows two natural language

questions against two relational tables. A foremost challenge

is mapping natural language expressions to database columns

and values. For example, in Figure 1 (c), the term “star in”

is actually a ‘mention’ of the Actor column in the database.

In Figure 1 (d), “how many people live in” mentions column

Population, which shows that mentions and database column

names can be different. Furthermore, the question may not

even mention columns explicitly. For example, the question in

Figure 1 (d) asks about the population of a county, but it does

not explicitly mention column County. An NLIDB endeavors

to provide the flexibility in querying a database, but because of

the complexity and idiosyncrasies of natural languages, turning

questions into SQL queries is a big challenge.

The biggest challenge, however, lies in building a general

purpose NLIDB, that is, an NLI that works for any database.

While it might be possible to customize an NLI for a particular

database, making it work for any database seems extremely

difficult. In this paper, we endeavor to solve this problem by

first making the following observation: The two databases in

Figure 1 are in different domains, and the two questions do

not share any similarity as they are asking about two different

topics. However, a big surprise is that the final SQL queries

are exactly the same (if we replace the column names by

placeholders such as c1 and c2). We argue that the underlying

logic or the latent semantic structure of the queries is the

same. What makes the questions look so different is merely

the natural language idiosyncrasies for specific types of data.

Our goal, motivated by the above observation, is to separate

out data-specific components and focus on the latent semantic

structure in a natural language question. The said data-specific

components include the schema of the data and the usage of

natural language specific to the schema of the data. Given

the schema of the data and potentially a knowledge base

about the schema, we may ‘strip’ data-specific components

from a natural language question, and what remains is the

latent semantic structure that is common to relational queries

or relational algebra. We then use a sequence-to-sequence

translation method to convert it into an SQL query.

Overview of Our Approach To achieve the above goal, we

devise a framework that consists of three parts:

1) We convert a natural language question q to its annotated

form qa;

2) We use a sequence-to-sequence model to translate qa to an

annotated SQL sa;

3) We convert the annotated SQL sa to a regular SQL s.

Figure 1 illustrates the above steps, with two examples

represented in the form of (q, qa, sa, s). We use placeholder ci
to denote the i-th column of a database table and vi to denote a

value that is likely to belong to the i-th column. For example,

the term “directed by” in Figure 1(a) is annotated as c2 since

it is a mention of the 2nd column of the database table, and

“Jerzy Antczak” is annotated as v2 since it is a value of the

2nd column. This simple idea is powerful because it reveals

97

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00016

Nomination Actor Film Name Director

Best Actor in a Leading Role Piotr Adamczyk Chopin: Desire for Love Jerzy Antczak

Best Actor in a Supporting Role Levan Uchaneishvili 27 Stolen Kisses Nana Djordjadze

.

(a)

Question q Which film directed by Jerzy Antczak did

Piotr Adamczyk star in ?

SQL s SELECT Film_Name WHERE Director = “Jerzy Antcza”

AND Actor = “Piotr Adamczy”

Annotated Which c1 [film] c2 [directed by] v2 [Jerzy Antczak]

Question qa did v3 [Piotr Adamczyk] c3 star in ?

Annotated SELECT c1 WHERE c2 = v2 AND c3 = v3
SQL sa

(c)

County English Name Irish Name Population Irish Speakers

Mayo Carrowteige Ceathru Thaidhg 356 64%

Galway Aran Islands Oileain Arann 1225 79%

.

(b)

How many people live in Mayo who have the English name

Carrowteige ?

SELECT population WHERE County = “Mayo” AND

English Name = “Carrowteig”

c1 [How many people live in] v2 [Mayo] who have the c3

[English Name] v3 [Carrowteige] ?

SELECT c1 WHERE c2 = v2 AND c3 = v3

(d)

Fig. 1: Natural language questions and their corresponding SQLs against two different databases. Note that the annotated SQLs

of the two different questions are the same. This figure is better viewed on media with color support.

that the two different questions in Figure 1 have exactly the

same structure SELECT c1 WHERE c2 = v2 AND c3 = v3.

The first step (annotating a question q to reveal mentions of

database columns and values) is very challenging. For exam-

ple, a value that appears in the query may not appear in the

database. Thus, the annotation process must be able to annotate

a term as a possible value of a database column. In the rest of

the paper, we will discuss this and many other challenges. The

second step involves a customized neural network sequence-to-

sequence model, which translates a question stripped of data-

specific components to an SQL. The third step (converting an

annotated SQL sa back to a regular SQL s) is deterministic.

Thus, in the rest of the paper, we only focus on the first and

the second step.

Our Contributions are summarized as follows

• We formalize the idea of separating data-specific compo-

nents and focusing on the latent semantic structure in a

natural language question to the database. This allows us to

work on a question’s semantics and idiosyncrasies of natural

languages separately.

• We propose an automatic process that works for questions

against any databases using deep neural networks and an

adversarial mechanism. We further propose a deep sequence

model that performs the question-to-sql translation. The

combination of both leads to a high-performance NLI that

enables generalization and transfer-learnabilty.

• We demonstrate the performance of our approach in em-

pirical experiments. Our approach achieves state-of-the-art

75.6% exact query match accuracy on WikiSQL [49], and

enables zero-shot transfer-ability to OVERNIGHT [44].

Paper Organization The paper is organized as follows.

Section II describes the metadata we need for creating a

generalizable NLIDB. Section III describes the challenges of

understanding a natural language question against a database.

Section IV discusses how we annotate a natural language

query to reveal its semantic structure. In Section V, we

describe a deep neural network that translates an annotated

query to an SQL statement. Section VI covers related works,

and Section VII presents empirical experiments and analysis.

Section VIII concludes this paper.

II. METADATA

Metadata plays an essential role in RDBMSs. Given the

metadata about a database, RDBMSs can optimize and execute

queries against the database. Besides the metadata used in

RDBMSs, NLIDBs need extra metadata to understand natural

language expressions specific to a database. In this section, we

describe the metadata we use in our work.

Database schema: Schema is part of the metadata for

RDBMSs. The database schema includes, among other things,

the definition of the columns of a database table. For example,

the schema of the database in Figure 1(a) is defined as C =

{Nomination, Actor, Film Name, Director}, where each col-

umn is further described by its data type and other information.

Database statistics: In RDBMSs, database statistics are im-

portant for query optimization. For example, understanding the

distribution of data in each column will enable the RDBMSs

to optimize the order of a join. For NLIDBs, we need statistics

of the database to understand natural language queries against

the database better. For example, in Figure 1 (c), for “Piotr

Adamczyk”, we need to determine that it is likely a mention

of a value in the Actor column. Specifically, we construct

and leverage database statistics that enable us to measure how

likely a phrase is related to database column c for all c ∈ C. In

our case, we create a language model for each column. More

specifically, we use pre-trained word-embeddings to decide if

a particular term belongs to a particular column (the idea is

that if a term is related to a column, its embedding should be

close to the word-embedding space of values in the column).

Natural language expressions specific to a database: It is

not trivial to know how people refer to things embodied by a

database. We may understand terms such “actor’ and “actress”

may refer to the same column through using some simple

techniques, such as synonym detection. But understanding

that “how many people live in” is a mention of “Population”

may need paraphrasing, which is a problem that has not been

98

solved. Ideally, if we have a general purpose ontology that

tells us everything about how language is used to describe

any entity and its features, we might simply incorporate

the ontology. However, such an ontology does not exist. In

this work, we introduce a new mechanism that allows us to

manually introduce the knowledge of the natural language for

a specific database. First, we collect database-specific natural

language metadata. Specifically, for a column c, we collect

phrases Pc that mentions c and expressions Dc that describe a

column. Later, these phrases and expressions are used to match

part of the question to provide extra candidates of mention
(defined in Section III) of column in addition to the main

algorithm (Section IV-A). For example, for c = “Population”

we may collect Pc = {how many people live in New York
City, density of New York City, ...}, and for c = “Price”

we may collect Dc = {soar, level off, dive, ...}. Later, our

method knows in a question “density of” and “level off” could

mention the column “Population” and “Price” respectively. In

this way, our approach provides a direct way to inject this

minimal knowledge to our model, which, by the nature of

merely providing extra candidates, is optional and orthogonal

to the rest of the model.

III. CHALLENGES OF QUESTION UNDERSTANDING

Our goal is to understand the underlying semantic structure

of a natural language question against a database. The first

step toward revealing the structure is to detect the mentions

of database columns and values in the question. In this section,

we describe the specific challenges in this task.

Before we dive into the details, let us define a term to

be a continuous span of words in the question. If a term

refers to a database column, we say the column is mentioned

by the term. For example, in question q = [Which, film,
directed, by, Jerzy, Antczak, did, Piotr, Adamczyk, star, in],

the continuous span q[3, 4]=[directed, by] is the mention of

column Director. A term may also mention a value. For

example, [Piotr, Adamczyk] could be a mention of a value

in either the Director or the Actor column, as both columns

contain person names. Without context, a term could be a

mention of multiple columns or values in the database.

Detecting and resolving mentions are non-trivial tasks.

Some mentions of database columns and values can be de-

tected exactly as they appear in the questions. Others may

require us to evaluate edit distances or semantic distances 1

between two terms. However, in many cases, mention detec-

tion relies heavily on the context. Below, we enumerate five

challenges that we need to address in detecting and resolving

mentions.

1) Non-exact matching. In the question Who is the best
actress of year 2011? “best actress of year 2011” mentions

the database column “best actor 2011”. Clearly, we cannot

rely on exact string matching to detect mentions.

1Edit distance counts the minimum number of operations (e.g., substituting,
deletion, or insertion) required to transform one string into another; Semantic
distance measures the Lp distance (e.g., Euclidean distance) between two
words in a latent semantic space (e.g., GloVe [31]).

2) Paraphrases. For example, the paraphrase “how many

people live in ...” could be a mention of the “Population”

column. We need to understand whether an expression is

a paraphrase of another expression,

3) Implicit mentions. Consider the question in Figure 1(d):

How many people live in Mayo who have the English Name
Carrowteige? Here, “Mayo” is a county, but the question

does not mention the database column County explicitly.

We need to infer the column from the question, the database

schema, and the database statistics.

4) Mentions of counterfactual values. For example, one may

ask “When was Joe Biden elected U.S. president?” against

a database table of U.S. presidents. But “Joe Biden” is not

in the database (at least not yet). Despite that, the question

is not less valid than “When was Barack Obama elected

U.S. president?”, and we need to handle both situations.

5) Resolutions. In the question “Which film directed by Jerzy
Antczak did Piotr Adamczyk star in?” “Jerzy Antczak” and

“Piotr Adamczyk” could refer to either Director or Actor.

We therefore need to infer the correct resolution depending

on the syntax, or the context of the question.

We address the above challenges in Section IV. Then, after

we obtain an annotated query qa, we describe a sequence

translation-based approach to convert qa into an SQL state-

ment in Section V.

IV. MENTION DETECTION AND RESOLUTION

In this section, we focus on the first step, namely converting

a natural language question q to its annotated form qa through

mention detection and mention resolution. We propose a novel

adversarial machine comprehension model for this purpose. It

consists of three components that address five challenges we

discussed in Section III.

1) To detect mentions for columns (Section IV-A), we propose

a machine comprehension binary classifier (Section IV-B)

and an adversarial text method (Section IV-C) to address

column-related mention detection challenges (challenges

1, 2, and 3) that cannot be solved by edit distances and

semantic distances.

2) We propose a binary classifier (Section IV-D) to address

value-related mention detection (challenge 4).

3) We introduce a method (Section IV-E) for mention resolu-

tion (challenge 5).

A. Mention Detection for Columns

We describe a system that addresses three challenges de-

scribed in Section III, namely, challenge 1 (non-exact match-

ing), challenge 2 (paraphrases), and challenge 3 (implicit

mentions). The 1st and the 2nd challenges ask whether a

particular column is mentioned in the question, and the 2nd

and the 3rd challenges ask where in the question the mention

occurs. We propose to handle the task by first detecting

whether a column is mentioned and then finding the term in

the question that mentions the column. More specifically, we

do the following:

99

Which missions were scheduled to launch on November 16 2006

SELECT mission WHERE launch date EQUAL November 16 2006

Attention

Part 1

Part 2

Part 3

q

qa

s

sa

Positive
Prediction

Column Mention
Binary Classifier

RNN cell for decoder

RNN cell for encoder

c

SELECT c1 WHERE c2 EQUAL v2 <eos>

Which c1 [missions] were scheduled c2 [to launch on] v2 [November 16 2006]

I

Fig. 2: Framework overview with mention detection of column “launch date” as an example.

1) In Section IV-B, we develop a Column Mention Binary
Classifier. For a question q and each column c in the database

table, the classifier predicts whether c is mentioned or not

in q. We devise the classifier as a machine comprehension

model based on deep neural network on top of both word-

and character-level representations in order to address non-

exact matching, i.e., matching with semantic (different words

of similar meanings) and/or lexical (character-level syntax)

differences (1st challenge). The deep neural network is a bi-

directional attention flow [36]. With the metadata (Section II),

our approach also supports complicated natural language para-

phrases (3rd challenge).
2) In Section IV-C, if the classifier determines that a column

is mentioned by the question, we will identify the term that

constitutes the mention. Our approach is motivated by the idea

behind Adversarial Examples [9, 39]: We look for part of the

input that is most influential in the classifier’s decision. In

practice, we calculate each word’s influential level towards the

final prediction using fast gradient method (FGM) [9], which

identifies the gradient direction that is proportional to dL/dq
(loss gradient with q as the input). In doing so, our approach

leverages the classifier’s ability to handle complex phrases (the

2nd challenge), and measuring the scale of dL/dq also handles

cases where the term in question is missing (the 3rd challenge).

As an extra benefit, using the adversarial method solely relies

on the information learned in the aforementioned classifier and

does not need extra supervision for training.
Figure 2 gives an example. We have a question q = Which

missions were scheduled to launch on November 16, 2006?
Now, the classifier predicts that column “Launch Date” is

mentioned in the question. We then want to identify the term in

the question that actually mentions “Launch Date”. We do this

by searching for a continuous span that, if changed, changes

the prediction the most. Finally, to train this part, we need

data in the form of (question, SQL query) pairs plus metadata

including database schema and natural language expressions
specific to a database as described in Section II.

B. Column Mention Binary Classifier
We train a binary classifier taking a question q, a column

c ∈ C, and predicting whether c is mentioned in q. We treat q

and c as sequences of words, i.e., q = [wq
1, w

q
2, · · · , wq

n] and

c = [wc
1, w

c
2, · · · , wc

m]. Also, we use q[i, j] = [wq
i , ..., w

q
j] to

denote a continuous span of words in q.

We go through words in c one by one. For each word w, the

attention mechanism gets a weighted combination of words in

q, which is then combined with w and fed to an LSTM. As

illustrated in Figure 3, the classifier is an end-to-end sequence

model that can be logically decomposed into three parts:

(i) A word embedder that converts a word into a vector that

encodes both its semantics and syntax;

(ii) An LSTM sequence model for modeling questions and a

bi-directional LSTM sequence model for columns. They

consume the sequence generated by the word embedder,

and produce a latent representation at each time step.

(iii) An extra LSTM sequence model with attention mech-
anism for the column. The attention mechanism is used

to combine words in question q for column c’s word at

each step. Its output is aggregated using a multi-layer

perceptron that makes predictions.

The network models the information from q and c jointly. The

classifier is trained end-to-end using back-propagation.

(i) Word Embedder The word embedder emb(w) takes a

word w and outputs an embedding (representation) of this

word. As illustrated in the zoomed-in view on the left in

Figure 3, the embedder contains two parts that encode seman-

tic and lexical information, respectively: Eword(w), which is

regular word embedding, and Echar(w), which is a character

level model that takes the sequence of characters in w as

input and produces representation through a one-dimensional

convolution. The outputs of the two parts are concatenated to

produce the final output emb(w) = [Eword(w),Echar(w)].
While the first part Eword(w) is straightforward, the char-

acter level model Echar(w) is worthy of more elaboration.

As in Figure 4, we denote w as a sequence of characters

w = [a1, a2, · · · , a|w|]. We introduce character embedding,

denoted as EmbChar(ch), which maps a character ch to

a vector. Applying character embedding on each of the

characters yields a character representation matrix A where

the i-th row Ai is EmbChar (aj). Next, we use a one-

dimensional convolution of width k to project each slice

100

Fig. 3: Mention of Column: Classifier’s overview.

W h i c h

Character
Representation
Matrix

(Average)

Convolution with
Width 3

Word as sequence of
Characters

i c h

(a) Feature from Convolution with width 3 (b) Zoom in for last 3 characters

Fig. 4: Convolution Neural Network in Word Embedder

(A1:k, A2:k+1, . . . , A|w|−k+1:|w|) of A to a vector, and we

compose these vectors using element-wise average to get the

output, denoted as Echar
k (w). For the convolution, we pad

with zeros so that at least one slice is available. Figure 4 (a)

shows the whole process with a one-dimensional convolution

of width k = 3. Figure 4 (b) highlights the application of

convolution on the last slice (last k words). Note that the

projection is a linear one and is shared across different slices.

To capture character level syntax with different granularity, we

apply the aforementioned process with different convolution

width (in practice we get Echar
k (w) for k ∈ {3, 4, 5, 6, 7})

and concatenate these results to form Echar(w). Although

different convolutions have their own projection, the character

embedding EmbChar (by definition the character representa-

tion matrix) is shared among convolutions.
(ii) Sequence Models For question q, we stack a multi-layer
recurrent neural network (RNN) on top of the word embedder,
with LSTM cells to produce results at each time step (for each

word in the question). Specifically, let x
(l)
i be the input to the

l-th layer in the i-th position. The hidden state and memory
of the forward LSTM are computed as

[
hi

(l)
, Ci

(l)
]
= LSTM

(
xi

(l)
, hi−1

(l)
, Ci−1

(l)
)

The input of each layer is computed as xi
(1) = L1(emb(wq

i))

and xi
(l+1) = L(l+1)

(
hi

(l)
)

, where Ll(x) = W0
(l)x + b0

(l)

is an affine transformation before each layer of RNN to keep

the dimension consistent.

For column c, we apply a separate sequence model of the

same architecture but different parameters. It stacks on top

of the word embedder, which applies to each word wc
i (i =

[1..m]) in column c.
(iii) Sequence Model with Attention Mechanism We denote
the top-layer hidden states produced by the sequence models
described in Part 2 for question q and column c as

S
q
= [s

q
1, s

q
2, · · · , sqn] S

c
= [s

c
1, s

c
2, · · · , scm]

We use a bi-directional one-layer LSTM sequence model on
top of Sc with attention mechanism over questions Sq . At
each step t (1 ≤ t ≤ m) for column c, the forward LSTM is
computed as

−→
d 0 =

−→
C 0 = 0

−→z t =

[
sct

Sq−→α T
t

]
[−→
d t,

−→
C t

]
=

−−−−→
LSTM

(−→z t,
−→
d t−1,

−→
C t−1

)
−→e t = v

T
Tanh(W1S

q
+ (W2s

c
t + W3

−→
d t−1 + b) ⊗ en)

−→α t = softmax(−→e t)

where W0, W1, W2, W3, v, and b are model parameters,−→
dt ,

−→
Ct are the hidden states and memory of forward LSTM

respectively. The outer product (· ⊗ en) means repeating the

vector on the left for n times.

With a backward LSTM being computed similarly, we can

concatenate the forward and backward hidden state vector as

dt =
[−→
dt←−
dt

]
. After zero-padding dt to the length of the maximum

number of words in a column, all dts are concatenated and fed

into a multi-layer perceptron that makes the prediction.

C. Adversarial Text Method

Assume the classifier we described above decides that

column c is mentioned in question q. Then our next task

is to look for the term in question q that actually mentions

column c. We propose an adversarial text method to solve this

problem. The method is based on the following two reasonable

assumptions:

i. We assume the mention of c in q consists of a sequence

of words.

ii. Drawing our inspiration from the adversarial example
technique, we assume the mention of c is the part of

q that is most influential in the classifier’s decision that

c is mentioned in q.

101

The first assumption is naturally from our domain knowledge.

Arguably a model without this assumption is much more

complex, so we leave the investigation of whether the extra

complexity is justified to future study.

The second assumption requires some elaboration. For the

background, we start with the adversarial example technique

from which we draw our inspiration. An adversarial example

is a carefully designed perturbation of input q that forces the

aforementioned classifier in Section IV-B to make a wrong

prediction. Denoting such an example as q̃ = q + η, the

perturbation η is small enough compared to q. In doing so,

the perturbation is more significant in parts of the questions

that are efficient in influencing the classifier’s prediction. The

effect of applying such technique can be demonstrated with

the following example in which the classifier is tasked with

prediction c = “golfer” is mentioned in the question:

q = “Which player won the competition?”

We denote the representation of a word as emb. Now changing

the word “player” to “athlete” leads to small perturbation η =

emb(“athlete”) - emb(“player”) since both words are seman-

tically close. However for the resulted adversarial example

q̃ = q + η = “Which athlete won the competition?”

the perturbation η changes important features of the model

(e.g., “player”) to make the prediction regarding column c,
and is highly likely to lead to a large change to the output.

The combination of small perturbation and large change to

the output is a good example of efficiently influencing the

classifier.

We further observe that the term mentioning the column is

overlapping with words whose perturbation makes an adversar-

ial example. We hypothesize that the term which mentions col-

umn c makes the most contribution to the classifier’s prediction

(whether c is mentioned in the question). This concludes our

second assumption to use the adversarial method for finding

the term in the question.
We now formally describe our adversarial text method. Our

method uses a faster adversarial method [36] to find the parts
of question q that are important to the classifier’s prediction
by taking the gradient of loss L with respect to each word in
the question. Since in natural language processing words are
represented by one-hot inputs, as proposed [25], we take the
gradient with respect to the representation of the words rather
than the words themselves. In detail, we construct symbolic
derivatives of L w.r.t. each wq

i in q to measure the influential
level of each token to the model prediction. L = L(q, c) is the
loss of the machine comprehension binary classifier given the
column c and question q. Assuming a word embedder E (e.g.,
Eword or Echar) transforms a word to a high-dimensional
embedding space Rd:

E(w) = [x1, x2, ..., xd]

dL/dE(w) = [dL/dx1, dL/dx2, ..., dL/dxd]

Then, we calculate the norm of each gradient, where p(·) is a
norm function.

I
word

(w) = p(dL/dE
word

(w)) I
char

(w) = p(dL/dE
char

(w))

We define I(·) = α ∗ Iword(·) + β ∗ Ichar(·) as the influential
level of each token taking both word-level and character-level

Fig. 5: Use gradient of loss with respect to each word for infer-

ring column’s mentioning term. X-axis represents the words

in a natural language question, Y-axis represents influential

level I of each word using �2-norm, and X-label is its cor-

responding SQL. Furthermore, since we use both word level

and character level inputs, we plot the gradients with respect

to word embedding and character embedding separately, both

contributing to the model’s output in a coordinated way.

representation into consideration. Here, α and β are hyperpa-
rameters for balancing both the word-level and character-level
information.

I(q) = [I(w
q
1), I(w

q
2), ..., I(w

q
n)]

Taking �2-norm as an example:

I�2 (w
q
i) = α ∗ ‖dL/dE

word
(w

q
i)‖2 + β ∗ ‖dL/dE

char
(w

q
i)‖2

Then we search for a continuous span [a, a + 1, ..., b] that

contains the highest influential level and b−a+1 < maximum

length of mentions in the question we consider. The continuous

span is considered to be the term of c mentioned in q.

In Figure 5 we show an example of detecting column

“winning driver” in two different questions. The column name

c = “ [winning driver] ” in SQL is the column for which we are

searching the term in the question. The term highlighted in question

is the term of the column mention, which corresponds to high

gradient values. We can observe that word span with large

gradient norms corresponds to the terms of the column in the

question that a human perceives. Column “winning driver” is

detected by “ driver won ” in the first question, and “ win ” in

the second question. With adversarial text method, we can also

address the issue of mentioning the same column in various

ways.

D. Mention Detection for Values

Since the question may mention values that are counter-

factual (not occurring in the table) while still being a valid

question (the 2nd challenge), as a realistic setting, finding

a mention of a counterfactual value should not depend on

the actual content of columns, nor extra knowledge such as

Freebase which is essentially another database. We leverage

some aggregation that characterizes the property of columns to

help value detection, which is what we described as database
statistics in Section II. This approach avoids relying on specific

values that appear in the column, thus is able to handle cases

where the question mentions values that are counterfactual

while still being valid.

102

Specifically, we propose a Value Detection Classifier that

takes a continuous span q[i, j] in the question and a column

c’s data statistics sc as input, and predicts whether this q[i, j] is

likely to be a mention of values in column c. If the prediction

is true for at least one column in the table, the span is detected

as a mention of value in the table. Since the classifier requires

only a column’s data statistics characterizing the property of

this column rather than a set of actual, concrete values in that

column, it could deal with counterfactual ones.
In detail, the data statistics of column c, referred to as sc, is

a feature vector representing the property of this column. It is
the dimension-wise average of the feature vectors of all cells in
that column, where a cell’s feature vectors are the dimension-
wise average of all its words’ embedding emb(wi) = α ∗
Eword(wi) + β ∗ Echar(wi). Formally, this means

sc =
1

|Pc|
∑

p∈Pc

⎛
⎝ 1

|p|
∑
w∈p

emb(w)

⎞
⎠

with the slight abuse of symbols denoting all cells in column
as Pc, (of multiple cells) a single cell in Pc as p, and (of
multiple words) a word in p as w. Note that the design of
sc ensures that the data statistics contains only O(1) amount
of information regardless of the number of cells in a column.
Similarly, the statistics of q[i, j], referred to as sq[i,j], is also
the dimension-wise average of all its words’ embedding:

sq[i,j] =
1

|j − i + 1|
∑

i≤k≤j

emb (q[k]) .

On top of that, the classifier is implemented as a two-layer
MLP (multi-layer perceptron) defined as:

y = Sigmoid
(
W2 · ReLU

(
W1 · [sc − sq[i,j], sc · sq[i,j]

]
+ b1

)
+ b2

)

where the input is from concatenating sc−sq[i,j] and sc ·sq[i,j],
Sigmoid(x) = 1

1+e−x and ReLU(x) = max(x, 0). The output

y, by the definition of Sigmoid, is continuous and is in the

range [0, 1], thus serving as a likelihood function. The classifier

predicts true if y > 0.5.
Furthermore, it is natural to assume that a value should be

a short multi-word entity, so in training and inference, we

only consider a limited set of candidates of spans that do not

contain stop words. Formally this means we consider q[i, j]
only if �k : i ≤ k ≤ j, q[k] ∈ StopWords.

E. Mention Resolution
It is possible to have many candidate mentions of columns

and values (5th challenge). For example, in question “Which

film directed by Jerzy Antczak did Piotr Adamczyk star in?”

the values “Jerzy Antczak” and “Piotr Adamczyk” could be

mentions of either “director” or “actor”. Both are valid unless

the syntax and context of the natural language question are

taken into consideration . The goal of mention resolution is to

figure out globally, what is the most likely subset of mentions

that are consistent.
Inspired by [20], we leverage the question’s dependency tree

to help reduce the number of candidate mentions. In general,

the proposed mention resolution strategy favors value and

column pairs that are structurally close to each other in the said

tree. We observe that in the question’s dependency tree, a value

is often the closest child node of the paired column. Therefore,

we use the distance of two nodes (denoted as dist(·, ·)) in the

question’s dependency tree as a measure of structural close-

ness. Specifically, for value v and column c, and their mentions

mv and mc (in the question), the optimal pair identified by

structural closeness is minmv∈q,mc∈q dist(mv,mc). We only

consider matched pairs (v, c) that have the optimal structural

closeness.

V. SEQUENCE TO SEQUENCE TRANSLATION

In this section we describe the second step of our framework

that translates qa to an annotated SQL sa. As shown in

examples Figure 1 (a) and (b), after the first step that provides

the mentioned paired columns and values to a question in the

form of an annotated question qa, this second step does the

actual work of translating qq into an annotated SQL sa.

The sequence-to-sequence [38] model (or seq2seq as it is

commonly referred to) takes input in the form of a sequence

of tokens and produces output also as a sequence. Such a

model has been enjoying massive success in many natural

language processing applications (see Related Work section

for more). Motivated by such success, we represent both

the input (annotated question qa) and the output (annotated

SQL sa) as lists of sequences, and devise a seq2seq model

that converts the former to the later. We describe how we

represent our annotated question and SQL query as sequences

in Section V-A, followed by presenting the very seq2seq model

that does the actual translation in Section V-B.

A. Representation of Annotated Sequence

There are many options in representing annotations in a

form that can be leveraged by a seq2seq model. For example,

in Figure 1(a), “directed by” is annotated as the mention of c2.

We can either replace “directed by” by c2 or insert c2 following

“directed by” in the question. We exploit different annotation

encoding methods and propose our optimal annotation to sep-

arate information related to a schema from questions without

loss of information.

1) Insert symbols: Intuitively, the annotation should enable

schema separation that strips off schema-specific informa-

tion from natural language questions by substituting schema-

specific information with symbols. However, replacing the

mentions of columns with unified symbols (e.g., ci and vi)
hurts the semantic expressiveness of the question. Therefore,

we propose to insert the symbols around the mentions rather

than substituting them to leverage the semantics of column

texts. We name such approach as “column name appending”.

Figure 6a shows the differences between the two approaches,

and highlights that our proposed approach provides more

semantic information to the downstream sequence model.

2) Table Header Encoding: When a column in SQL is

not mentioned in the question explicitly, we can only rely

on the deep model and the context to infer the column. For

example, in Figure 6b, column name “Nomination Date” is not

explicitly mentioned. Most of the columns (e.g., “Nomination

Date”) consist of multiple tokens, which are hard to generate

correctly by a sequence model token by token. To encourage

the correct inference of multi-token columns, we append all

103

Question What position did the player LeBron James play?
Symbol Appending What c1 [position] did the c2 [player] v2 [LeBron James] play?
Symbol Substitution What c1 did the c2 v2?

(a) Annotation Format.
qa When v1 [Piotr Adamczy] was nominated as c1 [Best Actor in a Leading Role]?
sa SELECT Nomination Date WHERE c1 = v1

qa
When v1 [Piotr Adamczy] was nominated as c1 [Best Actor in a Leading Role]
g1 [Nomination] g2 [Actor] g3 [Film Name] g4 [Director] g5 [Nomination Date]

sa SELECT g5 WHERE c1 = v1

(b) Table Header Encoding.

Fig. 6: Representation of Annotated Sequence

the headers g ∈ C to the end of the annotated question, so that

even if a multi-token column is not mentioned in the question,

it could be inferred as gi by the sequence model.

Figure 6b shows an example where “g1 [Nomination] g2
[Actor] g3 [Film Name] g4 [Director] g5 [Nomination Date]”is

appended to the annotated question. and thus simplifies the an-

notated SQL as “SELECT g5 WHERE c1 = v1”, where multi-

token column name “Nomination Date” is simplified as “g5”.

B. Sequence Translation Model

For formality, we denote a natural language question in
annotated form as qa = (qa1 , q

a
2 , ..., q

a
N), and the correspond-

ing annotated SQL query as sa = (sa1 , s
a
2 , ..., s

a
M). We train

a seq2seq model to estimate p(sa|qa), which captures the
conditional probability of

p(s
a|qa) =

M∏
j=1

p(s
a
j |qa, sa1:j−1)

Encoder is implemented as a stacked bi-directional Gated
Recurrent Unit (GRU) [4]. To keep the dimensions consistent,
we add an affine transformation before each layer of GRU,

defined as the follows yi
(l) = W0

(l)x
(l)
i + b0

(l), where xi
(l) is

the input of the l-th layer at the i-th position. W0
(l) and b0

(l)

are model parameters. The hidden state of the forward GRU
and backward GRU are computed as:

−→
hi

(l)
=

−−−→
GRU(yi

(l)
,
−−→
h
(l)
i−1)

←−
hi

(l)
=

−−−→
GRU(yi

(l)
,
←−−
h
(l)
i−1)

We concatenate forward state vector and backward state vector

as hi
(l) = [

−→
hi

(l)
,
←−
hi

(l)
], i = [1..N]. The input of each layer is

computed as: (φ is the word embedding lookup function)

xi
(1)

= φ(q
a
i) xi

(l+1)
= hi

(l)

Decoder is an attentive GRU with copy mechanism. We use
Bahdanau’s attention [2] as follows: At each time step i in the
decoder, the decoding step is defined as:

d0 = Tanh(W1[
−−→
h
(l)
N ,

←−−
h
(l)
1])

di = GRU([φ(s
a
i−1), βi−1], di−1)

eij = v
T
Tanh(W2h

(l)
j + W3di)

αij = eij/
∑
j′

eij′

βi =
M∑
j=1

αijhj
(l)

where W0, W1, W2, W3, and v are model parameters,
(d1, ..., dN) is the hidden states of the decoder, and j the
index enumerating all the positions in encoder. In the NLI
task, tokens in the output often correspond directly from the
input natural language question. To encourage the model to
favor tokens that appear in the input, we make our own

implementation of copy mechanism that samples output token
sta as

p(s
a
i |qa, sa1:i−1) ∝ exp(U [di, βi]) + Mi

Mi[s
a
j] = exp(eij)

Note that this is different from the vanilla copy mechanism

where the output is sampled through softmax over entire word

vocabulary as p(sai |qa, sa1:i−1) ∝ exp(U [di, βi]).

VI. RELATED WORKS

A. Natural Language Interface to Database (NLIDB)

Natural Language Interface to Database aims to provide an

interactive bridge between users and machines, where users

can issue a natural language question, which would then

be translated to a structured query that is executable by a

database engine. [1] first explores this task with concrete

examples defining this problem and highlights the separation

between linguistic and database-derived information. Later

[33] proposes to identify questions whose answers are tractable

solely from the database, and [7] incorporates tree kernels

in ranking candidate queries. Many recent advances can be

categorized into two groups. The first group uses semantic

parsing [17, 30, 44] as well as some extensions that support

cross-domain semantic parsing [14, 37]. However, most works

in this group are confined in narrow domains because of the

challenges brought by natural languages. The other group

relies on neural-based methods where sequence to sequence

models are leveraged to translate questions to SQL queries,

optionally combined with the help of user feedback [16], re-

inforcement learning [49], and external semantic models [21].

On the system side, NaLIR [20] and NaLIX [22] demonstrate

the feasibility of implementing a research-oriented NLIDB

approach as an interactive, industry-level system involving

real-world database querying and language parsing. NaLIR

parses a question to a tree structure as the internal represen-

tation and then translated into SQL. PRECISE [32] defines

a Semantic Tractability Model, and works for semantically

tractable questions only. DBPal [3, 40] allows users to build

an NLI for a new database, which is able to generate a

synthetic training set with wide linguistic variations from a

given database schema.

B. Slot Filling in Dialogue System

Dialogue system aims at communicating with a user in

a session with multiple turns of dialogues, where state, or

conceptually what the session is talking about, needs to be

tracked for dialogue system to achieve good performance [47].

Commonly the dialogue system identifies and tracks entities

that appear across turns as slots in a process called slot filling.

These slots and entities that can fill in these slots are usually

specific to the domain that the dialogue system is focusing

on. For example, slots can be food, airport, or city names,

and therefore are from a pre-defined, externally crafted list

of possible values. Traditionally, classifier-based feature engi-

neering that identifies slots is used in this task, such as methods

proposed in [19, 34]. Recently, neural-based approaches have

104

been proposed for tracking state: [13] proposes a simple recur-

rent network that predicts the probability of each word in the

dialog being one of the pre-defined slots, which is extended by

[26], a hierarchical model that can handle cases where entities

can be from one of the multiple domains. To specifically

provide better tracking for ranking slot values in dialog, Belief

Tracker [27] sums up separating representations of system

output, user feedback, and candidate slot values. To further

improve the performance, [45] considers a policy network

that arbitrates the outputs from multiple models, including the

aforementioned belief tracker, a sequence model that encodes

user input, and a generation network that produces system

output. Notably with engineering consideration for real-world

scenarios with multiple databases, [12] proposes two separate

classifiers, that classify not only what slot should be used for

filling, but also slots’ corresponding databases.

Closest to our proposed work is [46], which employs a

sketch-based approach that represents an SQL as a template

with slots, and the model predicts values from a limited

candidate set to be filled in each slot. This is different from

our work that focuses on annotation and does not restrict SQL

to a particular template-based form. Another close work is

TypeSQL [48] that enriches the inference of columns and

values using a domain-specific knowledge-based model that

searches five types of entities on Freebase, an extra large

database, which is in contrast to our work, which does not

rely on extra database knowledge.

C. Adversarial Text Methods

Adversarial samples have been extensively studied since

their first discovery [39]. In the image space, after adding a

small intentionally crafted perturbation to the original sam-

ple, a deep model might make a false prediction with high

confidence, while the small perturbation causes subtle visual

differences to humans. In the text domain, after altering a few

words or characters of an input sentence, the deep model

might also be fooled with high confidence. Even though

adversarial mechanisms on text domain are not as widely

discussed as on image domain, several adversarial text attacks

are proposed [18, 23, 35] following a similar strategy: select

characters, words or phrases that are the most influential to the

predictions, then perturb them while monitoring the success

of an adversarial sample generation. To increase the success

rate of adversarial sample generations, we use the gradient

of the loss function to select features for perturbation. For

example, [23] uses Fast Gradient Method [9] on a character-

level Convolutional Neural Network (CNN), and [8] uses Fast

Gradient Method combined with kNN search in the embedding

space to select perturbation candidates.

D. Sequence-to-sequence Generation model

Sequence to Sequence learning (referred to as seq2seq

in the rest of the paper) [38] has led to many advances

in neural semantic parsing models. Notable advances in se-

quence learning include attention mechanism [2] and pointer

network [41] that boost performance for sequence learning

and enable it to handle long sequence and rare words. They

have seen successful applications on language model [24],

text summarization [11], text understanding [45], and neural

computing [10]. Our model also benefits from these techniques

since our model needs to see both information packed in a long

sequence and rare words that only appear in some tables.

VII. EXPERIMENTS AND ANALYSIS

We conduct experiments 2 on two scenarios: (1) an in-

domain scenario of NLIDB trained and evaluated on WikiSQL

dataset [49], and (2) a cross-domain scenario where we evalu-

ate our zero-shot learning (trained on WikiSQL) performances

on OVERNIGHT dataset [43].

We use three metrics for evaluating the query synthesis

accuracy: (1) Logical-form accuracy. We compare the syn-

thesized SQL query against the ground truth for whether they

agree token-by-token in their logical form, as proposed in [49].

(2) Query-match accuracy. Like logical-form accuracy, ex-

cept that we convert both synthesized SQL query and the

ground truth into canonical representations before comparison.

(3) Execution accuracy. We execute both the synthesized

query and the ground truth query and compare whether the

results agree, as proposed in [49].

A. WikiSQL

WikiSQL contains 87673 records of natural language ques-

tions, SQL queries, and 26521 database tables. Since tables

are not shared among the train/validation/test splits, models

evaluated on WikiSQL are supposed to generalize to new

questions and database schemas.

1) Mention Detection Performance: We use string match

with edit distances and semantic distances to detect mentions

that are context-free, and adversarial binary classifier using

�2-norm, α = 1, β = 0 (Section IV-A) to detect mentions

that heavily rely on the context. Note that database-specific

knowledge is not used in WikiSQL for fair comparisons.

First of all, we compare our mention detection performance

with TypeSQL, which employs a template-based approach to

formalize the task into a slot filling problem. The sketch is:

SELECT $AGG $SELECT COL

WHERE $COND COL $OP $COND VAL(AND $COND COL $OP $COND VAL)∗
where each component, such as $AGG, $SELECT COL, and

WHERE clause (including operator $OP), is identified separately.

Our model has a pre-processing step where schema-

related information is detected through mention detection,

$COND COL and $COND VAL that are emphasized in the sketch

involve schema-related information. We evaluate the accu-

racy of canonical representation matches on $COND COL and

$COND VAL between the synthesized SQL and the ground

truth, and our accuracy is 91.8%, which outperforms the state-

of-the-art TypeSQL 87.9%.

Our NLIDB model is a seq2seq model, and mention detec-

tion is serving as a pre-processing component, which is only

part of our contribution. Since our method learns the structure

2Our code is publicly available at https://github.com/VV123/NLIDB gradient

105

Column Question

date When did the Baltimore Ravens play at home?

venue Where was the game played on 20 May?

player Who is the golfer that golfs for Northern Ireland?

competition
What was her final score on the ribbon apparatus?description

TABLE I: Mention detection using adversarial text method.

of the output by a seq2seq model itself, the $AGG and $OP are

inferred by the seq2seq model (we believe they are part of the

structure).

Case Studies There are many questions in WikiSQL that do

not have straightforward indicators of column names. To prove

that our method can detect mentions by semantic meaning,

we present four real examples of mention detection by our

adversarial method in Table I. Our method is able to identify

“date” by its question word “when did”, and “venue” by its

question word “where”. Column “player” can be detected

by its synonyms “golfer”, and implicitly mentioned column

“competition description” can also be detected.

We further justify that our adversarial method is able to

pinpoint the term of a mention accurately by its adversarial

gradient. Even a column name is mentioned as a combina-

tion of several discontinuous words, and our method is able

to detect the mention terms by their semantic meaning. In

Figure 7, we show three examples of adversarial gradients

with respect to both word-level input and character-level input.

Both word-level input and character-level input share the same

trend. In the first example, our model is able to identify

column “ [year] ” is in fact mentioned in the question and the

mention term is around the term of “ 2008 ”. In the second

example, column “ [candidates] ” is mentioned by its singular

form “ candidate ”. The gradient norm of all the words are

small except “ candidate ”, which means our method is able

to pinpoint the column mention precisely. In the third example,

column “ [years in toronto] ” is mentioned by highest gradient

words “ toronto ” and “ 2006-07 ” (“toronto team in 2006-07”

as a continuous span). Even though “ year ” is not explicitly

mentioned in the question, our model is able to infer the

meaning of “ year ” by “ 2006-07 ”.

2) Training Details: For the encoder and decoder of our

sequence-to-sequence model, each has one layer of GRU with

a hidden state size of 400 and 2 ∗ 400, respectively. The tied

embedding weights are shared in the input and output layers of

Fig. 7: Examples in WikiSQL defined in Figure 5

both encoder and decoder. We initialize the embedding layer

with pre-trained GloVe embedding (dimension D = 300).

Symbols introduced by annotation (e.g., c1 and v1) are also

treated as tokens, each of them being represented by the

concatenation of the embeddings of an annotation type (e.g, c
and v) and an index. Also, the embeddings of an annotation

type and an index are randomly initialized with D′ = 150,

so the concatenation has a dimension of D = 300. The other

out-of-vocabulary token is initialized with a random vector of

D = 300. We use gradient clipping with a threshold 5.0 for

training and beam search with width 5 for inference.

3) Evaluation: We compare our method with previous

methods through three aforementioned metrics: accuracies in

terms of logical form exact match, exact query match, and the

results of query execution. As shown in Table II, our result

outperforms these previous methods, including the state-of-

the-art TypeSQL. This demonstrates that our method is able

to generalize to unseen tables, since in WikiSQL database,

tables are not shared among train and test splits.

We note that TypeSQL achieves high accuracy in the

“content-sensitive” setting where it queries Freebase when

handling natural language questions in training as well as

in inferencing, while our method achieves higher accuracy

without querying Freebase.

4) Ablation: In Table II, we demonstrate our contribution

by performing ablation with different components of our

model. Removing each component of our method leads to

a decrease in performance: The removal of (1) half of GRU

hidden size (hidden size 200 for encoder and 400 for decoder),

(2) copy mechanism, (3) column name appending (e.g., using

column substitution instead), and (4) encoding of table header,

each respectively decreases performance on the test set.

Since the annotation and sequence modeling are separated in

our framework, we test our annotation method combined with

the transformer model 3, an alternative and state-of-the-art ar-

chitecture for sequence modeling such as machine translation.

With the same annotation, the transformer model shows worse

performance. We hypothesize that the reason behind this is the

difference between NLIDB task and translation tasks: NLIDB

has a considerable difference between vocabulary sizes in

source space and target space.

We also report the transformation error incurred by the

annotation process. As shown in Table III, we report the exact

query match accuracy Accqm before and after the annotation

recovery step (transferring sa to s). Our experiments have

shown that our automatic annotation will not hurt the per-

formance; on the contrary, it increases the accuracy.

B. Zero-shot transfer-ability

For cross-domain evaluation, we evaluate the transferability

of our model that is trained on one domain (WikiSQL) and

tested on other unseen domains to assess its transfer-ability.

This task is challenging since the model is required to model

domains not seen before.

3We use transformer from https://github.com/tensorflow/tensor2tensor

106

Dev Test

Acclf Accqm Accex Acclf Accqm Accex

Seq2SQL [49] 52.5% 53.5% 62.1% 50.8% 51.6% 60.4%

Previous SQLNet [46] - 63.2% 69.8% - 61.3% 68.0%

Method PT-MAML [15] 63.1% - 68.3% 62.8% - 68.0%

Coarse2Fin [5] - - - 71.7% - 78.5%

TypeSQL* [48] - 79.2% 85.5% - 75.4% 82.6%

Annotation Annotated Seq2seq (Ours) 75.5% 75.4% 83.1% 75.6% 75.6% 83.6%
– Half Hidden Size 74.8% 74.8% 82.5% 75.0% 75.0% 82.9%

– Column Name Appending 74.6% 74.5% 81.9% 74.5% 74.5% 82.1%

– Copy Mechanism 74.2% 74.2% 81.4% 74.4% 74.4% 81.9%

– Table Header Encoding 74.9% 74.8% 81.8% 74.6% 74.6% 81.8%

– seq2seq + Transformer 68.8% 68.9% 77.4% 69.1% 69.2% 78.4%

TABLE II: Comparison of models. lf , qm, ex represent logical forms, exact query match, and query execution accuracy,

respectively. Performances on the first block are copied from the corresponding papers. “–” and “+” mean removing or adding

one component from our best approach respectively for ablation. *We report the results of content sensitive TypeSQL for fair

comparisons.

Dev Test
Accbefore Accafter Accbefore Accafter

Annotated Seq2seq (Ours) 74.8% 75.4% 75.0% 75.6%
– Half Hidden Size 74.5% 74.8% 74.6% 75.0%
– Table Header Encoding 74.5% 74.8% 74.2% 74.6%
– Column Name Appending 74.1% 74.5% 74.0% 74.5%
– Copy Mechanism 73.7% 74.2% 73.8% 74.4%

TABLE III: ”Recovery” performances on WikiSQL dataset.

Accbefore (Accafter) denotes query match accuracy before

(after) annotation recovery.

1) OVERNIGHT: OVERNIGHT [43] is generated from

a grammar and annotated with natural language through

crowdsourcing. Since OVERNIGHT is not equipped with pre-

defined databases, we use the annotated OVERNIGHT dataset

from [42], where the queries are converted to SQL.

We evaluate the transfer learning ability of our model that

trained on WikiSQL to be evaluated on five sub-domains

of the annotated OVERNIGHT dataset (include both train

and test splits). Since OVERNIGHT SQL sketch is highly

variant and different from WikiSQL sketch, we make a

reasonable assumption that only the sketch compatible ones

are considered in the transfer-ability evaluation. Table IV(a)

presents our transfer-ability performance. Transfer accuracy is

calculated over sketch-compatible records and non-compatible

records/operations are discarded. Our model exhibits high

transfer-ability with zero-shot learning.

Since the transfer model is trained on WikiSQL only, we

further test our model’s learning ability on OVERNIGHT

separately. We train our model on OVERNIGHT train split,

and evaluate on test split, and achieve an accuracy of 81.4%,

which shows the robustness of our model.

2) ParaphraseBench: ParaphraseBench [40] is a bench-

mark to evaluate the robustness of NLIDBs and explicitly test

different linguistic variations. We adopt the same setting as

Section VII-B1 (non-compatible operations excluded) and our

transfer evaluations (Table IV(b)) justify the robustness of our

design.

VIII. CONCLUSION

In this work, we propose an NLIDB converting natural lan-

guage questions to structured queries (e.g., SQL) for relational

Sub-domain BASKETBALL CALENDAR HOUSING RECIPES RESTAURANTS OVERALL

Accqm 39.7% 76.3% 51.5% 81.8% 79.3% 60.6%

(a) OVERNIGHT

Paraphrase NAIVE SYNTACTIC LEXICAL MORPHOLOGICAL SEMANTIC MISSING

Accqm 96.49% 92.98% 57.89% 87.72% 56.14 % 43.86%

(b) ParaphraseBench

TABLE IV: Transfer Accuracy

databases. The main contribution of our work is to separate

database-specific information from the natural language ques-

tions themselves and learn knowledge of the natural language

and database-specific knowledge separately. Our experimental

analysis ascertains the effectiveness of our approach over the

state-of-the-art approaches on multiple datasets.

REFERENCES

[1] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural
language interfaces to databases–an introduction. Natural lan-
guage engineering, 1(01):29–81, 1995.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine transla-
tion by jointly learning to align and translate. ICLR, 2015.

[3] F. Basik, B. Hättasch, A. Ilkhechi, A. Usta, S. Ramaswamy,
P. Utama, N. Weir, C. Binnig, and U. Cetintemel. Dbpal: A
learned nl-interface for databases. In Proceedings of the 2018
International Conference on Management of Data, pages 1765–
1768. ACM, 2018.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation. In Proceedings of EMNLP, pages 1724–1734, 2014.

[5] L. Dong and M. Lapata. Coarse-to-fine decoding for neural
semantic parsing. In Proceedings of ACL, Melbourne, Australia,
2018.

[6] N. Esfandiari, M. R. Babavalian, A.-M. E. Moghadam, and V. K.
Tabar. Knowledge discovery in medicine: Current issue and
future trend. Expert Systems with Applications, 41(9):4434–
4463, 2014.

[7] A. Giordani and A. Moschitti. Translating questions to sql
queries with generative parsers discriminatively reranked. COL-
ING, pages 401–410, 2012.

[8] Z. Gong, W. Wang, B. Li, D. Song, and W.-S. Ku. Adversarial
texts with gradient methods. arXiv preprint arXiv:1801.07175,
2018.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

107

[10] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette,
T. Ramalho, J. Agapiou, et al. Hybrid computing using
a neural network with dynamic external memory. Nature,
538(7626):471, 2016.

[11] J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying
mechanism in sequence-to-sequence learning. In Proceedings
of ACL, volume 1, pages 1631–1640, 2016.

[12] R. C. Gunasekara, D. Nahamoo, L. C. Polymenakos, J. Gan-
hotra, and K. P. Fadnis. Quantized-dialog language model
for goal-oriented conversational systems. arXiv preprint
arXiv:1812.10356, 2018.

[13] M. Henderson, B. Thomson, and S. Young. Word-based dialog
state tracking with recurrent neural networks. In Proceedings
of SIGDIAL, pages 292–299, 2014.

[14] J. Herzig and J. Berant. Neural semantic parsing over multiple
knowledge-bases. In Proceedings of ACL 2017, pages 623–628,
2017.

[15] P.-S. Huang, C. Wang, R. Singh, W.-t. Yih, and X. He. Natural
language to structured query generation via meta-learning. In
Proceedings of NAACL HLT 2018, 2018.

[16] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettle-
moyer. Learning a neural semantic parser from user feedback.
In Proceedings of ACL, volume 1, pages 963–973, 2017.

[17] R. Jia and P. Liang. Data recombination for neural semantic
parsing. In Proceedings of ACL, 2016.

[18] R. Jia and P. Liang. Adversarial examples for evaluating reading
comprehension systems. In Proceedings of EMNLP 2017, pages
2021–2031, 2017.

[19] S. Lee. Structured discriminative model for dialog state track-
ing. In Proceedings of the SIGDIAL 2013 Conference, pages
442–451, 2013.

[20] F. Li and H. V. Jagadish. Nalir: an interactive natural language
interface for querying relational databases. In Proceedings of the
2014 ACM SIGMOD international conference on Management
of data, pages 709–712. ACM, 2014.

[21] J. Li, W. Wang, W.-S. Ku, Y. Tian, and H. Wang. Spatialnli:
A spatial domain natural language interface to databases using
spatial comprehension. arXiv preprint arXiv:1908.10917, 2019.

[22] Y. Li, H. Yang, and H. Jagadish. Nalix: an interactive natural
language interface for querying xml. In Proceedings of the
2005 ACM SIGMOD international conference on Management
of data, pages 900–902. ACM, 2005.

[23] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi. Deep text
classification can be fooled. In Proceedings of International
Joint Conference on Artificial Intelligence, IJCAI, pages 4208–
4215, 2018.

[24] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel
mixture models. In ICLR, 2017.

[25] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training
methods for semi-supervised text classification. ICLR, 2017.

[26] N. Mrkšić, D. Ó. Séaghdha, B. Thomson, M. Gasic, P.-H. Su,
D. Vandyke, T.-H. Wen, and S. Young. Multi-domain dialog
state tracking using recurrent neural networks. In Proceedings
of ACL, volume 2, pages 794–799, 2015.

[27] N. Mrkšić, D. Ó. Séaghdha, T.-H. Wen, B. Thomson, and
S. Young. Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of ACL, volume 1, pages 1777–1788,
2017.

[28] E. Ngai, Y. Hu, Y. Wong, Y. Chen, and X. Sun. The applica-
tion of data mining techniques in financial fraud detection: A
classification framework and an academic review of literature.
Decision Support Systems, 50(3):559–569, 2011.

[29] E. W. Ngai, L. Xiu, and D. C. Chau. Application of data mining
techniques in customer relationship management: A literature

review and classification. Expert systems with applications,
36(2):2592–2602, 2009.

[30] P. Pasupat and P. Liang. Compositional semantic parsing on
semi-structured tables. In Proceedings of ACL, pages 1470–
1480, 2015.

[31] J. Pennington, R. Socher, and C. D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[32] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates.
Modern natural language interfaces to databases: Composing
statistical parsing with semantic tractability. In Proceedings of
the 20th international conference on Computational Linguistics,
page 141. Association for Computational Linguistics, 2004.

[33] A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory
of natural language interfaces to databases. In Proceedings of
the 8th international conference on Intelligent user interfaces,
pages 149–157. ACM, 2003.

[34] H. Ren, W. Xu, Y. Zhang, and Y. Yan. Dialog state tracking
using conditional random fields. In Proceedings of the SIGDIAL
2013 Conference, pages 457–461, 2013.

[35] S. Samanta and S. Mehta. Towards crafting text adversarial
samples. arXiv preprint arXiv:1707.02812, 2017.

[36] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirec-
tional attention flow for machine comprehension. ICLR, 2017.

[37] Y. Su and X. Yan. Cross-domain semantic parsing via para-
phrasing. In Proceedings of EMNLP, pages 1235–1246, 2017.

[38] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Advances in neural informa-
tion processing systems, pages 3104–3112, 2014.

[39] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[40] P. Utama, N. Weir, F. Basik, C. Binnig, U. Cetintemel,
B. Hättasch, A. Ilkhechi, S. Ramaswamy, and A. Usta. An end-
to-end neural natural language interface for databases. arXiv
preprint arXiv:1804.00401, 2018.

[41] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks.
In Advances in Neural Information Processing Systems, pages
2692–2700, 2015.

[42] W. Wang, Y. Tian, H. Xiong, H. Wang, and W.-S. Ku.
A transfer-learnable natural language interface for databases.
arXiv preprint arXiv:1809.02649, 2018.

[43] W. Y. Wang and D. Yang. That’s so annoying!!!: A lexical and
frame-semantic embedding based data augmentation approach
to automatic categorization of annoying behaviors using #pet-
peeve tweets. In EMNLP, pages 2557–2563, 2015.

[44] Y. Wang, J. Berant, and P. Liang. Building a semantic parser
overnight. In Proceedings of ACL, pages 1332–1342, 2015.

[45] T.-H. Wen, D. Vandyke, N. Mrkšić, M. Gasic, L. M. R.
Barahona, P.-H. Su, S. Ultes, and S. Young. A network-
based end-to-end trainable task-oriented dialogue system. In
Proceedings of EACL, volume 1, pages 438–449, 2017.

[46] X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured
queries from natural language without reinforcement learning.
arXiv preprint arXiv:1711.04436, 2017.

[47] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann,
B. Thomson, and K. Yu. The hidden information state model:
A practical framework for pomdp-based spoken dialogue man-
agement. Computer Speech & Language, 24(2):150–174, 2010.

[48] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. R. Radev. Typesql:
Knowledge-based type-aware neural text-to-sql generation. In
Proceedings of NAACL-HLT, pages 588–594, 2018.

[49] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating
structured queries from natural language using reinforcement
learning. arXiv preprint arXiv:1709.00103, 2017.

108

