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Abstract—Knowledge graphs have been used in a wide range
of applications to support search, recommendation, and question
answering (Q&A). For example, in Q&A systems, given a new
question, we may use a knowledge graph to automatically
identify the most suitable answers based on similarity evaluation.
However, such systems may suffer from two major limitations.
First, the knowledge graph constructed based on source data
may contain errors. Second, the knowledge graph may become
out of date and cannot quickly adapt to new knowledge. To
address these issues, in this paper, we propose an interactive
framework that refines and optimizes knowledge graphs through
user votes. We develop an efficient similarity evaluation notion,
called extended inverse P-distance, based on which the graph
optimization problem can be formulated as a signomial geometric
programming problem. We then propose a basic single-vote
solution and a more advanced multi-vote solution for graph
optimization. We also propose a split-and-merge optimization
strategy to scale up the multi-vote solution. Extensive experi-
ments based on real-life and synthetic graphs demonstrate the
effectiveness and efficiency of our proposed framework.

Index Terms—Knowledge Graphs, Question Answering, Data
Cleaning, Query Processing

I. INTRODUCTION

Knowledge graphs have been widely used in a variety
of applications, such as question answering (Q&A) systems
[1], recommender systems [2], Web search engines [3], and
precision medicine [4]. For example, measuring the similarity
between questions and HELP documents using a knowledge
graph has been shown to be effective in finding the relevant
answers [5].

In a knowledge graph, edges are essential to capture the
relationship of two nodes and the strength of a relationship is
typically represented by a weight of the edge. Clearly, how to
assign edge weights is a key challenge for the construction
and maintenance of a knowledge graph. Existing methods
are mostly based on inference of the relationships between
two objects (e.g., the hyperlinks between web pages) [6] or
the statistical information [5]. However, such methods are
often vulnerable to source data errors or statistical errors [7].
Even worse, the relationships may become out of date as the
knowledge evolves over time.

To address the aforementioned issues, inspired by the
Human-In-The-Loop (HITL) model and Back Propagation
(BP) [8], in this paper we propose an interactive framework
that refines and optimizes edge weights of knowledge graphs
through voting-based user feedback. As shown in Fig. 1(a),
upon receiving the user’s question, the Q&A system returns
a ranked list of answers A = 〈a1, a2, a3〉 based on similarity
evaluation via a knowledge graph. Specifically, following a
variant of the PageRank algorithm [9], we perform random

Fig. 1. An example of optimizing the knowledge graph based on user votes

walks starting from the query node. The similarity between
the query and an answer is the probability of the random
walks reaching the answer (a formal definition will be given in
Section III). After the user gets the ranked answers, he/she can
check them and vote for the best answer. For example, if the
user finds the second answer a2 is most helpful to the question,
he/she can vote this answer for the best one, suggesting that
a2, instead of a1, should be ranked at the top. With such user
feedback, we may adjust the edge weights (e.g., from Fig. 1(a)
to Fig. 1(b)) so that a2 will be ranked higher next time if a
similar question is asked.

We remark that voting mechanisms have been commonly
employed by online systems to improve user experience [10].
Many Q&A websites, such as Quora, Yahoo! Answers, and
Zhihu, use upvotes and downvotes to sort the responses posted
by users. Nevertheless, these systems simply count the votes
as a measure of trustworthiness for user-posted responses, and
none of them has incorporated automated knowledge graph
techniques for answering new questions. In contrast, this paper
proposes to leverage user voting to optimize knowledge graphs
that can be used to derive ranked answers for new questions.
Furthermore, the proposed framework is not limited to Q&A
systems. It can be extended to other knowledge graph-based
applications:

Example 1: Consider an e-commence website. Given a
query, the website recommends related products to the cus-
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tomer based on their similarities in a co-purchase knowledge
graph. If it is found that customers are more likely to purchase
the products that do not rank first in the recommendation list,
we may want to optimize the graph with such implicit user
voting information.

Example 2: Suppose that a search engine returns relevant
pages given a user’s query based on similarity evaluation us-
ing a knowledge graph. The click events, which indicate users’
choices for the search results, are indeed implicit user votes.
Our framework can make the search engine to achieve higher
accuracy by optimizing the underlying knowledge graph.

There are a number of challenges in optimizing knowledge
graphs through voting-based user feedback. First, a knowledge
graph is usually at large scale with complex structures, which
entail update of a large number of edges in response to a user
vote. Second, edge weights are continuous numerical values
and hence the search space of the updates is infinite. Third,
it is inefficient to handle a large amount of votes simulta-
neously in terms of both computational time and memory
space. Our framework addresses these challenges by analyzing
the votes in an efficient manner. Specifically, to address the
first and second challenges, we propose a new notion called
extended inverse P-distance, which is a variant of Personalized
PageRank [9], to evaluate the similarity between the nodes in
a knowledge graph. Based on this, we transform the graph
optimization problem into a signomial geometric programming
problem [11]. To address the third challenge, we develop a
split-and-merge optimization strategy to divide the whole vote
set into several sub-sets for processing, which reduces the time
and space costs. In summary, our main contributions are as
follows:

• We propose a novel framework for optimizing edge
weights of a knowledge graph based on user votes. To the
best of our knowledge, this is the first work that exploits
voting-based user feedback to improve the quality of
knowledge graphs.

• We develop an efficient similarity evaluation notion,
based on which the graph optimization problem can be
transformed into a signomial geometric programming
problem.

• We develop a basic single-vote solution and a more
advanced multi-vote solution for graph optimization. We
also propose a split-and-merge strategy to optimize the
multi-vote solution.

• We conduct extensive experiments on real-life and syn-
thetic graphs. Experiments show that our framework
significantly improves the accuracy of the knowledge
graph in question answering. Moreover, we demonstrate
that our optimization strategy can achieve more than
6X speedups compared to the baseline algorithm when
handling the multi-vote problem.

The rest of this paper is organized as follows. We first
review related work in Section II. We present some preliminary
knowledge in Section III. Next, we describe the basic single-
vote method in Section IV and discuss the multi-vote solution
in Section V. In Section VI, we focus on how to accelerate
the processing for large-scale votes. Section VII reports exper-
imental results in terms of effectiveness and efficiency. Finally,
we conclude our work in Section VIII.

II. RELATED WORK

This section presents the related work on data cleaning,
graph similarity measurement, and question answering sys-
tems.

Data Cleaning. Data cleaning (or data cleansing) is a well-
studied technique that aims to correct or remove inaccurate
data from a database. Many data cleaning methods have been
proposed in the past. Bergman et al. [12] and Assadi et al. [13]
employ experts with an optimized method to prune the errors
in query results. Several existing works, e.g. [14], leverage
human’s feedback to repair the errors and hence improve the
quality of data. Learn-to-rank is another technique that takes
advantage of user feedback to improve the ranking accuracy.
Radlinski et al. [15] use clickthrough data to learn ranked
retrieval functions for web search results. Joachims et al.
[16] propose an unbiased learn-to-rank algorithm with implicit
user feedback. Wang et al. [17] transform the data cleaning
problem into a mixed integer linear program (MILP) problem,
which encodes user complaints about data errors. Our work is
inspired by these works to integrate user feedback for data
cleaning. However, the problem targeted in this paper requires
the system automatically finding the edges to be optimized in
a knowledge graph as well as addressing the conflicts among
different user votes. The existing algorithms cannot be adapted
to solving the problem proposed in this paper.

A knowledge graph is an effective way to represent the
knowledge of the objective world [5]. Recently, Yang et al. [5]
propose a novel method to answer technical questions based
on a knowledge graph. Some works have been proposed to
clean the knowledge graph. Liang et al. [18] derive new isA
relationships according to the transitivity of the isA relation
in the knowledge graph. They further propose to supple-
ment the isA relationship by using the collaborative filtering
method [19]. Lin et al. [20] suggest cleaning a probabilistic
graph for reachability queries via crowdsourcing. Mitchell et
al. [21] also utilize human feedback to optimize a knowledge
graph. But different from our proposal, they require humans
to directly evaluate the beliefs represented in the knowledge
graph. In contrast, our framework leverages users’ application-
level feedback to optimize the knowledge graph.

Graph Similarity Measurement. Measurement of similar-
ity between nodes in a graph is important to many applica-
tions, such as social network analysis, information retrieval,
and knowledge-graph-based question answering. A number
of models have been proposed to capture the similarity of
two nodes, such as Random Walk With Restart (RWR) [22],
Personalized PageRank (PPR) [9], and SimRank (SR) [23].
These models can be classified into two categories according
to the perspective of the edges between nodes. The first is
based on an intuition that two objects are similar if they are
referenced by similar objects, e.g., SimRank. The other is to
regard the probability of walking from one node to another as
the similarity between the nodes, e.g., RWR and PPR.

Query Answering (Q&A) Systems. With the development
of deep learning, several end-to-end models on Q&A have
been proposed. Zhang et al. [24] design a novel attentive inter-
active neural network (AI-NN) to highlight the text segments
useful to answer selection. Tan et al. [25] combine CNN and
RNN to extract linguistic information from both structures.
Zhao et al. [26] consider deep semantic relevance between
question-answer pairs and the answers’ authority. Shen et al.
[27] match queries and answers by combining lexical and
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sequential information. A knowledge base (KB) is also an
important part of some Q&A systems. Hao et al. [28] integrate
the rich KB information into the representation of the answers.
Das et al. [29] employ memory networks to attend to the facts
in the combination of text and KB. However, these end-to-end
models lack interpretability, which limits their application.

III. PRELIMINARY AND PROBLEM DEFINITION

In this section, we first present some preliminaries and then
introduce the problem definition of our work.

A. Preliminary
Knowledge Graph. We denote a knowledge graph as G =

(V,E,W ), where V and E are the sets of nodes and edges,
respectively. In our problem, the nodes represent the entities
in the knowledge graph and the edges are their relations. For
a pair of nodes vi and vj , w(vi, vj) ∈W is the weight of the
directed edge connecting vi to vj . For example, as illustrated
in Fig. 1, the entities in a Q&A system are technical terms or
events, which can be extracted from the answer documents
by using the sequential labelling method [5]; each weight
w(vi, vj) indicates the entities’ semantic relevance, which can
be initialized with the conditional probability of node vj given

node vi, i.e., w(vi, vj) = P (vj |vi) =
#(vi,vj)
#(vi)

, where #(vi)
denotes the occurrence frequency of the entity represented by
vi and #(vi, vj) denotes the co-occurrence frequency of the
entities of vi and vj in the answer documents [5].

For ease of presentation, we regard the queries and answers
as query nodes and answer nodes, respectively. The set of
query nodes is denoted by Q = {vq1 , vq2 , · · · , vqn} and the
set of answer nodes is denoted by A = {va1

, va2
, · · · , van

}.
Note that Q and A are linked to the knowledge graph G, but
Q ∩ V = ∅ and A ∩ V = ∅. Formally, given a query node
vq and an entity node vi, the weight between vq and vi is
defined by the occurrence frequency of vi in the query q, i.e.,
w(vq, vi) =

#(q,vi)∑
vj∈V #(q,vj)

, where #(q, vi) denotes the times

of the entity of vi occurring in q. For example, in Fig. 1,
the weights from the query node vq to the nodes “Stuck”,
“Outlook”, and “Email” are all equal to 0.33. The weights
between the answer nodes and the entity nodes are derived in
the same way.

In the sequel, we consider the augmented knowledge graph
that combines the original graph G with Q and A for question
answering.

Personalized PageRank. Personalized PageRank
(PPR) [9], a variant of PageRank, is commonly used to
measure the similarity between a query and the possible
answers in a knowledge graph.

Consider an augmented knowledge graph G = (V,E,W ).
Let M be the adjacency matrix of the edge weights in the
graph G, where M ij = w(vj , vi). W.l.o.g., we number the
nodes in G from 1 to |V |, where |V | is the number of nodes
in the graph. According to the definition of PPR in [30], given
a target query node vq , the PPR vector πvq is the stationary
distribution of the following random walk starting from vq: at
each step, either return to vq with a probability of c, or move
to a random out-neighbor of the current node otherwise. Each
PPR vector πvq

is of length |V |, where πvq,vi
denotes the i-

th component of πvq . In addition, uvq is a preference vector,
where uvq,vi denotes the amount of preference for node vi,

and
∑|V |

1 uvq,vi = 1. Since we want to measure the similarity

TABLE I
FREQUENTLY USED NOTATIONS

Notation Meanings
S(vq, va) The similarity between vq and va
t−; t+ The negative vote and the positive vote
T−; T+ The negative vote set and the positive vote set
G∗ The optimized graph

Ω(G∗) The score of the graph G∗

w(vi, vj) The weight of edge from node vi to node vj
vqt− ; vqt+ The query nodes in t− and t+

A(vqt− ); A(vqt+ ) The top-k answer lists of vqt− and vqt+
a∗t− ; a∗t+ The best answers of t− and t+

between the target query node vq and the answer nodes, vq
is the only preference node. Therefore, we set uvq,vi = 1 if
vi = vq and uvq,vi = 0 if vi �= vq .

For a given uvq , the PPR equation can be written as

πvq = (1− c)Mπvq + cuvq (1)

where typically c ≈ 0.15, and studies have shown that small
changes in c have little effect on the results [9]. A solution
πvq

to Equation (1) is a steady-state distribution of similarity
measures between vq and the other nodes.

Signomial Geometric Programming. Inspired by [17], our
framework models the weighted graph optimization problem
as a signomial geometric programming (SGP) problem, which
is a type of nonlinear constrained optimization. According to
the description of SGP in [11], the form of SGP is shown as
follows:

SGP (X)

⎧⎨
⎩

minimize f0(x)
s.t. fi(x) ≤ 1, i = 1, · · · ,m,

X = {x : 0 < xl ≤ x ≤ xu}
(2)

where

fi(x) =

Ki∑
k=1

cikx
ei1k
1 x

ei2k
2 · · ·xeink

n , i = 0, · · · ,m (3)

Here coefficients cik ∈ R and eijk ∈ R, xl and xu are the
lower bound and upper bound of x, respectively, and Ki is a
positive integer number. A function of the form f(x) is called
signomial function. X = 〈x1, · · · , xn〉 is a set of undetermined
variables. fi(x) ≤ 1 (i = 1, · · · ,m) is a series of constraint
functions and seeking the minimum of f0(x) is the objective
of the programming.

B. Problem Formulation
This section presents the problem to be studied in this

paper. For better readability, we summarize the frequently used
notations in Table I.

We start by introducing how to evaluate the similarities
between a query and the answers based on a knowledge graph.

Definition 1: Query-Answer Similarity Measure. Given
an augmented knowledge graph G = (V,E,W ), a query node
vq , and an answer node va, the similarity between vq and va,
denoted as S(vq, va), is derived based on the edge weights of
the graph. Following the definition of Personalized PageRank
(PPR) discussed in the last section, S(vq, va) is defined as:

S(vq, va) = πvq,va (4)
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where πvq,va is the entry va of the solution πvq
to Equa-

tion (1).

For each query q, we assume that our framework returns a
ranked list of top-k answers Ak = 〈a1, a2, · · · , ak〉, which is
sorted by the similarity score S(vq, va).

Definition 2: Negative Vote and Positive Vote. For each
different query, the returned answer list may receive a vote
from the query user. The answer that is considered the best
among all returned answers is termed as the best answer. A
negative vote picks the answer that does not rank first in the
returned answer list for the best answer. In contrast, a positive
vote confirms that the first answer in the returned list is the
best one. We use T+ and T− to denote the set of positive votes
and the set of negative votes, respectively.

Problem Statement. Given a set of different queries and
their associated votes, the objective of our problem is to
adjust the edge weights of the knowledge graph so that
the best answers voted by users can be re-ranked as high
as possible. Let a∗t be the best answer voted in a vote t
and G∗ = (V,E,W ∗) denote the knowledge graph with
the adjusted edge weights. Considering the potential conflicts
between the votes, the objective of our problem is formalized
as follows.

Definition 3: Optimization Objective. Given a set of neg-
ative votes T− and a set of positive votes T+, the score of the
graph G∗ is defined as:

Ω(G∗) =
∑

t∈T−∪T+

(rankt − rank′t). (5)

where rankt is the position of va∗t in the answer list computed
with the original graph G, e.g., if va∗t ranks second in the
original list, rankt = 2; similarly, rank′t is the position of
va∗t in the re-ranked answer list computed with the refined
G∗, e.g., if va∗t ranks first in the re-ranked list, rank′t = 1.
Based on this definition, the optimization objective is to find
a G∗ such that

G∗ = argmax(Ω(G∗)) (6)

More intuitively, we seek the maximum increase of the
ranking of the best answers for all negative votes t− ∈ T−
and the minimum decrease of the ranking of the best answers
for all positive votes t+ ∈ T+. By doing so, we hope that our
framework will optimize the knowledge graph so that higher
accuracy can be achieved for future queries.

IV. SINGLE-VOTE SOLUTION

In this section, we propose a basic single-vote approach
by considering negative votes individually. The main idea of
this approach is transforming the graph optimization problem
into an SGP problem by encoding the user votes as constraint
functions. We first propose an equivalence equation of PPR to
quickly evaluate the similarity between questions and answers
and return the top-k answers for a question. We then describe
the process of encoding that transforms a negative vote into
a set of constraint functions and define the objective function
of SGP. Finally, we present the complete procedure of the
single-vote solution.

A. Similarity Evaluation

To explain the proposed approach, we use a running ex-
ample of knowledge-graph-based question answering. Recall
from Section III-A that we employ the PPR to measure the
similarity between questions and answers. However, comput-
ing πvq

naively using a fixed-point iteration requires multiple
scans of the graph [9], which would incur prohibitively high
time complexity. Furthermore, the solution of Equation (1)
presents the similarity scores between a target node and all
other nodes in the graph, which is not necessary for our
question answering system.

Inspired by [23] [30], we propose an extended inverse P-
distance, a notion based on inverse P-distance that was intro-
duced in [30]. The extended inverse P-distances are equivalent
to the PPR vector scores, which can evaluate the similarity
between a query node and any answer node. Formally, we
define the extended inverse P-distance Φ(vq, va) from vq to
va as:

Φ(vq, va) =
∑

z:vq�va

P [z]c(1− c)|z| (7)

where the summation is taken over all paths starting at vq
and ending at va, possibly touching some nodes in the graph
multiple times. For a path z = 〈vq, v1, · · · , vk, va〉, the length
|z| is k+1. The probability of z, denoted by P [z], is defined
as:

P [z] = w(vq, v1)w(vk, va)

k−1∏
i=1

w(vi, vi+1), i = 1, 2, · · · (8)

where w(vi, vi+1) represents the edge weight from node
vi to node vi+1. For a special case in which |z| = 2,
P [z] = w(vq, v1)w(v1, va). If there is no path from vq to
va, the extended inverse P-distance Φ(vq, va) = 0. As proven
in Theorem 1, the PPR vector scores can be represented by
the extended inverse P-distances in a weighted graph.

Theorem 1: The PPR vector scores can be represented by
the extended inverse P-distances in a weighted graph.

Proof (Sketch): We prove their equivalence in two steps.
First, we develop a decomposition theorem to compute each
dimension of the PPR vector, which is an equivalent way of
formalizing the PPR vector scores. Second, we prove that the
extended inverse P-distance is equivalent to the PPR score
derived from the decomposition theorem. The full proof is
presented in [31]. �

Based on Theorem 1, the similarity between a question node
vq and an answer node va can be evaluated by the extensive
inverse P-distance as follows:

S(vq, va) = Φ(vq, va) (9)

Example: Consider the knowledge graph shown in Fig. 1(a).
In order to compute S(vq, va3), we first search all paths
from vq to va3

: 〈vq ⇀ vOutbox ⇀ vEmail ⇀
vSendMessage ⇀ vOutlook ⇀ va3

; vq ⇀ vOutbox ⇀
vSendMessage ⇀ vOutlook ⇀ va3 ; vq ⇀ vEmail ⇀
vOutbox ⇀ vSendMessage ⇀ vOutlook ⇀ va3

; vq ⇀
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vEmail ⇀ vSendMessage ⇀ vOutlook ⇀ va3
; 〉. We then use

Equation (9) to compute the similarity S(vq, va3
) as follows:

S(vq, va3) =(0.33 ∗ 0.3 ∗ 0.6 ∗ 0.3 ∗ 1) ∗ c ∗ (1− c)5

+ (0.33 ∗ 0.5 ∗ 0.3 ∗ 1) ∗ c ∗ (1− c)4

+ (0.33 ∗ 0.4 ∗ 0.5 ∗ 0.3 ∗ 1) ∗ c ∗ (1− c)5

+ (0.33 ∗ 0.6 ∗ 0.3 ∗ 1) ∗ c ∗ (1− c)4

+ · · ·
Given a question vq , we compute the similarity S(vq, va)

with each possible answer and return a ranked list of top-
k answers to the user. To compute S(vq, va), in theory, we
need to identify all paths from node vq to node va, which is
time consuming. Since an edge weight w(vi, vi+1) is always
less than 1, the probability P [z] degrades exponentially as the
length of the path increases. Thus, to speed up the similarity
computation, we prune the path with a length longer than
L. More details on the setting of L will be discussed in
Section VII-E.

Complexity Analysis. The computational complexity of
S(vq, va) is bounded by the number of paths from vq to va.
Let d be the average degree of the nodes. This complexity can
be estimated as O(dL).

B. Encoding Negative Votes
In the scenario of solving a single vote, we do not consider

positive votes, since in this case the best answer has been
ranked first in the ranked list and there is no need to optimize
the knowledge graph. Given a negative vote t− ∈ T−, we
encode it as a set of constraint functions and hence the graph
optimization problem is transformed into an SGP program-
ming problem. As mentioned above, we employ the extended
inverse P-distance, which is a signomial function, to evaluate
the similarity between questions and answers.

An SGP problem consists of two parts: constraint functions
and objective function. In the following, we describe the
details of constructing the SGP problem for each of these two
parts.

Constraint Functions. To encode a negative vote, we first
introduce a real-valued variable xi,j to represent the edge
weight from node vi to node vj . The initial value of xi,j equals
the edge weight w(vi, vj) in the knowledge graph. Then, we
analyze the user negative vote. Recall from Section III-B that
a negative vote specifies the best answer va∗ suggested by the
user. Hence, the similarity of question vq to the best answer
va∗ should be larger than that to any other answer va in the
list. Thus, we define the constraint functions as follows:

s.t.

⎧⎪⎪⎨
⎪⎪⎩

S(vq, va∗) >S(vq, va1
)

S(vq, va∗) >S(vq, va2
)

· · ·
S(vq, va∗) >S(vq, vak−1

)

(10)

More formally, we substitute Equation (9) for S(vq, va) and
rewrite the inequalities in the standard format of SGP:

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
z:vq�va1

P [z]c(1− c)|z| −
∑

z:vq�va∗

P [z]c(1− c)|z| < 0

· · ·∑
z:vq�vak−1

P [z]c(1− c)|z| −
∑

z:vq�va∗

P [z]c(1− c)|z| < 0

(11)

Algorithm 1 Basic: The Single-Vote Solution

Require: T−, G
Ensure: G∗

1: G∗ ← G
2: for each t− ∈ T− do
3: // obtain the variable set X
4: X ← ObtainV ariableSet(t−, G∗)
5: for each xi,j ∈ X do
6: // Initialize the xi,j based on edge weights in G∗
7: xi,j ← G∗i,j
8: end for
9: sgl cons← GenerateConstraints(t−)

10: sgl obj ← GenerateObjective(sgl cons,X)
11: X ′ ← SGPsolver(sgl cons, sgl obj)
12: // update the edge weights in G∗
13: for each x′i,j ∈ X ′ do
14: G∗i,j ← x′i,j
15: end for
16: G∗ ← NormalizeEdges(G∗)
17: end for
18: Return G∗

By satisfying the constraint functions, the problem maxi-
mizes the ranking increase of the best answer for the negative
vote t−, thereby maximizing the objective of our graph opti-
mization problem stated in Definition 3. Since there could be
many ways of updating the edge weights to achieve this, we
set an objective function for the SGP problem.

Objective Function. The objective function of the SGP
problem is set to minimize the amount of changes of
edge weights, which is measured by the Euclidian distance
d(X,X∗) of edge weights between the initial variable set X
and the optimized variable set X∗. More formally, denoting
by xi,j and x∗i,j the variable of the edge weight from node vi
to node vj in X and X∗, respectively, d(X,X∗) is defined as
follows:

d(X,X∗) =
∑

xi,j∈X,x∗i,j∈X∗
(x∗i,j − xi,j)

2 (12)

C. Complete Procedure of Single-Vote Solution

We proceed to describe the complete procedure of the
single-vote solution. The algorithm takes as input the negative
vote set T−, the edge weight variable set X and the initial
weighted directed graph G, and outputs a new knowledge
graph G∗.

The single-vote solution processes the negative votes se-
quentially in a greedy manner. As shown in Algorithm 1,
for each t− ∈ T−, we first initialize the variable set X
by using ObtainV ariableSet based on the corresponding
edges in the current graph (Lines 3-8). Then, the func-
tion GenerateConstraints encodes a single negative vote
t− as constraint functions sgl cons (Line 9). After that,
GenerateObjective augments the program with an objective
function that models the changes of edge weights between
the current graph and the optimized graph (Line 10). The
function SGPsolver solves the SGP problem and generates
an adjusted variable set X ′ which is used to update the weights
of the corresponding edges in the graph (Lines 11-15). Finally,
NormalizeEdges normalizes the edge weights (Line 16).

425



After traversing each t− ∈ T−, the procedure returns an
optimized graph G∗.

Example: Consider a set of votes: {t1−, t2+, t3− }, where
t1−,t3− are negative votes and t2+ is a positive vote. Algorithm 1
does not consider the positive vote t2+ and will encode t1−, t

3
−

into two separate SGP programs, and solve them one by one
to greedily update the edge weights.

Complexity Analysis. Recall that our SGP program gen-
erates k-1 constraint functions (see Equation (10)). As each
constraint function needs to evaluate the similarity between a
query and an answer, which has a cost of O(dL) as analyzed in
Section IV-A, the complexity of constructing an SGP program
is O(kdL). Since one SGP program is constructed for each
negative vote in T−, the total construction cost is O(|T−|kdL).

V. MULTI-VOTE SOLUTION

As discussed above, the single-vote solution encodes each
negative vote t− ∈ T− as a set of constraint functions of
the SGP problem. However, in practical applications, there
might be conflicts among user votes. Even worse, errors
may occur in some user votes. Unfortunately, the single-vote
solution cannot handle these problems, since it constructs
the SGP problem and adjusts the edge weights for each
negative vote individually. Due to the order of processing,
the edge weights in the graph will be biased towards the last
programming result, which may reduce the overall quality of
graph optimization. For example, if most of the programming
results for negative votes increase the weight of an edge e, but
the programming result of the last vote, which may be a low
credible vote, decreases the weight of e, the final weight will
be decreased.

To address this drawback, we propose a multi-vote solution
that processes all negative votes and positive votes in one
batch. The benefit is two-folded. First, a positive vote rep-
resents a positive feedback for the current knowledge graph,
which is now reflected in the solution. Second, since the
constraint functions are encoded by multiple votes, the solver
can automatically handle the conflicts among the votes in the
process of solving the SGP problem.

Encoding Positive Votes. Recall the definition of positive
vote, in which the best answer keeps ranking first in the
re-ranked list. The essence of a positive vote represents a
confirmation, which should also be considered in graph op-
timization. That is, a positive vote can be used to keep the
best answer in the optimized graph.

Similar to negative votes, given a positive vote t+ ∈ T+, we
encode it as a set of constraint functions. We also introduce
a real valued variable set X , which consists of variables xi,j .
The definition of xi,j is the same as that defined in Section
IV-B, which represents the corresponding edge weight in the
graph. A positive vote contains a re-ranked list A′k of answers,
where the best answer va1

keeps ranking first in the list. Hence,
we define the constraint functions as follows:

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
z:vq�va2

P [z]c(1− c)|z| −
∑

z:vq�va1

P [z]c(1− c)|z| < 0

· · ·∑
z:vq�vak−1

P [z]c(1− c)|z| −
∑

z:vq�va1

P [z]c(1− c)|z| < 0

(13)

Note that these constraint functions are similar to the
constraint functions (Equation (11)) generated for a negative
vote.

Multi-Vote Solution. Similar to the single-vote solution, we
formulate an SGP problem for the multi-vote solution. Here,
the SGP objective function is set the same as that in the single-
vote solution. On the other hand, we combine the constraint
functions for all negative votes and positive votes into a
comprehensive set of constraint functions for the multi-vote
SGP problem. Specifically, for each negative vote t− ∈ T−
and each positive vote t+ ∈ T+, we denote the questions in
t− and t+ as vqt− and vqt+ , respectively. The comprehensive
set of constraint functions are defined as follows (for clarity,
we use the original form to represent the constraints):

∀t− ∈ T−, ∀va− ∈ {A(vqt− )\a∗vqt−
}

∀t+ ∈ T+, ∀va+
∈ {A(vqt+ )\a1qt+ }

s.t.

{
S(vqt− , a

∗
vqt−

) >S(vqt− , va−)

S(vqt+ , a1vqt+
) >S(vqt+ , va+

)

(14)

where A(vqt− ) and A(vqt+ ) are the top-k answer set of vqt−
and vqt+ respectively; a∗vqt−

and a1qt+ are the best answer of

vqt− and vqt+ , respectively.
If there are no conflicts among the constraint functions of

the SGP problem, it is likely that all functions in Equation (14)
can be satisfied. In this case, the multi-vote problem can be
easily solved by a normal SGP solver. However, there could be
conflicts among the functions, due to the following reasons: (1)
errors exist in some user votes so that it is unable to adjust the
edge weights to satisfy the votes; (2) there could be conflicts
among the user votes. As such, the functions in Equation (14)
cannot be fully satisfied.

Specifically, for the first reason, the errors in a user vote
refer to the user’s wrong choice of the best answer. In this case,
the best answer in the vote cannot gain the highest similarity
to the question no matter how the weights of the graph are
changed. This problem cannot be solved by optimizing the
knowledge graph. Therefore, we propose an efficient judgment
algorithm to filter out such user feedback that cannot be
optimized because of the first reason, before we encode them
into an SGP problem.

Given a question vq , we compute its similarity with each
possible answer and return a ranked list. Assuming that rank is
the position of va∗ in the ranked list, the algorithm is designed
to compare whether the similarity S(vq, va∗) is greater than
S(vq, varank−1

) under an extreme condition. Specifically, we
first identify all paths with a length shorter than L from
node vq to node va∗ and node varank−1

, respectively. Then, we
define Set(va∗) and Set(varank−1

) as the set of edges which
compose the paths from node vq to node va∗ and node varank−1

,
respectively. The extreme condition is defined as follows:
• If an edge belongs to Set(va∗)

⋂
Set(varank−1

), the weight
of this edge is set to a constant greater than 0 and less
than 1.

• If an edge belongs to Set(va∗)−Set(varank−1
), the weight

of this edge is set to 1.
• If an edge belongs to Set(varank−1

)−Set(va∗), the weight
of this edge is set to 0.

In other words, this condition maximizes S(vq, va∗) while it
minimizes S(vq, varank−1

). Under this condition, if S(vq, va∗)
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Fig. 2. The comparison of step function and sigmoid function.

can be greater than S(vq, varank−1
), the associated user vote will

be encoded in SGP. Otherwise, the vote will be discarded.
For the second reason, conflicts among user votes may

make the SGP solver unable to find any assignment of edge
weights to satisfy all user votes. Since we use PPR to measure
the similarity between nodes, these implicit conflicts are only
reflected in the constraint functions of the SGP problem. In
another words, we cannot precisely locate the causes of the
conflicts to some specific edges. In fact, even locating to
certain edges cannot help solve these conflicts. Hence, in this
situation, we propose a method that maximizes the number of
constraint functions that are satisfied, so as to minimize the
influence of the conflicts.

Inspired by Goal Programming [32] and Multi-objective
Optimization [33], we first introduce deviation variables into
the original constraint functions of the SGP problem. The new
constraint functions are as follows:

∀t− ∈ T−, ∀va− ∈ {A(vqt− )\a∗vqt−
}

∀t+ ∈ T+, ∀va+
∈ {A(vqt+ )\a1qt+ }

s.t.

{
S(vqt− , va−)−S(vqt− , a∗vqt−

)− dx− < 0

S(vqt+ , va+
)−S(vqt+ , a1vqt+

)− dx+
< 0,

(15)

where dx− and dx+
are the deviation variable for each con-

straint function. Let D denote the set of these deviation vari-
ables. For each dxi ∈ D, if dxi ≤ 0, the corresponding original
constraint function, e.g., S(vqt− , va−) − S(vqt− , a

∗
vqt−

) < 0,

can be satisfied. Otherwise, the function may not be satisfied.
Then, we propose a new objective function and add it to the

optimization problem. The objective function should have the
following two important features: (1) the function can achieve
the objective of maximizing the number of constraint functions
that are satisfied; (2) the function is continuous and smooth,
which makes it easier for the solver to solve the optimization
problem.

Intuitively, the effect of dxi being slightly larger than 0 is
equivalent to that of being much larger than 0. In both cases,
the corresponding constraint function may not be satisfied.
Essentially, the number of unsatisfied constraint functions
would be decided by the size of |{dxi

|dxi
> 0}|. To model

this, we introduce a step function as follows:

F(dxi
) =

{
1, dxi

> 0

0, dxi
≤ 0

(16)

The summation of the step function
∑

dxi
∈D F(dxi

) is exactly

the size of |{dxi
|dxi

> 0}|. However, the step function is
discontinuous at x = 0, which would increase the difficulty of

solving the programming problem. As a substitute, we choose
a sigmoid function to approximate F (dxi

). The definition of
the sigmoid function is as follows:

L(dxi
) =

1

1 + e−wdxi

(17)

where w is usually set to a large integer value [34]. If dxi

is larger than 0, the growth of the sigmoid function increases
sharply and approaches 1 quickly. On the other hand, when
dxi

is less than 0, the value of the function tends to be 0. Fig. 2
shows that the sigmoid function is a close approximation of
the step function when w = 300.

Thus, we define a new objective function as follows:∑
dxi
∈D

(
1

1 + e−wdxi

) (18)

Next, we show that minimizing the above objective function
is equivalent to optimizing our graph optimization prob-
lem (Definition 3). First, we prove that minimizing the size
of |{dxi

|dxi
> 0}| and maximizing the optimization objective

in Definition 3 are equivalent. Recall from Definition 3 that we
aim to enlarge the similarity between the question and the best
answer. For a constraint function S(vq, a

∗) > S(vq, a−)−dxi ,
when dxi

≤ 0, S(vq, a
∗) is larger than S(vq, a−). Therefore,

minimizing the size of |{dxi
|dxi

> 0}|, which maximizes the
size of |{dxi

|dxi
≤ 0}|, is equivalent to maximizing the op-

timization objective. Second, we analyze that minimizing the
objective function in Equation (18) is approximately equivalent
to minimizing the size of |{dxi

|dxi
> 0}|. As mentioned

above, the sigmoid function is a close approximation of
the step function. As such, the function

∑
dxi
∈D ( 1

1+e−wdxi
)

closely approximates the summation of the step function,∑
dxi
∈D F(dxi

). The latter is just the size of |{dxi
|dxi

> 0}|.
In the final implementation, we need to minimize both of

the objective functions expressed in Equations (12) and (18).
To do so, we employ a weighted summation of these two
functions as the overall objective function:

λ1 ·
∑

xi,j∈X,x∗i,j∈X∗
(x∗i,j − xi,j)

2 + λ2 ·
∑

dxi
∈D

(
1

1 + e−wdxi

),

(19)
where λ1 and λ2 are the preference parameters on the graph
weight changes and the degree of vote satisfaction.

Example: Revisit the example in Section IV-C, the multi-
vote solution will encode all the votes t1−,t2+,t3− into a single
SGP program, with Eq. (15) as constraint functions and
Eq. (19) as objective function, and solve it to adjust the edge
weights at one time.

Complexity Analysis. In contrast to the single-vote solu-
tion, the multi-vote solution employs only one SGP program
to encode all the votes in T− and T+. Thus, it is easy to derive
that the complexity of constructing the SGP program for the
multi-vote solution is O((|T−| + |T+|)kdL), where k is the
number of returned answers, d is the average degree of the
nodes, and L is the pruning threshold of the path length.

VI. OPTIMIZATION FOR MULTI-VOTE SOLUTION

One issue with our multi-vote solution is that a large amount
of votes would lead to an exponential increase in solver
time, due to the sharply increased number of variables and
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Fig. 3. An example of split strategy
constraint functions. In this section, we propose a split-and-
merge strategy to accelerate the processing of the multi-vote
solution.

A. Split and Merge
Since SGP is an NP-hard problem [35], we devise a split-

and-merge strategy which is a heuristic algorithm to avoid
the exponential increase in solver time for large-scale SGP
problems. The main idea is to break the large problem into a
set of small sub-problems, since it is faster to solve small
problems. Furthermore, small problems can be solved in
parallel by embracing distributed technologies. The rest of this
subsection describes the two parts of the proposed split-and-
merge strategy.

Splitting the Vote Set. Following the approach of graph
partitioning [36], we split a knowledge graph into several clus-
ters based on the similarity between the votes. As mentioned
in Section V, each negative or positive vote includes a question
node and a set of top-k answer nodes. Recall that we prune
the path with a length longer than L. Hence, all the edges
associated with similarity evaluation of a vote are centrally
distributed in a sub-graph of the graph. Thus, the large graph is
split based on the edges associated with the votes. Intuitively,
the votes with more common edges should be classified into
the same cluster and the votes with fewer common edges
should be separated, so that there are less conflicts between
clusters.

Formally, we denote the set of edges associated with a vote
t ∈ T as E(t). The similarity between two votes ti and tj is
defined as follows:

Sim(ti, tj) =
E(ti) ∩ E(tj)

E(ti) ∪ E(tj)
(20)

We employ an affinity propagation (AP) clustering algo-
rithm [37] to classify the votes based on Sim(ti, tj) between
the votes. The AP algorithm can automatically find the optimal
number of clusters and make the number of common edges
between neighboring clusters the minimum. Fig. 3 shows an
exemplifying example, where a graph is divided into three
clusters. After forming clusters, we construct an SGP problem
for each cluster and use the multi-vote solution to solve them
separately.

We remark that the split strategy makes sense for real
knowledge graphs. The nodes with high correlations centrally

distributed in a sub-graph may represent a domain in a
knowledge graph. For example, the entities of athletes will
be distributed in the sub-graph which represents Sports.

Fig. 4. An example of merge strategy

Merging the Results. After solving the SGP problems
constructed for each cluster, we obtain a set of results. The
results consisting of the change of each variable xi,j ∈ X
will be merged into the knowledge graph. As mentioned
above, the number of common edges between clusters is
minimized by using the AP algorithm. In other words, most
variables are changed in only one cluster. Therefore, the merge
strategy focuses on the variables which are changed in multiple
clusters. For each xi,j ∈ X , the change of xi,j in the final
result is denoted by Δxi,j . The merge strategy is proposed as
follows:

• If xi,j is changed in only one cluster, Δxi,j equals this
change;

• If xi,j is changed in several clusters,
Δxi,j = #vote〈Δx1

i,j , · · · ,Δxn
i,j〉, where

#vote〈Δx1
i,j , · · · ,Δxn

i,j〉 considers the changes in
the related clusters by using a voting mechanism.
Specifically, the number of votes in a cluster C is
denoted by nC . First, we determine the sign of Δxi,j

by the sign of
∑
C (nC ·ΔxCi,j). Then, we assign the

maximum of 〈Δx1
i,j , · · · ,Δxn

i,j〉 to Δxi,j if the sign of
Δxi,j is positive, otherwise the minimum is assigned to
Δxi,j .

Fig. 4 shows an example of four clusters. The changes of
variable xe are 〈−0.01,+0.03,+0.07〉 for clusters 2, 3, and
4. We assume that the number of votes in each cluster is
n2 = 10, n3 = 8, and n4 = 9, respectively. Thus, the sign
of Δxi,j is positive since

∑
C nCΔxCi,j = 10 ∗ (−0.01) +

8 ∗ 0.03 + 9 ∗ 0.07 ≥ 0. Therefore, we choose the maximum
0.07 of 〈−0.01, 0.03, 0.07〉 as the final result. As can be seen,
while the merge strategy we employ is simple and efficient,
it tends to satisfy the results of most clusters by using the
voting mechanism. The experimental results in Section VII-D
confirm the effectiveness of the voting mechanism.

VII. PERFORMANCE EVALUATION

In this section, we investigate the effectiveness and ef-
ficiency of our proposed framework. Our experiments are
organized as follows. First, we study the effectiveness of our
framework for a knowledge graph which is built based on
the question answer pairs crawled from the Taobao customer
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service website.1 We then evaluate the efficiency of our pro-
posed solutions with several real-life graphs under controlled
settings. We end with a study on the impacts of the path length
and other parameter settings.

A. Experiment Setup

1) Datasets: Due to the difficulty of obtaining real user
votes, our datasets are classified into two categories: a small
real-life knowledge graph with real votes, and a large real-life
graph with synthetically generated votes. The details of these
datasets are given below.

Knowledge Graph with Real Votes. In order to investigate
the effectiveness of our framework, we built a knowledge
graph based on question-answer pairs. Specifically, we col-
lected 2,379 questions together with their HELP documents
from the online customer service of Taobao. We extracted the
entities in the questions and answers, and built a knowledge
graph with 1,663 nodes and 17,591 edges.

We recruited five volunteers to conduct a user study. We
first invited them to ask 100 questions. Then, we extracted the
entities in each question by a Natural Language Processing
tool. If these entities appear in the knowledge graph, the
question will be linked to the corresponding nodes. For each
question, we returned a ranked list of answers based on
similarity evaluation using the knowledge graph. Then, we
collected the user feedback in the form of votes, which
were divided into the negative vote set and positive vote set.
There are 47 negative votes and 53 positive votes. Finally,
we asked one domain expert to generate 100 questions and
assigned the best HELP document for each question. These
question-document pairs, serving as test dataset, are used for
performance evaluation.

Knowledge Graph with Synthetic Votes. To investigate
the efficiency of our framework, three real-life graphs were
used in our experiments, which are available on KONECT.2

• Twitter: It is a directed network graph with 23,370 nodes
and 33,101 edges. Each node represents a user on Twitter
and each edge between two user nodes indicates their
follow relationship.

• Digg: It is a directed network graph consisting of 30,398
nodes and 87,627 edges. This graph was built based on
the reply information in a social news website Digg. Each
node in the graph is a user of the website, and each
directed edge denotes that a user replied to another user.

• Gnutella: This is a graph of Gnutella hosts since 2002.
It has 62,586 nodes and 147,892 edges. Each node in the
graph is a Gnutella host, and each directed edge indicates
the connection between two hosts.

We generated a set of synthetic votes for each of these real-
life graphs. Specifically, we generated NQ queries and NA

answers randomly linked to a Nnodes-node subgraph, with
an average degree Ndegree. After evaluating the similarity
between the queries and the answers, we obtained a ranked
list of top-k answers for each query. Then, we generated a
negative or positive vote by randomly selecting an answer in
top-k answers as the best answer of the query. The average
position of the best answers for negative votes is set at NaveN .
The default settings for these parameters are: NQ = 100,

1https://www.taobao.com/
2http://konect.uni-koblenz.de/

TABLE II
STATISTICS OF GRAPH DATASETS

DataSet |V | |E| Average
Degree

Taobao 1,663 17,591 10.57
Twitter 23,370 33,101 2.83
Digg 30,398 87,627 5.77

Gnutella 62,586 147,892 4.73
Random 5,000 - -

NA = 2, 379, ND = 1, 000, Ndegree = 4, Nnodes = 10, 000,
k = 20, and NaveN = 10.

In addition, we generated a series of random graphs to study
the impacts of the graph parameters on the execution time. The
statistics of all the graphs are described in Table II.

2) Metrics: Effectiveness and efficiency are two main met-
rics to evaluate our proposed framework.

• Effectiveness. We use Ωavg to measure the effectiveness
of graph optimization, which corresponds to the optimiza-
tion objective (Definition 3). Ωavg is defined as follows:

Ωavg =

∑
t∈T−∪T+

(rankt − rank′t)

|T−|+ |T+| (21)

where the definitions of t, rankt, and rank′t are the same
as those in Definition 3. We also employ the MRR (Mean
Reciprocal Rank) and MAP (Mean Average Precision),
which are standard information retrieval measures, to
study the effectiveness of our framework.

• Efficiency. The efficiency measures the elapsed time
of solving the SGP problem in each algorithm. For
comparison, we include the basic algorithm for the multi-
vote solution and the optimization algorithm to study
the efficiency of our split-and-merge strategy. Also, we
investigate Ωavg of both algorithms to study their effec-
tiveness in graph optimization. Besides, the scalability of
our framework is measured by the number of user votes
which can be solved in batch.

3) Experiment Environment: The experiments were con-
ducted on the laptops (Intel Core i5 2.7 GHz CPU and 16GB
RAM) running MATLAB as the SGP solver on Mac OS
X 10.11.6 operating system. Each experiment was repeated
10 times. We report the average of the measured results.
For solving SGP problem in the multi-vote solution, we
use fmincon function in MATLAB. In the paper [38], the
author have proved that the complexity of fmincon function
is O(n3.5l2lnl ln lnl), where n is the number of the variables
and the precision of the solution is O(l). In our setting, n
equals to |V | + |X|, where X is the set of weights involved
in the votes.

B. Effectiveness of Graph Optimization
This first set of experiments examines the effectiveness of

our framework for graph optimization. We use the knowledge
graph Taobao with real user votes for this set of experiments.
We evaluate the performance improvement of the optimized
graph against the original knowledge graph in question an-
swering. Specifically, we compare the single-vote solution that
is merely based on the negative votes, and the multi-vote
solution that is based on both the negative and positive votes.
For the multi-vote solution, we set the optimization preference
parameters, λ1 and λ2, both to 0.5. We use the test dataset to
measure the effectiveness of the graph optimization.
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TABLE III
SAMPLES OF OPTIMIZED EDGE WEIGHTS

Head Entity Tail Entity Original Optimized Diff
Juhuasuan rule 0.1 0.08 -0.02
Juhuasuan refund 0.1 0.13 0.03

cart purchase guide 0.045 0.038 -0.007
cart commodity 0.045 0.048 0.003

TABLE IV
RANKING OF BEST ANSWERS IN TEST DATASET

Graph Ravg Ωavg Pavg

Original Graph 3.56 - -
Optimized by single-vote solution 3.59 -0.03 -0.84%
Optimized by multi-vote solution 2.86 0.67 18.82%

We list some optimized edge weights in Table III. After
optimization, cart and commodity get a higher weight, and
the weight between the Juhuasuan and rule becomes smaller.
This is because the users rarely consulted the rules during the
user study. Denote the average ranking of the best answers
and the average percentage-wise improvement of the rankings
as Ravg and Pavg, respectively. We report the measurements
of Ravg , Ωavg , and Pavg in Table IV. The average position
of the best answers in the answer list is dropped from 3.56 to
3.59 and raised to 2.87 by the basic single-vote solution and
the multi-vote solution, respectively. On average, the ranking
of the best answers is degraded by 0.84% and promoted
by 18.82%. Clearly, the multi-vote solution is capable of
improving the ranking of the best answers. On the other
hand, the single-vote solution does not perform well. This is
partly because that the single-vote solution optimizes the graph
merely based on the negative votes, which would degrade the
ranking of the best answers that rank first in the original
answer list. Another reason is that the single-vote solution
cannot handle the conflicts among the votes, which also affects
the performance of graph optimization.

TABLE V
PROMOTION OF BEST ANSWERS IN TOP-K LIST

Method H@1 H@3 H@5 H@10
IR 0.15 0.29 0.34 0.47

Q&A proposed in [5] 0.47 0.68 0.77 0.89
KG without optimization 0.49 0.69 0.79 0.90

KG optimized by 0.45 0.68 0.81 0.92
single-vote solution
KG optimized by 0.53 0.77 0.87 0.94

multi-vote solution

Next, we study how much the graph optimization helps
promote the best answers. We define H@k as the percentage
of the questions in the test dataset whose best answers are
ranked no lower than k. Besides the knowledge graph-based
(KG without optimization) approach, which uses the extended
inverse P-distance to evaluate the similarities, we include
an information retrieval-based (IR) approach for comparison.
The IR approach evaluates the entities in the questions and
documents and returns top-k answers based on their coinci-
dence rates. We also compare the KG-based Q&A algorithm
proposed in [5], which adopts random walk to evaluate the
similarity between two nodes. The results are shown in Ta-
ble V. All KG approaches significantly outperform the IR
approach. The performance of [5] is similar to our algorithm
without any optimization, since PPR and random walk are

equivalent in similarity evaluation. Note that the results in top-
1 and top-3 degrade after optimization by using the single-vote
solution, due to the reasons mentioned in the last paragraph.
Nevertheless, the results in top-5 and top-10 are improved,
since the single-vote solution digs out the implicit information
in negative user votes to adjust the edge weights. In all
cases tested, the multi-vote solution performs the best, which,
on average, is 168%, 8.6%, and 10.1% better than the IR
approach, the basic KG approach, and the KG (single-vote)
approach, respectively.

Original Single-V Multiple-V
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Fig. 5. MRR and MAP results of graph optimization for test dataset

Finally, Fig. 5 shows the MRR and MAP results. As shown
in Fig. 5(a), the MRR and MAP degrade from 0.63 to 0.61
after optimization with the single-vote solution. In contrast, the
multi-vote solution that considers both positive and negative
votes achieves about 8% improvement of answer ranks. To
investigate the reason, we also show the results only for the
questions whose best answers do not rank first in the original
answer list. Both the single-vote solution and the multi-vote
solution achieve higher MRR and MAP scores. This suggests
that the single-vote solution does help for promoting the non-
top-1 answers. Its poor performance for the whole test dataset
is mainly because it does not consider positive votes, which
cannot prevent the top-1 answers from degrading after the
graph optimization. This coincides with the results shown in
Tables IV and V.

TABLE VI
AVERAGE ELAPSED TIME PER QUERY

‖A‖ 5,000 10,000 20,000 40,000
Random Walk [5] 3.0s 6.1s 13.5s 28s

Extended Inverse P-Distance 2.6s 2.8s 2.9s 3.0s

C. Efficiency of Extended Inverse P-distance
In Section IV-A, the extended inverse P-distance is proposed

to efficiently evaluate the similarities between a query node
and the answer nodes. We now compare its efficiency against
the existing random walk method by varying the number
of answers. We adopt the linear equation group algorithm
introduced in [5] to realize the random-walk-based similarity
evaluation. As shown in Table VI, the extended inverse P-
distance is more efficient and scalable than the random walk
algorithm. In particular, the gap increases with the size of
the answer set. This is because the time cost of the random
walk algorithm is linear with the number of answers, whereas
the extended inverse P-distance is able to prune many lower-
ranked answers by path pruning and significantly reduce the
cost.

D. Efficiency and Effectiveness of Optimization Strategy
The next set of experiments investigates the effectiveness of

the split-and-merge optimization on the large real-life graphs
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Fig. 6. The number of votes vs elapsed time and Ωavg in different real-life graphs

with synthetic votes. In the experiments, we compare the
elapsed time of the basic multi-vote solution and the multi-
vote solution with the split-and-merge strategy by varying the
number of votes. Moreover, we investigate Ωavg of different
solutions to study the impact of the split-and-merge strategy on
graph optimization. The single-vote solution is also included
for comparison.

As shown in Figs. 6(a)-(c), the elapsed time of the basic
multi-vote solution (Multiple-V) increases significantly as the
number of votes grows. This is because the increase in the
number of votes leads to an exponential increase in the
number of variables and constraint functions in SGP. Hence,
the solver time is dramatically increased. Note that the increase
in the number of votes also causes high memory consumption.
Therefore, we cannot obtain the results of this solution when
the space requirement exceeds the memory capacity (16GB)
of our server (e.g., after the number of votes becomes larger
than 70 in Fig. 6(a)).

In the split-and-merge (S-M) strategy, we select the median
of the similarities between votes as the classification criterion,
based on which the AP algorithm automatically classifies the
votes into clusters. The average size of the classified clusters
is 5 votes. Compared to the basic solution, the elapsed time
of the solution with the S-M strategy is reduced significantly,
by at least 6X when the number of votes grows beyond 70.
Furthermore, it can be further optimized by using distributed
technologies, since the clusters classified by the AP algorithm
are independent of each other. We test a distributed approach
with four computers to process the classified clusters. As
can be seen, the distributed approach significantly improves
the scalability by reducing the elapsed time by an order of
magnitude.

In Figs. 6(d)-(f), we show the Ωavg scores of different
solutions. It is interesting to observe that the optimized multi-
vote solution is close to or even exceeds that of the basic
solution. This implies that our optimization strategy can save
a lot of computation time without sacrificing much on the
effectiveness of graph optimization.

Regarding the single-vote solution, as shown in Figs. 6(a)-
(c), it is faster than the multi-vote solution with the split-and-
merge strategy. Nevertheless, the effectiveness of the multi-
vote solution in graph optimization significantly outperforms
the single-vote solution (Figs. 6(d)-(f)).

E. Impact of Parameter Settings

The following set of experiments is designed to justify the
parameter choices. Specifically, we study the impact of the
path length on the similarity scores and the execution time.

(2,3) (3,4) (4,5) (5,6)

(L1, L2)

0

0.3%

0.6%

0.9%

1.2%

1.5%

P
D
(L

1
,
L
2
)(
%
)

Twitter

Digg

Gnutella

(a) (L1, L2) vs PD(L1,L2)

2 3 4 5 6

L

0

100

200

300

400

500

E
la
p
s
e
d
T
im

e
(s
)

Twitter

Digg

Gnutella

(b) L vs elapsed time

Fig. 7. Percentage difference and elapsed time for different settings of L

Recall in the method of similarity evaluation in Section
IV-A, we prune the paths with a length longer than L. In this
experiment, we set NQ = 1 query and return top-20 answers.
We test the path pruning strategy with five different settings:
L ∈ {2, 3, 4, 5, 6}. To investigate the impact of L on similarity
scores, we evaluate the sum of similarity scores between the
query and the top-k answers, SumL =

∑
va∈Ak

SL(vq, va).
The percentage-wise difference between two settings, Li and
Lj , is defined as follows:

PD(Li,Lj) =
SumLj − SumLi

SumLi

(22)

The results of PD(Li,Li+1) are shown in Fig. 7(a). We can see
that PD(Li,Li+1) becomes slim when Li is 5.
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Fig. 7(b) shows the elapsed time of graph optimization for
the path pruning strategy with different settings of L. The
increase of L leads to an accelerated growth of elapsed time.
After L becomes over 5, the computation is so costly that
we cannot efficiently solve the SGP problem. Therefore, in
our experiments, we evaluate the similarity between nodes by
only consider the paths with a length no longer than 5 (L = 5).

VIII. CONCLUSIONS

In this paper, we have proposed an interactive framework
to optimize the edge weights in a knowledge graph through
voting-based user feedback. We proposed a new notion called
extended inverse P-distance to evaluate the similarity between
the query node and answer nodes. This enables us to en-
code the user votes as constraint functions and transform the
graph optimization problem into an SGP problem. Then, we
developed a basic single-vote solution and a more advanced
multi-vote solution for graph optimization. Furthermore, we
proposed a split-and-merge strategy to speed up the process of
graph optimization for large datasets. The experiment results
on real-life and synthetic graphs validate the effectiveness
and efficiency of our proposed framework and optimization
techniques.
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