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Abstract—Scoring functions (SFs), which measure the plau-
sibility of triplets in knowledge graph (KG), have become the
crux of KG embedding. Lots of SFs, which target at capturing
different kinds of relations in KGs, have been designed by
humans in recent years. However, as relations can exhibit
complex patterns that are hard to infer before training, none
of them can consistently perform better than others on existing
benchmark data sets. In this paper, inspired by the recent
success of automated machine learning (AutoML), we propose
to automatically design SFs (AutoSF) for distinct KGs by the
AutoML techniques. However, it is non-trivial to explore domain-
specific information here to make AutoSF efficient and effective.
We firstly identify a unified representation over popularly used
SFs, which helps to set up a search space for AutoSF. Then, we
propose a greedy algorithm to search in such a space efficiently.
The algorithm is further sped up by a filter and a predictor,
which can avoid repeatedly training SFs with same expressive
ability and help removing bad candidates during the search
before model training. Finally, we perform extensive experiments
on benchmark data sets. Results on link prediction and triplets
classification show that the searched SFs by AutoSF, are KG
dependent, new to the literature, and outperform the state-of-
the-art SFs designed by humans. 1

I. INTRODUCTION

Knowledge Graph (KG) [28], [33], [40], as a special kind of

graph structure with entities as nodes and relations as edges,

is important to both data mining and machine learning, and

has inspired various downstream applications, e.g., structured

search [7], [33], [36], question answering [25] and recommen-

dation [52]. In KGs, each edge is represented as a triplet with

form (head entity, relation, tail entity), denoted as (h, r, t).
A fundamental issue is how to quantize the plausibility of

triplets (h, r, t)s [14], [40]. KG embedding (KGE) has recently

emerged and been developed as a promising method serving

this purpose [6], [18], [19], [24], [29], [30], [39], [46], [54].

Basically, given a set of observed triplets, KGE attempts to

learn low-dimensional vector representations of entities and

relations so that the plausibility of triplets can be quantized.

Scoring function (SF), which returns a score for (h, r, t)
based on the embeddings, is used to measure the plausibility.

Generally, SF is designed and chosen by humans and it has

significant effects on embeddings’ quality [20], [28], [40].

Ever since the invention of KGE, many SFs have been

proposed in the literature. Let the embedded vectors of h, r

1This work is done when Y. Zhang is an intern in 4Paradigm, and the
correspondence is to Q. Yao.

and t be h, r and t respectively. TransE [4], a representative

embedding model, interprets the triplet (h, r, t) as a translation

r from head entity h to tail entity t, i.e. the embeddings satisfy

h + r = t. Variants of TransE like TransH [43] and TransR

[21], project the embedding vector into different spaces and

enables the embedding to model relationships that are one-to-

many, many-to-one or many-to-many. These models are cate-

gorized into translational distance models (TDMs). However,

as proved in [41], [42], TDMs are not fully expressive and their

empirical performance is inferior to other models. RESCAL

[30], DistMult [46], ComplEx [39], Analogy [24] and more

recently proposed SimplE [18], [19], use a bilinear function

h�R t to model the plausibility of triplets, where R is a

square matrix related to relation embedding. These models

belong to the bilinear model (BLMs). Different BLMs use

different constrains to regularize the relation matrix R in order

to adapt to different datasets. Inspired by the success of deep

networks [2], some neural network models (NNMs) have also

been explored as SFs, e.g., MLP [7], NTM [34], Neural LP

[47] and ConvE [6]. Even though neural networks are powerful

and have strong expressive ability, the NNMs do not perform

well in KGE domain because of not being well-regularized.

Among the existing SFs, BLM-based ones are the most

powerful as indicated by both the state-of-the-art results [19]

and theoretical guarantees on expressiveness [18], [41]. How-

ever, since different KGs have distinct patterns in relations

[32], a SF which adapts well to one KG may not perform

consistently well on other KGs. Besides, designing new SFs

to outperform state-of-the-art SFs is challenging. Therefore,

how to choose and design a good SF for a certain KG is a

non-trivial and difficult problem.

Recently, automated machine learning (AutoML) [17], [50]

has exhibited its power in many machine learning tasks and

applications, e.g. model selection [13], image classification

[23], [51] and recommendation [48]. In order to select proper

models and hyper-parameters for different tasks, hyperpa-

rameter optimization (HPO) has been proposed [11], [13] to

effectively and efficiently find better configurations, which

previously requires great human efforts. Another hot trend in

AutoML is to search better neural networks for deep learning

models. Neural architecture search (NAS) [55] has identified

networks with fewer parameters and better performance than

networks designed by humans.

Inspired by the success of AutoML, we aim to design
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better and novel data-dependent SFs for KGE. Specifically,

we propose automated scoring function (AutoSF) which can

automatically search an SF for a given KG. It can not only

reduce human’s effort in designing new SFs, but also make

adaptation to different KGs. However, it is not easy to achieve

the above goal. When applying AutoML, two important per-

spectives, i.e. search space, which helps to figure out important

properties of the underling problems, and search algorithm,

which determines the efficiency of finding better points in the

space, need serious consideration. In this work, we have made

the following contributions to achieve the goals:

• First, we make an important observation over existing SFs,

which allows us to represent the BLM-based SFs in a unified

form. Based on the unified representation, we formulate the

design of SFs as an AutoML problem (i.e. AutoSF), and set

up the corresponding search space. The space is not only

specific enough to cover good SFs designed by humans, but

also general enough to include novel SFs not visited in the

literature.

• Second, we observe it is common that different KGs have

distinct properties on relations that are symmetric, asym-

metric, inverse, etc. This inspires us to conduct domain-

specific analysis on the KGE models, and design constraints

to effectively guide subsequent searches in the space.

• Third, we propose a progressive greedy algorithm to search

through such a space. We further build a filter to avoid train-

ing redundant SFs and a predictor with specifically designed

symmetry-related features (SRF) to select promising SFs.

The search algorithm can significantly reduce the search

space size by capturing the domain specific properties of

candidate SFs.

• Finally, experimental results on five popular benchmarks on

link prediction and triplet classification tasks demonstrate

that the SFs searched by AutoSF outperform the start-of-

the-art SFs designed by humans. In addition, the searched

SFs are KG dependent and new to the literature. We further

conduct case study on the searched SFs to provide means

for analyzing KGs, which can inspire better understanding

of embedding techniques for future researches.

Notations. We denote vectors by lowercase boldface, and

matrix by uppercase boldface. A KG contains a set of triplets

S = {(h, r, t)} with h, t ∈ E and r ∈ R, where E and R are

the set of entities and relations, respectively. For simplicity, the

embeddings are represented by letters of indices in boldface,

e.g. h, r, t are embeddings of h, r, t, respectively, and h, t
share the same set of embedding parameters e. 〈a, b, c〉 =∑d

i=1 ai·bi·ci is the triple dot product and can be alternatively

represented as a�diag(b) c, where diag(b) = Db ∈ R
d×d

is the diagonal matrix of b. We denote the complex vector

v= vre+ivim ∈ C
d with vre,vim ∈R

d. The conjugate of a

complex vector is conj(v) = vre − ivim.

II. RELATED WORKS

A. Knowledge graph embedding (KGE)

Given a set of observed (positive) triplets, the goal of KGE

is to learn low-dimensional vector representations of entities

and relations so that the plausibility measured by f(h, r, t) of

observed triplets (h, r, t)s are maximized while those of non-

observed ones are minimized [40]. To build a KGE model, the

most important thing is to design and choose a proper SF f ,

which measures the triplets’ plausibility based on embeddings.

Since different SFs have different strengths and weaknesses,

the choice of f is critical for the KGE’s performance [20],

[40]. A large amount of KGE models with popular SFs follow

the same framework (Alg.1) [40] using stochastic gradient

descent. At step 5, negative triplets are sampled from S̃(h,r,t),
which contains all non-observed triplets for a current positive

triplet (h, r, t), by some fixed distributions [43] or dynamic

sampling schemes [54]. Next, the gradients are computed

based on the given SF and embeddings, and are used to update

the model parameters (step 6). Hinge loss [4] and logistic loss

[46] are popularly used as �. In this paper, we use the multi-

class loss [19] since it currently achieves the best performance

and has little variance.

Algorithm 1 Stochastic training of KGE [40].

Input: training set S = {(h, r, t)}, scoring function f and loss
function �;

1: initialize embeddings e, r for each e ∈ E and r ∈ R.
2: for i = 1, · · · , T do
3: sample a mini-batch Sbatch ⊆ S of size m;
4: for each (h, r, t) ∈ Sbatch do
5: sample m̃ negative triplets S̃(h,r,t) ≡ {(h̃j , r, t̃j)} for the

positive triplet (h, r, t);
6: update embedding parameters based on loss � using selected

positive and negative triplets;
7: end for
8: end for
9: return embeddings of entities in E and relations in R.

Existing human-designed SFs mainly fall into three types:

• Translational distance models (TDMs): The translational

approach exploits the distance-based SFs. Inspired by the

word analogy results in word embeddings [2], the plausibil-

ity is measured based on the distance between two entities,

after a translation carried out by the relation. In TransE [4],

the SF is defined by the (negative) distance between h+ r
and t, i.e. f(h, r, t) = −||h+ r− t||1. Other TDMs-based

SFs, e.g., TransH [43], TransR [12], enhance over TransE

by introducing extra mapping matrices.

• BiLinear models (BLMs): SFs in this group exploit the

plausibility of a triplet by the product-based similarity.

Generally, they share the form as f(h, r, t) = h�Rt where

R∈Rd×d is a matrix referring to the embedding of relation

r [40], [41]. RESCAL [30] models the embedding of each

relation by directly using R. DistMult [46] overcomes the

overfitting problem of RESCAL by constraining R to be

diagonal. ComplEx [39] allows R and h, t to be complex

values, which enables handling asymmetric relations. HolE
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TABLE I
EXISTING SFS COVERED BY OUR SEARCH SPACE. FOR ANALOGY AND SIMPLE, THE EMBEDDING SPLITS INTO TWO PARTS, I.E. h�= [ĥ�, h̆�] AND

d= d̂+ d̆ (SAME FOR r AND t). THE RELATION TYPES ARE SUMMARIZED IN TAB. II.

scoring function embeddings definition relation types that can model

DistMult [46] symmetric h, r, t∈Rd 〈h, r, t〉 symmetric

ComplEx [39] / HolE [29] h, r, t∈Cd Re(〈h, r, conj(t)〉) symmetric, anti-symmetric, asymmetric, inverse

Analogy [24] ĥ, r̂, t̂∈Rd̂, h̆, r̆, t̆∈Cd̆
〈
ĥ, r̂, t̂

〉
+ Re

(〈
h̆, r̆, conj(t̆)

〉)
symmetric, anti-symmetric, asymmetric, inverse

SimplE [18] / CP [19] ĥ, r̂, t̂∈Rd, h̆, r̆, t̆∈Rd
〈
ĥ, r̂, t̆

〉
+
〈
h̆, r̆, t̂

〉
symmetric, anti-symmetric, asymmetric, inverse

[29] uses a circular correlation to replace the dot product

operation, but is proven to be equivalent to ComplEx [16].

Other variants like Analogy [24], SimplE [18] regularize the

matrix R in different ways.

• Neural network models (NNMs): Neural models aim to

output the probability of the triplets based on neural net-

works which take the entities’ and relations’ embeddings

as inputs. MLP proposed in [7] and NTN proposed in [34]

are representative neural models. Both of them use a large

amount of parameters to combine entities’ and relations’

embeddings. ConvE [6] takes advantage of convolutional

neural network to increase the interaction among different

dimensions of the embeddings.

As proved in [41], TDMs have less expressive ability

than BLMs, which further leads to their inferior empirical

performance. Based on the power of deep networks, NNMs

are also introduced for KGE. However, due to the huge model

complexity and increasing difficulty of training, as well as the

lack of domain-specific constraints, their performance is still

worse than BLMs [6], [19]. Therefore, we focus on BLMs in

the sequel. The most representative BLMs are listed in Tab. I.

B. Automated machine learning (AutoML)

Automated machine learning (AutoML) [17], [50] has re-

cently exhibited its power in easing the usage of and designing

better machine learning models. Basically, AutoML can be

regarded as a bi-level optimization problem where we need

to update model parameters by the training data sets and tune

hyper-parameters by the validation data sets. Regarding the

success of AutoML, there are two important perspectives:

• Search space: This helps to figure out important properties

of the underlying learning models and set up the search

space for an AutoML problem. First, the space needs to

be general enough to cover human wisdom as special

cases. However, the space cannot be too general, otherwise

searching in the space will be too expensive.

• Search algorithm: Unlike convex optimization, there is no

universal and efficient optimization tools. Once the search

space is determined, efficient algorithms should be devel-

oped to search good points in the space.

We take NAS and HPO as examples. The search space

in NAS is spanned by network operations, e.g., convolution

with different sizes, skip-connections. Various tailor-made

algorithms, such as reinforcement learning [55], evolution

algorithms [44], and one-shot algorithms [23], [51], have

been proposed for efficient optimization. For HPO, Bayesian

optimization [11], [13] is usually customized to search the

space made up by the hyper-parameters of the learning tools.

This paper is the first step towards automated embedding

of knowledge graphs. However, such a step is not trivial since

previous AutoML methods used in NAS and HPO cannot be

directly applied to KGE. The main problem is that we need

to explore domain-specific properties in defining the search

space and designing efficient search algorithm to achieve

effectiveness with less cost.

III. THE SEARCH PROBLEM

As mentioned in Sec.II, new designs of SFs have contin-

uously boosted the performance of KGEs in recent years.

However, there is no absolute winner among the human-

designed SFs. Besides, as different KGs usually exhibit distinct

patterns in relations, how to choose a proper SF to achieve

good performance is non-trivial. These raise one question:

can we automatically design a SF for a given KG with good
performance guarantee? In this part, we define AutoSF as a

searching problem and make deep analysis on the search space

based on KG properties to address the question.

A. AutoSF: Searching for SFs

Since SF is the crux to KGE and different KG has distinct

properties, we are motivated to form the problem of designing

new and better SFs as a searching problem. Specifically, we

define it as follows:

Definition 1 (AutoML Problem). Let F (P ; g) be a KGE
model (with indexed embeddings P = {h, r, t} and structure
g), M (F (P ; g),S) measures the performance (the higher the
better) of a KGE model F on a set of triplets S. The problem
of searching the SF is formulated as:

g∗ ∈ argmaxg∈GM (F (P ∗; g),Sval) (1)

s.t. P ∗ = argmaxP M(F (P ; g),Stra), (2)

where G contains all possible choices of g, Stra and Sval denote
training and validation data sets.

Same as NAS [44], [55] and HPO [11], [13], AutoSF is

formulated as a bi-level optimization problem. We firstly need

to train the model to obtain P ∗ (converged model parameters)

on the training set Stra by (2), and then search for a better g
which is measured by the performanceM on the validation set

Sval by (1). However, in this sequel we can see the search space

of g and search strategy in AutoSF are fundamentally different

from previous AutoML works. They are closely related to

KGE’s domain and new to the AutoML literature.
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(a) DistMult. (b) ComplEx. (c) Analogy. (d) SimplE. (e) AutoSF.

Fig. 1. A graphical illustration of R for existing SFs in Tab. I and the search space of AutoSF. Blank space is for zero matrix and Dr
i = diag(ri) , i = 1 . . . 4.

B. Search space: a unified representation of BLM SFs

To solve the AutoSF problem, the first question is: what is
a good search space G? As discussed in Sec.II-B, the space

can neither be too specific nor too general. To motivate a good

search space, let us look at some commonly used SFs (Tab. I)

and dig out what are important properties of g.

As discussed in Sec.II-A, the state-of-the-art performance of

KGE models is achieved by BLMs [18], [19], thus we limit our

scope to them. RESCAL [30] is not considered since it does

not have good scalability [24], [39] and neither empirically

perform well. The other models in Tab. I regularize the number

of trainable parameters of square matrix R ∈ R
d×d to be the

same as entity embedding dimensions. Therefore, we constrain

the relation embedding size to be the same as the entity’s and

learn different ways of mapping the relation embedding r ∈
R

d into a square matrix R ∈ R
d×d. Besides, as the summary

of relation types in Tab. I, important properties are symmetric,

anti-symmetric, asymmetric and inverse. These are important

properties of good SFs. Thus, a search space should be able to

handle the symmetric related properties. In addition, as will

be discussed in Remark III.1, different SFs in BLMs differ

in their way of regularizing the square matrix R. Therefore,

we are motivated to adaptively search how to regularize the

relational matrix on different KGs.

To motivate such a space, we can see that there are two

main differences among these SFs.

• The embedding can be either real or complex, e.g. Dist-

Mult v.s. ComplEx.

• When embedding vectors are split, different SFs combine

them in distinct manners, e.g., Analogy v.s. SimplE.

1) Dealing with complex embeddings: A complex vector

v∈Cd with v = vre+ivim is composed of a real partvre∈Rd

and an imaginary part vim ∈ R
d. To deal with the complex

embeddings, we can use 2d-dimensional real vector [vre,vim]
to represent the d-dimensional complex vector v [1], [39]. Let

the complex embeddingh=hre+ihim, where hre,him ∈ R
d

(same for r, t), then ComplEx can be expressed as

Re (〈h, r, conj(t)〉) = 〈hre, rre, tre〉+ 〈him, rre, tim〉
+ 〈hre, rim, tim〉 − 〈him, rim, tre〉 . (3)

Similarly, DistMult [46] with 2d-dimensional embeddings can

also be denoted by [vre,vim] and represented as two parts

〈h, r, t〉 = 〈hre, rre, tre〉+ 〈him, rim, tim〉 . (4)

2) Dealing with different splits: To make the training

parameters consistent, we also use 2d-dimensional real valued

embeddings to represent Analogy and SimplE. As given in

Tab. I, embeddings in Analogy [24] are split into a real part

ĥ ∈ R
d, and a complex part h̆, which can be denoted as a

concatenated real vector [h̆re, h̆im] ∈ R
d in the similar way

as ComplEx. And the SF is split as
〈
ĥ, r̂, t̂

〉
+ Re

(〈
h̆, r̆, conj(t̆)

〉)
. (5)

In SimplE [18], two independent embedding vectors ĥ ∈ R
d

and h̆ ∈ R
d are used to represent each entity and relation. The

resulting SF becomes
〈
ĥ, r̂, t̆

〉
+

〈
h̆, r̆, t̂

〉
. (6)

3) The unified representation: In order to deal with the
two different partitions, i.e. ComplEx v.s. DistMult and Anal-
ogy v.s. SimplE, we split embedding h ∈ R

d as h =
[h1;h2;h3;h4] (same for r and t) to cover (3), (4), (5) and
(6). Note that any splits k (with k ≥ 4 and k is even) can
be used to cover the SFs in Tab. I. We take k = 4 in order
to ensure a tractable search space. The transformation of each
SF is then summarized as:

DistMult:f(h,r,t)=〈h1,r1,t1〉+〈h2,r2,t2〉+〈h3,r3,t3〉+〈h4,r4,t4〉,
ComplEx:f(h,r,t)=〈h1,r1,t1〉+〈h1,r3,t3〉+〈h3,r1,t3〉−〈h3,r3,t1〉

+〈h2,r2,t2〉+〈h2,r4,t4〉+〈h4,r2,t4〉−〈h4,r4,t2〉,
Analogy:f(h,r,t)=〈h1,r1,t1〉+〈h2,r2,t2〉+〈h3,r3,t3〉+〈h3,r4,t4〉

+〈h4,r3,t4〉−〈h4,r4,t3〉,
SimplE :f(h,r,t)=〈h1,r1,t3〉+〈h2,r2,t4〉+〈h3,r3,t1〉+〈h4,r4,t2〉.

Based on above formulations, all the scoring functions can

be formed as f(h, r, t) = h�Rt. Let Dr
i = diag(ri) for i ∈

{1,2,3,4}, the forms of R for these SFs can be graphically

represented as Fig. 1. In this way, we can see that the main

difference between the four SFs is their way of filling the

4×4 block matrix (see Fig. 1(e)). Based on such a pattern, we

identify the search space of BLM-based SFs in Definition 2.

Definition 2 (Search space G). Let g (r) return a 4 × 4
block matrix, of which the elements in each block is given by
[g (r)]ij = diag(aij) where aij ∈ {0,±r1,±r2,±r3,±r4}
for i, j ∈ {1, 2, 3, 4}. Then, SFs can be represented by

funified(h, r, t) =
∑

i,j
〈hi,aij , tj〉 = h�g (r) t.

Remark III.1 (Searching to regularize BLMs). Note that
the SFs shown in Fig. 5 constrain the relation matrix R in
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TABLE II
COMMON RELATIONS IN KGS AND RESULTING REQUIREMENTS ON f , AND SEARCH CANDIDATES IN g(r).

common relations requirements on f requirements on g(r) examples from WN18/FB15K

symmetric [46] f(t, r,h) = f(h, r, t) g(r)� = g(r) IsSimilarTo, Spouse
anti-symmetric [29], [39] f(t, r,h) = −f(h, r, t) g(r)� = −g(r) LargerThan, Hypernym
general asymmetric [24] f(t, r,h) �= f(h, r, t) g(r)� �= g(r) LocatedIn, Profession

inverse [18] f(t, r,h) = f(h, r′, t), r �= r′ g(r)� = g(r′) Hypernym, Hyponym

different forms, which can be regarded as different regular-
ization schemes. Viewed in this way, AutoSF aims to search
how to regularize the relational matrix that can adapt to
different relation properties in different KGs. In addition, the
data dependent regularization cannot be easily formed as a
constraint in training procedure, which motivates us to use
AutoML to search based on validation sets performance.

Remark III.2 (General Search Space). Due to the recent
success of deep networks [15] and the approximation ability
of multilayer perceptron (MLP) [5], one may want to use
a MLP as F for (2). However, the design of the MLP is
also a searching problem, which is very time-consuming [55].
Besides, an arbitrarily large MLP will lead to an extremely
large space. As verified in [49], the general approximator MLP
is a bad choice for NAS and performs worse than those using
reinforcement learning [55].

IV. THE SEARCH STRATEGY

Here, we propose an efficient search strategy to address the

AutoSF problem based on domain-specific properties in KGs.

A. Challenges in algorithm design

Same as the other AutoML problems, the search problem of

AutoSF is black-box, the search space is huge, and each step

in the search is very expensive since both model training and

evaluation should be involved. These problems have previously

been touched by algorithms such as reinforcement learning

[55], Bayes optimization [13] and genetic programming [44].

However, they are not a good choice here since we have

domain-specific problems, i.e. expressiveness and invariance,

in KGE, which are more challenging.
1) Expressiveness: It is clear that not all SFs g ∈ G (from

Definition 2) are equally good. Expressiveness (Definition 3),

which means f should be better able to handle common

relations in KGs , is of big concern for SFs. Their consequent

requirements on f and g(r) are summarized in Tab. II.

Definition 3 (Expressiveness [18], [39], [41]). If f can handle
symmetric, anti-symmetric, general asymmetric, and inverse
relations, then f is expressive.

To ensure that f can handle those common relations, we

propose Proposition 1.

Proposition 1. If g(r) can be symmetric for some r ∈ R
d,

i.e. g(r)�= g(r), and skew-symmetric for some r′ ∈R
d, i.e.

g(r′)�=−g(r′). Then the formulated f is expressive. (Proofs
in Appendix A).

With this Proposition and to avoid trivial solutions, we

introduce the following constraints on g:

(C1). g(r) can be symmetric with proper r and skew-

symmetric with proper r′.
(C2). g(r) has no zero rows/columns, covers all r1 to r4, and

has no repeated rows/columns.
For (C1), the symmetric property of g(r) determines what kind

of relation the given SF can model based on Proposition 1. For

(C2), if there are zero rows/columns in g, the corresponding

embedding dimensions will be useless. It means that these

dimensions will never be optimized during training.
The above constraints are important for finding potentially

good candidate g ∈ G, and they play a key role in filtering

out the bad g’s for the design of an efficient search algorithm.

As in Definition 3 and Proposition 1, we need to deal with

Constraint (C1) for expressiveness. It is challenging since g
only represents a structure, however the exact check of (C1)

relies on the values in r, which are unknown in advance.

Fortunately, we can check it by value assignment. Take the

SF in Fig. 2(a) for example. We can see that g(r) can be

symmetric by assigning r3 = r1 and r4 = r2 as in Fig. 2(b),

and skew-symmetric by setting r3 = −r2 and r4 = −r1 like

in Fig. 2(c). This is the key idea of addressing expressiveness.
2) Invariance: As defined in Sec.III-B, the embeddings

are split into 4 parts, i.e. r = [r1; r2; r3; r4]. Prior to the

embedding training, permuting the ri’s will lead to equiv-

alent structure since“1,2,3,4” here are only identity of each

component and these components are equivalent at this stage.

For example, we can permute r = [r1; r2; r3; r4] into r =
[r2; r1; r3; r4]. Even though r1 and r2 change their position,

the learned embedding could be the same by changing corre-

sponding values after training. Therefore, the structure of SFs

is invariance to permutation of ri’s. Similarly, since h and t
share the same embedding parameters e, the generated SFs

are also equivalent by simultaneously permuting the hi’s and

ti’s. Moreover, if we flip the signs of some ri, we can learn

equal embeddings by flipping the true value of those ri after

training. In summary, there exist three kinds of invariance:

permuting entity embedding hi’s and ti’s, permuting relation

embedding ri’s, and flipping signs. The example of three cases

are given in Fig. 2(d-f). Let h, r, t be the embeddings of the

SF g1 and h̄, r̄, t̄ be the embedding of another SF g2, and

g2 is formed through the invariance changes of g1. Then we

will have h�g1(r)t = h̄�g2(r̄)t̄ after the model training.

Therefore, it is tedious to train and evaluate the equivalents

once we know the performance of one SF among them.

B. Progressive greedy search
As in Sec.III-B, adding one more block into g indicates

adding one more nonzero multiplicative term into f , namely

f b+1 = f b + s 〈hi, rj , tk〉 , (7)
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(a) SimplE. (b) sym. (c) skew-sym. (d) permute hi and ti. (e) permute ri. (f) flip sign.

Fig. 2. Illustration of Invariance and Expressiveness. (a) SimplE model; (b) assign r3 = r1, r4 = r2; (c) assign r3 = −r1, r4 = −r2; (d) permute
[h1;h2;h3;h4] into [h1;h3;h2;h4] and do the same for t; (e) permute [r1; r2; r3; r4] into [r1; r4; r2; r3]; (f) flip the signs of r2 and r4.

where s ∈ {±1} and i, j, k ∈ {1, 2, 3, 4}. In order to search

efficiently, we propose a progressive greedy algorithm based

on the inductive rule (7), which can significantly cut down the

search space in a stage-wise manner. The intuition of using

(7) to progressively generate SFs it to gradually adjust the

relation matrix g(r). However, greedy search usually leads to

sub-optimal solutions [38], which can be more serious when

faced with the expressive and invariance challenges in AutoSF.

Therefore, we enhance the greedy search with a filter and

a predictor to specifically deal with the expressiveness and

invariance discussed in Sec.IV-A.

Algorithm 2 Progressive greedy search algorithm.

Input: B: number of nonzero blocks in g, a learnable predictor P;
1: for b in 4, 6, 8, · · · , B do
2: repeat
3: randomly select a top-K1 model f b−2 ∈ T b−2;
4: generate 6 integers i1, j1, k1, i2, j2, k2 ∈ {1, 2, 3, 4}

and s1, s2 from {±1}, and form f b ← fb−2 +
s1 〈hi1 , rj1 , tk1〉+ s2 〈hi2 , rj2 , tk2〉;

5: if f b satisfies filter Q then Hb ← Hb ∪
{
fb

}
;

6: until
∣
∣Hb

∣
∣ = N

7: select top-K2 f bs in Hb based on the predictor P;
8: train embeddings with the selected f bs;
9: evaluate the obtained embedding from the selected fbs;

10: T b ← add and record f b and their performance;
11: update the predictor P with records in T .
12: end for
13: return desired SFs in T B .

1) Complete procedures: Alg.2 shows our progressive

greedy algorithm. As in Definition 2, let the number of nonzero

blocks in g be B and the SF in this group be fB . The

idea of progressive search is that given the desired B, we

start from small blocks b and then gradually add in more

blocks until b = B. Thus, we can greedily generate candidates

based on the top SFs in T b−2 at step 2-6 to reduce search

space. Specifically, we greedily pick up the top-K1 f b−2 in

the previously evaluated models in T b−2. N candidates will

then be generated by adding two more multiplicative term in

step 4 to deal with Constraint (C1) since adding one block

each step will result in simply lying on the diagonal. All the

candidates are generated from b = 4 and are checked through

the Filter Q (see Sec.IV-B2) to guarantee Constraint (C2) and

avoid training equivalents. Next, we use the predictor P (see

Sec.IV-B3) to further select K2 promising candidates, which

will then be trained and evaluated using Alg.1, in step 7 of

Alg.2. The training data for P is gradually collected with the

trained SFs in T = T 4 ∪ T 6 ∪ · · · at step 10.

2) Invariance - Using a filter: The filter Q we used in

Alg.2 has two functions: 1) deal with Constraint (C2) and 2)

remove equivalent structures due to invariance. Constraint (C2)

is easy to check, given the structure of g, we can directly map

it into a 4×4 substitute matrix and use {0,±1,±2,±2,±4} to

represent [g(r)]ij ∈ {0,±r1,±r2,±r3,±r4}. Then checking

requirements in (C2) is a trivial task, i.e. checking if the 4×4
substitute matrix satisfies the Constraint (C2).

For the invariance, once a candidate f b fulfilling Con-

straint (C2) is generated, we use the invariance property

to generate a set of equivalents Gfb . Specifically, we can

permute the entity parts, relation parts, or flip signs to get

4!× 4!× 24 = 9, 216 equivalents of f b. If Gfb ∩Hb ∩T b �= ∅,
we throw f b away since there are equivalent structures in

the sampled set Hb and history record T b. This step can

dramatically help us to reduce the cost in training equivalent

structures. Take f4 as an example, the whole space is reduced

from A4
16×24 to 5 through the filter, namely there are only five

good and unique candidates in f4. Besides, we add exception

for the condition in step 5 of Alg.2 for f4 since the number

of candidates is smaller than N .

3) Expressiveness - Constructing a predictor: Even though

the filter helps to throw away many unpromising candidates,

it does not deal with Constraint (C1). Hence, after collecting

N candidates, we use the predictor P to further select K2

promising ones among them. Considering that the performance

of SFs on a specific KG is closely related to how the SF

is formed, we can use a learning model, i.e. the predictor

P to predict the performance and select good candidates in

advance. In general, we need to extract features for points

which have been visited by the search algorithm, and then use

a learning model to predict validation performance based on

those features [13], [22]. The following are principles a good

predictor needs to meet

(P1). Correlate well with true performance: the predictor

needs not to accurately predict the exact values of

validation performance, instead it should rank good

candidates over bad ones;

(P2). Learn from small samples: as the real performance of

each point in the search space is expensive to acquire,

the complexity of the predictor should be low so that it

can learn from few samples.

Based on Principle (P1), the extracted features from g
should be closely related to the quality of defined SF. Mean-
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while, the features should be cheap to construct, i.e. they

should not depend on values of r, which are unknown before

training. For (P2), the number of features should be small

to guarantee a simple predictor. Therefore, we are motivated

to design the symmetry-related features (SRFs), which can

effectively capture to what extent g(r) can be symmetric or

skew-symmetric (Proposition 2), and has low complexity.

Similar as the filter, we also use a 4 × 4 substitute matrix

to represent g. As in Fig. 3, we use v = [v1; v2; v3; v4]
to represent [r1; r2; r3; r4], then the symmetric and skew-

symmetric property of g can be checked through g(v)−g(v)�

and g(v) + g(v)�. Since g(v) is a simple 4 × 4 matrix, the

checking procedure is very cheap. Then by assigning different

values to v (details in Appendix C), a 22-dimensional SRF

will be returned. Considering that the correlation of SRFs with

SFs’ performance is guaranteed under Proposition 2, we can

use a simple two-layer MLP (22-2-1) as the predictor P . Other

regression models with low complexity may also work here.

Fig. 3. Example of generating a feature of SRF.

Proposition 2. The extracted SRFs (see Appendix C) are (i)
invariant to both the permutations and flipping signs of blocks
in R and (ii) give predictions related to symmetric or anti-
symmetric properties.

C. Search complexity analysis

There are 16 blocks and each can be filled with 9 different

contents {0, ±Dr
1 , ±Dr

2 , ±Dr
3 , ±Dr

4}. Thus the whole

space size is 916, which is extremely large. The greedy

strategy, predictor and filter cut down the space in different

perspectives. Specifically, in each greedy step:

• Greedy: Considering that f b is progressively generated on

f b−2 for b = 6, 8, . . . , there can be C2
16−(b−2) × 42 × 22

candidates (C2
16−(b−2) is to choose location, 42 is for the

two ris and 22 is for signs). In comparison, there can be

Cb
16 × 4b × 2b possible SFs in f b. Take b = 6 for example,

there are 2×109 possible candidates. Since f6 is generated

based on the 5 good candidates in f4, we reduce the space

size from 2 × 109 to approximately 3 × 104 based on the

greedy scheme.

• Filter: The filter we designed is mainly used to deal with

invariance properties. Permuting ri’s leads to 4! = 24
equivalent structures. Simultaneously permuting hi’s and

ti’s also gives 24 equivalents. Besides, there are 24 = 16
possible signs patterns. Therefore, given a g(r), we can

generate at most (there may exist same structures in this

set) 24 × 24 × 16 = 9216 equivalent SFs, which should

perform the same. Besides, by constraining the SF under

Constraint (C2), many bad candidates can also be filtered

out. Take f4 as an example, only 5 candidates are selected

to be trained among approximately 700k possible structures.

• Predictor: Once N candidates are generated, the predictor

will select K2 ones based on their predicted performance.

Thus, the reducing ratio of predictor is about N/K2.

While it is difficult to directly quantize to which extend

the three steps together can help to reduce the search space,

we can observe the significance of efficiency gained through

each component. Besides, we perform an empirical study in

Sec.V-E to show the performance gaining of these steps.

D. Comparison with existing AutoML approaches

The most related work in the AutoML literature is PNAS

[22], which combines a greedy algorithm with a performance

predictor to search a cell structure for the convolutional neural

network (CNN). However, the filter is not used in PNAS as the

search space for AutoSF is fundamentally different from that

of CNN. Besides, PNAS adopts direct one-hot encoding for

the predictor, which has a bad empirical performance here (see

Sec.V-E1). As for the other AutoML approaches, even though

the search problem of AutoSF is similarly defined as HPO [3],

[9] and NAS [10], the search space and search algorithm of

AutoSF are novel and specifically designed for KGE. There is

no direct way for them to deal with the challenges in Sec.IV-A.

V. EMPIRICAL STUDY

All of the algorithms are written in python with PyTorch

framework [31]. Experiments are run on 8 TITAN Xp GPUs.

A. Experiment setup

1) Datasets: Five data sets, i.e. WN18, FB15k, WN18RR,

FB15k237 and YAGO3-10 are considered (statistics in

Tab. III). WN18RR and FB15k237 are variants that remove

near-duplicate or inverse-duplicate relations from WN18 and

FB15k respectively, [37], [42]. YAGO3-10 is much larger than

the others. These are benchmark datasets, and are popularly

used to compare KGE models in the literature [4], [18], [19],

[24], [39], [46]. The number of symmetric, anti-symmetric,

inverse pairs and general asymmetric are computed in the

following way: Given a relation r, let the number of positive

triplets (h, r, t) be nr. (i) If the number of (t, r, h) is larger

than 0.9nr, then we regard it as symmetric; (ii) If the number

of (t, r, h) is zero and the size of joint set of h and t is at least

0.1nr (this is to ensure that they have same type), we regard

as anti-symmetric; (iii) If there exist another relation r′ that

has at least 0.9nr (t, r′, h), then r and r′ are inverse pairs; (iv)

others are regarded as general asymmetric. The threshold 0.9

and 0.1 are hand-made and just used to roughly (other values

are fine) indicate the relation properties for each data set.

2) Hyper-parameters: Since the searched embedding mod-

els belong to BLMs, we fairly compare different SFs with a

fixed set of hyper-parameters. In order to reduce training time,

we set the dimension d as 64 during the search procedure.

First, we use SimplE [18] as the benchmark model and
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TABLE III
STATISTICS OF THE DATA SETS USED IN EXPERIMENTS. “SYM” AND “ANTI-SYM” DENOTES THE SYMMETRIC AND ANTI-SYMMETRIC RELATIONS.

data set #entity #relation #train #valid #test #sym #anti-sym #inverse #general
WN18 [4] 40,943 18 141,442 5,000 5,000 4 7 7 0
FB15k [4] 14,951 1,345 484,142 50,000 59,071 66 38 556 685

WN18RR [6] 40,943 11 86,835 3,034 3,134 4 3 1 3
FB15k237 [37] 14,541 237 272,115 17,535 20,466 33 5 20 179
YAGO3-10 [26] 123,188 37 1,079,040 5,000 5,000 8 0 1 28

TABLE IV
COMPARISON OF THE BEST SF IDENTIFIED BY AUTOSF AND THE STATE-OF-THE-ART SFS. THE BOLD NUMBER MEANS THE BEST PERFORMANCE, AND

THE UNDERLINE MEANS THE SECOND BEST. DISTMULT, COMPLEX, ANALOGY AND SIMPLE ARE OBTAINED FROM OUR IMPLEMENTATION, OTHERS ARE

COPIED FROM THE CORRESPONDING REFERENCE PAPER. STD IS LESS THAN 0.001, THUS NOT REPORTED.
WN18 FB15k WN18RR FB15k237 YAGO3-10

type model MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
TDM TransE [54] 0.500 — 94.1 0.495 — 77.4 0.178 — 45.1 0.256 — 41.9 — — —

TransH [54] 0.521 — 94.5 0.452 — 76.6 0.186 — 45.1 0.233 — 40.1 — — —
RotatE [35] 0.949 94.4 95.9 0.797 74.6 88.4 0.476 42.8 57.1 0.338 24.1 53.3 — — —

NNM NTN [46] 0.53 — 66.1 0.25 41.4 — — — — — — — — —
Neural LP [47] 0.94 — 94.5 0.76 — 83.7 — — — 0.24 — 36.2 — — —

ConvE [6] 0.942 93.5 95.5 0.745 67.0 87.3 0.46 39. 48. 0.316 23.9 49.1 0.52 45. 66.

BLM TuckER [1] 0.953 94.9 95.8 0.795 74.1 89.2 0.470 44.3 52.6 0.358 26.6 54.4 — — —
HolEX [45] 0.938 93.0 94.9 0.800 75.0 88.6 — — — — — — — — —
QuatE [53] 0.950 94.5 95.9 0.782 71.1 90.0 0.488 43.8 58.2 0.348 24.8 55.0 — — —
DistMult 0.821 71.7 95.2 0.817 77.7 89.5 0.443 40.4 50.7 0.349 25.7 53.7 0.552 47.6 69.4
ComplEx 0.951 94.5 95.7 0.831 79.6 90.5 0.471 43.0 55.1 0.347 25.4 54.1 0.566 49.1 70.9
Analogy 0.950 94.6 95.7 0.829 79.3 90.5 0.472 43.3 55.8 0.348 25.6 54.7 0.565 49.0 71.3

SimplE/CP 0.950 94.5 95.9 0.830 79.8 90.3 0.468 42.9 55.2 0.350 26.0 54.4 0.565 49.1 71.0

AnyBURL [27] 0.95 94.6 95.9 0.83 80.8 87.6 0.48 44.6 55.5 0.31 23.3 48.6 0.54 47.7 47.3

AutoSF 0.952 94.7 96.1 0.853 82.1 91.0 0.490 45.1 56.7 0.360 26.7 55.2 0.571 50.1 71.5

tune hyper-parameters with the help of HyperOpt, a hyper-

parameter optimization framework based on TPE [3]. The

searching ranges are given as follows: learning rate η in [0, 1],
L2 penalty λ in [10−5, 10−1], decay rate in [0.99, 1.0], batch

size m in {256, 512, 1024}. All the models are trained until

converge to avoid the influence of different convergence speed.

Besides, we use Adagrad [8] as the optimizer since it tends to

perform better as indicated in [19], [39]. Once a good hyper-

parameter configuration is selected, we use it to train and

evaluate different searched SFs. After the search procedure,

we pick up the best SF evaluated by the MRR performance

on the validation data set as the searched SF. When comparing

the searched SFs with human-designed ones, we increase the

dimension from 64 to d ∈ {256, 512, 1024, 2048} as in [19].

As mentioned in [42], KGE models are sensitive to hyper-

parameters. For a fair comparison, we use the same set of

hyper-parameters to train and evaluated different models on

each dataset.

3) Meta Hyper-parameters: The hyper-parameters K1,K2

and N have little influence to the search procedure. We use

K1 = K2 = 8 and N = 256 for all data sets. Besides, steps 2-

11 in Alg.2 run based on an inner loop. We train 8 models

in parallel and iterate for 32 times (16 times for YAGO3-10),

namely we evaluate 256 f bs for each b > 4.

B. Comparison with existing SFs on link prediction

We compare our AutoSF with the state-of-the-art KGE

models discussed in Sec.II-A, which are designed by humans,

i.e. TransE [4], TransH [43], and RotatE [35] from TDMs;

NTM [34], Neural LP [47], and ConvE [6] from NNMs;

TuckER [1], HolE/HolEX [29], [45], Quat [53], DistMult [46],

ComplEx [39], Analogy [24] and SimplE [18] from BLMs;

and a rule-based method AnyBURL [27]. Hyper-parameters

are selected by the MRR value on the validation set.

Following [6], [18], [24], [39], [46], we test KGE’s perfor-

mance based on link prediction. For each triplet (h, r, t) ∈ S ,

where S is the validation or testing set, we compute the score

of (h′, r, t) for all h′ ∈ E and get the rank of h, the same for t
based on scores of (h, r, t′) over all t′ ∈ E , r is not compared

as in the literature [40]. Same as above mentioned papers,

we adopt the following metrics: (i) Mean reciprocal ranking

(MRR): 1/|S|
∑|S|

i=1
1/ranki, where ranki, i ∈ {1, . . . , |S|} is a

set of ranking results and (ii) H@10: 1/|S|
∑|S|

i=1 I (ranki < 10),

where I(·) is the indicator function. We report the performance

in a “filtered” setting as in [4], [43], where larger MRR and

H@10 indicate higher embedding quality.

1) Effectiveness: A comparison of the testing performance

of AutoSF and the current state-of-the-art SFs are shown in

Tab. IV. Firstly, we can see that there is no absolute winner

among the baseline SFs. For example, TuckER is the best

on WN18, but is the worst among human-designed BLMs on

FB15k. DistMult generally performs worse on the benchmarks

except for FB15k237 since it does not follow Proposition 1.

A single model is hard to adapt to different KGs. However,

AutoSF performs consistently well among these five data sets.

i.e. the best among FB15k, WN18RR, FB15k237 and YAGO3-

10, and the runner-up on WN18.

Besides, we plot the learning curves of DistMult, Analogy,

ComplEx, SimplE and the best SF searched by AutoSF in

Fig. 4. As shown, the searched SFs not only outperform

baselines, but also converge faster, which may due to these

SFs can better capture relations in these datasets.
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(a) WN18. (b) FB15k. (c) WN18RR. (d) FB15k237. (e) YAGO3-10.

Fig. 4. Comparison on clock time (in hours) of model training v.s testing MRR between search SFs (by AutoSF) and human-designed ones.

(a) WN18. (b) FB15k. (c) WN18RR. (d) FB15k237. (e) YAGO3-10.

Fig. 5. A graphical illustration of SFs identified by our AutoSF on each data set.

2) Case study: Distinctiveness: To show the searched SFs

are KG-dependent and novel to the literature, we plot them

in Fig. 5. It is obvious that these SFs are different from

each other, and they are not equivalent regarding invariance

properties. As shown in Tab. III, WN18 and FB15k have many

symmetric, anti-symmetric relations and inverse relation pairs,

the best SF searched on them are very similar and have the

same SRF. The other three data sets are more realistic and

contains less symmetric, anti-symmetric and inverse relations,

thus have different SRFs with fewer entry being non-zero.

The most special case is FB15k237, which can only be

symmetric under (S11). Viewing the values in Tab. IV, we

can see that the leading performance on FB15k237 is achieved

by DistMult and AutoSF, both of which cannot be skew-

symmetric. As given in the statistic information in Tab. III,

FB15k237 has relatively fewer anti-symmetric relations. This

may explain why skew-symmetric is not that important for

g(r). However, SRFs still work for these cases since it can be

aware that skew-symmetric property is not that essential and

focus more on searching different local structures.

TABLE V
MRRS OF APPLYING SF SEARCHED FROM ONE DATA SET (INDICATED BY

EACH ROW) ON ANOTHER DATA SET (INDICATED BY EACH COLUMN).
WN18 FB15k WN18RR FB15k237 YAGO3-10

WN18 0.952 0.841 0.473 0.349 0.561
FB15k 0.950 0.853 0.470 0.350 0.563

WN18RR 0.951 0.833 0.490 0.345 0.568
FB15k237 0.894 0.781 0.462 0.360 0.565
YAGO3-10 0.885 0.835 0.466 0.352 0.571

Besides, we pick up the best SF searched from one data set

and test it on another data set in Tab. V. We can readily find

that these SFs get the best performance on the data sets where

they are searched. This again demonstrate that SFs found by

AutoSF on different KGs are distinct from each other.

C. Comparison with existing SFs on triplet classification

To further demonstrate the effectiveness of the searched

SFs, we do triplet classification as in [43]. This task is to

confirm whether a given (h, r, t) is correct or not and is more

helpful in answering yes-or-no questions. The decision rule

of classification is as follows: for each (h, r, t), if its score

is larger than the relation-specific threshold σr, which we

predict to be positive, otherwise negative. The threshold σr

is determined by maximizing the accuracy of the validation

set. We test this task on FB15k, WN18RR and FB15k237, in

which the positive and negative triplets are provided. As shown

in Tab. VI, searched SFs consistently outperform human-

designed BLMs.

TABLE VI
COMPARISON OF SEARCHED SFS WITH THE STATE-OF-THE-ART SFS ON

ACCURACY (IN %) FOR TRIPLET CLASSIFICATION. STD<0.2.
FB15k WN18RR FB15k237

DistMult 80.8 84.6 79.8
Analogy 82.1 86.1 79.7
ComplEx 81.8 86.6 79.6
SimplE 81.5 85.7 79.6
AutoSF 82.7 87.7 81.2

D. Comparison with other AutoML approaches
In this part, we compare AutoSF with the other search

algorithms. WN18RR and FB15k237 are used here, and all

algorithms share the same set of hyper-parameters. First,

to show the effectiveness of the search space in BLM, we

train a general approximator (Gen-Approx), i.e. MLP (in

Appendix D), on the validation set. Then, AutoSF is compared

with Random search and Bayes algorithm [3] on f6. As shown

in Fig. 6, the general approximator performs much worse

than BLM since it is too flexible to consider domain-specific

constraints and easily overfits. For BLM settings, the Bayes

algorithm can improve the efficiency upon random search.

However, it will easily fall into local optimum and does not

take the domain property into account. Among them, AutoSF

is the most efficient and has the best any-time performance.

E. Ablation study
We use WN18RR and FB15k237 to illustrate the importance

of different components in the proposed searching algorithm.
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Fig. 6. Comparison of AutoSF with other AutoML approaches.

1) Filter and predictor: To show the effectiveness of the

filter and predictor, we remove them from AutoSF and make

comparisons in Fig. 7. As shown, the greedy algorithm is

more efficient than random search. Both filter and predictor

are important. Removing either the filter or predictor will lead

to degenerated efficiency. Besides, compared with Greedy, i.e.

no filter and no predictor, they can both improve efficiency

through reducing the search space.

Fig. 7. Ablation study on the predictor and filter in AutoSF.

2) SRF features: As in Sec.V-D, one-hot representation

[22] can also be used as an alternative to SRFs. We compare

the two kind of features in Fig. 8. For AutoSF (with one-hot),

a 96-8-1 fully connected neural network is used, and a 22-2-1

network is used for AutoSF (with SRF). AutoSF (no predictor)

is shown here as a baseline and it is the same as that in Fig. 7.

Fig. 8. Comparison of the proposed SRF with one-hot encoding in [22].

3) Sensitivity of meta hyper-parameters: There are three

meta hyper-parameters N,K1,K2 used in our search Alg.2.

The results we reported in previous parts are based on N =
256,K1 = 8,K2 = 8. We change the value of N to 128 and

512, K2 to 4 and 16, and show the searching curve on f6 in

Fig. 9. The parameter K1 that selects top candidates in f b−2

is not compared for b = 6 since there are only 5 candidates in

f4. As can be seen, all the different settings perform similar

and obviously outperform the Greedy baseline.

4) Running time analysis: We show the running time of

different components in AutoSF in Tab. VII. First, the filter

and the predictor (including SRF computation) take much

shorter running time compared with that of the model training.

Then, as each greedy step contains 256 model training, the

best SFs can be searched within only several hours (on 8

GPUs), except for YAGO3-10 which takes more than one

Fig. 9. Comparison of different meta hyper-parameters. Greedy is added here
as a contrast. 256 models are evaluated in each setting.

day to evaluate 128 candidates. In comparison, search problem

based on reinforcement learning [55] runs over 4 days across

500 GPUs; genetic programming [44] takes 17 days on single

GPU; and Bayes optimization [13] trains for several days on

CPUs. Thus, the proposed AutoSF makes the search problem

on KGE tractable, and it is very efficient in AutoML literature.

TABLE VII
RUNNING TIME ANALYSIS. WE SHOW THE RUNNING TIME (MIN) PER

GREEDY STEP (STEP 2-11 IN ALG.2). APART FROM STEP 2-6 (FILTER),
STEP 7,10-11 (PREDICTOR), STEP 8 (TRAIN) AND STEP 9 (EVALUATION),

ALL OTHER STEPS TAKE LESS THAN 0.1 MINUTES.

steps
filtering predictor train evaluate

2-6 7,10-11 8 9

WN18 15.9±0.5 1.8±0.1 475.9±9.5 41.3±0.8

FB15K 16.8±0.7 1.9±0.1 886.3±21.8 153.7±3.9

WN18RR 16.1±1.0 1.8±0.1 271.4±5.1 27.9±0.5

FB15k237 16.6±1.1 1.9±0.1 439.2±11.2 63.5±1.9

YAGO3-10 16.6±0.9 1.7±0.1 1631.1±85.5 141.9±8.9

In addition, since AutoSF search SFs with dimension 64
and then fine-tune the hyper-parameters with d ∈ {256, 512,

1024, 2048} as in [18], [19]. In comparison, the searching cost

is comparable with the fine-tune cost which generally needs to

train and evaluate hundreds of hyper-parameter settings with

large dimension size. In this view, the searching cost is not

that expensive.

VI. CONCLUSION

In this paper, we propose AutoSF, an algorithm to au-

tomatically design and discover better SFs for KGE. By

using a progressive greedy search algorithm enhanced by a

filter and a predictor with domain-specific knowledge, AutoSF

can efficiently design promising SFs that are KG dependent,

new to the literature, and outperform the state-of-the-art SFs

designed by humans from the huge search space. In future

work, a promising direction is to explore how to efficiently

search the network structure for NNMs under domain-specific

constraints. The greedy algorithm used in AutoSF somehow

limits the exploration in the search space, which is also a

potential problem to be addressed.
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APPENDIX

A. Proof of Proposition 1

Proof. We consider the four cases separately:

• symmetric relations: If g(r)� = g(r) for some r ∈ R
d,

then given a triplet (h, r, t), f(t, r,h) = t�g(r)h =(
t�g(r)h

)�
= h�g(r)�t = h�g(r)t = f(h, r, t), which

means g(r) can handle symmetric relations.

• anti-symmetric relations: If g(r′)� = −g(r′) for some r′ ∈
R

d, then given a triplet (h, r′, t), f(t, r′,h) = t�g(r′)h =(
t�g(r′)h

)�
= h�g(r′)�t = −h�g(r′)t = −f(h, r′, t),

which means g(r′) can handle anti-symmetric relations.

• general asymmetric relation: Since Dr
i = diag(ri) , i =

1 . . . 4, then for any scalar w ∈ R, D
(wr)
i = diag(wri) =

wDr
i . This leads to g(wr) = wg(r). Similarly, we have

g(w1r + w2r
′) = w1g(r) + w2g(r

′) for scalar w1, w2.

If g(r)� = g(r) for some r ∈ R
d and g(r′)� = −g(r′) for

another r′ ∈ R
d, then for any general assymetric relation

rasym, let rasym = w1r + w2r
′. We have

f(h, rasym, t) = h�g(rasym)t = h�g(w1r + w2r
′)t (8)

= w1h
�g(r)t+w2h

�g(r′)t=w1f(h,R, t)+w2f(h, r
′, t).

Similarly, we can obtain

f(t, rasym,h) = w1f(t, r,h) + w2f(t
′, r′,h)

= w1f(h, r, t)− w2(h, r
′, t). (9)

Then, for any value of the pair f(h, rasym, t) and

f(t, rasym,h), there exist appropriate scalars w1, w2 by

solving (8) and (9) to obtain rasym = w1r + w2r
′.

• inverse relations: Let ra and rb be two relations, and

assume ra = w1r + w2r
′ and rb = w3r + w4r

′ given

g(r)� = g(r), g(r′)� = −g(r′) based on general asym-

metric property. Let w1 = w3 and w2 = −w4, then

f(t, ra,h) = w1f(t, r,h) + w2f(t, r
′,h)

= w1f(h, r, t)− w2f(h, r
′, t)

= w3f(h, r, t) + w4f(h, r
′, t) = f(h, rb, t),

g(ra) = w1g(r) + w2g(r
′) = w1g(r)

� − w2g(r
′)�

= w3g(r)
�+w4g(r

′)�=g(w3r+w4r
′)�=g(rb)�.

This means ra and rb are a pair of inverse relations.

Thus, we obtain the proposition.

B. Proof of Proposition 2

Proof. (i) For each case (S1-11), the SRF is generated based

on permutation and flipping signs of the 4 basic values

[v1; v2; v3; v4]. Thus, no matter how the structure g changes

due to permutation or flipping signs, they will lead to the

same feature. Once the matrix g(v) can be symmetric or

anti-symmetric under one assignment Si, its corresponding

feature will not change regardless of permutation or flipping

signs. (ii) The SRF is generated based on the symmetric and

skew-symmetric property and each dimension corresponds to

a specific case of symmetric or skew-symmetric. Then the

predictor can learn higher weights to the dimensions correlates

the data’s symmetric property well. Besides, this pattern can

be easily learned through a few samples.

C. Design of SRFs
Remark A.1 (SRF). Let the 1-dimensional degeneration of
Dr

1 , Dr
2 , Dr

3 , Dr
4 be scalars v1, v2, v3, v4. We give v =

[v1; v2; v3; v4] with following assignments:
• Four values are non-zero: Four values are non-zero: (S1).

All of them have different absolute value, like [1; 2; 3; 4];
(S2). Two have the same absolute value, and the other
two have another same absolute value, like [1; 1; 2; 2]; (S3).
Two of them have the same absolute value while the other
two not, like [1; 1; 2; 3]; (S4). Three of them have the same
absolute value while another one not, like [1; 1; 1; 2]; (S5).
All have the same absolute value, like [1; 1; 1; 1].

• Three values are non-zero: (S6). All of them have different
absolute value, like [0; 1; 2; 3]; (S7). Two of them have same
absolute value, like [0; 1; 1; 2]; (S8). All of them have same
absolute value, like [0; 1; 1; 1].

• Two values are non-zero: (S9). They have different absolute
value, like [0; 0; 1; 2]; (S10). They have the same absolute
value, like [0; 0; 1; 1].

• Only one is non-zero: (S11). [0; 0; 0; 1].
For each (S1)-(S11), we use permutation and flipping the signs
based on the given examples to check if g(v) can be symmetric
or skew-symmetric under each case. As a result, a 11×2 = 22
dimensional SRF returns with little extra cost.

The 11 cases exhaustively enumerate the possible conditions

of g(·) being symmetric or skew-symmetric. What we care

most is what kind of symmetric properties g(r) can be under

these cases. Some data sets may need more features being 1

if it has more symmetric, anti-symmetric and inverse relations

like FB15k, but some may not like FB15k237. The process of

SRF generation is given in Alg.3.

Algorithm 3 SRF generation for each (S1-11)

Input: the structure of g, SRFi=[0,0] for i = 1 . . . 11;
1: for v in the assignment candidates of Si through permuting and

flipping signs do
2: if g(v)− g(v)� = 0 then
3: SRFi[0] = 1 // symmetric
4: end if
5: if g(v) + g(v)� = 0 then
6: SRFi[1] = 1 // skew-symmetric
7: end if
8: end for
9: return SRFi // 2-dimensional components for each Si.

D. Details of Taking MLP as G
To ensure quick training and testing [6], we use two fully-

connected neural networks as the MLP. Specifically, to predict

the tail entity, we use NN1 to combine h and r into v =
NN1(h, r). Then we use the dot product of v and t as the

score. To test the head entity, another network NN2 is built

in similar way and final score is 〈NN2(t, r),h〉. The two

networks share the same structure (128-64-64) and are trained

jointly based on Alg.1.
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