
Semantic Guided and Response Times Bounded
Top-k Similarity Search over Knowledge Graphs

Yuxiang Wang1,2, Arijit Khan2, Tianxing Wu2, Jiahui Jin3, Haijiang Yan1

1 Hangzhou Dianzi University, China 2 Nanyang Technological University, Singapore 3 Southeast University, China
{lsswyx,yanhj}@hdu.edu.cn, {arijit.khan,wutianxing}@ntu.edu.sg, jjin@seu.edu.cn

Abstract—Recently, graph query is widely adopted for query-
ing knowledge graphs. Given a query graph GQ, the graph
query finds subgraphs in a knowledge graph G that exactly
or approximately match GQ. We face two challenges on graph
query: (1) the structural gap between GQ and the predefined
schema in G causes mismatch with query graph, (2) users cannot
view the answers until the graph query terminates, leading to
a longer system response time (SRT). In this paper, we propose
a semantic-guided and response-time-bounded graph query to
return the top-k answers effectively and efficiently. We leverage
a knowledge graph embedding model to build the semantic graph
SGQ, and we define the path semantic similarity (pss) over SGQ

as the metric to evaluate the answer’s quality. Then, we propose
an A* semantic search on SGQ to find the top-k answers with
the greatest pss via a heuristic pss estimation. Furthermore, we
make an approximate optimization on A* semantic search to
allow users to trade off the effectiveness for SRT within a user-
specific time bound. Extensive experiments over real datasets
confirm the effectiveness and efficiency of our solution.

I. INTRODUCTION

Knowledge graphs (such as DBpedia [1], Yago [2], and
Freebase [3]) have been constructed in recent years, managing
large-scale and real-world facts as a graph [4]. In such graphs,
each node represents an entity with attributes, and each edge
denotes a relationship between two entities. Querying knowl-
edge graphs is essential for a wide range of applications, e.g.,
question answering and semantic search [5]. For example, con-
sider that a user wants to find all cars produced in Germany.
One can come up with a reasonable graph representation of
this query as a query graph GQ, and identify the exact or
approximate matches of GQ in a knowledge graph G using
graph query models [6]–[10]. Correct answers can be returned,
such as 〈BMW 320, assembly, Germany〉. Graph query also
acts as a fundamental component for other query forms, such
as keyword and natural language query [9]. We can reduce
these query forms to a graph query by translating input text
to a query graph [11], [12].

To retrieve the information of interest from a knowledge
graph G, users are often required to have full knowledge of the
vocabulary used in G [13], as well as the underlying schemas
defined in G, which is difficult for ordinary users (even pro-
fessional users) [14]. Otherwise, the user-built query graph is
likely to be structurally different from the predefined schemas,
thus fails to return correct answers due to the mismatch with
the query graph. Consider the following motivating example.

Example 1: Consider the query: Find all cars that are
produced in Germany (Q117 from QALD-4 benchmark [15]).
Figure 1 provides four correct graph matches with different

Fig. 1: An example of structural mismatch with query graphs: different users
may employ different query graphs (top) to find all cars made in Germany.
Four correct graph matches in DBpedia are provided (bottom). Only G2

Q can

retrieve partial correct answers having the same schemas as 1©, because the
1-hop edge assembly cannot match any n-hop (n > 1) paths.

schemas in DBpedia. Each one is represented as an n-hop
path. An ordinary user may build a query graph G1

Q based on
the phrases from the natural language question [12]. While
a professional user may build G2

Q by using the controlled
vocabulary (e.g., Automobile is used to represent vehicles in
DBpedia) and a schema she already knew. However, both
query graphs suffer from the structural mismatch problem.

Mismatch in query nodes. In G1
Q, a query node with type

Car represents the phrase “cars”. However, no entity in
DBpedia has the same, or even a textually similar type for Car,
because it is not a term belonging to the controlled vocabulary
of DBpedia. Hence, G1

Q fails to find correct answers.

Mismatch in query edges. For G2
Q, the user can retrieve

234 answers that have the same schema as graph match 1.
However, more than 200 correct answers are ignored, because
a 1-hop edge in G2

Q cannot be mapped to the semantically
similar n-hop (n > 1) paths (edge-to-path mapping).

If a user has full knowledge about DBpedia, then she can
build various query graphs that cover all possible schemas, to
obtain all cars of interest. Generally, it is a strong assumption.
As an alternative, we aim to provide a graph query system that
will be able to support different query graphs without forcing
users to use very controlled vocabulary or be knowledgeable
about the dataset. This motivates us to fill the structural gap in
graph matching by considering the semantics of query graphs.

Another crucial problem involves improving the system
response time (SRT) for a graph query. SRT is the amount
of time that a user waits before viewing results [16]. A
shorter SRT usually indicates a better user experience. To

445

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00045

Fig. 2: A running example of our approach, including offline KG embedding (bottom right) and online query processing. Four components of the online
part are: (1) Query graph decomposition, (2) Semantic graph construction, (3) Semantic-guided search, and (4) Threshold Algorithm-based assembly. An
approximate optimization is applied for response-time-bounded query. All predicates in the example knowledge graph are provided in a table (bottom middle).

the best of our knowledge, no current state-of-the-art work
supports response-time-bounded graph query. This motivates
us to present an interactive paradigm that allows the user to
trade off accuracy for SRT within a user-specific time bound
T . As more time is given, better answers can be returned.

In this paper, we blend semantic-guided and response-time-
bounded characteristics in one system to support the top-k
graph query over a knowledge graph effectively and efficiently.

A. Our Approach

Many efforts have been made for structural mismatch prob-
lem [6], [8], [10], [12], [14], [17]. Among these methods,
SLQ [8] is the best one for the query node mismatch via a
node transformation library, but it cannot support the edge-to-
path mapping. S4 [14] is the most similar work to our paper.
It mines the n-hop schemas in advance through string edit
distance and frequent paths, by providing semantic instances
as the prior knowledge (e.g., given by PATTY [18]). It has
two limitations, that are: (1) the string edit distance cannot
well represent the real semantics of mined schemas, (2) the
accuracy of S4 is sensitive to the quality of prior knowledge.

Unlike S4, we present a semantic-guided search to find
the semantically similar paths to query edges without prior
knowledge. To the best of our knowledge, we are the first
to support semantically edge-to-path mapping in graph query.
Moreover, combining our method with SLQ allows us to
handle mismatches in query nodes. Figure 2 shows the pipeline
of our approach, which has an offline and an online phase.

Offline phase. Given a knowledge graph G, we leverage a
knowledge graph embedding model to represent the predicates
of G in a vector space E (Section IV-A). Hence, the semantic
similarities of predicates can be easily obtained through vector
calculation, and this makes it possible to achieve the semantic
similarities of a path in G to a query edge in GQ. To be precise,
this is essential for semantically edge-to-path mapping.

Online phase. In Figure 2, we take a query graph GQ as
an input. GQ can be of different shapes, for example, the
chain, star, tree, cycle, and flower are the commonly used
shapes according to [19] . We adopt a decomposition-assembly
framework for GQ, which consists of four basic components.

(1) Query graph decomposition. We first decompose GQ into a
set of sub-query graphs {g1...gn} by a dynamic programming

algorithm, subject to minimizing the possible query cost. Since
this part is not our main focus in this paper, we briefly
introduce it in Section III, and emphasize more on the
querying of the sub-query graphs and assembling their results.

(2) Semantic graph construction. To support the semantically
edge-to-path mapping, we then construct a semantic graph
SGQ for each sub-query graph gi by preserving the predicate
semantic similarities on the edges of G (Section IV-B). In
Figure 2, we show example semantic graphs for g1 and g2.
For instance, each blue edge has a high semantic similarity to
the query edge product, e.g., e2 (assembly) has 0.98 semantic
similarity to product. By utilizing these similarities in SGQ,
we define the path semantic similarity (pss) to measure how
semantically similar a path in G is to gi (Section IV-C).

(3) Semantic-guided search. We next present an A* semantic
search to find the top-k semantically similar matches for each
sub-query graph gi from the semantic graph SGQ based on
the path semantic similarity (pss). To improve the efficiency,
we propose a well-designed heuristic estimation function of
pss that prunes the search space (Section V-A). We prove the
effectiveness guarantee of our A* semantic search in Section
V-B, that is, the matches with the greatest pss must be found.

(4) Threshold Algorithm (TA)-based assembly. Finally, we
assemble the matches of all sub-query graphs based on the
threshold algorithm (TA) [20], in order to form the final
answers for GQ in Section V-C.

Moreover, we present an approximate optimization on our
semantic-guided search to enable a trade-off between accuracy
and the system response time (SRT) within a user-specified
time bound T (Section VI). As more time is given, more high-
quality matches are refined incrementally. We prove that the
globally optimal matches for GQ can be achieved theoretically
when sufficient time is given.

B. Contributions
We summarize our main contributions as follows.

• We present a decomposition-assembly framework for the
top-k similarity search over knowledge graphs, which is the
first work that considers the semantic-guided and response-
time-bounded characteristics in one system.

• We present an A* semantic search to find semantically
similar graph matches, that can efficiently prune unpromis-

446

ing paths through a well-designed path semantic similarity
(pss) estimation. We prove the effectiveness guarantee of
our algorithm.

• We optimize the A* semantic search to enable a trade-off
between effectiveness and efficiency with a time bound T .
We prove that this method can converge to the globally
optimal results as more time is given.

• We evaluate the effectiveness and efficiency of our approach
through extensive experiments on three real-world and large-
scale knowledge graphs.

II. RELATED WORK

According to how previous approaches process graph query,
we categorize related work as follows.
Graph pattern matching. Graph pattern matching is defined
in terms of subgraph isomorphism [21], [22], which is NP-
complete and is often too restrictive to capture sensible
matches. Hence, graph simulation based pattern matching is
proposed, such as [17], [23]. These methods cannot be directly
deployed to support graph query over knowledge graphs,
because they do not consider the semantic constraints on edges
even though they can map an edge to an n-hop path.
Graph similarity search. Many efforts have been made for
the graph similarity search based on different similarity met-
rics: (1) structural similarity [6], [10], [24], (2) graph edit
distance [25], [26], and (3) weak semantic similarity [8],
[9], [14]. Note that, [6], [10] support edge-to-path mapping
(however, do not consider the semantic constraints). Besides,
[14] can find n-hop paths that are similar to a query edge based
on prior knowledge. Unlike [14], we can find better n-hop
paths (i.e., semantically similar) without external knowledge.
Query-by-examples. Query-by-Example (QBE) aims to allow
users to express their search intentions with examples. GQBE
[27] and Exemplar [28] are proposed for searching matches
that are same as their counterparts from the examples. More-
over, [29], [30] are proposed to pose exemplars characterized
by tuple patterns, and identify answers close to exemplar. Our
approach can extend these QBE methods by returning more
semantically similar answers to the given exemplar queries.
Other methods to query knowledge graph. The knowledge
graph search can also be conducted by the following query
forms: (1) keywords search [12], [31], (2) SPARQL search
[21], [32], [33], and (3) natural language search [7], [34],
[35]. Most of these methods transform the input texts to query
graphs for graph searching, so our graph query approach can
be used to improve their performance.

III. PRELIMINARIES

A. Background
Definition 1: Knowledge graph. A knowledge graph is

defined as a graph G = (V,E,L), with the node set V , edge
set E, and a label function L, where (1) each node u ∈ V
represents an entity, (2) E is an ordered subset of V × V ,
each directed edge e = uiuj ∈ E denotes the relationship
between two entities ui and uj , and (3) L assigns a name and
various types on each node, and a predicate on each edge.

Similar to [9], [30], [36], we define the type as a label on
each entity, rather than a node connecting to an entity with

the predicate isA. This assumption can reduce the size (|E|)
of G, it also avoids dealing with irrelevant edges isA.

Example 2: We assume that each node u in a knowledge
graph G has at least one type and a unique name [14], [35],
e.g., L(u).type = {Automobile} and L(u).name =Audi TT.
For each edge e, we assign a predicate as L(e) =assembly. If
the type of a node in G is unknown, we employ a probabilistic
model-based entity typing method to assign a type on it [37].

Definition 2: Query graph. A query graph is defined as a
graph GQ = (VQ, EQ, LQ), with query node set VQ, edge set
EQ, and a label function LQ, where (1) VQ = V s ∪ V t, (2)
V s = {vs} is a set of specific nodes, both the type and name
of vs are known, (3) V t = {vt} refers to target nodes, only
the type of vt is known, (4) ∀e ∈ EQ has a predicate LQ(e).

Since we assume that users do not have full knowledge
about the dataset, so they are allowed to represent the query
nodes without using the controlled vocabulary. For the exam-
ple query graph in Figure 2, V s = {v3} (type: Country and
name: Germany), V t = {v1, v2} (respective types: Car, Per-
son), and Car is not a term defined in DBpedia’s vocabulary.

Query graph decomposition. We adopt a decomposition-
assembly framework for GQ. We decompose GQ into sub-
query graphs for querying, and then assemble the matches of
all sub-query graphs to form the top-k matches of GQ.

Definition 3: Sub-query graph. We define a sub-query
graph of GQ as a graph gi = (Vi, Ei, LQ), with the query
node set Vi, query edge set Ei, and the same label function
LQ as in GQ, where (1) gi is a path from a specific node vs

to a target node vt, denoted by vsvt, (2) and VQ = ∪Vi and
EQ = ∪Ei over all sub-query graphs gi of GQ.

Example 3: The query graph in Figure 2 can be decomposed
into two sub-query graphs: (1) find automobiles produced
in Germany (g1: 〈v1-product-v3〉), and (2) find automobiles
designed by Germans (g2: 〈v1-designer-v2-nationality-v3〉).

In general, all sub-query graphs intersect at a target node
(called pivot node vp), e.g., v1 in Example 3. Therefore, we
can assemble the final matches via a join operation at vp.
The objective of query graph decomposition is to derive a
number of sub-query graphs with an appropriate pivot node,
to minimize the cost of query processing (Eq. 1). We use the
possible search space as the cost metric (similar to [9]) and
resolve this problem through dynamic programming. The time
complexity is O(|VQ| · |EQ|2) according to [9]. We show the
impact of query graph decomposition on performance and its
scalability in Section VII-B and Section VII-D, respectively.

argmin
{g1...gn}

n∑
i=1

cost(gi) (1)

According to [19], the chain, star, tree, cycle, and flower
are common query graph shapes in knowledge graph search,
so we provide an analysis on the effect of these query graph
shapes with different sizes in Section VII-D.

Sub-query graph matching. For each sub-query graph, we
aim to find the semantically similar matches by identifying the
candidate node (edge) matches for each query node (edge).

447

(1) Node match. To overcome the mismatch in query nodes,
we define a one-to-many relation φ: Vi → V considering three
cases: Identical, Synonym, and Abbreviation. For each query
node v ∈ Vi, φ(v) = {u1...un} is a set of candidate matches
in V , where the type (name) of v is the same, synonymous,
or abbreviated for the type (name) of u.

Usually, each node u in a knowledge graph G can have
multiple types [37], then u is a node match of the query node v
if one of u’s types satisfies the relation φ. Although we assume
that each query node v has a user-specific type in Definition
2, we still need to consider the following cases to enhance
the robustness. (1) If a query node v has multiple types, then
we separately consider each type of v in the relation φ for
node matching, and then consider union of all of them as
the overall node matches for v . (2) If a user provides a query
node v without a type, then v is a wildcard query node and can
be mapped to the nodes with different types in a knowledge
graph. In Section IV-B, we introduce how to implement the
relation φ by building a transformation library.

(2) Edge match. To overcome the mismatch in query edges, we
support the semantically edge-to-path mapping. Given a sub-
query graph gi and a knowledge graph G, a path uiuj ∈ G is
a match of an edge vivj ∈ gi, if ui ∈ φ(vi) and uj ∈ φ(vj).
While considering paths, we ignore edge directionalities. Be-
sides, we expect that the path uiuj is semantically similar to
the edge vivj . We elaborate this part in Defintion 6.

Considering the sub-query graph g1 in Figure 2, the edge
matches of product are the paths from Germany to entities with
type Automobile, e.g., (e1, e2), (e9, e10, e11), etc. We need to
identify the most semantically similar path (e1, e2) from other
edge matches, which motivates us to define the semantic graph
SGQ for each sub-query graph gi as follows.

Definition 4: Semantic graph. Given a sub-query graph
gi = (Vi, Ei, LQ) and a knowledge graph G = (V,E, L),
the semantic graph is a weighted sub-graph of G defined as
SGQ = (V ′, E′, L,W), with the node set V ′ ⊆ V , edge set
E′ ⊆ E, and weight set W , where (1) for each node v ∈ Vi,
its node match u ∈ φ(v) belongs to V ′, (2) for each edge
e = vivj ∈ Ei, its edge match uiuj ∈ SGQ (i.e., ∀e′ ∈ uiuj

belongs to E′), (3) each e′ has a weight w ∈ W to represent
the semantic similarity between e′ and e (Section IV-A).

According to Definition 3, a sub-query graph gi is a path
graph denoted as vsvt. So, we define the match of gi as a path
in SGQ that is semantically similar to vsvt.

Definition 5: Sub-query graph match. Given a sub-query
graph gi = vsvt and a semantic graph SGQ, a path usut ∈
SGQ is a match of gi if (1) usut comprises the edge match of
each edge vivj ∈ gi, (2) the path semantic similarity (pss) of

usut to vsvt equals or is greater than a predefined threshold
τ , denoted by ψ(usut, vsvt) ≥ τ .

Definition 6: Path semantic similarity (pss). We define
the pss ψ(usut, vsvt) as a function f(w1...wn) of all weights
appearing in match usut, which measures the semantic simi-
larity of usut to gi. The details are given in Section IV-C.

Assembly. For each sub-query graph gi, we can obtain a set of

sub-query graph matches, denoted by Mi = {usut}. The sub-

query graph matches from different Mi may intersect at the
same pivot node match up ∈ φ(vp), so we can assemble them
at up to form a match for the query graph GQ. Figure 2 shows
the assembly procedure. First, we find some matches with the
greatest pss for the two sub-query graphs g1 and g2. The
match 〈Germany-e1-e2-Audi TT〉 from M1 and 〈Germany-e3-
e4-Audi TT〉 from M2 can be assembled at pivot node match
Audi TT to form a match for GQ. We define the match score
of a match for GQ as the sum of pss for all involved sub-query
graph matches that intersect at the same up.

Sm(up) =
∑
Mi

ψ(usut, vsvt) (2)

s.t. usut ∈ Mi that contains the same up

The best match of GQ is the one with the greatest match
score, such as the top-1 match involving Audi TT in Figure 2
(with the greatest match score 1.891=0.891+1).

B. Problems

According to the background above, we derive two major
problems that need to be resolved in this paper as follows.

Problem 1. Given a query graph GQ = {g1...gn} and a
knowledge graph G, we find the top-k matches M according
to the match score Sm(up) as follows.

M = σmax(Sm)(�up Mi) (3)

s.t. |M | = k, Mi = {argmax
usut

ψ(usut, vsvt)}

In Eq. 3, we use �up to denote the assembly at up and use
σmax(Sm) to denote the top-k matches selection based on the

match score Sm(up). Mi = {usut} are the sub-query matches
with the greatest pss for each gi. This problem is non-trivial,
because (1) we need to find globally optimal Mi for each gi,
and (2) the assembly is computationally expensive if GQ has a
large number of gi, and each one has many candidate matches.
We solve this problem efficiently in Section V.

Problem 2. Given a query graph GQ = {g1...gn} and a
knowledge graph G, we find the approximate top-k matches
M̂ within a user-specified time bound T as follows.

M̂ = σmax(Sm)(�up M̂i) (4)

s.t. |M̂ | = k, time bound T ,

(
M̂ ∩M

M̂ ∪M

)
T ′

≥
(
M̂ ∩M

M̂ ∪M

)
T

We use the Jaccard similarity of M̂ and M to measure the
degree of approximation. With more time given (T ′ > T), M̂
can approach M . The key of this problem is how to return
M̂ quickly, and refine it as more time is given. Moreover, we
need to prove that the globally optimal results can be returned
if sufficient time is given (e.g., M̂ = M). We deal with this
problem in Section VI.

IV. SEMANTIC GRAPH CONSTRUCTION

In this section, we leverage a knowledge graph embedding
model to construct the semantic graph SGQ, then present the
predicate semantic similarity (pss) based on SGQ.

448

TABLE I. Transformation library

Synonym and abbreviation records Types and names
Car, Motorcar, Auto, Vehicle type: <Automobile>

GER, FRG, Federal Republic of Germany name: Germany

A. Knowledge Graph Embedding

Knowledge graph embedding aims to represent each predi-
cate and entity of a knowledge graph G as an n-dimensional
semantic vector, such that the original structures and relations
in G are preserved in these learned semantic vectors [4]. We
summarize the core idea of most existing knowledge graph
embedding methods as follows: (1) initialize the vector of
each element in triple 〈h,r,t〉 as 〈h,r,t〉, where h/t indicates
the head/tail entity and r denotes the predicate, (2) define a
function g() to measure the relation of 〈h,r,t〉, and optimize
g() to satisfy t ≈ g(h, r). The predicate semantic space
E = {e1...en} is an output of a knowledge graph embedding
model. The semantic similarity between the two edges can be
represented by the similarity between two predicate vectors.

In this paper, we use the cosine similarity to measure the
similarity between two predicate vectors. Each weight w in
the semantic graph SGQ, denoted by sim(LQ(e), L(e

′)), e.g.,
sim(product, assembly), can be calculated as follows.

w = sim(LQ(e), L(e
′)) =

e · e′
||e|| × ||e′|| (5)

We next introduce how to preserve these weights on a
knowledge graph to generate semantic graph.

B. Constructing Semantic Graph

Figure 3(a) shows an example semantic graph SGQ for the
sub-query graph g1 in Figure 2. A straightforward idea to
build SGQ is: (1) find the node matches of each query node,
e.g., φ(v1)={Audi TT, KIA K5, BYD Song, Hyundai Tucsun,
BMW Z4}, and φ(v3)=Germany, (2) find the edge matches
of each query edge, e.g., edge matches of product include
paths (e1, e2), (e3, e4), (e3, e5), (e3, e6), (e9, e10, e11), and
(e13, e14, e15), and (3) assign weights on edges through Eq. 5.

Analysis. To find all edge matches for a query edge vivj ∈ gi,
we must enumerate all possible paths between ui ∈ φ(vi) and
uj ∈ φ(vj). However, the high connectivity of a knowledge
graph G makes it computationally expensive.

A lightweight way. Figure 3(b) shows an alternative way to
construct SGQ on the fly. We push down the semantic graph
construction to the query processing stage, which means that
SGQ is partially materialized (not completely constructed in

advance). Given a sub-query graph gi = vsvt, we materialize
the SGQ as follows.

(1) Get node matches of vs. To implement the relation φ for
node matching, we build a synonym and abbreviation transfor-
mation library [8] for all types and names existing in G based
on BabelNet (the largest multilingual synonym dictionary
[38]). For instance, we invoke the API of BabelNet to collect
the synonyms and abbreviations of the input keyword as
one row in Table I. For each query node vs, we use this
library to find its node matches φ(vs) through the synonym
or abbreviation transformation, e.g., a query node with type
Car is mapped to a set of entities with type Automobile in G.

(a) complete SGQ (b) partially materialized SGQ

Fig. 3: Semantic graph construction: all predicates in the semantic graph are
provided as assembly:{e2, e15}, country:{e1, e9, e13}, federalState: {e14},
nationality: {e3}, designer:{e4, e5, e6, e11}, and birthPlace: {e10}.

(2) Materialize the 1-hop SGQ for us ∈ φ(vs). Given a node

match us ∈ φ(vs), we assign the weight w on each edge that
connects to us based on Eq. 5, generating a 1-hop SGQ for
us. For example, weighted edges {e1, e3, e9, e13} in Figure
3(b) act as the 1-hop SGQ for the node Germany.

(3) Next-hop decision. Given a partially materialized SGQ,
we select a next-hop node for further querying. The selected
node should be the one with the greatest probability of finding
the best match for gi. We show the details in Section V.

(4) Termination check. Starting from the next-hop, we repeat
the above steps to materialize SGQ gradually, until a node

match ut ∈ φ(vt) is detected. The path usut is a match of gi.
In Figure 3(b), we can find the best matches from the partially
materialized SGQ (blue lines) excluding the dashed lines.

Remarks. To construct a complete SGQ, we need O(|E′|)
time to assign weights on all the edges of SGQ. The time
complexity is expected to be reduced by constructing SGQ

partially, because a good next-hop selection would reduce the
size of SGQ, pruning the search space significantly. Moreover,
a good next-hop selection also ensures that the sub-query
graph match with the greatest path semantic similarity (pss)
can be found. We show the details of pss in Section IV-C and
show the semantic-guided search based on pss in Section V.

C. Path Semantic Similarity

We define the path semantic similarity (pss) of a sub-query
graph match usut to gi based on the following observations.

• A match usut comprises a set of edges {e1...en}. Each edge
ei has a weight w that indicates the semantic similarity to
one edge e ∈ gi. Hence, the pss should be a function of all
weights appearing at usut.

• According to Eq. 5, two edges are semantically similar if
their predicate vectors are similar. Thus, the edges with
greater w would be more beneficial to the pss.

• A smaller w usually indicates that two edges show different
semantic meanings. Therefore, the edges with smaller w
have a negative effect on the pss.

Example 4: In Figure 3(a), the paths (e1, e2) and
(e13, e14, e15) are more semantically similar to g1 than others,
because the predicate vectors of edges e2 and e15 (assembly)
are more similar to the one of edge product (with the greatest
w=0.98). And other paths containing edges such as e4 (de-
signer), e10 (birthPlace), etc., show the different meanings to
g1, because e4 and e10 are less semantically similar to product.

449

Based on these intuitions, we calculate the pss of the match
usut to vsvt, denoted by ψ(usut, vsvt), as the geometric mean
of all weights appearing at the match usut.

ψ(usut, vsvt) = n

√ ∏
∀wj∈usut

wj (6)

V. SEMANTIC-GUIDED SEARCH

In this section, we first present an A* semantic search
to find the top-k matches from SGQ with the greatest path
semantic similarity (pss) for each sub-query graph gi ∈ GQ.
We then assemble all matches for gi to form the final matches
for GQ. The classic A* search [39] finds the shortest path
based on a heuristic length estimation. Here, we design the pss
estimation based on semantics to find the most semantically
similar paths. The basic idea of A* semantic search is that
we compute a heuristic pss estimation for a possible match
at each detected node, and gradually expand the search space
following the guidance of the estimated pss until a match with
maximum pss is found. We achieve two benefits from a good
pss estimation: (1) we can find the globally optimal matches
of gi, and (2) we can prune the search space significantly.

We next introduce the heuristic pss estimation in Section
V-A, then discuss A* semantic search based on pss estimation
and prove the effectiveness guarantee in Section V-B. Finally,
we show the assembling of the matches in Section V-C.

A. Heuristic Estimation of pss
Given a match usut of a sub-query graph gi, it can be

divided into an explored partial path usui and an unexplored
partial path uiut at each detected node ui. We compute the
upper bound of the exact pss ψ(usut, vsvt) at ui as the

estimated pss, denoted by ψ̂(usui, vsvt) (ψ̂i for short), by
considering the semantic information from both partial paths.
Based on the estimated pss, we can effectively prune the
search space and find the sub-query graph match with the
greatest pss due to the following reasons. (1) Suppose that
we already find a sub-query graph match, then we can safely
prune the potential matches having the smaller ψ̂i than the
explored match’s exact pss. Only the potential matches with
a greater ψ̂i than the explored match’s exact pss would be
considered for further searching. (2) Given a predefined pss
threshold τ , we can prune the unpromising potential matches
that have the ψ̂i < τ (we set τ = 0.8 in Section VII).

We next introduce how to obtain the upper bound ψ̂i of ψ for
the pss estimation. And we prove the effectiveness guarantee
in Section V-B (Theorem 2).

According to Eq. 6, we need the weight product (
∏

wj) and

the path length (n) of a match usut to compute the exact ψ.
So we first estimate the upper bound of the weight product
and path length, in order to estimate the upper bound of ψ.

Upper bound of the weight product. The weight product of

usut is divided into two parts at each detected node ui.

• The weight product of partial path usui, e.g.,
∏

∀wj∈usui
wj .

• The weight product of partial path uiut, e.g.,
∏

∀wj∈uiut wj .

We can compute the exact weight product of usui because
usui is explored in the partially materialized SGQ. On the

other hand, the partial path uiut is unexplored, so we use
the maximum weight of all adjacent edges of ui as the upper
bound of the weight product of uiut, denoted as m(ui).

Lemma 1: The maximum weight m(ui) is the upper bound
of the weight product of the partial path uiut.

Proof: Given the weight product
∏

wj∈uiut wj of uiut, wj

indicates the j-th weight in uiut. Due to the monotonicity of
weight product, we have w1 ≥ ∏wj∈uiut wj . Also, m(ui) ≥
w1 because we assume m(ui) is the max weight of all adjacent
edges of ui. Hence, we have m(ui) ≥

∏
wj∈uiut wj .

Upper bound of the path length. Since different matches
have different path lengths, it is difficult to get a uniform upper
bound of the path length n for all matches. Hence, we relax
the upper bound of the exact path length to the upper bound of
the user desired path length. If a user wants to find the top-k
matches within n̂-hop, then only the matches having n ≤ n̂
(n̂-bounded match) will be returned. Hence, n̂ is the upper
bound of the path length for all the n̂-bounded matches.

Estimated pss of n̂-bounded match. Given the above two

upper bounds. We compute the estimated pss ψ̂i at each node
ui
= ut as follows, where ut ∈ φ(vt) is a target node match.

And we set ψ̂i equals to the exact pss ψ when ui = ut.

ψ̂(usui, vsvt) = n̂

√ ∏
∀wj∈usui

wj ·m(ui) (7)

Theorem 1: The pss estimation ψ̂i is the upper bound of
the exact pss ψ of the match usut=usui+uiut with the path
length n ≤ n̂, where n̂ is the user desired path length.

Proof: We use notation Wsi (Wit) to denote the weight
product of the partial path usui (uiut). If ui
=ut, then
ψ̂i=

n̂
√
Wsi ·m(ui)≥ n

√
Wsi ·m(ui), because n̂≥n and the n-

th root Wsi·m(ui)∈(0,1]. Moreover, we have m(ui)≥Wit

based on Lemma 1, so that n
√
Wsi ·m(ui)≥ n

√
Wsi ·Wit=ψ.

Hence, ψ̂i≥ψ holds. On the other hand, if ui=u
t, then ψ̂i=ψ.

In summary, ψ̂i≥ψ holds for all cases.

Remarks. (1) The user desired path length n̂ is specified by
users before graph querying. (2) Our A* semantic search can
find the globally optimal n̂-bounded matches (proved later in
Theorem 2) based on the above heuristic pss estimation.

B. A* Semantic Search

In this section, we introduce our A* semantic search based
on the above pss estimation, illustrated in Algorithm 1.

Notations. We use a max-heap as the match set Mi for a sub-
query graph gi, to record each found match and its pss, e.g.,
〈usut, ψ〉. We use another max-heap as the priority queue q
to record each explored partial path usui and its estimated
pss, e.g., 〈usui, ψ̂i〉. For ui = us ∈ φ(vs), usui is the node
us itself. Each node ui indicates a next-hop choice for search
space expansion. We also use a hash set visited to record all
visited nodes, avoiding duplicate access. A pss threshold τ is
used to prune the unpromising matches having ψ̂i < τ .

Overview. Given a sub-query graph gi=vsvt, we start with
the node match us ∈ φ(vs) for A* semantic search (line 1).
The main procedures are: (1) Next-hop selection. We select

450

Algorithm 1: A* semantic search

Data: sub-query graph gi, number of matches k
Result: match set Mi

1 ∀us ∈ φ(vs): q={〈us, ψ̂s〉}, visited={us}, Mi=∅;
2 while q �= ∅ do
3 〈usui, ψ̂i〉=q.pop max() ; // Next-hop selection
4 if ui �∈ φ(vt) then // Search space expansion
5 for ∀ul ∈ N(ui) do
6 if !visited.contains(ul) then
7 visited.add(ul);
8 usul=usui+uiul;

9 〈usul, ψ̂l〉=pssEstimation();

10 if ψ̂l ≥ τ then
11 q.push heap(〈usul, ψ̂l〉);

12 else
13 Mi.push heap(〈usui, ψ̂i〉);
14 if |Mi| = k then // Top-k matches check
15 break;

16 return Mi;

the node ui with the greatest ψ̂i as the next-hop for search
space expansion, from the priority queue q (line 3). (2) Search
space expansion. Starting from ui, we expand the search space
as usul=usui+uiul for each neighbour node ul of ui, and
compute ψ̂l for each new partial path usul (lines 5-9). All these
〈usul,ψ̂l〉 pairs (ψ̂l ≥ τ) are stored in q for further exploration
(lines 10-11). (3) Top-k matches check. We repeat (1) and (2)
until a match usui is popped from q, where ui ∈ φ(vt). We
record it in match set Mi and terminate the search until k
matches are found (lines 13-15).

Example 5: Figure 4 shows an example for searching the
top-1 match from a specific node match u1 to target node
matches {u7,u12} (we set n̂=4). The solid lines indicate the
expanded search space, doted lines show the pruned data,
and red lines denote the top-1 match. Finally, 38.5% of
edges and 25% of nodes are pruned. At the beginning, we
expand the search space from u1, all its neighbours are added
in the priority queue q, e.g., q={〈u1u2,0.81〉, 〈u1u3,0.86〉,
〈u1u4,0.73〉}. We next select u3 in u1u3 to expand the search
space because it has the greatest estimated pss of 0.86, and
we add the path u1u7=(u1u3, u3u7) in the priority queue
q as 〈u1u7,0.74〉. However, we cannot return u1u7 as the
top-1 match because we still have 〈u1u2, 0.81〉 in q. From
u1u2, we may find a better match with pss of 0.81>0.74.
Hence, we continue to expand the search space from u2, u5,
u9 until u12 is detected. Finally, we have q={〈u1u12,0.75〉,
〈u1u7,0.74〉, 〈u1u4,0.73〉, 〈u1u6,0.73〉}, and u1u12 is the top-
1 match, while the potential matches from u1u4 and u1u6 can
be safely pruned. This is because the upper bound of pss for
u1u4 and u1u6 are smaller than the pss of the top-1 match.

Theorem 2: Our A* semantic search ensures that the sub-
query graph match usut with the greatest pss can be found.

Proof: Suppose that the returned usut is not the best match,
then we have ψ≤ψopt, where ψ and ψopt are the pss of usut

and the best match, respectively. Since A* semantic search
starts from us and all its neighbours are considered in the
priority queue q for further expansion, then q must contain
one partial path 〈usui, ψ̂i〉 that belongs to the best match.

Fig. 4: An example of the top-1 match searching

According to Theorem 1, we have ψ̂i≥ψopt. Then we have

ψ̂i≥ψopt≥ψ. Hence, our A* semantic search will continue to
expand the search space from ui (line 3 in Algorithm 1) rather
than returning the non-optimal match usut.

Complexity. The time consumption of our A* semantic search
is dominated by the search space expansion. Given a partial
path usui, we expand the search space from the node ui as
follows: (1) construct a new partial path usul=usui+uiul for
each neighbour node ul of ui and (2) update the priority queue
q with each 〈usul, ψ̂l〉 pair. We use V ∗ to denote all detected
nodes in step (1), then the time complexity is O(|V ∗| log |V ∗|),
where O(log |V ∗|) is the time for the update of max-heap q.

Remarks. (1) We implement the graph querying in a multi-
threaded manner (one thread for each gi ∈ GQ). (2) In general,
we usually need more than k matches collected for each gi to
ensure that k final matches can be assembled for GQ.

C. Final Matches Assembly

We employ the Threshold Algorithm (TA) [20] based
method to efficiently assemble the top-k matches for GQ.

Core idea of assembly. Given the match sets {Mi} for all
sub-query graphs {gi}, the TA-based assembly follows three
steps. (1) It accesses all Mi in descending order of the match’s
pss. Since Mi is a max-heap, so we pop the best match in Mi

at each access. (2) It joins the detected matches with the same
pivot node match up to generate a final match fm(up), and
computes its upper and lower bound on match score, denoted
by Sm(up) and Sm(up), respectively. (3) It terminates early
if k final matches are found, for which the smallest Sm(up)
is larger than other final matches’ greatest Sm(up).

We next introduce how to compute Sm(up) and Sm(up) in
the TA-based assembly, then we prove that the top-k final
matches can be returned through the TA-based assembly.
According to Eq. 2, the match score Sm(up) of a final match
fm(up) is computed by aggregating the pss ψ of the matches
that contain the same pivot node match up, from each Mi.
Intuitively, if we know the pss bounds ψ and ψ of such a
match from each Mi, then we can compute the bounds of
match score during the TA-based assembly as follows.

Sm(up) =
∑
Mi

ψ and Sm(up) =
∑
Mi

ψ (8)

where ψ (ψ) is the upper (lower) bound on pss of the match

usut ∈ Mi that contains the same pivot node match up.

Upper bound of Sm(up). At each access of the TA-based
assembly, if the match that contains the same up is not
accessed from Mi so far, then we have ψ = ψcur, where ψcur

451

is the pss of the current accessed match in Mi. This is because
the TA-based assembly accesses each Mi in the descending
order of the match’s pss. All the un-accessed matches from
Mi must have ψ ≤ ψcur. If we find this match from Mi, then
we have ψ = ψ. The upper bound ψ is decreased as the TA-
based assembly executes. Finally, Sm(up)=Sm(up), when the
matches containing the same up are accessed from each Mi.

Lower bound of Sm(up). At each access of the TA-based
assembly, if the match that contains the same up is not
accessed from Mi so far, then we have ψ = 0. This is because
it is possible that Mi does not contain such a match. If we find
this match from Mi, then we have ψ = ψ. The lower bound ψ
is increased from 0 to ψ as the TA-based assembly executes.
Finally, Sm(up) = Sm(up), when the matches containing the
same up are accessed from each Mi.

Termination check. We terminate the TA-based assembly if
the top-k final matches are found. Specifically, (1) we sort the
final matches in descending order of Sm(up), (2) we select
the k-th largest Sm(up) as the lower bound of the top-k match

score, denoted as L, (3) we select the greatest Sm(up) among
other final matches as their upper bound on match score,
denoted as U , and (4) we terminate the assembly if L ≥ U .

Theorem 3: The TA-based assembly can obtain the top-k
final matches, when L ≥ U holds.

Proof: Since the lower bound ψ increases from 0 to the exact
pss ψ as the TA-based assembly processes, the lower bound
of the top-k match score L is also increased (Eq. 8). Similar to
L, U is decreased because the upper bound ψ decreases from
ψcur to the exact pss ψ as the TA-based assembly processes.
Hence, if L ≥ U holds at the r-th access of the TA-based
assembly, then it will hold for all r′ > r accesses. Therefore,
the TA-based assembly can terminate safely and return the
top-k final matches when L ≥ U holds.

Complexity. In the worst case, all the matches from each
match set Mi should be accessed to find the top-k final
matches. So, the time complexity of the TA-based assembly
in the worst case is O(

∑
i(|Mi|)). In Section VII-B, we show

the impact of the TA-based assembly on the performance.

VI. APPROXIMATE OPTIMIZATION

In this section, we introduce an approximate optimization
on the semantic-guided search to enable a trade-off between
accuracy and the system response time (SRT) within a user-
specified time bound T . In the original A* semantic search,
we will continuously check the priority queue q until no partial
pathes in q having the greater estimated pss than the explored
matches’ exact pss. This operation ensures that the output k
matches are globally optimal, but it also increases the SRT
because the user cannot view the results before it terminates.
Intuitively, if we can output the non-optimal matches earlier
(within T), then the SRT could be reduced. As more time is
given, the non-optimal matches can be refined incrementally.

Core idea of the approximate optimization. Given a user-
specific time bound T , the approximate optimization is il-
lustrated in Figure 5. (1) We collect the early explored non-
optimal matches of each sub-query graph gi to generate a non-

Fig. 5: An example of approximate optimization

optimal match set M̂i. (2) We estimate the possible overall
time of assembling {M̂i} to form the approximate final match

set M̂ , denoted by T̂ . (3) We decide to assemble M̂ , if
T̂ ≥ T · r% is reached. The value of T · r% is an alert time
threshold to indicate a level beyond which there is a risk of
failing to return M̂ within T . Moreover, we ensure that M̂
can be incrementally improved when more time is given. Two
key differences between this optimization and the original A*
semantic search (Algorithm 1) are provided as follows.

• We collect each early explored match to the non-optimal
match set M̂i in the step of search space expansion (lines
11-12 in Algorithm 2).

• We change the termination condition from top-k matches
check to execution time check (lines 13-15 in Algorithm 2).
Specifically, we add a time estimation for the whole graph
querying (Algorithm 3) to ensure that the approximate final
match set M̂ can be returned within T .

Non-optimal match set M̂i. In Algorithm 2, we update M̂i

once a match is explored no matter if it is optimal. Obviously,
M̂i will be incrementally refined as more time is given.

Lemma 2: The non-optimal match set M̂i can be incremen-
tally refined and eventually be equal to the globally optimal
match set Mi, if sufficient time is given.

Proof: Suppose that we have M̂i∩Mi = ∅ at time t, which
means at least |Mi| better matches are not explored in M̂i so
far. Hence, we have at least |Mi| partial paths in the priority

queue q that have the greater estimated pss ψ̂ than the pss of
all matches in M̂i. According to Algorithm 2, we will select
the one with the greatest ψ̂ from q to expand the search space
if T̂ < T · r% holds. Once a match that belongs to Mi is
explored, we will collect it to M̂i, then we have |M̂i∩Mi| = 1.
Theoretically, if sufficient time T is given, then Algorithm 2
will keep running until the best Mi matches are explored.

Execution time check. The overall time for querying a query
graph GQ is dominated by the time of A* semantic search
(TA∗) for each sub-query graph gi and the time of TA-based
assembly (TTA). Each gi is processed as an independent
thread, so we use max{TA∗} to denote the time of A*
semantic search. Given a user-specific time bound T , we want
to obtain an approximate final match set M̂ with the time
max{TA∗}+ TTA ≤ T . To this end, we estimate the overall

time T̂ of our approximate optimization in Algorithm 3. (1)
The A* semantic search of each sub-query graph gi reports a
pair of 〈TA∗ ,|M̂i|〉 for time estimation (line 1), where TA∗ is

the current running time of each gi and |M̂i| is the number of

explored matches so far. (2) We use all the |M̂i| to estimate
TTA (line 2). In the worst case, TA-based assembly needs to
access all matches in M̂i, so we use

∑ |M̂i| · t as the estimated

T̂TA, where t is an empirical time for processing one match
of M̂i in the TA-based assembly. (3) We decide to launch the
TA-based assembly if max{TA∗}+ T̂TA ≥ T · r% (line 3).

452

Algorithm 2: Time bounded A* semantic search

Data: sub-query graph gi
Result: non-optimal match set M̂i

1 ∀us ∈ φ(vs): q={〈us, ψ̂s〉}, visited={us}, Mi=∅;
2 while q �= ∅ do
3 〈usui, ψ̂i〉=q.pop max() ; // Next-hop selection
4 for ∀ul ∈ N(uj) do // Search space expansion
5 if !visited.contains(ul) then
6 visited.add(ul);
7 usul=usuj+ujul;

8 〈usul, ψ̂l〉=pssEstimation();

9 if ψ̂l ≥ τ and ul �∈ φ(vt) then
10 q.push heap(〈usul, ψ̂l〉);
11 if ψ̂l ≥ τ and ul ∈ φ(vt) then
12 M̂i.push heap(〈usul, ψ̂l〉);

13 update(TA∗);

14 if timeEstimate(TA∗ ,|M̂i|) then // Execution time
check

15 break;

16 return M̂i;

Algorithm 3: timeEstimate(TA∗ ,|M̂i|)
Data: 〈TA∗ ,|M̂i|〉 pair from each gi

1 collect the pair of 〈TA∗ ,|M̂i|〉 from each gi;

2 T̂TA=
∑ |M̂i| · t, T̂ = max{TA∗}+ T̂TA;

3 if T̂ ≥ T · r% then
4 return true;

5 return false;

Approximate M̂ assembly. Given a set of non-optimal match

sets {M̂i}, we conduct a TA-based assembly to generate the

approximate final match set M̂ . In this paper, we use the
Jaccard similarity between M̂ and the globally optimal final
match set M to quantify their approximation degree as follows,

Jad(M̂,M) =
|M̂ ∩M |
|M̂ ∪M |

=
k∩

2k − k∩
(9)

where k is the size of M̂ , and k∩ is the size of |M̂ ∩M |.
Theorem 4: Our approximate optimization can incremen-

tally refine the approximate final match set M̂ and finally
obtain the globally optimal M , if sufficient time is given.

Proof: Suppose that we have a non-optimal match set M̂i

at time t. According to Lemma 2, M̂i can be refined to M̂ ′
i

at time t′ (t′ > t). Hence, the approximate final match set M̂ ′

assembled from {M̂ ′
i} is better than M̂ assembled from {M̂i},

which means k′∩ ≥ k∩. According to Eq. 9, Jad(M̂ ′,M) ≥
Jad(M̂,M) holds if k′∩ ≥ k∩. Moreover, if sufficient time

T is given, then we have M̂i = Mi (Lemma 2). Hence, the
global optimal final match set M can be assembled from {M̂i}
when sufficient time T is given.

VII. EXPERIMENTAL STUDY

We present experiment results to evaluate (1) effectiveness
and efficiency, (2) analysis via user-study, (3) impact of
query graph shapes and sizes, (4) robustness with noise,
(5) scalability of our algorithms, and (6) parameter sensi-
tivity. Due to limitation of space, we refer the reader to
full version (https://arxiv.org/pdf/1910.06584.pdf) for the details of
(6). The source code of this paper can be obtained from
https://github.com/hqf1996/Semantic-guided-search.

TABLE II. Statistics of datasets
Datasets # Nodes # Edges # Node-Types # Edge-Predicates

DBpedia 4,521,912 15,045,801 359 676
Freebase 5,706,539 48,724,743 11,666 5118
YAGO2 7,308,372 36,624,106 6,543 101

A. Experimental Setup
Datasets. We used three real-world datasets as shown in Table
II. (1) DBpedia [1] is an open-domain knowledge base, which
is constructed from Wikipedia. We used the same DBpedia
dataset as [14] (authors shared it with us). (2) Freebase [3]
is a knowledge base mainly composed by communities. Since
we assume that each entity has a name, we used a Freebase-
Wikipedia mapping file [40] to filter 5.7M entities, each entity
has a name from Wikipedia. (3) YAGO2 [2] is a knowledge
base with information from the Wikipedia, WordNet and
GeoNames. In this paper, we only used the CORE portion of
Yago (excluding information from GeoName) as our dataset.

Query workload. We used four query workloads to construct
the query graphs. (1) QALD-4 [15] is a benchmark for DBpe-
dia. It provides both SPARQL expression and answers for each
query. A SPARQL expression may involve multiple UNION
operators, which correspond to different predefined schemas in
DBpedia. We selected only one UNION operator to construct
the query graph. It is desired to find more answers without
considering all UNION operators. (2) WebQuestions [41] is a
benchmark for Freebase. It provides a set of questions, denoted
by a quadruple 〈qText, freebaseKey, relPaths, answers〉. We
took the entities and relations from freebaseKey and relPaths
to form query graphs. (3) RDF-3x [42] contains queries for
YAGO dataset. It provides SPARQL expressions, but does not
provide the answers. To obtain the validation set, we imported
YAGO2 to the graph database Neo4j and executed the queries
through the sparql-plugin. (4) Synthetic graphs were generated
to evaluate the effect of query graph shapes and sizes on our
approach. According to [19], chain, star, tree, cycle, and flower
are the commonly used graph shapes, so we generated query
graphs with these shapes by extracting subgraphs from our
datasets. Similar to [19], we took the number of edges (i.e.,
triples) in the query graph to measure the query size.

Metrics. We adopted two classical metrics to measure the
effectiveness. Precision (P) is the ratio of correctly discovered
answers over all discovered top-k answers. Recall (R) is the
ratio of correctly discovered answers over all correct answers.
In addition, we also employed F1-measure to combine the
precision and recall as F1 = 2

1/P+1/R .

Comparing methods. We compared our approach with four
recent works on knowledge graph search: S4 [14], p-hom [17],
GraB [10], and QGA [12]. S4 is a semantic pattern based
solution. p-hom and GraB support structurally edge-to-path
mapping. QGA is a keyword based approach.

There are two versions of our approach: (1) SGQ (semantic-
guided query) is the implementation of A* semantic search and
TA assembly in Section V. (2) TBQ (time-bounded query) is
the approximate optimization in Section VI. We set the default
pss threshold τ=0.8 and user desired path length n̂=4. We
used the TransE [43] embedding model to obtain the predicate
semantic space. All the experiments were conducted on a
2.1GHZ, 64GB memory AMD-6272 server with a single core.

453

TABLE III. Effectiveness and efficiency over DBpedia (top-k = 20, 40, 100, 200)

Methods Precision Recall F1-measure Response Time (ms)
k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200

SGQ 0.94 0.96 0.96 0.88 0.09 0.19 0.48 0.69 0.17 0.31 0.59 0.73 65.41 73.26 102.20 136.81
TBQ-0.9 0.87 0.92 0.91 0.83 0.08 0.18 0.45 0.67 0.12 0.28 0.57 0.70 54.23 69.17 93.86 122.69

S4 0.61 0.70 0.81 0.76 0.06 0.15 0.40 0.61 0.11 0.24 0.49 0.65 185.80 224.61 352.35 385.22
GraB 0.79 0.82 0.85 0.71 0.08 0.17 0.44 0.57 0.15 0.27 0.54 0.59 382.69 386.07 470.47 651.76
QGA 0.79 0.65 0.47 0.33 0.08 0.13 0.24 0.36 0.15 0.22 0.32 0.34 787.80 821.93 1127.41 1303.35
p-hom 0.37 0.32 0.29 0.27 0.05 0.08 0.18 0.33 0.10 0.13 0.22 0.30 1214.33 1216.83 1243.5 1269.67

TABLE IV. Effectiveness and efficiency over Freebase (top-k = 20, 40, 100, 200)

Methods Precision Recall F1-measure Response Time (ms)
k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200

SGQ 0.95 0.95 0.87 0.73 0.12 0.24 0.52 0.74 0.20 0.36 0.62 0.68 115.20 118.82 147.30 212.83
TBQ-0.9 0.91 0.90 0.83 0.68 0.11 0.21 0.49 0.68 0.19 0.31 0.60 0.62 100.57 113.87 133.03 191.05

S4 0.79 0.76 0.65 0.64 0.09 0.14 0.38 0.62 0.14 0.23 0.45 0.55 185.82 212.60 271.43 342.28
GraB 0.85 0.87 0.63 0.54 0.11 0.18 0.36 0.55 0.20 0.29 0.43 0.50 345.60 324.80 357.82 564.75
QGA 0.88 0.82 0.60 0.46 0.11 0.16 0.33 0.42 0.20 0.26 0.43 0.44 811.98 1029.66 1567.81 1606.24
p-hom 0.35 0.26 0.23 0.22 0.06 0.09 0.14 0.26 0.10 0.13 0.17 0.24 996.22 1016.22 1077.34 1125.78

TABLE V. Effectiveness and efficiency over YAGO2 (top-k = 20, 40, 100, 200)

Methods Precision Recall F1-measure Response Time (ms)
k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200 k=20 k=40 k=100 k=200

SGQ 0.75 0.76 0.73 0.69 0.04 0.07 0.17 0.33 0.07 0.13 0.28 0.45 113.41 118.80 131.04 147.42
TBQ-0.9 0.72 0.74 0.71 0.67 0.03 0.07 0.17 0.32 0.07 0.13 0.27 0.43 102.06 112.46 124.80 143.20

S4 0.64 0.67 0.65 0.63 0.03 0.06 0.15 0.30 0.06 0.12 0.25 0.41 190.64 212.73 275.11 364.38
GraB 0.60 0.64 0.62 0.59 0.03 0.06 0.15 0.28 0.05 0.11 0.24 0.38 287.17 302.25 468.01 495.33
QGA 0.65 0.60 0.57 0.57 0.03 0.06 0.14 0.28 0.06 0.11 0.23 0.37 928.84 949.32 982.68 1017.32
p-hom 0.35 0.40 0.36 0.34 0.02 0.04 0.09 0.17 0.03 0.07 0.15 0.23 622.50 692.45 717.51 1065.23

TABLE VI. The schemas of returned answers for Q117

Answers’ schemas of GQ:

Automobile–assembly–Germany
Automobile–assembly–City–country–Germany
Automobile–manufacturer–Company–location–Germany
Automobile–manufacturer–Company–locationCountry–Germany
Automobile–assembly–Company–location–Germany
Automobile–assembly–Company–locationCountry–Germany
Automobile–designCompany–Company–location–Germany

B. Effectiveness and Efficiency Evaluation
Effectiveness. In this test, we set the time bound of TBQ as
90% of the execution time of SGQ (TBQ-0.9). Tables III-V
(Precision, Recall, and F1-measure) show the effectiveness
results over different top-k. For all datasets, our approach
outperforms the others. This is because we can find the
semantically similar answers following the guidance of the
predicate semantics. Table VI shows some schemas of returned
answers for the example query in Figure 1 (Q117 from QALD-
4). Our approach can find the correct answers (e.g., with the
first four schemas). It also finds some reasonable answers not
given in the validation set (e.g., with the last three schemas).

Efficiency. Tables III-V (Time) report that our approach out-
performs the other methods because unpromising answers are
pruned significantly through the effective pss estimation in
runtime. It is natural that delivering more answers (larger k)
consumes more search time. Moreover, we provide the average
time of each component of our approach in Table VII: query
graph decomposition (C1), semantic graph construction (C2),
semantic-guided search (C3), and TA-based assembly (C4).
For C2, we show the time of constructing semantic graph
partially and completely. While in C3, we show the time of
A* semantic search with or without pss estimation. According
to the results (bold), we observe that our solutions adopted
in C2 and C3 outperform the baselines, which proves that
the partially semantic graph construction and pss estimation
are very helpful to reduce the search space and improve the
efficiency. Among four components, the most time-consuming
one is C3. This is because we need to estimate pss for each
candidate node match explored in the edge-to-path mapping.

Response Time-Accuracy Trade-off. Figure 6 reports the

TABLE VII. Average time (ms) of each component (top-k=100). C1: Query
graph decomposition, C2: Semantic graph construction, C3: Semantic-guided
search, and C4: TA-based assembly.

Dataset C1
C2 C3

C4
partial complete prune w/o prune

DBpedia 4.30 6.59 157.33 88.11 435.67 3.20
Freebase 4.10 12.84 274.87 126.16 701.20 4.20
Yago2 7.05 9.46 121.80 106.91 404.30 7.62

(a) Effectiveness for TBQ (b) Efficiency for TBQ

Fig. 6: Impact of response time bounds (DBpedia, top-k=100)

effect of time bounds on TBQ. Because the results over three
datasets show the similar trends, we only provide the results
over DBpedia for top-k=100. We varied the time bound from
20 ms to 90 ms to evaluate the effectiveness and efficiency
of TBQ. Figure 6(a) shows that more accurate answers can
be returned as more time is given. In Figure 6(b), each bar
represents the minimum, maximum, and average response
times of queries. Observe that, TBQ can return the answers
within a small variation of the actual time bound provided.

C. User Study
Since our approach returns the top-k answers to the user,

we want to know if users are satisfied with the high-ranking
answers (even though the answers are already in the validation
set). We expect that an answer that is more familiar to
the user must have a higher rank. Therefore, we conducted
a user study through Baidu Data CrowdSourcing Platform
(https://zhongbao.baidu.com/?language=en) to evaluate the correlation
between top-k answers of our approach (SGQ) and user’s pref-
erence, measured by Pearson Correlation Coefficient (PCC).
We did this test according to the steps in [27]. We selected 20
queries (6, 12, and 2 queries from QALD-4, WebQuestions,
and RDF-3x, respectively) for this user study. For each query,
we generated 30 random pairs of answers (two answers from
the same pair have different schemas), and presented each pair

454

TABLE VIII. An example of answer pairs for user study (Q117)
Answer1 SGQ rank User Answer2 SGQ rank User

Opel Super 6 62 BMW 320 10 �

Volkswagen Passat 72 � 30 PS 26

TABLE IX. PCC results (DBpedia (D), Freebase (F), YAGO2 (Y))
Query PCC Query PCC Query PCC Query PCC

D1 0.46 D6 0.74 F5 0.69 F10 0.73
D2 0.56 F1 0.74 F6 0.37 F11 0.69
D3 0.61 F2 0.72 F7 0.41 F12 0.77
D4 0.75 F3 0.77 F8 0.71 Y1 0.74
D5 0.73 F4 0.72 F9 0.74 Y2 0.45

to 10 annotators and asked for their preference (Table VIII for
example). If more higher ranked answers (e.g., BMW 320)
are preferred by more users, then we can say that the top-k
answers and users’ preferences are positively correlated.

Finally, we obtained 20*30*10=6000 opinions in total. We
constructed two lists X and Y for each query based on these
opinions. Each list has 30 values for 30 answer pairs. For each
pair, the value in X is the difference between the two answers’
ranks given by SGQ, and the value in Y is the difference
between the numbers of annotators favoring the two answers.
Then, we calculated the PCC for each query based on Eq.
10. The PCC value shows the degree of correlation between
the preference given by SGQ and annotators. A PCC value
in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3) indicates a
strong, medium and small positive correlation, respectively
[27]. Table IX shows that SGQ achieved strong and medium
positive correlations with the annotators on 16 and 4 queries,
respectively, which indicates that the users were satisfied with
the semantically similar answers identified via our approach.

PCC =
E(XY)− E(X) · E(Y)

√
E(X2)− E(X)2 ·√E(Y 2)− E(Y)2

(10)

D. Effect of Query Graph Shapes and Sizes
In this experiment, we evaluated the effect of query graph

shapes and sizes. (1) Graph shapes. We extracted the sub-
graphs from the original knowledge graph as the query graphs
with different shapes, e.g., chain, star, tree, cycle, and flower
(they are very common in knowledge graph search [19]).
Figure 8 shows a flower-shaped query graph and its definition
provided in [19]. (2) Graph sizes. Similar to [19], we use the
number of edges (i.e., triples) in a query graph to indicate the
size of a query graph, including Small (1 ≤ |EQ| ≤ 4) and
Large (5 ≤ |EQ| ≤ 10). (3) Specific nodes. For each query
graph, we randomly select 2 to 4 query nodes as specific nodes
and others are target nodes. For each pair of 〈shape,|EQ|〉, we
have 5 query graphs. Table XI shows the experimental results.

Effect of shapes. The tree and flower shaped query graphs
are more time-consuming than others especially for the large
query sizes (e.g., 1467 ms on average for large flower graphs).
This is because they have more sub-query graphs than other
cases. For example, the larger flower-shaped query graphs have
the most sub-query graphs (4.62 on average).

Effect of sizes. The large query graphs always take more time
than small ones for all shapes. Since the large query graphs
have more edges, more candidate node matches need to be
considered in the edge-to-path mapping, which increases the
time of semantic graph construction (C2) and semantic-guided
search (C3). For query graph decomposition (C1), its running
time is much smaller compared with C2 and C3. For instance,

(a) Node noise (b) Edge noise

Fig. 7: Effectiveness vs. Noise (DBpedia, top-k=100)
TABLE X. Response time (ms) vs. Noise (DBpedia, top-k=100)

Noise type 0% 10% 20% 30% 40%

node noise 102.2 105.3 114.6 117.3 126.7
edge noise 102.2 116.5 126.7 145.1 168.6

C1 takes only 12.47 ms on average for the large flower-shaped
query graphs. Even for a quite large flower-shaped query (with
10 edges), it takes only 18.79 ms. Moreover, 90.76% of the
query graphs have at most 6 edges [19], so we can say that
C1 is scalable to the query size in practice. While for TA-
based assembly (C4), the time complexity in the worst case is
O(
∑

i |Mi|), which is dominated by the number of sub-query
graphs and |Mi|. If we want to find the top-k matches (e.g.,
k=100), the |Mi| is usually the same order of magnitude as
k. Besides, the number of sub-query graphs is usually small
in practice (e.g., 4.62 on average for the large flower-shaped
query graphs). So, the size of

∑
i |Mi| is not large in practice.

Hence, we conclude that C4 is also scalable to the query size.

E. Robustness with respect to Noise
Since we assume that different users may construct dif-

ferent query graphs to represent the similar query intention,
we investigate the impact of varying query graphs on the
performance of SGQ. To construct the semantically similar
but structurally different graphs, we systematically considered
node noise and edge noise. (1) Node noise. We added the node
noise by changing the node name or type with a randomly
selected synonym or abbreviation. (2) Edge noise. We added
the edge noise by replacing the predicate with one of its top-
10 semantically similar predicates in the predicate semantic
space E. (3) Noise percentage is defined as the fraction of
query graphs selected to add noise (varied from 10% to 40%).
Figure 7 shows the results for DBpedia (top-k=100): (1) All
effectiveness metrics decrease as the noise ratio increases, (2)
SGQ is more sensitive to edge noise. This is because SGQ may
misunderstand the query intention if an inappropriate predicate
is given. For example, if we use designer to replace assemble
in query Q117, then Automobiles designed by Germans would
be superior to Automobiles assembled in Germany. Further-
more, Table X shows that the response time increases slightly
with the growth of noise and it is sensitive to edge noise too.

F. Scalability
This experiment studies the scalability of SGQ. We ex-

tracted two subgraphs G1 and G2 from DBpedia, e.g., G1

has 3M nodes and 13.6M edges. Table XII shows the response
time of SGQ for top-k={80,100,120} and the knowledge graph
embedding time and memory usage. Observe that the time of
SGQ increases as the graph size increases, but the change is
not significant, which means that SGQ is scalable to the data
size. This is because our approach can prune the unpromising
candidates effectively for the different scale of the dataset.

455

TABLE XI: Analysis of query graph shapes and complexity (DBpedia, Response time (ms))

Metric Chain Cycle Star Tree Flower
S L S L S L S L S L

Time (C1) 4.30 7.57 7.40 11.00 7.20 9.10 6.70 9.87 9.00 12.47
Time (C2) 8.80 24.97 19.80 35.50 20.50 54.37 24.20 87.47 38.20 132.36
Time (C3) 111.70 687.40 229.00 762.03 280.30 834.50 255.90 1116.73 359.00 1314.90
Time (C4) 2.80 6.40 7.90 5.47 2.90 5.90 3.40 7.77 7.40 8.10

Total 127.60 726.33 264.10 814.00 310.90 903.87 290.20 1221.83 413.60 1467.83
Precision 0.89 0.81 0.90 0.83 0.89 0.84 0.92 0.85 0.84 0.82

#sub-query (avg.) 1.25 2.00 2.00 2.00 3.12 3.50 3.00 3.83 3.00 4.62 Fig. 8: An example of flower shape query graph

TABLE XII. Scalability evaluation over DBpedia

(#Nodes, #Edges) SGQ: online (ms) KG embedding: offline
k=80 k=100 k=120 time (h) mem (GB)

G1(2M,9.8M) 71.8 85.3 118.4 2.9 3.2
G2(3M,13.6M) 73.3 91.2 121.9 4.7 4.6
G(4.5M,15M) 81.4 102.2 136.8 6.6 8.8

Moreover, our offline knowledge graph embedding time and
memory usage are modest, e.g., within 6.6 hours and 8.8 GB.

VIII. CONCLUSIONS

In this paper, we proposed a semantic-guided and response-
time-bounded graph query to search knowledge graphs ef-
fectively and efficiently. We leveraged a knowledge graph
embedding model to build the semantic graph. Then we
presented an A* semantic search to find the top-k semantically
similar matches from the semantic graph according to the path
semantic similarity. We optimized the A* semantic search to
trade off the effectiveness and efficiency within a user-specific
time bound, thereby improving the system response time. The
experimental results on real datasets confirm the effectiveness
and efficiency of our approach.

ACKNOWLEDGMENT

The second author Arijit Khan is supported by MOE Tier-
1 grant 2019-T1-002-059. This work is also supported by
the NSFC under grants 61602410 and 61702096; the NSF of
Zhejiang under grant LGG19F020017; and the NSF of Jiangsu
under grant BK20170689.

REFERENCES

[1] P. N. Mendes, M. Jakob, and C. Bizer, “Dbpedia: A multilingual cross-
domain knowledge base.” in LREC, 2012, pp. 1813–1817.

[2] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2:
A spatially and temporally enhanced knowledge base from wikipedia,”
Artificial Intelligence, vol. 194, pp. 28–61, 2013.

[3] K. Bollacker, R. Cook, and P. Tufts, “Freebase: A shared database of
structured general human knowledge,” in AAAI, 2007, pp. 1962–1963.

[4] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding
based question answering,” in WSDM, 2019, pp. 105–113.

[5] R. V. Guha, R. McCool, and E. Miller, “Semantic search,” in WWW,
2003, pp. 700–709.

[6] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema: Fast graph search
with label similarity,” PVLDB, vol. 6, no. 3, pp. 181–192, 2013.

[7] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao, “Natural
language question answering over rdf: a graph data driven approach,”
in SIGMOD, 2014, pp. 313–324.

[8] S. Yang, Y. Wu, H. Sun, and X. Yan, “Schemaless and structureless
graph querying,” PVLDB, vol. 7, no. 7, pp. 565–576, 2014.

[9] S. Yang, F. Han, Y. Wu, and X. Yan, “Fast top-k search in knowledge
graphs,” in ICDE, 2016, pp. 990–1001.

[10] J. Jin, S. Khemarat, and L. Gao, “Querying web scale information
networks via bounding matching scores,” in WWW, 2015, pp. 527–537.

[11] W. Zheng, L. Zou, X. Lian, J. X. Yu, S. Song, and D. Zhao, “How to
build templates for rdf question/answering: An uncertain graph similarity
join approach,” in SIGMOD, 2015, pp. 1809–1824.

[12] S. Han, L. Zou, J. X. Yu, and D. Zhao, “Keyword search on rdf graphs-a
query graph assembly approach,” in CIKM, 2017, pp. 227–236.

[13] S. Shekarpour, E. Marx, S. Auer, and A. Sheth, “Rquery: rewriting
natural language queries on knowledge graphs to alleviate the vocabulary
mismatch problem,” in AAAI, 2017, pp. 3936–3943.

[14] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic
sparql similarity search over rdf knowledge graphs,” PVLDB, vol. 9,
no. 11, pp. 840–851, 2016.

[15] “Qald-4,” http://qald.aksw.org/index.php?x=challenge&q=4.
[16] S. S. Bhowmick, B. Choi, and S. Zhou, “Vogue: Towards a visual

interaction-aware graph query processing framework,” in CIDR, 2013.
[17] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph homomorphism

revisited for graph matching,” PVLDB, vol. 3, pp. 1161–1172, 2010.
[18] N. Nakashole, G. Weikum, and F. Suchanek, “Patty: a taxonomy of

relational patterns with semantic types,” in EMNLP-CoNLL, 2012.
[19] A. Bonifati, W. Martens, and T. Timm, “An analytical study of large

SPARQL query logs,” PVLDB, vol. 11, no. 2, pp. 149–161, 2017.
[20] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” in PODS, 2001.
[21] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gstore: answering

sparql queries via subgraph matching,” PVLDB, 2011.
[22] J. Cheng, J. X. Yu, B. Ding, S. Y. Philip, and H. Wang, “Fast graph

pattern matching,” in ICDE, 2008, pp. 913–922.
[23] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Strong simulation:

Capturing topology in graph pattern matching,” ACM TODS, 2014.
[24] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao,

“Neighborhood based fast graph search in large networks,” in SIGMOD,
2011, pp. 901–912.

[25] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Graph similarity
search with edit distance constraint in large graph databases,” in CIKM,
2013, pp. 1595–1600.

[26] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 25–36, 2009.

[27] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” IEEE TKDE, 2015.

[28] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: a new way of searching,” PVLDB, vol. 25, pp. 741–765, 2016.

[29] M. H. Namaki, Q. Song, Y. Wu, and S. Yang, “Answering why-questions
by exemplars in attributed graphs,” in SIGMOD, 2019, pp. 1481–1498.

[30] Q. Song, M. H. Namaki, and Y. Wu, “Answering why-questions for
subgraph queries in multi-attributed graphs,” in ICDE, 2019, pp. 40–51.

[31] M. H. Namaki, Y. Wu, and X. Zhang, “Gexp: Cost-aware graph
exploration with keywords,” in SIGMOD, 2018, pp. 1729–1732.

[32] P. Peng, L. Zou, and R. Guan, “Accelerating partial evaluation in
distributed sparql query evaluation,” in ICDE, 2019, pp. 112–123.

[33] X. Zhang and L. Zou, “IMPROVE-QA: an interactive mechanism for
RDF question/answering systems,” in SIGMOD, 2018, pp. 1753–1756.

[34] S. Hu, L. Zou, and X. Zhang, “A state-transition framework to answer
questions over knowledge base,” in EMNLP, 2018, pp. 2098–2108.

[35] W. Zheng, J. X. Yu, L. Zou, and H. Cheng, “Question answering over
knowledge graphs: question understanding via template decomposition,”
PVLDB, vol. 11, no. 11, pp. 1373–1386, 2018.

[36] H. Ma, M. Alipourlangouri, Y. Wu, F. Chiang, and J. Pi, “Ontology-
based entity matching in attributed graphs,” PVLDB, 2019.

[37] N. Nakashole, T. Tylenda, and G. Weikum, “Fine-grained semantic
typing of emerging entities,” in ACL, 2013, pp. 1488–1497.

[38] R. Navigli and S. P. Ponzetto, “Babelnet: Building a very large multi-
lingual semantic network,” in ACL, 2010, pp. 216–225.

[39] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[40] “Freebase links,” http://downloads.dbpedia.org/2016-10/core-i18n/en/.
[41] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on

freebase from question-answer pairs,” in EMNLP, 2013, pp. 1533–1544.
[42] T. Neumann and G. Weikum, “Rdf-3x: A risc-style engine for rdf,”

PVLDB, vol. 1, no. 1, pp. 647–659, 2008.
[43] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko,

“Translating embeddings for modeling multi-relational data,” in NIPS,
2013, pp. 2787–2795.

456

