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Abstract—Local Differential Privacy (LDP) provides provable
privacy protection for data collection without the assumption
of the trusted data server. In the real-world scenario, different
data have different privacy requirements due to the distinct
sensitivity levels. However, LDP provides the same protection
for all data. In this paper, we tackle the challenge of providing
input-discriminative protection to reflect the distinct privacy
requirements of different inputs. We first present the Input-
Discriminative LDP (ID-LDP) privacy notion and focus on a
specific version termed MinID-LDP, which is shown to be a fine-
grained version of LDP. Then, we focus on the application of
frequency estimation and develop the IDUE mechanism based
on Unary Encoding for single-item input and the extended
mechanism IDUE-PS (with Padding-and-Sampling protocol) for
item-set input. The results on both synthetic and real-world
datasets validate the correctness of our theoretical analysis and
show that the proposed mechanisms satisfying MinID-LDP have
better utility than the state-of-the-art mechanisms satisfying LDP
due to the input-discriminative protection.
Index Terms—local differential privacy, input-discriminative

protection, frequency estimation

I. INTRODUCTION

Differential Privacy (DP) [1], [2] has become the de facto
standard for private data release. It provides provable privacy

protection, which is independent of the adversary’s back-

ground knowledge and computational power [3]. In recent

years, Local Differential Privacy (LDP) has been proposed

for preserving privacy at the data collection stage, in contrast

to DP in the centralized setting which protects data after it

is collected and stored by a server. In the local setting, the

server is assumed to be untrusted, and each user randomly

perturbs her raw data independently using a privacy-preserving

mechanism that satisfies LDP. Then, the server collects these

perturbed data from all users to perform data analytics or an-

swer queries from users or third parties. Thus the local setting

has been widely adopted in practice. For example, RAPPOR

[4] proposed by Google has been employed in Chrome to

collect web browsing behavior with LDP guarantees; Apple is

also using LDP-based mechanism to identify popular emojis

and popular health data types in Safari [5].

This work was partly supported by NSF grants CNS-1731164 and CNS-
1618932, Air Force Office of Scientific Research (AFOSR) DDDAS pro-
gram under grant FA9550-12-1-0240, JSPS KAKENHI grants with number
17H06099, 18H04093, 19K20269, and Microsoft Research Asia.

Under the notion of LDP, given any output of a mechanism,

the adversary cannot distinguish any pair of inputs with

high confidence (controlled by a privacy budget ε). Due to

the uniform privacy budget, existing LDP mechanisms and

applications [4], [6]–[8] would perturb the data in the same

way (or add the noise with the same amount) for any inputs.

However, in many practical scenarios, different inputs have

different degrees of sensitivity (i.e., users’ desired privacy

level or privacy expectation on the raw data) thus require

distinct levels of privacy. For example, in website-click records

or medical records, some website pages or medical diseases

(e.g., HIV and cancer) are much more sensitive than others,

thus need stronger privacy guarantees; on the other hand,

some records are much less sensitive, such as commonly

visited pages by many people (e.g., Facebook and Amazon),

or some very common symptoms in clinic such as anemia

and headache. Existing notions do not deal with this scenario.

For example, personalized local differential privacy (PLDP)

[3], [9] only provides user-level discrimination, and geo-

indistinguishability [10] only provides distance based discrim-

ination for a pair of locations.

Motivated by such considerations, we consider the cate-

gorical data and assume the universe of inputs have multiple

levels of privacy, represented by privacy budgets with different

values. Note that a smaller budget indicates higher privacy

requirement thus needs more protection. In practice, classify-

ing items by privacy levels can be implemented according to

some categories with semantic meanings. For example, serious

diseases (e.g., various cancers or HIV) can be classified in the

highest privacy level, while moderate diseases (e.g., asthma

or hypertension) and common symptoms can be classified

in the medium and lowest privacy levels respectively. Since

each possible input x in domain D has its privacy budget εx
(inputs with the same privacy level have the same budget), the

privacy budget of standard LDP should be ε = minx∈D{εx}
to satisfy the required privacy for all inputs. Thus, LDP would

provide excessive protection for some inputs that do not need

such strong privacy, which is unnecessary and will lead to an

inferior privacy-utility tradeoff.

In this paper, we aim at providing input-discriminative pri-

vacy with distinct protection for each input and high utility on

frequency estimation. We first study how to formalize a privacy
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notion in the local setting that provides discriminative privacy

protection for different inputs. We propose a notion called

Input-Discriminative LDP (ID-LDP) by converting the differ-

entiated protection for inputs into different indistinguishability

level for pairs of inputs. Theoretically, the indistinguishability

of a pair of inputs x, x′ can be any function of their budgets

εx and εx′ . In this paper, we focus on one instantiation termed

MinID-LDP with the minimum function. It relaxes LDP on the

inputs that do not need too strong privacy protection, and we

will show that the relaxation is at most twice of the minimum

privacy budget of standard LDP (in Lemma 1). In summary,

MinID-LDP can provide fine-grained protection where each

input is protected with required indistinguishability, while LDP

would overprotect the inputs that have less sensitivity.

Under our MinID-LDP notion, users need to perturb dif-

ferent inputs with different parameters related to the distinct

privacy budgets, which makes the problem complicated since

the perturbation parameters of a specific input may also depend

on other inputs’ privacy budgets to achieve indistinguishability

between any two possible inputs. To find the optimal mech-

anism for a real-world query function, a potential solution

is to formulate an optimization problem with the goal of

maximizing query utility given privacy as constraints. How-

ever, the objective function of minimizing the Mean Squared

Error (MSE) of the unbiased estimator is dependent on the

unknown true frequencies thus cannot be directly evaluated.

Also, the computation complexity is high because MinID-LDP

considers multiple different privacy budgets, which leads to

large numbers of variables (perturbation parameters need to

be solved) and privacy constraints (which should be satisfied

for any inputs x, x′ and output y).
In this paper, we design two efficient and near-optimal

mechanisms satisfying ID-LDP for frequency estimation on

single-item and item-set data respectively. First, we propose

Input-Discriminative Unary Encoding (IDUE) mechanism for

single-item input. The objective function in optimization prob-
lem of assigning the perturbation probabilities in IDUE is ap-

proximated to be independent of the unknown true frequencies,

and the number of variables and privacy constraints are 2t and
t2 respectively (t is the number of privacy levels). Note that

the MSE of the naive mechanism without encoding (discussed

in Sec. V-A) does not have closed-form expression and is

dependent on the unknown true frequencies (thus the objective

function cannot be directly evaluated), and the corresponding

optimization problem has t2 variables and t3 constraints.

The proposed mechanism IDUE works well for single-

item data. However, when the input is an item-set, i.e., any
subset of the item domain, solving the optimization problem

to determine the perturbation probabilities is not scalable due

to an exponential blowup of the number of subsets. Thus, we

combine our IDUE mechanism with Padding-and-Sampling

protocol [7] to design a novel IDUE-PS mechanism for set-

valued data. The privacy budget of a set is a function of the

individual privacy budgets of items in the set. We will show

that the perturbation probabilities of IDUE-PS (for item-set

input with an exponential blowup) can be determined by IDUE

(for single-item input) to satisfy MinID-LDP (in Theorem 4)

with a scalable optimization problem. Given the privacy level

of each input, our proposed mechanisms satisfying MinID-

LDP provide better privacy-utility tradeoff than ε-LDP (where

ε = minx∈D{εx}). It is because our mechanisms achieve fine-
grained privacy protection; whereas, the existing mechanisms

satisfying LDP guarantee the highest privacy level.

Main contributions are summarized as follows:

(1) We introduce a new privacy notion called Input-

Discriminative LDP (ID-LDP) with an instantiation termed

MinID-LDP, which allows finer-grained protection for differ-

ent inputs than LDP.

(2) We design the Input-Discriminative Unary Encoding

(IDUE) mechanism for single-item input that satisfies MinID-

LDP and propose the frequency estimation protocol with an

unbiased estimator. To minimize the Mean Squared Error

(MSE) of IDUE, we formulate an optimization problem to

solve the perturbation probabilities for the mechanism and

derive three practical variants of the optimization model.

(3) We extend IDUE with Padding-and-Sampling into

IDUE-PS for frequency estimation of item-set data, and show

that it satisfies MinID-LDP with the same computation cost

as IDUE that is designed for single-item input.

(4) We validate the correctness of the theoretical MSE

analysis and effectiveness of our notion and mechanisms on

synthetic and real-world datasets with both single-item and

item-set types of input. We show that the proposed mecha-

nisms outperform the existing ones for frequency estimation on

categorical data. Also, the advantage of our mechanisms under

the notion of MinID-LDP is enhanced when the distribution

of privacy budgets of all inputs are more skewed.

II. RELATED WORK

The notion of differential privacy (DP) in centralized setting

was first introduced by Dwork in [1]. It assumes a trusted

server that possesses all genuine dataset. Then, a number of

variants of differential privacy have been studied to provide

different types of privacy guarantees such as d-privacy [11],

Pufferfish privacy [12], Blowfish privacy [13], Concentrated

DP [14], and Personalized DP [15]. On the other hand, Duchi

et al. [16] studied local differential privacy (LDP) without

the assumption of a trusted server, and many mechanisms are

proposed to applied to diverse data types/tasks, such as fre-

quency estimation [4], [6], set-valued data [7], and key-value

data [8], [17]. Several variants of LDP and the corresponding

mechanisms have been studied, e.g., Personalized LDP [3],

[18], Geo-indistinguishability [10], [19], [20], Condensed LDP

[21] and Utility-optimized LDP [22]. We will compare these

notions with the proposed one in Sec. IV-B.

III. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

System Model. Our system model involves one data server

and n users U = {u1, u2, · · · , un}. Each user possesses one

item or item-set in an item universe I = {1, 2, · · · ,m} and
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perturbs it independently via a random perturbation mech-

anism before uploading it to the server. Then, the server

collects users’ data and computes the statistical information

of users’ data (we focus on frequency estimation in this

paper). We consider two types of input data, one is the single-

item input with domain I, where each user only possesses

one item from I; another is the item-set input with domain

P(I) � {x|x ⊆ I} (i.e., the power set of I with size 2m),
where each user can possess any subset of I. Assume there

are t privacy levels, and the i-th level only contains a subset

of I, denoted by Ii. Though the domain of the items can be

large, the number of privacy levels determined by categories

is usually small in practice, hence the usability and scalability

of the system are guaranteed. For convenience, we denote the

set of privacy budgets of all items in I as E = {εi}i∈I .
Threat Model.We assume the server is untrusted, and each

user only trusts herself, because data stored on the server can

be revealed via either hacking activities or due to the server

selling the data to a third party. Therefore, the adversary is

assumed to possess the uploaded (perturbed) data of all users

and it also knows the perturbation mechanism and the privacy

budgets for all the inputs.

Utility of Frequency Estimation. The true frequency of an
item i ∈ I is defined as the number of users who possess i

c∗i =
∑

u∈U
�xu(i) (∀i ∈ I) (1)

where xu is the raw (input) data of a user u ∈ U and can

be a single-item or an item-set depending on the application

scenario, and �xu(i) is the indicator function, which is equal

to 1 if i ∈ xu and equal to 0 otherwise. Note that i only
denotes one item from I, while xu can be a subset of I. After
collecting the perturbed (output) data from all users, the server

can estimate the frequency of an item i ∈ I via an estimator

ĉi, which is a function of the perturbed data {yu}u∈U and

mechanism parameters. The utility of frequency estimation is

defined by the total Mean Squared Error (MSE) of estimators,

i.e., MSE =
∑m

i=1MSEĉi , which will be minimized in the

design of mechanism with privacy constraints.

B. The Notion of LDP

In the local setting, each user independently perturbs her

input x (raw data) using a mechanismM and uploadsM(x)
to the server for data analysis.

Definition 1 (Local Differential Privacy (LDP) [16]) For a
given ε ∈ R+, a randomized mechanismM satisfies ε-LDP if
and only if for any pair of inputs x, x′ and any output y

Pr(M(x) = y)

Pr(M(x′) = y)
� eε (2)

Intuitively, given an output y of a mechanism M, an

adversary cannot infer with high confidence (controlled by

ε) whether the input is x or x′, which provides plausible

deniability for individuals involved in the sensitive data. Here,

ε is a parameter called privacy budget that controls the

strength of privacy protection. A smaller ε indicates stronger
privacy protection because the adversary has lower confidence

when trying to distinguish any pair of inputs x, x′. LDP has

the property of sequential composition, which guarantees the

overall privacy for a sequence of mechanisms that satisfy LDP.

Theorem 1 (Sequential Composition of LDP [23]) If ran-
domized mechanism Mi : D → Ri satisfies εi-LDP for
i = 1, 2, · · · , k, then their sequential combination M : D →
R1 × R2 × · · · × Rk defined by M = (M1,M2, · · · ,Mk)
satisfies (

∑k
i=1 εi)-LDP.

According to sequential composition, a given privacy budget

ε can be split into multiple portions, where each portion

corresponds to the privacy budget of a randomized mechanism.

C. Mechanisms Satisfying LDP

Randomized Response. Randomized Response (RR) [24]

is a technique developed for the participants in a survey to

return a randomized answer to a sensitive question to protect

their privacy. Specifically, each participant gives a genuine

answer with probability p or gives the opposite answer with

probability 1 − p, where p = eε

eε+1 to satisfy ε-LDP. The
standard RR only works for binary data (yes-or-no answers),

but it can be extended to apply to m categories by Generalized

Randomized Response or Unary Encoding.

Generalized Randomized Response. The perturbation

function in Generalized Randomized Response (GRR) [7] is

Pr(M(x) = y) =

{
p, if y = x

q, if y �= x
, (∀x, y = 1, 2, · · · ,m)

To satisfy ε-LDP, the probabilities are p = eε

eε+m−1 and q =
1

eε+m−1 , both of which would be small when the domain size
m is very large compared with eε.
Unary Encoding. Unary Encoding (UE) [6] converts the

input x = i into a vector x = [0, · · · , 0, 1, 0, · · · , 0] with
length m where only the i-th bit is 1. Then each user perturbs
each bit of x independently with the following probabilities

Pr(y[k] = 1) =

{
p, if x[k] = 1

q, if x[k] = 0
(∀k = 1, 2, · · · ,m)

This mechanism satisfies LDP with ε = ln p(1−q)
(1−p)q [6]. The

selection of p and q under a given privacy budget ε varies for
different mechanisms. For example, the basic RAPPOR [4]

assigns p = eε/2

eε/2+1
, q = 1 − p, while the Optimized Unary

Encoding (OUE) [6] assigns p = 0.5, q = 1
eε+1 , which are

obtained by optimizing the approximate variance.

Frequency Estimation for GRR, RAPPOR and OUE.
After receiving the perturbed data from all users, the server

can implement the summation to get the total count of each

bit, denoted by ci for the i-th bit. Then, the server calibrates

the collected counts by an unbiased estimator ĉi =
ci−nq
p−q ,

whose Mean Squared Error (MSE) is equal to its variance [6]

MSEĉi = Var[ĉi] =
nq(1− q)

(p− q)2
+

c∗i (1− p− q)

p− q

where c∗i is the ground truth of the counting for item i. In
summary, OUE can provide higher utility than RAPPOR for

frequency estimation under the same ε due to the optimization,
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and the utility of GRR would be deteriorated much more than

the other two mechanisms when the domain size m is large.

IV. INPUT-DISCRIMINATIVE LDP

In this section, a new privacy notion called ID-LDP is

introduced, which can provide input-discriminative protection

with LDP. In ID-LDP, the indistinguishability level of a pair

of possible inputs x, x′ is determined by the corresponding

privacy budgets εx, εx′ of both inputs. Then, one instantiation

of ID-LDP called MinID-LDP is formalized. It is proven to

satisfy sequential composition theorem, which is an important

property to guarantee the overall privacy for multiple query

functions sequentially applied to the same database. Finally,

our notion is compared with several existing privacy notions

in the local setting and their relations are discussed.

A. Definition

LDP defines privacy as the maximum level of indistin-

guishability between any two possible inputs. In practical

applications, the privacy levels of different inputs could be

distinct. Thus, the requirement of indistinguishability between

different pairs of inputs could be diverse. However, LDP

cannot provide such fine-grained privacy protection because

its definition is based on the worst-case scenario. Intuitively,

discriminating inputs with different privacy levels and provid-

ing distinct protection to them can improve the utility of the

query service due to the fine-grained protection for different

inputs. We define the new notion ID-LDP as follows.

Definition 2 (Input-Discriminative LDP (ID-LDP)) For a
given privacy budget set E = {εx}x∈D ∈ R

|D|
+ , where |D|

is the size of the input domain D, the randomized mechanism
M satisfies E-ID-LDP if and only if for any pair of inputs
x, x′ ∈ D, and any output y ∈ Range(M)

Pr(M(x) = y)

Pr(M(x′) = y)
� er(εx,εx′ ) (3)

where r(·, ·) is a function of two privacy budgets.
In Definition 2, we assume inputs x and x′ belong to differ-

ent privacy levels with privacy budgets εx and εx′ respectively

and introduce a system-defined function r(εx, εx′) to quantify
the indistinguishability between x and x′. Note that the value
of εx for each input x is not sensitive information because εx
is independent of the users’ raw data. In this paper, we assume

{εx}x∈D are universally set by the service provider. Note that,

our notion can be easily combined with personalized LDP

(PLDP) to reflect different privacy preferences of different

users, in which case the privacy levels of all inputs can be set

by users themselves. Theoretically, the notion of ID-LDP does

not restrict the data type, which means it can be applied for

categorical data, numerical data, or even the hybrid with multi-

dimensions. In this paper, we mainly study the mechanism that

satisfies ID-LDP for categorical data (single-item or item-set).

ID-LDP can provide input-discriminative protection with

the function r(·, ·). In this paper, we mainly consider the

minimum function between εx and εx′ as the privacy budget of

a pair of inputs x, x′, formulated by the following definition.

Definition 3 (MinID-LDP) A randomized mechanism M
satisfies E-MinID-LDP if and only if it satisfies E-ID-LDP
with r(εx, εx′) = min{εx, εx′}.
Intuitively, for any pair of inputs x, x′, MinID-LDP guar-

antees that the adversary’s capability of distinguishing x and

x′ would not exceed the bound controlled by both εx and εx′ ,

which achieves the worse-case privacy like LDP but only for
the pair. We use an example to show the benefit of our notion.

Example. Assume a health organization is taking a survey

which asks n participants to return a response perturbed from

categories {HIV, anemia, headache, stomachache, toothache},
indexed by an integer i from {1,2,3,4,5}. Since HIV (i = 1)
is more sensitive than the others, the privacy budget that

represents the privacy level should be different, such as

ε1 = ln 4 for HIV and εi = ln 6 (i �= 1) for the others,

where a smaller ε indicates a higher privacy level that needs

stronger privacy protection. To satisfy LDP, all categories will

be perturbed under the privacy budget ε1 = ln 4, even though

some of them (such as anemia and headache) do not need

such strong privacy protection. Under MinID-LDP, however,

anemia and headache can be perturbed with less noise as long

as the indistinguishability of any pair of inputs is bounded

by both two budgets of them. We will compare the utility of

mechanisms under the two notions in Sec. V-E.

As mentioned in Sec. III-B, sequential composition is an

important property to guarantee the overall privacy for a

sequence of mechanisms. The following theorem shows that

MinID-LDP satisfies sequential composition as well.

Theorem 2 (Sequential Composition of MinID-LDP) If
randomized mechanism Mi : D → Ri satisfies Ei-MinID-
LDP for i = 1, 2, · · · , k, where Ei = {ε(i)x }x∈D ∈ R|D|+ , then
their combinationM : D → R1 ×R2 × · · · × Rk defined by
M = (M1,M2, · · · ,Mk) satisfies (

∑k
i=1 Ei)-MinID-LDP,

where (
∑k

i=1 Ei) � {
∑k

i=1 ε
(i)
x }x∈D.

Proof: Let x, x′ ∈ D be any pair of inputs, for any output

y = (y1, y2, · · · , yk) ∈ R1 ×R2 × · · · × Rk, we have

Pr(M(x) = y)

Pr(M(x′) = y)
=

k∏
i=1

Pr(Mi(x) = yi)

Pr(Mi(x′) = yi)
�

k∏
i=1

emin{ε(i)x ,ε
(i)

x′ }

�
∏k

i=1
eε

(i)
x = e

∑k
i=1 ε(i)x

Similarly,
Pr(M(x)=y)
Pr(M(x′)=y) � e

∑k
i=1 ε

(i)

x′ . Finally, we have

Pr(M(x) = y)

Pr(M(x′) = y)
� e

min
{∑k

i=1 ε(i)x ,
∑k
i=1 ε

(i)

x′
}

which indicates that M satisfies (
∑k

i=1 Ei)-MinID-LDP.

B. Relationships and Comparison with Other Notions

Relationships with LDP. If the privacy budgets for all

inputs are the same, i.e., εx = ε for all x ∈ D, then E-
MinID-LDP becomes ε-LDP, which means MinID-LDP is a

generalized version of LDP. In general, we have the following

lemma to show their relationships.

Lemma 1 If a mechanism satisfies ε-LDP, then it also satisfies
E-MinID-LDP for all E with min{E} = ε. On the other hand,
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if a mechanism satisfies E-MinID-LDP, then it also satisfies
ε-LDP, where ε = min{max{E}, 2min{E}}.

Proof: First, the following property can be directly de-

rived from the definitions of LDP and MinID-LDP

min{E}-LDP⇒ E-MinID-LDP⇒ max{E}-LDP
Therefore, we only need to show that E-MinID-LDP also

implies 2min{E}-LDP. Denote x∗ as the input that has the

minimum budget, i.e., εx∗ = min{E}. Then, for all x, x′ and
y, the following inequality is satisfied under E-MinID-LDP

Pr(M(x) = y)

Pr(M(x′) = y)
=
Pr(M(x) = y)

Pr(M(x∗) = y)
· Pr(M(x∗) = y)

Pr(M(x′) = y)

� eεx∗ · eεx∗ = e2εx∗ = e2min{E}

which means E-MinID-LDP implies 2min{E}-LDP.
From Lemma 1, MinID-LDP relaxes LDP in at most twice

of the privacy budget ε = min{E}. It is due to the symmetric
property of the indistinguishability definition, so in a fully-

connected policy graph, if we require every pair of inputs

x, x′ to be indistinguishable with min{εx, εx′}, transitivity
of indistinguishability yields 2min{E} between any pair of

inputs. Note that the twice relaxation in privacy budget does

not mean utility improvement is at most twice compared to

LDP (depending on the query and data distribution). Although

MinID-LDP can be regarded as a relaxation compared with

LDP, in practice users’ privacy expectation is naturally differ-

ent for different inputs, hence our notion captures user’s fine-

grained requirement, while LDP is too strong (i.e., provides

overprotection) in this regard.

Related Privacy Notions. LDP provides the worst-case

privacy protection for all users and all inputs, where the

global privacy budget is ε = minx∈D{εx}. Several variants
of LDP are related to our notion, but they have different

ideas. Fig. 1 shows the differences of personalized LDP

(PLDP) [18], geo-indistinguishability (GI) [10], condensed

LDP (CLDP) [21], and our notion ID-LDP, in the form of

their privacy policies where the vertices are inputs and edges

are the distinguishability level (represented by privacy budget)

of each pair of inputs. PLDP in [9], [18] provides user-

discriminative privacy requirements, i.e., each user can have

personalized privacy budget which is often assumed to be

unrelated to the raw data if it would be published. Another

PLDP notion [3] considers both safe region and privacy budget

for each user in location-based systems. In summary, PLDP

provides different protections for different users but does not

differentiate different pairs of inputs. On the other hand,

geo-indistinguishability [10] in location-based systems and

CLDP [21] in the data collection setting can provide distance-

discriminative privacy, but they originate from an input pair-

centric viewpoint and requires a distance metric for the inputs,

where the distance metric (satisfying triangle inequality) may

be hard to define for some data types such as categorical data.

In contrast, our notion ID-LDP provides input-discriminative

privacy requirements, where each input has a privacy budget

(inputs with the same privacy level have the same budget), and

Fig. 1: Privacy budget of a pair of inputs in several notions.

the distinguishability of a pair of inputs can be determined

by a function of the budgets of the two inputs to bound

the distinguishability of this pair. Another notion that also

considers distinct privacy levels is Utility-optimized LDP

(ULDP) [22], which provides a privacy guarantee equivalent

to LDP only for sensitive data to add less noise and improve

utility. It can be regarded as a special case of the proposed

MinID-LDP under two privacy levels of inputs (sensitive and

non-sensitive) but with incomplete privacy policy graph, where

sensitive and non-sensitive inputs can be fully distinguished

when observing some outputs (termed invertible data) that

reveals non-sensitive inputs, thus ULDP does not guarantee

LDP. However, our MinID-LDP relaxes LDP by providing

distinct bounds of privacy leakage for multiple (more than

two) privacy levels of inputs and also guarantees LDP with

some privacy budgets (refer to Lemma 1).

V. PERTURBATION MECHANISM AND FREQUENCY

ESTIMATION FOR SINGLE-ITEM INPUT

In this section, the considered input domain is D = I, i.e.,
single-item input. First, we formulate the optimization problem

for designing a perturbation mechanism to optimize the utility

of the frequency estimation of the outputs while satisfying

MinID-LDP and the challenges to solve the problem. To ad-

dress the challenges, we propose Input-Discriminative Unary

Encoding (IDUE) mechanism and the corresponding unbiased

frequency estimator. Finally, we develop three practical vari-

ants of optimization model to obtain the optimal (or near-

optimal) perturbation probabilities in IDUE.

A. Objectives and Challenges

Our goal is to design a framework with perturbation mech-

anism and frequency estimation protocol that satisfies the

proposed notion ID-LDP (MinID-LDP specifically) with the

optimal Mean Squared Error (MSE) of frequency estimation.

The general optimization problem can be modeled as

min MSE, s.t.
Pr(y|x)
Pr(y|x′) � er(εx,εx′ ) (∀x, x′, y)

However, solving this optimization problem has two chal-

lenges. First, the objective function cannot be directly evalu-

ated in general because MSE is dependent on the unknown true

frequencies. Second, the computation complexity is high since

the numbers of variables (perturbation parameters/probabilities

that determine the ratio
Pr(y|x)
Pr(y|x′) need to be solved) and privacy
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constraints (which should be satisfied for any inputs x, x′ and
output y) can be very large.

For example, a direct way to design such mechanism is to

assign a perturbation/mapping matrix P ∈ R
|D|×|D| (which

can be regarded as a variant of GRR discussed in Sec. III-C),

where each element represents the perturbation probability

Pr(y|x) for x, y ∈ D (the output domain R = D in

this case). However, solving the elements in matrix P by

minimizing MSE under the privacy constraints has several

issues in practice. First, ĉ = (PT)−1c was shown to be

the unbiased estimator of the true frequency vector c∗ [25],

where c is the calculated frequency vector of outputs. But

the elements in the inversion matrix (PT)−1 do not have

closed-form expression in general and the MSE of this es-

timation is dependent on the unknown true frequencies, thus

the objective function of minimizing MSE cannot be directly

evaluated. Note that the frequency estimator of the original

GRR discussed in Sec. III-C can be regarded as a special

case of the above mechanism, where the inversion matrix can

be explicitly calculated (because there are only two different

perturbation probabilities) and the term that is related to the

true frequencies only takes a small portion of MSE, thus

the approximate MSE can be independent of the unknown

true frequencies. But it cannot be applied here because the

perturbation probabilities for different inputs are designed to

be different in our setting. Second, since the numbers of

variables and constraints are |D|2 (all elements in P) and |D|3
(for all x, x′ and y) respectively, the computation cost would

be very high especially for item-set input D = P(I) with
|D| = 2m. Third, the domain size |D| is usually very large in
practice, then the perturbation probabilities will become very

small because of
∑

y∈D Pr(y|x) = 1 for all x ∈ D, which
means the probability of reporting the true value is low, then

the utility would greatly deteriorate.

In the following, we propose the Unary Encoding (refer

to Sec. III-C) based perturbation mechanism and frequency

estimation protocol for single-item input with D = I under

privacy notion ID-LDP. Due to the nature of Unary Encoding,

there are less perturbation parameters (shown in Sec. V-B), and

the upper bound for all y of ratio
Pr(y|x)
Pr(y|x′) when fixing x and

x′ can be explicitly calculated. Then, the equivalent constraint
in (5) needs to be satisfied only for all inputs x and x′ (hence
the number of constraints is reduced). On the other hand, the

unbiased estimator ĉi in (6) can be explicitly expressed by the
perturbation probabilities, and its MSE in (7) can be composed

by two terms, where only the second term is dependent on

the true frequency c∗i . Finally, we address the challenge due

to the lack of true frequencies by developing three variants

of optimization models in Sec. V-D to obtain the approximate

total MSE which is independent of true frequencies.

B. Mechanism Design

Input-Discriminative Unary Encoding (IDUE). We first

encode the single-item input x = i into a m-length vector

x = vi = [0, · · · , 0, 1, 0, · · · , 0] (4)

where vector x denotes the encoded input, vi denotes the

vector whose i-th position is 1 and other positions are 0s.

Then, each bit of the input vector x is perturbed into 0 or 1

independently to get the output vector y with probabilities

Pr(y[k] = 1|x[k] = 1) = ak, Pr(y[k] = 0|x[k] = 1) = 1− ak

Pr(y[k] = 1|x[k] = 0) = bk, Pr(y[k] = 0|x[k] = 0) = 1− bk

where we assume ak > bk (∀k ∈ I) in order to obtain a good
utility. Compared with the original Unary Encoding protocol

[6] discussed in Sec. III-C, where p and q correspond to ai
and bi in our notation, IDUE assigns different perturbation

probabilities for different bits, which is the key point to achieve

input-discriminative protection.

For two different input vectors vi (only the i-th bit is 1)

and vj , the probability ratio of distinguishing the pair of vi

and vj by observing the output vector y is

Pr(y|vi)

Pr(y|vj)
=

∏m
k=1 Pr(y[k]|vi)∏m
k=1 Pr(y[k]|vj)

=
Pr(y[i]|vi) Pr(y[j]|vi)

Pr(y[i]|vj) Pr(y[j]|vj)

Since ak > bk (∀k ∈ I), we have

Pr(y[i]|vi) Pr(y[j]|vi)

Pr(y[i]|vj) Pr(y[j]|vj)
=
(aibi )

y[i]( 1−ai
1−bi

)1−y[i]

(
aj
bj
)y[j](

1−aj
1−bj

)1−y[j]
� ai(1− bj)

bi(1− aj)

where the left side equals the right side if and only if y[i] = 1
and y[j] = 0. Then, the privacy constraint in (3) is

ai(1− bj)

bi(1− aj)
� er(εi,εj) (∀i, j ∈ I) (5)

By converting the original privacy constraint into (5), which

is independent of y thus has less number of constraints, we

can reduce the computational complexity compared with the

direct formulation described in Sec. V-A.

To obtain the optimal perturbation probabilities for our

IDUE mechanism, we first develop the frequency estimator

for IDUE, and evaluate the theoretical MSE of the estimator

as a function of perturbation probabilities. Then we formalize

the optimization problem with three variants by minimizing

the MSE with the privacy constraints in (5).

C. Frequency Estimation

Denote the collected frequency of the i-th bit as ci =∑
u∈U yu[i], where yu is the output vector of a user u ∈ U .

For frequency estimation, we utilize the following estimator

ĉi =
ci − nbi
ai − bi

(6)

which can be shown as the unbiased estimator of the true

frequency c∗i defined in (1).

Theorem 3 (Unbiasedness Property) If ai �= bi (∀i ∈ I),
then E[ĉi] = c∗i , where estimator ĉi is defined in (6).

Proof: Since E[ci] = c∗i ai +
∑

k �=i c
∗
kbi = c∗i ai + (n −

c∗i )bi, then we have E[ĉi] =
E[ci]−nbi
ai−bi

= c∗i , which means ĉi
is an unbiased estimator of c∗i .
The frequency estimator in (6) can be regarded as the

generalized version of the estimator that is used for the original
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Unary Encoding (refer to Sec. III-C). Due to the unbiasedness

of estimator ĉi, the MSE of ĉi is equal to its variance

MSEĉi = Var[ĉi] =
c∗i ai(1− ai) + (n− c∗i )bi(1− bi)

(ai − bi)2

=
nbi(1− bi)

(ai − bi)2
+

c∗i (1− ai − bi)

ai − bi
(7)

In Sec. V-D, the summation of MSEĉi will be minimized with

the privacy constraints of ID-LDP.

D. Finding Optimal Perturbation Probabilities
As described in Sec. III-A, the input domain is divided into

t subsets I1, I2, · · · , It with different privacy levels. Denote
the number of items in subset Ii as |Ii| = mi and the
privacy budget is εi (i = 1, 2, · · · , t). We can assign the same
parameters ai and bi for all items in Ii. If t = 1, i.e., all
items in I have the same ε, then this case reduces to the LDP
setting. The MSE of subset Ii is calculated by

MSEIi =
∑

k∈Ii
MSEĉk =

nmibi(1− bi)

(ai − bi)2
+
(1− ai − bi)

ai − bi

∑

k∈Ii
c∗k

The expression of MSEIi is dependent on the true frequency∑
k∈Ii c

∗
k, which is unknown in practice, thus cannot be

established as the objective function for the optimization prob-

lem. Therefore, we propose three variants of the optimization

model, named opt0, opt1, and opt2, to make the objective
function independent of the true frequencies.
opt0: Optimization Model in the Worst-Case. Though

MSEIi is dependent on the true frequencies, we have the

following upper bound of the total MSE since
∑

k∈Ii c
∗
k � n

to get rid of the unknown true frequency c∗k
t∑

i=1

MSEIi �
t∑

i=1

nmibi(1− bi)

(ai − bi)2
+max

{
1− ai − bi
ai − bi

}
· n

which can be regarded as the total MSE in the worst-case.

Then, determining parameters {ai, bi}ti=1 is converted to min-

imizing the worst-case MSE

min
a,b

f �
t∑

i=1

mibi(1− bi)

(ai − bi)2
+max

{
1− ai − bi
ai − bi

}
(8)

s.t.
ai(1− bj)

bi(1− aj)
� er(εi,εj) (∀i, j = 1, 2, · · · , t)

0 < bi < ai < 1 (∀i = 1, 2, · · · , t)
where the scaling constant n in the objective function is

omitted since it does not change the result. Since the feasible

region of optimization problem (8) contains the perturbation

probabilities of RAPPOR and OUE, the solution solved by (8)

will have less worst-case MSE than both RAPPOR and OUE.
It can be shown that the objective function in (8) is not

convex in the feasible region. To address this, in the following

we consider two types of space reducing strategies, which are

related to RAPPOR and OUE respectively. They can be used to

find near-optimal solutions with convex property and reduced

complexity compared with the formulation in (8). Our idea is

to further constrain the variables (which shrinks the feasible

region), so that the optimization problem can be convex.

opt1: Optimization Model Constrained with RAPPOR
Structure. RAPPOR regards bit-0 and bit-1 equally thus p+
q = 1. We add the corresponding constraint ai + bi = 1 (∀i)
in our optimization problem and represent ai, bi as

ai =
eτi

eτi + 1
, bi =

1

eτi + 1
(i = 1, 2, · · · , t) (9)

where τi > 0 (∀i). Then 1−ai−bi
ai−bi

= 0 and the total MSE is

t∑
i=1

MSEIi =
t∑

i=1

nmibi(1− bi)

(ai − bi)2
= n

t∑
i=1

mie
τi

(eτi − 1)2

with privacy constraints

ai(1− bj)

bi(1− aj)
= eτi+τj � er(εi,εj) ⇔ τi + τj � r(εi, εj)

Therefore, we can get the following optimization problem

min
τ1,··· ,τt>0

f(τ) �
t∑

i=1

mie
τi

(eτi − 1)2 (10)

s.t. τi + τj � r(εi, εj) (∀i, j)
opt2: Optimization Model Constrained with OUE
Structure. OUE focuses on less noise of bit-0 thus p = 0.5.
We add the additional constraints ai = 0.5 (∀i) and rewrite

the privacy constraints in (5) as

ai(1− bj)

bi(1− aj)
=
1− bj
bi

� er(εi,εj) ⇔ er(εi,εj) · bi + bj � 1

Since ai = 0.5, we have
1−ai−bi
ai−bi

= 1 (∀i), then the total MSE
can be represented by

t∑

i=1

nmibi(1− bi)

(ai − bi)2
+

t∑

i=1

∑

k∈Ii
c∗k =

t∑

i=1

nmibi(1− bi)

(0.5− bi)2
+
∑

k∈I
c∗k

Therefore, we can obtain the following optimization problem

(omit the scaling constant n and the additive constant
∑

k c
∗
k)

min
0<bi<0.5

f(b) �
t∑

i=1

mibi(1− bi)

(0.5− bi)2
(11)

s.t. er(εi,εj) · bi + bj � 1 (∀i, j)
Summary of Three Models. opt0 with non-convex objec-

tive function has 2t variables and t2 non-linear privacy con-

straints. Both opt1 and opt2 have t variables and t2 linear
privacy constraints, and the Hessian matrices of their objective

functions are positive-definite in the feasible region, thus they

are convex problems with lower computation complexity. In

common cases that only need a small number of privacy levels

(i.e., a smaller t), we can use opt0 to obtain the theoretically

optimal solution with acceptable computation overhead. But

if t is very large, it would be better to use opt1 or opt2 to

obtain the near-optimal solution in the shrunk feasible region.

E. Comparison with LDP Mechanisms

In the example discussed in Sec. IV-A, all participants

randomly perturb their true answers with a certain probability

to protect privacy. Specifically, each participant first generates
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TABLE I: Utility comparison in the toy example, where ε1 = ln 4 and εi = ln 6 (i �= 1).

Mechanisms Privacy Notions
Probability of flipping the i-th bit Variance of frequency estimation Total variance

1− ai (if x[i] = 1) bi (if x[i] = 0) Var[ĉi] ∑
i Var[ĉi]i = 1 i = 2 ∼ 5 i = 1 i = 2 ∼ 5 i = 1 i = 2 ∼ 5

RAPPOR [4] LDP 0.33 0.33 0.33 0.33 2n 2n 10n
OUE [6] LDP 0.5 0.5 0.2 0.2 1.78n+ ci 1.78n+ ci 9.9n
IDUE MinID-LDP 0.41 0.33 0.33 0.28 3.27n+ 0.31ci 1.32n+ 0.13ci 8.68n ∼ 8.86n

a vector x with five bits, where only the position of the truth is

1 and other positions are 0s, then flips each bit with assigned

probabilities (depending on the mechanisms) to generate the

perturbed vector y. Finally, the organization aggregates all

perturbed vectors from n participants and estimate the counts

of these categories by the estimator ĉi. In Table I, we show that

our proposed mechanism IDUE (solved by opt0) outperforms
the state-of-the-art mechanisms (RAPPOR [4] and OUE [7])

under the given privacy levels of inputs, where a smaller

total variance
∑

i Var[ĉi] indicates a better utility (MSE is

equal to the variance for an unbiased estimator). In IDUE,

the flipping probabilities for i = 1 and i �= 1 are different due
to the different privacy levels, while mechanisms satisfying

LDP (e.g., RAPPOR and OUE) do not differentiate them. By

adjusting the flipping probabilities for different bits, IDUE

can achieve the optimal utility with the required protection.

The total variance
∑

i Var[ĉi] of our mechanism IDUE is in

a range because it depends on the distribution of true input

data. We can see that the upper bound is still less than that

of the existing mechanisms, indicating that our mechanism

outperforms others even in the worst-case. For IDUE, the

probability of flipping the bit for i = 1 may be larger than

that in other mechanisms because
a1(1−bj)
b1(1−aj)

= 4 = eε1 (∀j) in
RAPPOR and OUE, thus to allow smaller flipping probabilities

(i.e., larger
1−bj
1−aj

) for j �= 1 under the privacy constraint
a1(1−bj)
b1(1−aj)

� eε1 in (5), IDUE needs to increase the flipping

probability (hence a larger variance) for i = 1 to decrease a1
b1
.

This property of IDUE leads to a larger variance for i = 1,
but smaller flipping probabilities and variance for i �= 1, then
the overall utility is improved.

VI. MECHANISM FOR ITEM-SET INPUT

In this section, we consider the item-set input, where the

input domain is D = P(I), i.e., the power set of I. If we
directly apply the IDUE mechanism developed in Sec. V for

this case, each possible set will need to be assigned two

perturbation probabilities (for bit-0 and bit-1), therefore the

computational cost of solving the optimization problem would

be very high because the size of the input domain is 2m. In
this section, we solve the scalability issue by extending the

IDUE mechanism with Padding-and-Sampling (PS) protocol

to adapt to item-set input. The privacy analysis shows that

if mechanism IDUE satisfies MinID-LDP, then the extended

one IDUE-PS satisfies MinID-LDP as well. Thus, IDUE-PS

has the same computational complexity as IDUE.

A. The Padding-and-Sampling Protocol

Assume the raw data of each user is a set of items, where

the number of items in each set can be different. This problem

Algorithm 1 Padding-and-Sampling (PS) [7]

Input: Item-set x ∈ D and dummy set S = {m+ 1, · · · ,m+ �}.
Output: One item xs ∈ x ∪ S
1: Set the padded input xp ← x
2: if |x| < � then
3: Select (� − |x|) dummy items with uniform random from S

and add them into xp
4: else if |x| > � then
5: Drop out (|x| − �) items with uniform random from xp
6: end if
7: Sample one item xs with uniform random from xp

Algorithm 2 IDUE-PS for Item-Set Input

Input: Item-set x ∈ D and dummy set S = {m+ 1, · · · ,m+ �}.
Perturbation probabilities (ai, bi) for i ∈ I′ = {1, 2, · · · ,m+�}.

Output: Vector y ∈ {0, 1}m+�

1: Let x = [0, · · · , 0] with length (m+ �)
2: Sample one item xs ∈ I′ by Algorithm 1 and let x[xs] = 1.
3: for k = 1 to (m+ �) do
4: if x[k] = 1 then
5: Randomly draw y[k] ∼ Bernoulli(ak)
6: else
7: Randomly draw y[k] ∼ Bernoulli(bk)
8: end if
9: end for

is more challenging than the single-item input even under LDP

notion because the user has more than one item, where each

item would split privacy budget (reporting all items will lead

to large noise in each item and thus bad utility of query).

However, if adopting sampling technique to avoid budget

splitting, the different number of items in each user makes

the frequency estimation much harder because the sampling

probability depends on the number of items of the user which

should be kept private. A good solution to address the item-set

type of input is the Padding-and-Sampling protocol [7].

Algorithm 1 shows the steps of Padding-and-Sampling

protocol, where the item-set x ∈ D is padded by a dummy set

S (or truncated) into a new set xp with a fixed length � and
only one item xs is randomly sampled from the padded set

xp. The fixed length � is a system parameter which will affect

the utility in some way (depending on the data distribution).

More details of selecting a good � is discussed in [7]. We will

discuss how to select � empirically in Sec. VII-B.

B. Mechanism Design and Privacy Analysis

IDUE with Padding-and-Sampling for Item-set Input.
By adopting the Padding-and-Sampling (PS) protocol, our

previous mechanism IDUE (in Sec. V-B) can be extended

for set-valued input. Algorithm 2 shows the steps (sampling,

encoding, and perturbing) of our extended mechanism named

IDUE-PS, where the data is perturbed according to the sam-
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pled item’s parameters under the single item case. Since the

original itemset input x is padded with some dummy items

from a domain S that is disjoint from the original item domain

I, the item domain is extended to be I∪S . We denote the new

item domain I ′ = {1, 2, · · · ,m + �}, where the last � items
are dummy items, and the encoded vector x has (m+ �) bits.
Since each item will be sampled with probability 1/� from the

padded set xp, the result of frequency estimation needs to be

multiplied by the factor �, i.e., ĉi = � · ci−nbi
ai−bi

for i ∈ I (we

do not need to estimate frequencies of dummy items).

Assume the perturbation probabilities of i-th bit are ai, bi,
and denote two paramters

αi =
ai
bi
, βi =

1− ai
1− bi

(∀i ∈ I ′) (12)

Since αi − βi =
ai−bi

bi(1−bi)
and 0 < bi � ai < 1, we have

1 � βi � αi (αi = βi only when ai = bi). Before proving the
privacy guarantee of IDUE-PS, we show the following useful

lemma first.

Lemma 2 For any item-set inputs x, x′ ∈ D, and any output
y of IDUE-PS (Algorithm 2), the following probability ratio
is bounded by

Pr(y|x)
Pr(y|x′) �

ηx
∑

i∈x
αi
|x| + (1− ηx)

∑m+�
i=m+1

αi
�

ηx′
∑

j∈x′
βj
|x′| + (1− ηx′)

∑m+�
j=m+1

βj
�

(13)

where ηx =
|x|

max{|x|,�} and ηx′ = |x′|
max{|x′|,�}

Proof: See the full version of this paper [26].

Considering αi
βj
=

ai(1−bj)
bi(1−aj)

is the upper bound of
Pr(y|x=i)
Pr(y|x′=j) ,

the distinguishability of a pair of item-set inputs x and x′ in
(13) can be regarded as the combined distinguishability of the

items that belong to the two sets. The parameter ηx can be

explained as the probability of sampling i ∈ I from the padded

set xp of input x. If both |x| and |x′| are greater or equal to
� (i.e., ηx = ηx′ = 1), the distinguishability of the pair is

averaged only among the items in the set; if not (then ηx < 1
or ηx′ < 1), the distinguishability of the dummy items will be
involved since the original set would be padded with dummy

items. From Lemma 2, we observe that the distinguishability

in IDUE-PS is determined by the privacy levels of the items in

the pair of inputs (besides the number of items in the input set),

which motivates that IDUE-PS satisfies the notion of MinID-

LDP in some way (discussed below).

Privacy Analysis. In (13), the upper bound of the proba-

bility ratio
Pr(y|x)
Pr(y|x′) are related to the perturbation probabilities

of dummy items, i.e., ai and bi for i = m + 1, · · · ,m + �.
Since the dummy items themselves are not sensitive, we

can select some reasonable values as their privacy levels.

In this paper, we assume the privacy levels and perturbation

probabilities of different dummy items are the same, denoted

as εi = ε∗, ai = a∗, bi = b∗ (i = m + 1, · · · ,m + �), then
(13) can be rewritten as

Pr(y|x)
Pr(y|x′) �

ηx
∑

i∈x
αi
|x| + (1− ηx)α

∗

ηx′
∑

j∈x′
βj
|x′| + (1− ηx′)β∗

(14)

where α∗ = a∗
b∗ and β∗ = 1−a∗

1−b∗ . We consider the following

expression of privacy budget for an item-set

εx = ln
[
ηx

∑
i∈x

eεi/|x|+ (1− ηx)e
ε∗
]

(∀x ∈ D) (15)

which can be regarded as the combined privacy budget of the

items in the set x (the privacy budget of dummy items will be

involved when |x| < �, i.e., ηx < 1). The combined privacy

budget in (15) is larger than the averaged privacy budget∑
i∈x εi/|x| because the exponential function f(ε) = eε

is convex with property
∑

i kif(εi) � f(
∑

i kiεi), where
0 � ki � 1 and

∑
i ki = 1. Based on the results in Lemma 2,

we show the fact that IDUE-PS satisfies MinID-LDP.

Theorem 4 If mechanism IDUE with perturbation probabil-
ities ai, bi (i ∈ I) satisfies MinID-LDP for single-item input
with privacy budget ε1, ε2, · · · , εm, i.e.,

αi

βj
=

ai(1− bj)

bi(1− bj)
� emin{εi,εj} (∀i, j ∈ I) (16)

then IDUE-PS with the same perturbation probabilities will
satisfy MinID-LDP for item-set input, i.e.,

Pr(y|x)
Pr(y|x′) � emin{εx,εx′} (∀x, x′ ∈ D, ∀y) (17)

where privacy budget of item-set is defined in (15) and the
privacy budget of dummy items ε∗ ∈ {ε1, ε2, · · · , εm},

Proof: See the full version of this paper [26].

According to Theorem 4, the perturbation probabilities in

IDUE-PS for item-set input can be determined with the same

way in IDUE, i.e., solving the optimization problems (8)

with only 2t variables and t2 constraints to get the optimal

solution (t is the number of privacy levels), or the constrained
models (10) and (11) with less computational cost to get

the near-optimal solution. For the privacy budget of dummy

items, theoretically, we can select ε∗ to be any value from

{ε1, ε2, · · · , εm}. Though a larger ε∗ will improve the utility

of dummy items, the result of frequency estimation for dummy
items will be ignored in aggregation because they are not our

task. Also, the value of ε∗ (selected from the original budgets)

does not change the optimization problem and the optimal

solution because the objective function (only depends on

original items) and constraints (only depends on privacy levels)

are the same. Therefore, we select ε∗ = min{ε1, ε2, · · · , εm}
to guarantee the privacy with smaller budget εx in (15).

VII. EVALUATION

In this section, we evaluate the performance of frequency

estimation of IDUE and compare it with RAPPOR [4] and

OUE [6]. Note that RAPPOR and OUE satisfy ε-LDP with

ε = min{E}, while IDUE and IDUE-PS satisfy E-MinID-

LDP. The perturbation probabilities in IDUE (and IDUE-PS)

can be obtained by three optimization models in (8), (10), and

(11), denoted by opt0, opt1 and opt2 respectively.

Applicability of Multiple Privacy Budgets. Though our

notion MinID-LDP generally considers different privacy bud-

gets ε for different items, in practice, these items can be

classified by a small number of categories with distinct privacy
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TABLE II: Synthetic and Real-world Datasets

Datasets # Records # Users (n) # Items (m)
Power-law 100,000 100,000 100

Uniform 100,000 100,000 1,000

Retail [27] 908,576 88,162 16,470

Kosarak [27] 8,019,015 990,002 41,270

Clothing [28] 192,544 105,508 5,850

levels. For example, thousands of clinical conditions can

be classified by three categories including serious diseases,

moderate diseases and common symptoms, where only three

values of privacy budgets need to be determined according to

the applications. We note that the privacy benefit is bounded

by 2min{E} even when other privacy budgets are higher than
2min{E} (refer to Lemma 1). In the case of item-set, we

consider the privacy budget of a set of items with the form of

(15), which is a combination of privacy budgets of items in

this set. Theorem 4 shows that the perturbation probabilities

of IDUE-PS that satisfies MinID-LDP can be determined by

IDUE (where items classified in the same privacy level have

the same perturbation probabilities). Therefore, the complexity

of our solution, including the number of assigned privacy

budgets and computation cost of solving our model, only

depends on the number of privacy levels (rather than the

domain size of single-item or item-set).

Datasets. We conduct the experiments over two synthetic

single-item datasets (with different distributions and domain

sizes) and three real item-set datasets (obtained from public

data sources), whose parameters are shown in Table II. The

data with Power-law distribution is obtained by generating

random values from the power-law distribution with the law’s

exponent α = 2, then scaling and rounding into an integer

that belongs to I = {1, 2, · · · ,m}. The data with Uniform

distribution of each user is uniformly generated from I =
{1, 2, · · · ,m}.
Evaluation Metrics. We use the total Mean Squared Error

(MSE) of all items and the average Relative Error (RE) of top
k frequent items, defined by

MSE =
∑

i∈I
(ĉi − c∗i )

2

n
, RE(k) =

1

k

∑
i∈T (k)

|ĉi − c∗i |
c∗i

where ĉi (resp. c
∗
i ) is the estimated (resp. true) count of item

i, and T (k) is the set of ground true top k frequent items. We

also use the ranking of estimated frequencies to identify top k
frequent items and evaluate its precision (in Sec. VII-B). All

experimental results are averaged with ten repeats.

Setting of Privacy Budget. We consider multiple privacy

levels of the inputs, thus we need to assign multiple privacy

budgets to them. Assume there are three privacy levels with

privacy budget {ε, 1.2ε, 2ε} (as default values), where ε is the
smallest privacy budget. The privacy budget for all items are

randomly selected from the three values with a certain budget

distribution, where the default distribution is {5%, 5%, 90%},
and we will change the budget distribution in the experiments

to evaluate the impact.

Fig. 2: Comparison of Empirical (dashed lines) and Theoretical

(solid lines) results of synthetic data (single-item input).

Fig. 3: MSE and RE of real-world datasets (single-item input).

Fig. 4: RE of top k frequent items (varying k).

A. Single-item Data

Validation of Theoretical Analysis. Fig. 2 shows the

empirical and theoretical results of the MSE of the estimated

frequency under Power-law and Uniform distributions. The

empirical results (solid lines) are very close to the theoretical

results (dashed lines), which validates the correctness of our

theoretical analysis. We can observe that mechanisms satis-

fying LDP and MinID-LDP have relatively similar utility but

IDUE with MinID-LDP outperforms RAPPOR and OUE by

adjusting the perturbation probabilities for different inputs. For

IDUE, the reduced optimization models (i.e., opt1 and opt2)
have relatively larger MSEs than the original optimization

model (i.e., opt0) due to the further constrained variable

space, but they still can provide the near-optimal solution for

IDUE with less computational complexity. In the following

experiments, we only evaluate IDUE sovled by opt0 for

simplicity of plots.

Results on Real-world Datasets. Fig. 3 shows the total

MSE of all items and average RE of top k frequent items

(with k = 20) of Retail and Kosarak datasets, where only

the first item of each user is considered in the case that each

input is a single-item. We also show the results of RE under

different k in Fig. 4. The proposed IDUE has the best utility

(i.e., smallest MSE and RE of frequency estimation) for all

considered ε and k.
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Fig. 5: Under different privacy budget distributions.

Fig. 6: Precision and RE of Clothing itemset data (� = 2).

Influence of Privacy Budget Distributions. The MSE and

RE (with k = 50) under different budget distributions are

shown in Fig. 5, where we only consider two privacy levels

(with privacy budgets ε1 < ε2) and vary the percentage of

items whose privacy budget is ε1 (the smaller one). Under a

smaller percentage, i.e., only a few of items are more sensitive

than others, IDUE can get more benefits from our relaxed

privacy notion MinID-LDP. However, when the percentage of

the more sensitive items is large (such as more than 40%),
IDUE has almost the same total MSE and average RE as OUE

(which outperforms RAPPOR).

B. Item-set Data

Accuracy of Top Frequent Items Identification. Fig. 6
shows the precision of top k frequent items identification

(i.e., the proportion of correct selections over all predicted

top frequent items, obtained from the ranking of estimated

frequencies) and RE (with the above k) of Clothing dataset

under different ε and k. We note that each item has privacy

budget in {ε, 1.2ε, 2ε} with distribution {5%, 5%, 90%} (the

default one), where ε is the budget for a single item, and the

privacy budget of each item-set is a combination of items’

budgets in the set, defined in (15). The proposed mechanism

IDUE-PS has the smallest RE (similar to the previous results)

among three mechanisms. But for a smaller ε or k (such as

ε = 1 in the left plot and k = 10 or 20 in the right plot), the

precision of top frequent items identification may be worse

than the precision of OUE-PS (noth that for larger ε and

k, IDUE-PS has the highest precision). Such an observation

might be caused by the distinct protection for different items

in IDUE-PS, where items with the smallest privacy budget

have larger error than the other two mechanisms (which was

explained in Sec. V-E). But when ε or k is larger, such impact

will be mitigated (compared with other mechanisms) because

a larger ε allows less noise to be added in the perturbation of

items with the smallest privacy budget. On the other hand, a

Fig. 7: Varying � and ε in Clothing itemset data (k = 20).

Fig. 8: Varying � and ε in Kosarak itemset data (k = 100).

larger k generally leads to a lower precision on top frequent

items identification because many items in real-world data

have the middle ranking, thus the same amount of error

on estimated frequencies will make a big difference on the

estimated ranking. However, a larger k also makes top items

with the smallest privacy budget have more chances to be

selected, thus IDUE-PS can get benefits from the balance of

distinct amount of noise of different items (caused by distinct

privacy protection levels).

Influence of the Padding Length � for Item-Set Data.
The results of Clothing and Kosarak datasets, where each user

approximately has 2 and 8 items in average respectively, under

different padding length � are shown in Fig. 7 and Fig. 8

(results in Retail data have similar trends as in Kasarak data).

We can observe that the optimal or near-optimal � differs in
both data distribution (users in Kosarak dataset have more

items than in Clothing dataset) and privacy budget ε (the

optimal � is larger under a larger ε). The second observation is
caused by the influence of the given ε on the trade-off between
variance and bias of frequency estimation (i.e., a larger � leads
to a larger variance while a smaller � leads to a larger bias

[7]). Under a smaller ε (i.e., stronger privacy), the error from
variance dominates the error from bias, thus a smaller � should
be selected to reduce the variance. Similarly, under a larger ε,
a larger � should be selected to reduce the bias. Also, when

fixing a relatively small � (such as � = 5 in Kosarak), RE

does not reduce much with increasing ε because ε has little
influence on the bias (which largely contributes to the error

in this case). In [7], � is selected as the 90th percentile of

numbers of items of all users (i.e., only depending on data

distribution). However, a good � should also depend on ε from
above discussions. A simple empirical strategy is to select � as
the average number of items in each user under a larger ε (such
as 4), while select � less than the average one under a smaller
ε (such as 2). The advanced strategy of how to determine the

optimal � under a specific ε will be our future work.
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VIII. DISCUSSIONS

Additional Gain from Incomplete Privacy Policy Graph.
According to Lemma 1, the gain of MinID-LDP compared

with LDP is at most twice of the privacy budget, which is

caused by the required privacy protection on all pairs of inputs

(i.e., complete graph shown in Fig. 1). However, if some of

the pairs do not need to be protected (such incomplete graph

can be defined by the secret policy in Blowfish privacy [13]),

the gain of MinID-LDP can be larger than 2min{E} because
some inputs might not need to be indistinguishable from the

inputs with the smallest privacy budget.

Other Instantiations of ID-LDP. Besides MinID-LDP,

other instantiations of ID-LDP can be defined. For example,

we can define AvgID-LDP as ID-LDP with the average

function, i.e., r(εx, εx′) = (εx + εx′)/2, which bounds the

privacy budget of a pair of inputs by the averaged budget of the

two inputs. Similar to MinID-LDP, the notion of AvgID-LDP

satisfies sequential composition like Theorem 2. Moreover, the

perturbation mechanisms developed in Sec. V and Sec. VI are

also applicable to AvgID-LDP.

Benefits of Our Framework. The utility improvement of

IDUE is dependent on the utility metrics and the distributions

of privacy budget and data. In the case of two different privacy

budgets, if items with the smaller budget only have little

influence on the utility (generally the number of these items

is very small in this case), the utility of IDUE will approach

the LDP mechanism with the larger budget. Note that larger

noise will be added in the perturbation of the items with the

smaller budget to satisfy the privacy constraint, but the impact

on utility is very small in this case.

Limitations of Our Framework. First, the amount of

benefits of our framework depends on budget distribution. If

majority of items have the smallest budget, the benefit obtained

from IDUE might be very small (see Fig. 5) because these

items greatly affect the utility. Second, the distinct amount

of noise for different items may have negative influence on

the utility of some applications, such as the precision of top

frequent item identification in Fig. 6.

IX. CONCLUSION

In this paper, a new privacy notion named ID-LDP with

an instantiation MinID-LDP is proposed to provide input-

discriminative protection in the local setting. MinID-LDP is

shown to satisfy the sequential composition theorem as LDP

and can be regarded as the fine-grained version of LDP. We

propose the perturbation mechanism framework IDUE that sat-

isfies ID-LDP, where the perturbation probabilities are solved

by the optimization problem with reasonable scale. Then,

based on Padding-and-Sampling protocol, the mechanism is

extended to apply to item-set input, named IDUE-PS, to solve

the scalability and utility problem for the item-set type of

input. IDUE-PS is also shown to satisfy MinID-LDP. Finally,

experimental results validate the advantage of our privacy

notion and mechanisms, compared with the existing ones.

For future work, we will extend our work to handle more

complex data types or analysis tasks.
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