
TransN: Heterogeneous Network Representation
Learning by Translating Node Embeddings

Zijian Li #1, Wenhao Zheng ∗2, Xueling Lin #3, Ziyuan Zhao †4, Zhe Wang #5,

Yue Wang ‡6, Xun Jian #7, Lei Chen #8, Qiang Yan †9 and Tiezheng Mao †10

Computer Science and Engineering Department, HKUST, Hong Kong, China
∗ National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

† Wechat Group, Tencent Corporation, Guangzhou, China
‡ Shenzhen Institute of Computing Sciences, Shenzhen University, Shenzhen, China
{1 zlicb,3 xlinai,5 zwangec,6 ywangby,7 xjian,8 leichen}@ust.hk

2 zhengwh@lamda.nju.edu.cn
{4 joshuazhao,9 rolanyan,10 woodtmao}@tencent.com

Abstract—Learning network embeddings has attracted grow-
ing attention in recent years. However, most of the existing
methods focus on homogeneous networks, which cannot capture
the important type information in heterogeneous networks. To
address this problem, in this paper, we propose TransN, a novel
multi-view network embedding framework for heterogeneous
networks. Compared with the existing methods, TransN is an
unsupervised framework which does not require node labels
or user-specified meta-paths as inputs. In addition, TransN
is capable of handling more general types of heterogeneous
networks than the previous works. Specifically, in our framework
TransN, we propose a novel algorithm to capture the proximity
information inside each single view. Moreover, to transfer the
learned information across views, we propose an algorithm to
translate the node embeddings between different views based
on the dual-learning mechanism, which can both capture the
complex relations between node embeddings in different views,
and preserve the proximity information inside each view during
the translation. We conduct extensive experiments on real-world
heterogeneous networks, whose results demonstrate that the
node embeddings generated by TransN outperform those of
competitors in various network mining tasks.

Index Terms—Heterogeneous Network Embedding, Represen-
tation Learning, Multi-View Network Embedding, Dual Learning

I. INTRODUCTION

Recently, there has been growing interest in learning net-

work embeddings, i.e., low-dimensional vectorized represen-

tations of networks [4], [12]. Specifically, most of the existing

network embedding methods [13], [19], [33], [41], [45] are

designed for homogeneous networks, i.e., networks with only

a single type of nodes and edges. Such methods focus on

preserving the structure information and nodes proximity in

their generated embeddings, which are demonstrated to be

useful features in downstream network mining tasks such as

node classification [41] and link prediction [45].

However, such methods on homogeneous networks are not

suitable for learning embeddings of heterogeneous networks,

i.e., networks with multiple types of nodes and edges, such

as academic networks [8], social networks [34] and news-

group networks [29]. The reason is that these methods do

not consider the types of nodes and edges in their learning

processes. However, the type information could be crucial

for understanding heterogeneous networks. For example, the

coauthor network in Figure 1(a) reveals the coauthor relations

�

�

�

�
�

Author 1 Author 3

Author 5

Author 2 Author 4
(a) Coauthor Network (Homogeneous)

�

�

�

�
�

Paper 1 Author 1
University 1

Paper 2 Author 2

(b) Academic Network (Heterogeneous)

Fig. 1: Homogeneous and Heterogeneous Networks

among five authors, while the academic network in Figure 1(b)

shows that two authors from the same university publish two

papers sharing common keywords. Clearly, these two networks

have different meanings. However, without node types, the two

networks in Figure 1 will become exactly the same, and the

information of the academic network is totally lost. Therefore,

the network embedding methods should preserve both the

structure and type information on heterogeneous networks.

To resolve this problem, several methods [6], [8], [10],

[21]–[24], [29], [34] are proposed to learn embeddings on

heterogeneous networks, which could be generally divided into

two categories: (1) the path-based methods and (2) the multi-

view methods.

The path-based methods [8], [10], [22], [23] learn the

network embeddings by exploiting the proximity information

of paths sampled from networks. However, these path-based

methods either focus on specific network mining tasks such as

the proximity search [22], [23], or require special meta-paths

[39] as inputs [8], [10] which are difficult to be specified in

practice [29].

The other methods [6], [21], [24], [29], [34] adopt the idea

of multi-view learning [51], which separate the heterogeneous

network into multiple views (i.e., subnetworks). Then, they

learn the view-specific node embeddings inside each view,

and transfer the learned information across multiple views.

However, some multi-view methods [21], [24], [34] only

consider networks with a single type of nodes. Therefore,

they cannot deal with general heterogeneous networks with

multiple node types, such as the academic network in Figure

2(a). In addition, some multi-view methods [6], [29] separate

the network according to the node types. Therefore, when there

is no edge between a single type of nodes, the views generated

by these methods [6], [29] will only contain isolated nodes,

589

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00057

�

�

�

�

�

�

�
University 1

Author 1

Author 2

Author 3

Paper 1

Paper 2

Paper 3

(a) An academic network. A blue edge is be-

tween two papers if one paper cites another.

The red edges between authors and papers

represent authorships. The green edges be-

tween authors and the universities reveal the

affiliation of the authors.

�

�

�

�

�

�

�

University
View

Author
View

Paper
View

U1

A1

A2

A3

P1

P2

P3
(b) Multi-view methods HNE [6] and DMNE

[29] divide views by node types, which could

generate views with only isolated nodes, e.g.,

the university view and the author view. Em-

beddings cannot be learned from such views

since they have no structure information.

�

�

�

�

�

�

�

�

�

�

�

�

�

Affiliation
View

Authorship
View

Citation
View

U1

P1

P2

P3

A1

A2

A3

A1

A2

A3

P1

P2

P3
(c) Our framework TransN divides views by edge types,

which ensures that there is no isolated node in our generated

views. Therefore, TransN can handle more general het-

erogeneous networks than the existing multi-view methods

HNE and DMNE, since our generated views always contain

structure information for any heterogeneous networks.

Fig. 2: Different View Separation Strategies on Heterogeneous Networks

where node embeddings cannot be learned inside such views

due to the lack of structural information. For example, given

the academic network in Figure 2(a), the views generated by

the multi-view methods HNE [6] and DMNE [29] are shown

in Figure 2(b), where the university view and the author view

only contain isolated nodes. Therefore, embeddings cannot

be learned in these two views since they have no structure

information.

To address the problems above, in this paper, we propose a

novel multi-view network embedding framework called Het-

erogeneous Network Representation Learning by Translating

Node Embeddings (TransN), to learn the node embeddings

on heterogeneous networks. Basically, TransN has three ad-

vantages. (1) Compared with the path-based methods [8],

[10], [22], [23], TransN can produce node embeddings for

general downstream networks mining tasks, and does not

require user-specified meta-paths as inputs. (2) TransN can

learn embeddings on heterogeneous networks with multiple

types of nodes and edges, which is more general than the

existing multi-view methods [21], [24], [34] that can only

handle one type of nodes. (3) TransN models a view as a

collection of relations (rather than entities) with a specific

type, which ensures that its generated views do not contain

isolated nodes. Therefore, TransN is capable of dealing with

heterogeneous networks which cannot be well handled by

some of the previous multi-view methods [6], [29].

Specifically, to handle more general types of heterogeneous

networks, there are two challenges to be addressed in this

paper.

Firstly, a view in the existing multi-view network em-

bedding methods [6], [21], [24], [29], [34] is always a ho-

mogeneous network which only contains a single type of

nodes and edges. However, a view in our framework TransN

could be either a homogeneous network, or a heterogeneous

network with two types of nodes and one type of edges.

Therefore, to learn the embeddings in our generated views,

we cannot simply apply the existing methods designed for

homogeneous views. To resolve this problem, in this paper,

we propose a novel method to learn the node embeddings for

both homogeneous and heterogeneous views within a unified

framework.

Secondly, many multi-view network embedding methods

[21], [34] assume that every node shares a consistent embed-

ding in different views, since the views are usually comple-

mentary to each other in their studied networks [34]. However,

the networks discussed in this paper is more general, and there-

fore, the information learned from different views contradicts

each other. As shown in Figure 2(c), the authors A1 and A3

are similar under the affiliation view since they are in the

same university, while they are dissimilar under the authorship

view since they never publish a paper together. Therefore, it

is difficult to determine whether their consistent embeddings

shared across all views should be similar or not. To resolve

this problem, in this paper, we propose a novel method

to model the correlation (instead of the equality) between

node embeddings in different views, which can capture more

complex relations between nodes in different views than using

shared node embeddings for all the views.

To summarize, we make the following contributions in this

paper.

• We propose a novel multi-view network embedding

framework, TransN, which can handle general heteroge-

neous networks with multiple types of nodes and edges.

• We propose a novel algorithm to learn the node embed-

dings inside each view, which can preserve the proximity

information for both homogeneous and heterogeneous

views within a unified framework.

• We propose a novel algorithm to translate (i.e., project)

the node embeddings between different views based on

the dual-learning mechanism [14], which can both capture

the complex relations between nodes in different views,

and preserve the proximity information inside each view

during the translation.

• We conduct extensive experiments to compare our frame-

work TransN with the state-of-the-art network embedding

methods, where the experimental result shows that our

method TransN is more effective than the competitors in

various network mining tasks.

The rest of this paper is organized as follows. In Section II,

we formally define the concepts and symbols in this paper,

and define the heterogeneous network embedding problem.

In Section III, we illustrate our framework TransN in detail.

590

TABLE I: Table of Notations

Notation Description

G = {V,E,CV , CE} A heterogeneous network with nodes V , edges E,
node types CV , and edge types CE

φi = {Vi, Ei} The i-th view of a heterogeneous network
ηi,j A view-pair consisting of views φi and φj

φ′
i = {V ′

i , E
′
i} A paired-subview of view φi

�n The embedding of node n
�ni The view-specific embedding of node n in the view

φi of a heterogeneous network

In Section IV, we demonstrate the effectiveness of TransN

through extensive experiments. We discuss the related works

in Section V. Finally, we conclude the paper in Section VI.

II. PROBLEM DEFINITION

We first introduce the concepts and symbols used in this

paper, which are summarized in Table I.

Definition 1. A heterogeneous network is an undirected graph
G = {V,E,CV , CE} with |V | nodes and |E| edges, where
each node v ∈ V (resp., each edge e ∈ E) is associated with
a type ζ(v) ∈ CV (resp., ζ(e) ∈ CE). Here, CV and CE

are the sets of node types and edge types, respectively, where
|CV |+ |CE | > 1.

Given a heterogeneous network G with |CE | types of edges,

we separate the network G into |CE | views, where the i-th
view of the network G is defined as follows.

Definition 2. A view φi = {Vi, Ei} is a subnetwork, with
|Vi| nodes and |Ei| edges, of the heterogeneous network G =
{V,E,CV , CE}, where Ei ⊆ E is the set of all edges with the
i-th type in network G, and Vi ⊆ V is the set of the end-nodes
of edges in Ei.

Based on the definition of views, given a heterogeneous

network G = {V,E,CV , CE} and its views {φ1, φ2, ...φ|CE |},
we have:

∀i �= j, Ei ∩ Ej = ∅, and
⋃|CE |

i=1 Ei = E, (1)

where Ei and Ej are the sets of edges in views φi and φj ,

respectively, while E is the set of edges in network G.

Although the sets of edges in different views are disjoint,

nodes could be shared between views. Specifically, we define a

pair of views which share some common nodes as a view-pair.

Definition 3. A view-pair ηi,j is a pair of views φi and φj in
a heterogeneous network G, whose sets of nodes Vi and Vj

satisfy that Vi ∩ Vj �= ∅.
Particularly, the type of an edge implicitly restricts its end-

nodes’ types. As shown in Figure 2(a), the end-nodes of an

authorship edge (in red color) must have the type author or

paper, and the end-nodes of a citation edge (in blue color)

always represent papers. Therefore, a view must either be a

homogeneous network with a single type of nodes and edges,

or be a heterogeneous network with two types of nodes and

one type of edges. To distinguish these two kinds of views,

we introduce two new concepts as follows.

Definition 4. A homo-view is a view containing only a single
type of nodes and edges; and a heter-view is a view containing
two types of nodes and one type of edges.

The key idea of our cross-view algorithm (see Section III-B)

is to transfer information between different views. Specifically,

the information transfer only makes sense between relevant

views, and two views are relevant only when they share some

common nodes, which are the natural bridges to transfer infor-

mation between views. Therefore, in our cross-view algorithm,

we focus on the common nodes (and their neighbor nodes),

and remove the less important parts from each pair of views.

Formally, given a view-pair ηi,j , we reduce the views φi and

φj to a paired-subviews φ′
i and φ′

j as below.

Definition 5. Given a view-pair ηi,j , the paired-subview φ′
i

(resp., φ′
j) is sub-network of view φi (resp,. φj) formed by the

set of nodes Mij ∩ Aij and edges between them, where Mij

is the set of common nodes in views φi and φj , and Aij is the
set of nodes which are adjacent to any nodes in Mij .

Finally, we formally define the problem as follows.

Problem Definition. Given a heterogeneous network G =
{V,E,CV , CE} and a positive integer d � |V |, the problem

of heterogeneous network embedding is to represent each

node n in network G by a d-dimensional vector �n ∈ R
d.

Note that, a node could have different embeddings in

different views, where the view-specific embedding of node

n in the view φi is denoted by �ni.

To address the heterogeneous network embedding problem,

we propose a novel multi-view network embedding frame-

work, TransN, which is elaborated in the following section.

III. TRANSN: THE PROPOSED FRAMEWORK

In this section, we introduce our proposed framework,

TransN, for learning embeddings on heterogeneous networks.

As shown in Figure 3, for each view of a heterogeneous

network (step (a)), we propose a single-view algorithm (see

Section III-A) to preserve the proximity information inside

each single view, whose inputs are random walks sampled

from the view (step (c)). Specifically, our random walks are

biased with respect to node degrees, i.e., nodes with higher

degrees are more likely to be sampled since they are usually

more important in a network. On heter-views, our random

walks are correlated random walks [2], since each step’s

direction is correlated to the previous step.

Meanwhile, for each view-pair (step (b)), we propose a

cross-view algorithm (see Section III-B) to transfer the rela-

tions between views by translators (step (f)). Specifically, each

translator is a stack of encoders modeled by neural networks,

and the inputs of each translator are random walks sampled

from paired-subviews (step (e)), instead of the original views.

Formally, TransN learns the node embeddings of the input

network by minimizing the overall loss function (step (h)):

Loverall = Lsingle + Lcross, (2)

591

Heterogeneous
Network

Single-View Algorithm
Biased Correlated

Random Walks

Si
ng

le
-v

ie
w

L
os

s
L

si
ng

le
C

ro
ss

-v
ie

w
L

os
s
L

cr
os

s

Cross-View Algorithm

R
an

do
m

W
al

ks
on

Pa
ir

ed
-

Su
bv

ie
w

s

R
an

do
m

W
al

ks
on

Pa
ir

ed
-

Su
bv

ie
w

s

Tr
an

sl
at

or
Tr

an
sl

at
or

(a)

(c)

(c)

(c)

(d)

(b)
(e)

(e)

(f)

(f)

(g)

(h)

Views

View-Pairs

Fig. 3: The proposed TransN framework. The shapes (i.e.,

circles, squares, and hexagons) represent nodes with various

types. Solid lines are edges whose colors represent types, and

dotted lines represent common nodes shared by view-pairs.

The steps (a)∼(h) are illustrated in Section III.

where Lsingle and Lcross are the loss functions of our single-

view and cross-view algorithms (steps (d) and (g)), respec-

tively.

In Sections III-A and III-B, we illustrate the details of

the single-view and cross-view algorithms in our framework

TransN, respectively. Then, in Section III-C, we elaborate the

optimization algorithm of our framework TransN. Finally, we

analyze the time complexity of training our proposed TransN

framework in Section III-D.

A. The Single-View Algorithm

The goal of our single-view algorithm is to preserve the

node proximities inside each view. Inspired by the path-based

network embedding methods [8], [13], [33], for each view

φi = {Vi, Ei}, we preserve the node proximities in view φi

by minimizing the single-view loss function [13]:

Lsingle = − log
(∏

n∈Vi

∏
c∈S(n) p(c|�ni)

)
, (3)

where S(n) is the set of context nodes of node n, and p(c|�ni)
is the conditional probability that node c is node n’s context

node given the view-specific embedding �ni of node n in view

φi, which is commonly formulated as a softmax function

[8], [13], [33]. Specifically, Equation (3) aims to capture the

proximity information in view φi, by promoting each node n
to predict each of its context nodes c ∈ S(n) given its view-

specific embedding �ni. Therefore, the information encoded

into the embedding �ni heavily depends on the selection of

node n’s context nodes in view φi.

In our single-view algorithm, we propose a random-walk-

based method to select context nodes for each single view,

which jointly deals with homo-views and heter-views within a

unified framework. Formally, we define the context nodes of

each node on a sampled path as follows.

�

�

�

�

�

�

1

5

5

1

1R1

R2

R3

B1

B2

B3

Book Rating View For each random walk

for each node in the walk
obtain its context nodes

Minimizing the
single-view loss
function Lsingle
in Equation (3)

� � � � �
R1 B2 R2 B2 R3

� � � �
R1 B2 B2 R3

Fig. 4: An example of our single-view algorithm on a book

rating view, which contains three readers (R1, R2, and R3)

and three books (B1, B2, and B3). The edge weights are the

readers’ rating scores of books (from one to five, the higher

the better). The length of each random walk is 5.

Definition 6. Given a sampled path λ = {n1, n2, ..., nr},
• when path λ is sampled from a homo-view, the context

nodes of each node nk ∈ λ are nodes nk−1 (if k > 1),
and nk+1 (if k < r);

• when path λ is sampled from a heter-view, the context
nodes of each node nk ∈ λ are nodes nk−2 (if k > 2),
nk−1 (if k > 1), nk+1 (if k < r), and nk+2 (if k < r−1).

According to Definition 6, for each node nk in a sampled

path λ = {n1, n2, ..., nr}, we consider nodes nk−1 and nk+1

as its context nodes to preserve the relations between node nk

and its neighbors. Moreover, in heter-views, we additionally

take nodes nk−2 and nk+2 as node nk’s context nodes,

which aims to capture the proximity between node nk and its

neighbors-of-neighbors (i.e., indirect neighbors). The reason

is that a node in a heter-view is not only related to its direct

neighbors by explicit edge connections, but also correlated

with its indirect neighbors by sharing common end-nodes.

Take the book rating view in Figure 4 as an example, the

reader R1 is correlated with books B1 and B2 since she reads

both books (i.e., they are neighbors in the view). In addition,

although there is no edge between readers R1 and R3, these

two readers are similar since they both read the book B2 (i.e.,

they are indirect neighbors in the view).

In the remaining part of this section, we illustrate how we

control the direction of our random walks. Given the first k
steps in a path λk = {n1, n2, ..., nk} sampled by a random

walk, the probability of choosing a specific node nk+1 in the

(k + 1)-th step is:

π(nk+1|λk) ∝

⎧⎪⎨
⎪⎩
π1(nk+1|λk), if k = 1 or Δ = 0

or on homo-views,

π1(nk+1|λk) · π2(nk+1|λk), otherwise,

(4)

where:

Δ = max{wv,nk
: v ∈ N (nk)} −min{wv,nk

: v ∈ N (nk)},
(5)

and

π1(nk+1|λk) ∝
wnk+1,nk∑

v∈N (nk)
wv,nk

, (6)

π2(nk+1|λk) ∝ 1− 1
Δ · (wnk+1,nk

− wnk,nk−1
), (7)

592

A View-Pair ηi,j
with views φi and φj

Paired-
Subviews

{�ni} fi→j {fi→j(�ni)} fj→i {fj→i(fi→j(�ni))}

{�nj} fj→i {fj→i(�nj)} fi→j {fi→j(fj→i(�nj))}

Minimizing the
cross-view loss
function Lcross

in Equation (15)

E
nc

od
er

E
nc

od
er

...

E
nc

od
er

E
nc

od
er

...

E
nc

od
er

E
nc

od
er

...

E
nc

od
er

E
nc

od
er

...

Translation Tasks Reconstruction Tasks

A Path λi

sampled
from paired-
subview φ′

i

A Path λj

sampled
from paired-
subviews φ′

j

Fig. 5: An overview of our cross-view algorithm on a view-pair ηi,j with views φi and φj whose common node type is

represented by the square. The sampled paths λi and λj only contain square nodes, and each row of the matrices is an

embedding vector corresponding to a node on the sampled paths. In addition, �ni and �nj are view-specific embeddings of node

n in views φi and φj , respectively, while fi→j(·) (resp., fj→i(·)) is the translator (i.e., stack of encoders) to translate (i.e.,

project) node embeddings from view φi to view φj (resp., from view φj to view φi). Note that, each translator is used in two

different places in this figure.

where wx,y is the weight of the edge between nodes x and y,

and N (n) is the set of neighbors of node n, while Δ is the

maximal difference between two weights of the edges adjacent

to node nk.

Specifically, in Equation (4), the probability π1(nk+1|λk)
makes our random walks prefer the edges with higher weights,

since higher weights usually represents stronger relations

between nodes in a network. Meanwhile, on heter-views, the

probability π2(nk+1|λk) allows our random walks to be more

likely to choose an edge whose weight wnk+1,nk
is close to

the weight wnk,nk−1
of the previous edge on the random walk,

since the relation between two indirect neighbors is mainly

dependent on their relations with the common end-nodes. For

example, as shown in Figure 4, the reader R1 is more similar

to the reader R3 than to the reader R2, since both readers R1

and R3 offer a low rating score to the book B2 (i.e., they

dislike the book B2), while the reader R2 give a high rating

score to the book B2 (i.e., she likes the book B2). Therefore,

it is more reasonable to select node R3, instead of node R2,

as node R1’s context node.

B. The Cross-View Algorithm

The node embeddings learned by our single-view algorithm

can only preserve the information inside each view of a hetero-

geneous network. However, the information inside each view

could be biased and inaccurate. For instance, in the authorship

view of Figure 2(c), our single-view algorithm will judge that

the authors A1 and A3 are completely dissimilar since they

never co-author a paper. In fact, these two authors are cor-

related since they serve the same university, and their papers

P1 and P2 have mutual citations. Such information cannot be

learned inside the authorship view solely, which requires the

information transferred from the affiliation and citation views.

Therefore, in this section, we propose a cross-view algorithm

to transfer information between different views.

As discussed in Section I, the common nodes in different

views are the natural bridges to transfer information between

views. Therefore, our cross-view algorithm focus on modeling

the relations between common nodes in each pair of views.

Specifically, as shown in Figure 5, we capture the relations

between two views φi and φj by two translators (i.e., stacks of

encoders) fi→j and fj→i, whose training objectives are both

(1) to reduce the translation error (i.e., the translation task)

and (2) to preserve the self-consistency of node embeddings

(i.e., the reconstruction task).

In the remaining part of this section, we first introduce the

overall process of our cross-view algorithm. Then, we illustrate

the details of translators in our model. Finally, we propose two

kinds of training tasks, the translation and reconstruction tasks,

to be accomplished by our cross-view algorithm.

1) Overview: The process of our cross-view algorithm is

shown in Figure 5. Specifically, given a view-pair ηi,j with

two views φi and φj , we first reduce it into two paired-

subviews φ′
i and φ′

j (see Definition 5). Then, we sample some

paths from each paired-subview by the random-walk-based

method proposed in Section III-A. Moreover, on each sampled

path, we remove the nodes which are not shared between

the paired-subviews φ′
i and φ′

j , which makes our cross-view

algorithm concentrate on the common nodes of two views.

Finally, for each sampled path, our cross-view algorithm aims

to accomplish two tasks, i.e., the translation and reconstruction

tasks, to transfer the information between views and update the

node embeddings.

2) Translator: The key component of our cross-view algo-

rithm is the translator, denoted by Ti→j (resp,. Tj→i), which

aims to translate (i.e., project) the node embeddings on a

sampled path from view φi to φj (resp,. φj to φi). Formally,

the node embeddings on a sampled path λ is a matrix of

size |λ| × d, where d is the number of dimensions of node

embeddings, and the k-th row of the matrix is the embedding

of the k-th node on the sampled path.

A translator is a stack of encoders, where each encoder takes

a matrix as the input, and outputs a new matrix which becomes

the input of the next encoder in the translator. Specifically,

each encoder is comprised by two neural network layers, i.e.,

593

a self-attention layer [44] and a feed-forward layer [11], where

each layer is equivalent to a function projecting a matrix A
into a new matrix defined as below.

Self-attention layer: S(A) = ζ(AAT /
√
d) ·A (8)

Feed-forward layer: F(A) = relu(W ·A+ b) (9)

Here, the function ζ(·) applies the softmax function [49] to

each row of the matrix AAT /
√
d, where d is the number of

dimensions of each row in the input matrix A. In Equation (9),

W |λ|×|λ| and b|λ|×1 are trainable parameters, where |λ| is the

length of the sampled path. In addition, relu(x) = max{0, x}
is the rectified linear units (RELU) [1] activation function of

the feed-forward layer.

Therefore, given an embedding matrix A as the input, a

translator Ti→j(A) with H encoders can be represented by:

Ti→j(A) =

2H layers︷ ︸︸ ︷
F(S(· · · F(S(F(S(A) · · ·), (10)

where functions S(·) and F(·) are defined in Equations (8)

and (9), respectively.

Note that, our translators utilize the self-attention layers [44]

for better capturing the proximity of nodes inside each sampled

path since they could be context nodes of each other. It is

because that the self-attention layer has been widely applied

to learn the correlations inside sequence data [7], [38], [44].

3) Translation Tasks: We propose the translation tasks

in order to capture the relations between commons nodes

shared by different views, which is achieved by reducing the

translation error. Inspired by the dual-learning [14], for each

view-pair ηi,j with views φi and φj , we define two symmetric

translation tasks:

Task T1: For each path λi sampled from the paired-subview

φ′
i, we translate its node embedding matrix Ai to a new

matrix Ti→j(Ai), such that the translated embedding matrix

Ti→j(Ai) is similar to the target embedding matrix A′
i;

Task T2: For each path λj sampled from the paired-subview

φ′
j , we translate its node embedding matrix Aj to a new

matrix Tj→i(Aj), such that the translated embedding matrix

Tj→i(Aj) is similar to the target embedding matrix A′
j ,

where Ai (resp., A′
i) is a matrix with |λi| rows, whose k-th

row is view φi’s (resp., φj’s) specific embedding of the k-th

node on the sampled path λi. Likewise, Aj (resp., A′
j) is a

matrix with |λj | rows, whose k-th row is view φj’s (resp., φi’s)

specific embedding of the k-th node on the sampled path λj . In

addition, Ti→j (resp,. Tj→i) is the translator which translates

node embeddings from view φi to φj (resp,. φj to φi).

Specifically, the loss functions of the translation tasks are

defined as follows.

Li→j(λi) =
1

|λi|

|λi|∑
a=1

d∑
b=1

(Ti→j(Ai)�A′
i)ab , (11)

Lj→i(λj) =
1

|λj |

|λj |∑
a=1

d∑
b=1

(Tj→i(Aj)�A′
j)ab, (12)

where Li→j(λi) and Lj→i(λj) are the loss functions of

translation tasks T1 and T2, with respect to the sampled paths

λi and λj , respectively. Here, d is the number of dimensions

of node embeddings, � is the element-wise product of ma-

trices, and Mab is the element in the a-th row and the b-th
column of matrix M . Essentially, the loss function Li→j(λi)
(resp., Lj→i(λj)) models the similarity between the translated

embedding matrix Ti→j(Ai) (resp., Tj→i(Aj)) and the target

embedding matrix A′
i (resp., A′

j) by the average inner product1

value for each pair of row vectors in matrices Ti→j(Ai) (resp.,

Tj→i(Aj)) and A′
i (resp., A′

j).

4) Reconstruction Tasks: A node could have different em-

beddings in various views, whereas these embeddings still

represent the same entity. Therefore, the translators should

preserve the self-consistency of node embeddings, that is, an

embedding matrix translated from view φi to view φj should

be projected to itself when being translated reversely, i.e.,

Ai ≈ Tj→i(Ti→j)(Ai), where Ti→j(·) (resp., Tj→i(·)) is the

translator to translate node embeddings from view φi to view

φj (resp., from view φj to view φi). For this purpose, we

define two reconstruction tasks for each view-pair ηi,j :

Task R1: For each path λi sampled from the paired-subview

φ′
i, we translate its embedding matrix Ai from view φi to

view φj , and then translate it back to view φi, such that

the reconstructed embedding matrix Tj→i(Ti→j(Ai)) is

similar to the original embedding matrix Ai;

Task R2: For each path λj sampled from the paired-subview

φ′
j , we translate its embedding matrix Aj from view φj to

view φi, and then translate it back to view φj , such that

the reconstructed embedding matrix Ti→j(Tj→i(Aj)) is

similar to the original embedding matrix Aj ,

where the symbols are the same with those in translation

tasks T1 and T2. Similar to Equations (11) and (12), the loss

functions of the reconstruction tasks are formulated as:

Li→j→i(λi) =
1

|λi|

|λi|∑
a=1

d∑
b=1

(Tj→i(Ti→j(Ai))�Ai)ab , (13)

Lj→i→j(λj) =
1

|λj |

|λj |∑
a=1

d∑
b=1

(Ti→j(Tj→i(Aj))�Aj)ab , (14)

where Li→j→i(λi) and Lj→i→j(λj) are the loss functions of

tasks R1 and R2, with respect to the sampled paths λi and

λj , respectively. Here, d is the number of dimensions of node

embeddings, � is the element-wise product of matrices, and

Mab is the element in the a-th row and the b-th column of

matrix M .
To summarize, the cross-view loss function is:

Lcross =
1

|Λi|
∑

λi∈Λi

(Li→j(λi) + Li→j→i(λi))

+
1

|Λj |
∑

λj∈Λj

(Lj→i(λj) + Lj→i→j(λj)) , (15)

1Inner product is commonly utilized to measure the similarity of two vectors
[13], [41]. The inner product value of two vectors is low when they are similar.

594

where Λi and Λj are the set of random paths sampled from

views φi and φj , respectively. The loss functions Li→j(·),
Lj→i(·), Li→j→i(·), and Lj→i→j(·) are defined in Equations

(11)∼(14), respectively.

C. Model Optimization
We minimize the overall loss function Loverall of our TransN

framework in Equation (2) by the stochastic optimization

algorithm Adam [18] and the back-propagation algorithm [36].

Specifically, the loss function of our framework TransN is

optimized by Algorithm 1, where∇ is the symbol for gradient.

In each iteration of Algorithm 1, we first minimize the single-

view loss function Lsingle in Equation (3), where the parameters

Θsingle to be optimized are the view-specific node embeddings

for each view. Then, for each view-pair, we minimize the

cross-view loss function Lcross in Equation (15), where the

parameters Θcross to be optimized are the embeddings of nodes

shared between the pair of views, and the trainable parameters

W and b in our proposed translators.

In each iteration of Algorithm 1, we conduct both the

single-view and the cross-view algorithms. Therefore, for

each pair of views, although our cross-view algorithm only

updates the embeddings of their common nodes, the updated

embeddings of the common nodes will further be utilized to

update the embeddings of their non-common nodes in the

single-view algorithm of the next iteration. Therefore, for each

pair of views, the information of their non-common nodes is

transferred indirectly through their common nodes, which is

not limited to their own view.

It is noteworthy that the importance of each view is related

to the specific downstream graph mining tasks [34]. Since we

aim to produce network embeddings for general graph mining

tasks, it is reasonable to assume that the importances of views

are equal. Therefore, in TransN, the final embedding of each

node is the average of its view-specific embeddings.

D. Complexity Analysis
In this section, we prove the time complexity of Algorithm 1

in the following Theorem 1.

Theorem 1. Given a network with z views and z′ view-pairs,
the time cost of Algorithm 1 is:

O(δTρ(z + z′) + dTρ(z log2(μ) + z′Hρ)), (16)

where δ is the average degree of the network, T is the number
of sampled paths for each view in our single-view algorithm,
and T is also the number of sampled pairs of paths for each
view-pair in our cross-view algorithm. In addition, ρ is the
length of each sampled path, d is the number of dimensions
of node embeddings, μ is the maximal number of nodes in each
view, and H is the number of self-attention and feed-forward
layers in a translator.

Proof. In this proof, we prove the time costs of the single-view

and cross-view algorithms for each iteration, respectively.

(1) For each view, the single-view algorithm first samples

T paths with length ρ by our proposed random walk method.

Particularly, according to Equations (6) and (7), each step in

Algorithm 1 Optimization Algorithm of TransN

Input: A heterogeneous network G = {V,E,CV , CE}, the

number T of sampled paths in each view, learning rates

γsingle and γcross, the set of hyper-parameters Φ, and the

number of iterations K
Output: The embedding �n for each node n ∈ V .

Notation: Θsingle : the parameters to optimize in the single-

view loss function Lsingle (in Equation (3)).

Θcross : the parameters to optimize in the cross-view loss

function Lcross (in Equation (15)).

1: Generate views and view-pairs of the network G
2: for iter = 1...K do
3: for each view φi do
4: {λ1, λ2, ...λT } ← paths sampled from view φi

5: for each sampled path λ do
6: Compute Lsingle according to Section III-A

7: Θsingle ← Θsingle − γsingle · ∇Θsingle
Lsingle

8: for each view-pair ηi,j do
9: {〈λi, λj〉1, ...〈λi, λj〉T } ← paths sampled from ηi,j

10: for each sampled pairs of paths 〈λi, λj〉 do
11: Compute Lcross according to Section III-B

12: Θcross ← Θcross − γcross · ∇Θcross
Lcross

13: for each node n ∈ V do
14: �n← the average of node n’s view-specific embeddings

our random walk costs O(δ) time to determine, where δ is

the average degree of the network. Therefore, it costs O(δTρ)
time to sample paths from each view.

Then, the single-view algorithm optimizes the loss function

in Equation (3). Note that, Equation (3) is the same as the

skip-gram loss function in Word2Vec model [27], whose opti-

mization time cost is proved to be [26] O(c · (d+d · log2(μ)))
for each sampled node in our single-view algorithm. Here, c is

the number of context nodes for each sampled node, which is

fixed to be 2 as discussed in Section III-A. Since we sample Tρ
nodes for each view, the time cost of the single-view algorithm

is O(Tρ · (d+ d · log2(μ))) for each view.

Therefore, assume that the single-view algorithm samples T
paths with length ρ from each view of a network with z views,

where each view has at most μ nodes. For each iteration of

Algorithm 1, the time cost of the single-view algorithm is:

O(z(δTρ+ Tρ(d+ d log2 μ)) = O(zTρ(δ + d log2(μ))),

where δ is the average degree of the network, and d is the

number of dimensions of node embeddings.

(2) For each view-pair, the cross-view algorithm first sam-

ples T pairs of paths with length ρ, which costs O(δTρ) time

as proved in part (1) of this proof.

Then, the cross-view algorithm optimizes the loss function

in Equation (15). According to Section III-B, for each sampled

path, the cross-view algorithm needs to minimize two transla-

tion losses and two reconstruction losses. Note that a recon-

struction task is essentially the combination of two translation

tasks. Therefore, for each sampled path, the optimization time

595

TABLE II: Statistic of Heterogeneous Network Datasets in Our Experiments
Dataset #Nodes #Edges Node Types (#Nodes of Each Type) #Labeled Nodes Edge Types (#Edges of Each Type)
AMiner 4,774 17,795 Author(2,161), Paper(2,555), Venue(58) Papers(2,555) AA(3,836), AP(6,072), PP(5,332), PV(2,555)
BLOG 63,166 1,983,003 User(57,753), Keywords(5,413) Users(57,753) UU(1,409,112), UK(329,941), KK(243,950)

App-Daily 192,416 666,145 Applet(147,968), User(16,527), Keyword(27,921) Applets(5,375) AU(299,630), AK(366,515)
App-Weekly 418,374 3,843,931 Applet(155,194), User(233,396), Keyword(29,784) Applets(5,375) AU(3,427,677), AK(416,254)

cost of the cross-view algorithm is O(2T + 2 · 2T) = O(T),
where T is the optimization time cost of a translation task.

Note that the time cost of optimizing a self-attention layer

is proved to be O(ρ2 · d) [44] for each sampled path. In

addition, the time cost of optimizing a feed-forward layer

by the back-propagation algorithm is the same as the time

cost of computing function F in Equation (9) [36], which

is clearly O(ρ2 · d) for each sampled path, where ρ is

the length of the sampled paths, and d is the number of

dimensions of node embeddings. Therefore, for each sampled

path, the optimization time cost of the cross-view algorithm is

O(T) = O(Hρ2d), where H is the number of self-attention

layers and feed-forward layers in a translator.

Therefore, assume that the cross-view algorithm samples T
pairs of paths with length ρ from each view of a network with

z′ view-pairs. For each iteration of Algorithm 1, the time cost

of the cross-view algorithm is

O(z′ · (δTρ+ THρ2d)),

where H is the number of self-attention and feed-forward

layers in a translator, and d is the number of dimensions of

node embeddings.

To conclude, given a network with z views and z′ view-

pairs, the time cost of Algorithm 1 is:

Single-View Algorithm︷ ︸︸ ︷
O(zTρ(δ + d log2(μ)))+

Cross-View Algorithm︷ ︸︸ ︷
O(z′(δTρ+ THρ2d))

=O(δTρ(z + z′) + dTρ(z log2(μ) + z′Hρ)). (17)

Theorem 1 is proved.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate

our TransN framework. Specifically, we first introduce the

settings of our experiments. Then, we compare TransN frame-

work with the state-of-the-art networks embedding methods on

two widely considered network mining tasks: node classifica-

tion and link prediction. Finally, we conduct an ablation study

on our TransN framework to investigate whether each of its

components helps to generate better network representations.

A. Experiment Setup
1) Datasets: We evaluate our TransN framework on four

real-world heterogeneous networks, whose statistics are listed

in Table II.

• AMiner [42], [43] is an academic network consisting of

2,161 authors and 2,555 papers published in 58 computer

science venues, where each paper has a label indicating

its research topic. The network has four types of edges,

which represents: co-authorship (author-to-author), au-

thorship (author-to-paper), citation (paper-to-paper), and

publication (paper-to-venue), respectively. All edges in

this network have unit weights.

• BLOG [47] is a social network which contains 57,753

users and 5,413 keywords posted in their blogs, where

each user has a label representing her major interest field.

There are three types of edges in this network, which

are: friendship (user-to-user), keyword-usage (user-to-

keyword), and keyword-relevance (keyword-to-keyword).

All edges in this network have unit weights.

• App-Daily∗ is a network built upon the usage and query

logs in a single day from a real-world mobile applet store,

which contains 147,968 applets, 16,527 users, and 27,921

query keywords. In this network, an edge 〈u, x〉 exists

between a user u and an applet x as long as user u uses

applet x, where the weight of edge 〈u, x〉 is the time

that user u spends on applet x in this day. In addition,

the weight of an edge 〈x, k〉 between an applet x and

a query keyword k is the number of times that some

users download applet x through the query result pages

of keyword k in this day. Particularly, there are 5,375

applets labeled with their categories.

• App-Weekly∗ is a network built upon the usage and

query logs in a week from a real-world mobile applet

store, which consists of 155,194 applets, 233,396 users,

and 29,784 query keywords. The meanings of the edges

in this network are the same as those in App-Daily, and

there are 5,375 applets labeled with their categories.
2) Compared Methods: We compare TransN with seven

state-of-the-art network embedding methods as follows.
• LINE [41] is a network embedding method on homo-

geneous networks. We use LINE which considers the

second order proximity between nodes.

• Node2Vec [13] is a homogeneous network embedding

method, which aims to capture the local structure infor-

mation in a network by exploiting biased random walks.

• Metapath2Vec [8] is a path-based heterogeneous net-

work embedding method, which improves Node2Vec by

constraining random walks with user-defined meta-paths.

• HIN2VEC [10] is a path-based embedding method for

heterogeneous networks. Compared with Metapath2Vec,

it requires user to specify meta-paths with fixed lengths,

instead of a particular meta-path for each network.

• MVE [34] is a multi-view heterogeneous network embed-

ding method. Since all other methods are unsupervised,

for a fair comparison, we use the unsupervised variant

[34] of MVE which assigns equal weights for views when

fusing view-specific embeddings.

• R-GCN [37] is an embedding method which utilizes the

graph neural network [50] to learn the embeddings for

entities and relations on knowledge graphs.

• SimplE [17] is a recent embedding method on knowl-

edge graphs, which is an enhancement of the Canonical

Polyadic decomposition [15] for tensors.

∗The App-Daily and App-Weekly are provided by Tencent Corporation.

596

TABLE III: Results of the Node Classification Task
AMiner BLOG App-Daily App-Weekly

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
LINE 0.7216 0.7683 0.2086 0.4373 0.1261 0.2564 0.1238 0.2310

Node2Vec 0.7056 0.7861 0.2312 0.4502 0.1277 0.2424 0.1209 0.2341
Metapath2Vec 0.7869 0.8086 0.2763 0.4680 0.1875 0.3636 0.1757 0.3235

HIN2VEC 0.7998 0.8672 0.3069 0.4774 0.1731 0.3333 0.1472 0.3235
MVE 0.7603 0.8578 0.2590 0.4538 0.1567 0.2727 0.1288 0.2924

R-GCN 0.8325 0.8939 0.2860 0.4633 0.1833 0.3429 0.1637 0.2737
SimplE 0.7927 0.8097 0.3036 0.4648 0.1648 0.3011 0.1292 0.2986
TransN 0.8465 0.9176 0.3230 0.4840 0.3713 0.5758 0.3016 0.4706

TABLE IV: AUC Scores of the Link Prediction Task

Method AMiner BLOG App-Daily App-Weekly
LINE 0.7221 0.5819 0.7421 0.7520

Node2Vec 0.7434 0.5732 0.7339 0.7707
Metapath2Vec 0.8323 0.6059 0.8227 0.8552

HIN2VEC 0.8016 0.6123 0.8311 0.7880
MVE 0.7967 0.5820 0.7491 0.7822

R-GCN 0.8605 0.6389 0.7933 0.7867
SimplE 0.8425 0.6121 0.8205 0.8246
TransN 0.8835 0.7551 0.8467 0.8668

It is noteworthy that, the homogeneous network embedding

methods do not take the type information of nodes and edges

into their consideration. Therefore, the node and edge types

of the networks input into methods LINE [41] and Node2Vec

[13] are removed in our experiments.

In addition, the knowledge graph embedding methods R-

GCN [37] and SimplE [17] consider the types of nodes

and edges in their learning process, which can be directly

applied to heterogeneous networks. Since methods R-GCN and

SimplE do not utilize the weight of edges, the networks input

into these methods have unit edge weights in our experiments.

3) Parameter Settings: For all methods, the number of

dimensions of node embeddings is set as 128, and the initial

learning rate is set as 0.025 as recommended in [34], [41].

The other parameters are the same with those suggested in

their original papers [8], [10], [13], [17], [34], [37], [41].

Particularly, for method Metapath2Vec, we adopt the recom-

mended meta-path “APVPA” [8] on network AMiner, and use

meta-path “UTU” on network BLOG, as well as meta-path

“UAKAU” on networks App-Daily and App-Weekly.

For our proposed framework TransN, we set the length of

each random walk to be 80 as recommended in [13], and we

set the number of sampled paths starting from each node n as

max(min(τn, 32), 10), where τn is node n’s degree. We set

the number of encoders as H=6 as suggested in [44].
B. Quantitative Results

In this section, we compare the methods on two widely-used

network mining tasks [13], [34]: (supervised) node classifica-

tion and (unsupervised) link prediction, where the experimen-

tal results are analyzed in the following two subsections.

1) Node Classification.: For each experimental network,

we first learn the node embeddings by each method. Then,

we randomly select 90% of the labeled nodes for training,

where the remaining nodes are for testing. Next, we use the

embeddings and labels of nodes in the training set to train a

Logistics regression classifier [28] with default parameters in

the scikit-learn package [32]. Finally, we use the classifier

to predict the labels of nodes in the testing set, whose

performance is evaluated by the commonly-used micro-F1 and

macro-F1 scores [13], [41]. For each method, we repeat the

prediction for ten times and report the average F1 scores.

Table III shows the results of the node classification task.

Generally, the embedding methods which considers the types

of node and edges (i.e., Metapath2Vec, HIN2VEC, MVE,

TransN, R-GCN, and SimplE) perform better than the homo-

geneous ones (i.e., LINE and Node2Vec). Moreover, our pro-

posed framework TransN outperforms all the compared meth-

ods on both Macro-F1 and Micro-F1 scores, which indicates

that TransN can generate more useful network embeddings

than the competitors in the node classification task.

For macro-F1 scores, TransN exceeds all the competitors

by at least 98% and 72% on networks App-Daily and App-

Weekly, while only achieves a gain of around 5.2% on network

BLOG. There are two reasons for this difference. Firstly, the

single-view algorithm in TransN has novel designs to capture

the information residing in the weights of edges. Therefore,

TransN has more advantages on weighted networks (e.g., App-

Daily and App-Weekly) than unit-weighted networks (e.g.,

BLOG). Secondly, the density of network BLOG is above

20 times higher than those of App-Daily and App-Weekly.

On such a dense network, the information is sufficient for the

compared methods to produce promising embeddings. How-

ever, on sparse networks such as App-Daily and App-Weekly,

TransN performs significantly better than the competitors.

2) Link Prediction.: We first randomly remove 40% edges

from each experimental network, and randomly select the same

number of nonadjacent node pairs. Then, we consider the link

prediction task as a binary classification problem, where the

end-nodes of the removed edges are positive examples, and

the selected pairs of nonadjacent nodes are negative examples.

Next, on the remaining sub-networks, we learn the node

embeddings by each method. For each pair of nodes, we model

the likelihood of an edge existing between them by the inner-

product of their embeddings. Finally, we use the likelihoods as

prediction scores and measure the performance of each method

by the AUC metric [9].

Table IV shows the results of the link prediction task.

Generally, TransN outperforms all the competitors on our

experimental networks, which indicates that TransN can better

capture and infer node relations than the compared methods.

Specifically, for AUC scores, TransN exceeds all the com-

pared methods by at least 18.1% on network BLOG, while

only achieves gains of 1.9% and 1.3% over the competitors on

networks App-Daily and App-Weekly, respectively. The reason

for this difference is that TransN exploits information from

597

TABLE V: Results of the Ablation Study on TransN
AMiner BLOG App-Daily App-Weekly

Method Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
TransN-Without-Cross-View 0.7415 0.8573 0.3021 0.4694 0.1197 0.1818 0.1310 0.2647
TransN-With-Simple-Walk 0.7725 0.8776 0.3194 0.4715 0.2945 0.3697 0.2237 0.3994

TransN-With-Simple-Translator 0.7761 0.8690 0.3159 0.4752 0.2591 0.3636 0.2235 0.3588
TransN-Without-Translation-Tasks 0.7778 0.8706 0.3200 0.4769 0.2402 0.4061 0.2277 0.4176

TransN-Without-Reconstruction-Tasks 0.7490 0.8549 0.3072 0.4770 0.2476 0.3939 0.2360 0.3706
TransN 0.8465 0.9176 0.3230 0.4840 0.3713 0.5758 0.3016 0.4706

multiple views to predict an unobserved edge, whereas such

information is more effective when the relations in different

views are more correlated. Assuming that we remove an edge

between two users on network BLOG, TransN is very likely

to recover this edge when these two users post many common

keywords in their blogs. In this case, TransN predicts an edge

by transferring information from the “user-to-keyword” view

to the “user-to-user” view, which is helpful since similar users

usually post common keywords. However, on networks App-

Daily and App-Weekly, it is less effective to predict edges by

transferring information between views. The reason is that the

relations “user-to-applet” and “keyword-to-applet” are weakly

correlated, since a user’s usage of an applet scarcely relates

to whether the applet is searched by a keyword. Therefore,

compared with the competitors, TransN has more advantages

on networks whose views are more correlated (e.g. BLOG).

C. Ablation Study on TransN
In this section, we conduct experiments to verify the

effectiveness of different parts in TransN. Specifically, we

remove five critical components from our framework TransN

separately, and evaluate the performance of each degenerated

method on the node classification task, where the experiment

settings are the same with those in Section IV-B. The degen-

erated methods are as follows.

• TransN-Without-Cross-View is TransN without the

cross-view algorithm, which is essentially Algorithm 1

without Lines 8∼12.

• TransN-With-Simple-Walk is TransN which uses simple

random walks as the input of its single-view algorithm.

The starting node of each simple random walk is ran-

domly selected, and simple random walks neglect the

weights of edges.

• TransN-With-Simple-Translator is TransN which uses

a single feed-forward layer [11] to replace each translator

in our cross-view algorithm.

• TransN-Without-Translation-Tasks is TransN without

translation tasks, which only considers reconstruction

tasks and losses in the cross-view algorithm.

• TransN-Without-Reconstruction-Tasks is TransN with-

out reconstruction tasks, which only considers translation

tasks and losses in the cross-view algorithm.

The results of the ablation study on TransN are shown in

Table V. Generally, TransN out-performs all of the degener-

ated methods, which indicates that each component in TransN

has some contributions to the overall performance and thus is

indispensable.

Specifically, the result of TransN-With-Simple-Walk proves

the effectiveness of our control strategy of the random walks

on heterogeneous networks (see Equation (4) in our single-

view algorithm). In addition, the result of TransN-With-

Simple-Translator demonstrates the necessity of using our pro-

posed translator rather than a simple feed-forward layer in our

cross-view algorithm. Moreover, TransN-Without-Translation-

Tasks and TransN-Without-Reconstruction-Tasks achieve sim-

ilar performances on all networks, which indicates that the

translation and reconstruction tasks are equally important for

learning embeddings in our framework TransN.

Particularly, TransN-Without-Cross-View has the worst per-

formance on all networks in the experiment, which reveals

that our cross-view algorithm is crucial to the performance

of our framework TransN. As discussed in Section III-B,

the information learned inside each single view could be

biased and inaccurate. Therefore, TransN cannot perform well

without our cross-view algorithm which jointly considers the

information across multiple views.

D. Case Study
From network App-Daily, we randomly select ten applets

for each of the nine category (e.g., catering, ride sharing, and

life service), and visualize the embeddings of the selected 90

applets in Figure 6, where the embeddings are learned by

HIN2VEC [10], SimplE [17], and TransN, respectively. Each

point in Figure 6 corresponds to the embedding of an applet

from App-Daily, whose color represents the applet’s category.

According to Figure 6, for applets with different categories,

their embeddings learned by TransN are more separated from

each other compared with those learned by HIN2VEC and

SimplE, which demonstrates that TransN is more effective than

HIN2VEC and SimplE in the node classification task. Note

that the embeddings of applets in “others” category are distant

to each other for all three methods, since the “others” category

is too general and could contain applets which are completely

unrelated to each other.

Moreover, as shown in Figure 6(c), the embeddings learned

by TransN reveal the relations between categories of applets.

For instance, the embeddings of applets in category “hotel

booking” are closer to those in category “catering” than to

those in category “game”, which indicates that the “hotel book-

ing” applets have stronger commonality with the “catering”

applets than the “game” applets.

V. RELATED WORKS

Our work is related to the existing approaches for learning

network embeddings, which can be generally divided into

three categories: (1) methods on homogeneous networks, (2)

methods on heterogeneous networks, and (3) methods on

knowledge graphs.

Methods on Homogeneous Networks. Most of the previ-

ous studies focus on homogeneous networks. Early methods

such as LLE [35] can only preserve the relations between

598

(a) HIN2VEC (b) SimplE (c) TransN

Fig. 6: 2D t-SNE [25] projections of the embeddings of 90 applets from App-Daily, ten each from 9 categories.

adjacent nodes, and neglect relations between nonadjacent

nodes [41]. To address this problem, many methods are pro-

posed to preserve the higher-order proximity [4] in a network.

Specifically, a few of them [30] are factorization-based [12],

which represent networks by adjacency matrices and obtain

the node embeddings by matrix factorization, while most of

them [13], [19], [33], [41], [45] utilize neural networks to

preserve the node proximities. Specifically, DeepWalk [33] and

Node2Vec [13] aim to learn the relations between nodes on

sampled paths of a network by utilizing the skip-gram model

[27]. Besides, SDNE [45] utilizes deep auto-encoders [11] to

preserve the first and the second order of proximities [4] on a

network, while DNGR [5] exploits the random walks together

with auto-encoders, which aims to preserve the higher-order

of proximity on a network. In addition, GCN [19] is a semi-

supervised method which learns the network embeddings by

iteratively aggregating neighbors’ embeddings for each node,

and LINE [41] is designed to preserve both the first and

the second order proximity on a network by minimizing the

KL divergence [11] between the distribution of actual node

relations and the one of the learned node embeddings.

Methods on Heterogeneous Networks. Many methods

[6], [8], [10], [21]–[24], [29], [34] are proposed to learn

embeddings on heterogeneous networks. Specifically, the path-

based methods D2AGE [23] and IPE [22] aim to produce

embeddings particularly for the proximity search task. As for

general network mining tasks, Metapath2Vec [8] and HIN2Vec

[10] aim to capture the proximity between nodes on sampled

paths of a network, where both of them exploit user-specified

meta-paths [39] to control the random walks. Besides, HNE [6]

is a multi-view method which integrates the information from

various views by projecting their embeddings into a common

space. In addition, several methods [21], [24], [34] aim to com-

bine view-specific embeddings into a consistent embedding

shared by all views with (semi-)supervised learning. Recently,

DMNE [29] is proposed to learn a unified node embedding for

each node by co-regularizing the embeddings of different types

of nodes through minimizing their proposed disagreement loss.

Methods on Knowledge Graphs. A knowledge graph

(KG) [31], [46] is a multi-relational graph whose nodes

correspond to entities and edges represents fact triplets. Here,

a fact triplet (h, r, t) means that entity h has relation r with

entity t. Specifically, many methods are proposed to learn

embeddings on KGs, where most of them aim to minimize

some scoring functions f(h, r, t) for each triplet (h, r, t). For

instance, TransE [3] aims to minimize the scoring function

f(h, r, t) = ‖�h+�r−�t‖2, where �h, �r, and �t are the embeddings

of entity h, relation r, and entity t, respectively. Later, TransH

[48], TransR [20], and TransD [16] are proposed to overcome

the flaws of TransE in dealing with one-to-many, many-to-

one, and many-to-many relations. Recently, SimplE [17] is

proposed to learn fully expressive embeddings on KGs, and

RotatE [40] is proposed to capture various relation patterns

such as symmetry, inversion, and composition in their trained

embeddings. Particularly, method R-GCN [37] does not learn

KG embeddings by minimizing a scoring function. Instead,

R-GCN proposes a graph neural network [50] to learn KG

embeddings in an end-to-end framework.

The major differences between the embedding methods on

KGs and those on heterogeneous networks are as follows.

• The KG embedding methods [3], [17], [40] can produce

embeddings for both entities (nodes) and relations (edges),

while the embedding methods [8], [10], [34] on heteroge-

neous networks only focus on learning node embeddings.

• The KG embeddings [31] focus on preserving the type

information of relationship between entities (nodes), while

the heterogeneous network embeddings [8], [10], [34] aim

to preserve the proximity between nodes. Therefore, the KG

embedding methods [17], [37] often neglect the weights of

edges, while in heterogeneous network embedding methods

[8], [34], larger edge weights usually means higher proxim-

ity between edges’ end-nodes.
VI. CONCLUSION

In this paper, we propose TransN, a framework to learn

network embeddings on heterogeneous networks. In TransN,

we propose a single-view algorithm to learn the node embed-

dings inside each single view, which preserves the node prox-

imities through exploiting the information in paths sampled

by our proposed biased correlated random walks. Moreover,

we propose a cross-view algorithm to transfer information

across views by translating and reconstructing embeddings of

common nodes in different views. We evaluate TransN on real-

world heterogeneous networks, where the experimental results

show that our framework TransN is more effective than the

compared methods on various network mining tasks.

ACKNOWLEDGEMENT
The work is partially supported by the Hong Kong RGC GRF

Project 16202218, the National Science Foundation of China (NSFC)
under Grant No. 61729201, Science and Technology Planning Project
of Guangdong Province, China, No. 2015B010110006, Hong Kong
ITC ITF grants ITS/044/18FX and ITS/470/18FX, Didi-HKUST joint
research lab Grant, Microsoft Research Asia Collaborative Research
Grant and Wechat Research Grant.

REFERENCES

[1] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[2] E. A. Bender, L. B. Richmond et al., “Correlated random walks,” The
Annals of Probability, vol. 12, no. 1, pp. 274–278, 1984.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Ad-
vances in neural information processing systems, 2013, pp. 2787–2795.

599

[4] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph
embedding: problems, techniques and applications,” IEEE Transactions
on Knowledge and Data Engineering, 2018.

[5] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations.” in AAAI, 2016, pp. 1145–1152.

[6] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S.
Huang, “Heterogeneous network embedding via deep architectures,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp. 119–128.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[8] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017, pp. 135–144.

[9] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[10] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,” in
Proceedings of the 26th ACM on Conference on Information and
Knowledge Management. ACM, 2017, pp. 1797–1806.

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[12] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[13] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[14] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma, “Dual
learning for machine translation,” in Advances in Neural Information
Processing Systems, 2016, pp. 820–828.

[15] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[16] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics, 2015, pp.
687–696.

[17] S. M. Kazemi and D. Poole, “Simple embedding for link prediction in
knowledge graphs,” 2018.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[20] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Twenty-ninth AAAI
conference on artificial intelligence, 2015.

[21] Y. Liu, L. He, B. Cao, P. S. Yu, A. B. Ragin, and A. D. Leow, “Multi-
view multi-graph embedding for brain network clustering analysis,”
arXiv preprint arXiv:1806.07703, 2018.

[22] Z. Liu, V. W. Zheng, Z. Zhao, Z. Li, H. Yang, M. Wu, and J. Ying,
“Interactive paths embedding for semantic proximity search on hetero-
geneous graphs,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2018, pp.
1860–1869.

[23] Z. Liu, V. W. Zheng, Z. Zhao, F. Zhu, K. C.-C. Chang, M. Wu,
and J. Ying, “Distance-aware dag embedding for proximity search on
heterogeneous graphs,” in Proceddings of the 32th AAAI Conference on
Artificial Intelligence, 2018.

[24] T. Ma, C. Xiao, J. Zhou, and F. Wang, “Drug similarity integra-
tion through attentive multi-view graph auto-encoders,” arXiv preprint
arXiv:1804.10850, 2018.

[25] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[28] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal
of electronic imaging, vol. 16, no. 4, p. 049901, 2007.

[29] J. Ni, S. Chang, X. Liu, W. Cheng, H. Chen, D. Xu, and X. Zhang,
“Co-regularized deep multi-network embedding,” in Proceedings of the
World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2018, pp. 469–478.

[30] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in Proceedings of the 22nd ACM
SIGKDD. ACM, 2016, pp. 1105–1114.

[31] H. Paulheim, “Knowledge graph refinement: A survey of approaches and
evaluation methods,” Semantic web, vol. 8, no. 3, pp. 489–508, 2017.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[33] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD.
ACM, 2014, pp. 701–710.

[34] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han, “An attention-
based collaboration framework for multi-view network representation
learning,” in Proceedings of the 26th ACM on Conference on Information
and Knowledge Management. ACM, 2017, pp. 1767–1776.

[35] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[36] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533,
1986.

[37] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” arXiv preprint arXiv:1703.06103, 2017.

[38] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan: Direc-
tional self-attention network for rnn/cnn-free language understanding,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[39] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,”
Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 992–1003,
2011.

[40] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” arXiv preprint
arXiv:1902.10197, 2019.

[41] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[42] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” in Proceedings of the 15th ACM SIGKDD. ACM,
2009, pp. 807–816.

[43] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proceedings of
the 14th ACM SIGKDD. ACM, 2008, pp. 990–998.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[45] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proceedings of the 22nd ACM SIGKDD. ACM, 2016, pp. 1225–1234.

[46] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embed-
ding: A survey of approaches and applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[47] X. Wang, L. Tang, H. Gao, and H. Liu, “Discovering overlapping
groups in social media,” in Proceedings of the 10th IEEE International
Conference on Data Mining. IEEE, 2010, pp. 569–578.

[48] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Twenty-Eighth AAAI conference on
artificial intelligence, 2014.

[49] Wikipedia, “Softmax function,” 2019. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Softmax function

[50] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

[51] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:
Recent progress and new challenges,” Information Fusion, vol. 38, pp.
43–54, 2017.

600

