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Abstract—Reconstructing the topology of a diffusion network
based on observed diffusion results is an open challenge in data
mining. Existing approaches mostly assume that the observed
diffusion results are available and consist of not only the final
infection statuses of nodes, but also the exact timestamps that
pinpoint when infections occur. Nonetheless, the exact infection
timestamps are often unavailable in practice, due to a high cost
and uncertainties in the monitoring of node infections. In this
work, we investigate the problem of how to infer the topology of a
diffusion network from only the final infection statuses of nodes.
To this end, we propose a new scoring criterion for diffusion
network reconstruction, which is able to estimate the likelihood
of potential topologies of the objective diffusion network based
on infection status results with a relatively low statistical error.
As the proposed scoring criterion is decomposable, our problem
is transformed into finding for each node in the network a set
of most probable parent nodes that maximizes the value of a
local score. Furthermore, to eliminate redundant computations
during the search of most probable parent nodes, we identify
insignificant candidate parent nodes by checking whether their
infections have negative or extremely low positive correlations
with the infections of a corresponding child node, and exclude
them from the search space. Extensive experiments on both
synthetic and real-world networks are conducted, and the results
verify the effectiveness and efficiency of our approach.

Index Terms—diffusion network, topology, influence relation-
ship, infection timestamp

I. INTRODUCTION

The topology of a diffusion network describes how the

nodes in the network influence each other. Knowledge of

these influence relationships is crucial for understanding the

properties of diffusion dynamics and for designing effective

strategies to promote or prevent future diffusions on the net-

work. Nonetheless, in many real-world settings, such as idea

and disease propagation, the influence relationships between

human users are not naturally accessible, and need to be

recovered based on diffusion results observed from historical

diffusion processes. This problem is often referred to as diffu-

sion network reconstruction or diffusion network inference,

and has received considerable attention in recent years in

areas such as social networks [1], information propagation [2],

epidemic prevention [3], and viral marketing [4].

To infer the influence relationships in diffusion networks,

most existing approaches to diffusion network reconstruction

assume that the infection of a node is caused by previously

infected nodes with a high probability [5]. According to this

assumption, nodes that are infected sequentially within a time

interval are considered to have influence relationships, and the

previously infected ones are regarded as potential parent nodes

of the subsequently infected ones. Therefore, in order to use

these approaches, users need to monitor each diffusion process

and record exact occurrence timestamps of node infections.

However, monitoring real-world diffusion processes is not

always feasible or affordable, especially when the diffusion

processes are long, the spatial distribution of nodes is wide,

or the monitoring is labor/resource demanding. Furthermore,

due to some unavoidable uncertainties in monitoring, such as

different incubation periods (i.e., the time from infection to the

appearance of observable signs or symptoms), the observed

timestamps do not usually reflect the exact occurrence time of

each infection.

To reconstruct the topologies of diffusion networks without

infection timestamps, two existing approaches try to learn in-

fluence relationships between nodes, either from all path traces

of fixed length [6], or from initial and resulting sets of infected

nodes [7]. Nevertheless, an exact diffusion path is often hard

to trace when multiple paths coexist in a diffusion process, let

alone obtaining all path traces of fixed length for the former

approach. On the other hand, the diffusion sources (i.e., the

initially infected nodes) are usually unavailable, not to mention

that the later approach requires an extra prior knowledge on the

amount of influence relationships in objective network, which

is also difficult to obtain in practice.

Aiming at a more widely applicable solution to diffusion

network reconstruction, we investigate the problem of how

to infer the topology of a diffusion network based on only

the final infection statuses of nodes, which are more easily

accessible in most cases. We present an effective and efficient

approach called TENDS (which is an anagram of the bold let-

ters in Statistical Estimation of Diffusion Network Topologies)

to solving this problem. Instead of studying sequential relation-

ships of node infections, TENDS finds influence relationships

with high statistical significance. To this end, we propose a

new scoring criterion to estimate the fits between potential

topologies of the objective diffusion network and observed
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infection status results. It is designed to balance the likelihood

and statistical error of an inferred network topology, and

thus can help our TENDS algorithm to accurately find the

most probable diffusion network topology. Meanwhile, as the

scoring criterion is decomposable, the task of finding the most

probable diffusion network topology can be transformed into

finding for each node in the network a set of most probable

parent nodes that maximizes the value of a local score. In

addition, based on the scoring criterion, we can also derive a

theoretical upper bound on the number of most probable parent

nodes, which will avoid an overly complex inferred network

topology that is conceptually and computationally intractable.

Furthermore, to eliminate redundant computations during the

search of most probable parent nodes, for each node in the

network, TENDS identifies its insignificant candidate parent

nodes by checking whether their infections have negative or

extremely low positive correlations with the infections of this

node, and then excludes these insignificant candidates from

the search space of its most probable parent nodes.

In summary, our key contributions include the following: (1)

We propose a statistical approach to infer diffusion network

topologies from only the final infection statuses of nodes.

Compared with existing approaches, it does not rely on mon-

itoring the exact infection timestamps of nodes, and does not

require any extra information, such as all path traces of fixed

length, diffusion sources and a prior knowledge on diffusion

network topologies, which are often difficult to access in

practice. (2) We design a decomposable scoring criterion for

diffusion network reconstruction. It decomposes the recon-

struction process into finding each node a limited number of

most probable parent nodes. (3) We present a heuristic method

to prune the search space of the most probable parent nodes

and help reduce redundant computations.

The remainder of the paper is organized as follows. We

review the related work in Section II and present a problem

statement in Section III. We then elaborate the proposed

TENDS algorithm in Section IV, and report experimental find-

ings in Section V before concluding the paper in Section VI.

II. RELATED WORK

Existing approaches to diffusion network reconstruction

can be classified into two groups: (1) approaches based on

infection timestamps, and (2) approaches without infection

timestamps.

A. Approaches Based on Infection Timestamps

Most existing approaches to diffusion network reconstruc-

tion utilize the sequences of node infections (known as cas-

cades) to infer potential parent-child influence relationships.

Therefore, they need to know the exact infection timestamp

of each infected node in every diffusion process. According

to solution strategies adopted, these approaches can be catego-

rized into three main types: (1) the convex programming-based

approaches, (2) the submodularity-based approaches, and (3)

the embedding-based approaches.

Convex programming-based approaches try to find a diffu-

sion network topology that maximizes the likelihood of given

cascades based on convex optimization. To approximate the

optimal solution, these approaches utilize different techniques,

such as sequential quadratic programming [8], [9], the EM

algorithm [10], [11], block coordinate descent [12], stochastic

and proximal gradient methods [13], [14], survival theory [15],

sparse recovery [16], and decoupling into multiple paralleliz-

able problems [17]–[19], to solve their optimization problems.

These approaches generally exhibit nice inference performance

on tree-like or sparse networks.

Submodularity-based approaches transform the problem of

diffusion network reconstruction into a problem of submodular

optimization, as they use likelihood functions of cascades for

given propagation trees that have the property of submodulari-

ty. NetInf [20] and MulTree [21] are state-of-the-art approach-

es of this type. Due to the submodularity of their objective

functions, both approaches adopt a greedy algorithm to achieve

a near-optimal solution. The main difference between them is

that during the submodular optimization, NetInf considers only

the most probable propagation tree, to achieve high efficiency,

while MulTree considers all propagation trees supported by

each cascade, to achieve high accuracy.

Embedding-based approaches map the nodes in observed

diffusion process into a latent embedding space, in which the

distance between each two mapped nodes represents the prop-

agation probability (or transmission rate). These approaches

model the propagation probabilities using Weibull distributions

[22], uniform distributions [1], or via kernels [23], and they

learn the propagation probabilities between nodes based on

observed cascades. Although embedding-based approaches do

not explicitly reveal the diffusion network topologies, they

enable users to observe influence relationships between nodes

via low-dimensional spaced visualizations.

The above three types of paradigms for diffusion network

reconstruction all require complete and correct cascades. Abra-

hao et al. have proven that with an adequate amount of com-

plete and correct cascades, the objective diffusion network can

be inferred accurately using simple reconstruction approaches

[24]. Nevertheless, in reality, observed cascades may have

partially incorrect infection timestamps, and they may miss

partial snapshots of the network. Several methods have been

proposed to mitigate the effects of partially incorrect [25] or

missing infection timestamps [26], [27]. These methods are

complementary to the above three types of approaches.

Departing from the existing approaches based on infection

timestamps, the proposed TENDS algorithm requires nothing

but only the final infection statuses of nodes, which are

more easily accessible in most real-world diffusion cases.

Therefore, TENDS has a wider range of applicability, and is

also unaffected by incorrect and missing infection timestamps.

B. Approaches without Infection Timestamps

To infer diffusion network topologies without infection

timestamps, two existing works have partially address this

problem by learning the influence relationships between nodes,
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either from diffusion path traces (referred to as the PATH

approach), or based on lifting effects (referred to as the

LIFT approach) from the initially infected nodes to the finally

infected nodes.

PATH takes as inputs path-connected node sets, each of

which contains a fixed number of nodes that are activated

along a diffusion path through a network. It inserts edges

between the nodes that co-occur most frequently in the path-

connected node sets [6]. This approach has nice properties

such as a solid mathematical foundation and low computa-

tional cost. Nonetheless, it requires complete path-connected

node sets, which are often unaccessible in natural diffusion

processes. Even if complete and correct cascades are available,

inferring exact path-connected node sets is still difficult.

LIFT studies the problem of diffusion network reconstruc-

tion in the case that only diffusion sources and final infection

statuses of nodes are available [7]. It calculates the lifting

effect of a source node u to an infected node v, which

measures the increase in the probability of v’s infection on

the condition that u is initially infected. A larger lifting effect

indicates a higher probability that the corresponding two nodes

have an influence relationship. Furthermore, LIFT requires a

prior knowledge on the amount of influence relationships in

the objective diffusion network, otherwise it will iteratively

add influence relationships until each two nodes have an

influence relationships.

Compared with PATH and LIFT, our TENDS algorithm

only requires infection status results, and does not rely on any

other extra information on node infections or prior knowledge

on objective diffusion networks. Therefore, TENDS is more

widely applicable in practice.

III. PROBLEM STATEMENT

A diffusion network can be represented as a directed graph

G = (V,E), where V = {v1, v2, ..., vn} denotes the set of n
nodes in the network, and E refers to the set of m directed

edges between nodes. A directed edge from a node vi ∈ V to

a node vj ∈ V indicates that vi has an influence relationship

to vj . Specifically, when vi is infected and vj is uninfected,

vi will infect vj with a certain probability, which is known as

propagation probability or transmission rate.

In the problem of diffusion network reconstruction, the

node set is given, while edge set and propagation probabilities

are unknown and needed to be inferred. To reconstruct a

diffusion network, a set of diffusion results observed from

historical diffusion processes on the network is required. In

this paper, we assume that the diffusion results contain only

infection status results, i.e., the final infection statuses of nodes

observed at the end of each diffusion process. Furthermore, as

a few existing approaches have presented how to quantify the

propagation probability for a specific edge based on observed

infection status results [28], we focus on inferring the unknown

topology (i.e., edge set) of the objective diffusion network.

Formally, our problem statement can be formulated as

follows (Table I lists notation that will be used henceforth).

TABLE I
NOTATION

Symbol Description
G A directed graph.
V The set of nodes in G.
n The number of nodes in G.
vi The i-th node in V (1 � i � n).
E The set of directed edges in G.
m The number of directed edges in G.
S The infection statuses of nodes in G

observed across β diffusion processes.
T A potential topology of G.
α The initial infection ratio of nodes.
β The number of diffusion processes on G.

s�i The infection status of node vi in the
�-th diffusion process
(1 � i � n, 1 � � � β).

Xi The infection status variable of node
vi ∈ V .

Fi The parent node set of node vi.
|Fi| The number of nodes in Fi.
XFi The set of infection status variables of

nodes in Fi.

π�
i The infection statuses of vi’s parent

nodes in the �-th diffusion process
(1 � i � n, 1 � � � β).

πij The j-th combination of the infection
statuses of nodes in Fi.

Nijk The number of times situation
Xi = sk ∧XFi = πij appears in S
(k ∈ {1, 2}, s1 = 0, s2 = 1).

Nij The number of instances of πij in S
(Nij = Nij1 +Nij2).

L(vi, Fi) The likelihood of a parent node set Fi for
node vi.

g(T ) The scoring criterion for topology T .
g(vi, Fi) The local score for parent node set Fi of

node vi.
MI(Xi, Xj) The mutual information (MI) between the

variables Xi and Xj .
IMI(Xi, Xj) The infection MI between the infections

of nodes vi and vj .
τ A threshold for infection MI.
Pi The set of candidate parent nodes of vi

(∀vj ∈ Pi, IMI(Xi, Xj) > τ ).
Ci The set of possible combinations of vi’s

candidate parent nodes.

Given: a set S = {S1, ..., Sβ} of infection status results

observed on a diffusion network G in β historical diffusion

processes, where S� = (s�1, ..., s
�
n) is a n-dimensional vector

that records the final infection status, s�i ∈ {0, 1} (0 denotes

uninfected, and 1 denotes infected) of each node vi ∈ V ob-

served at the end of the �-th diffusion process (� ∈ {1, . . . , β}).
Infer: the unknown edge set E of diffusion network G.

IV. THE TENDS ALGORITHM

In this section, we first explain how to measure the likeli-

hood of potential diffusion network topologies by proposing a

new scoring criterion, followed by introducing how to elimi-

nate redundant computations when using the scoring criterion
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to reconstruct diffusion network topology. Then, we present

the detailed steps of the TENDS algorithm, and conclude this

section with a complexity analysis on the algorithm.

A. Scoring Criterion

Let matrix T ∈ R
n×n denote a network topology variable

of the objective diffusion network G = (V,E). Each element

Tij ∈ {0, 1} (i, j ∈ {1, . . . , n}) in this matrix indicates

whether there is a directed edge from node vi ∈ V to

node vj ∈ V (1 for yes, 0 for no). Then, diffusion network

reconstruction using infection status results S is equivalent

to the problem of finding a optimal T that maximizes the

following probability:

max
T

P̂ (S | T ) (1)

As each historical diffusion process is independent to each

other, each S� is generated independently. Therefore, the

probability P̂ (S | T ) can be reformulated as follows.

P̂ (S | T ) =
β∏

�=1

P̂ (S� | T )

=

β∏
�=1

P̂ (X1 = s�1, . . . , Xn = s�n | T )
(2)

where Xi ∈ {0, 1} (i ∈ {1, . . . , n}) refers to the infection

status variable of node vi.
In a diffusion network, the infection of each node can be

only caused by its parent nodes. Therefore, the relationship

P (X1, . . . , Xn) =
∏n

i=1 P (Xi | XFi
) holds, where Fi refers

to the parent node set of node vi in current topology T , and

XFi
represents the infection status variables of the parent

nodes of vi. Then, the probability P̂ (S | T ) can be further

reformulated as follows.

P̂ (S | T ) =
β∏

�=1

n∏
i=1

P̂ (Xi = s�i | XFi = π�
i )

=
n∏

i=1

2|Fi|∏
j=1

2∏
k=1

P̂ (Xi = sk | XFi = πij)
Nijk

=

n∏
i=1

2|Fi|∏
j=1

2∏
k=1

(Nijk

Nij

)Nijk

(3)

where π�
i refers to the infection statuses of vi’s parent nodes

in the �-th diffusion process, sk ∈ {0, 1} refers to the k-th

possible infection status of a node (without loss of generality,

let s1 = 0, s2 = 1), 2|Fi| is the number of all possible

combinations of the infection statuses of vi’s parent nodes, πij

represents the corresponding j-th possible combination, Nijk

is the number of times situation Xi = sk∧XFi = πij appears

in the observed infection status results S, Nij = Nij1 +Nij2,

and ∀vi,
∑2|Fi|

j=1 Nij = β. In addition, as some combinations of

the infection statuses of nodes in Fi may not have instances in

S, we denote the number of these non-existent combinations

as φFi . It can be obtained by traversing S and checking how

many of the 2|Fi| possible combinations have instances in S.

Let L(vi, Fi) =
∏2|Fi|

j=1

∏2
k=1

(Nijk

Nij

)Nijk
. The value of

L(vi, Fi) reflects the likelihood of parent node set Fi for

node vi. Then, according to Eq. (3), to maximize the value

of probability P̂ (S | T ), we should find for each node vi ∈ V
a set Fi of parent nodes that maximizes the value of L(vi, Fi).
However, we find that the value of L(vi, Fi) will be maximized

when all the other nodes in node set V are added into Fi.

This observation can be explained by the following lemma

and theorem.

Lemma 1: For any non-negative integers a1, a2, b1, b2, the

relationship ( b

a

)b

�
( b1
a1

)b1
·
( b2
a2

)b2
(4)

always holds, where a = a1 + a2 and b = b1 + b2.

Proof. Since ln(·) is a concave function and b1
b + b2

b = 1, then

according to Jensen’s inequality, the following relationship

ln
a

b
= ln(

b1
b
· a1
b1

+
b2
b
· a2
b2

)

� b1
b
ln

a1
b1

+
b2
b
ln

a2
b2

(5)

holds, and can be transformed as

b ln
b

a
� b1 ln

b1
a1

+ b2 ln
b2
a2

, (6)

which is equivalent to

( b

a

)b

�
( b1
a1

)b1
·
( b2
a2

)b2
.

Therefore, the lemma is correct. �
Theorem 1: Assume a diffusion network G with node set

V and node infection status results S. Further assume that a

node vi ∈ V has a parent node set Fi. Then, for any node

vi′ ∈ {v ∈ V | v /∈ Fi ∪ {vi}}, the relationship

L(vi, Fi) � L(vi, Fi ∪ {vi′}) (7)

always holds.

Proof. Let F ′
i = Fi ∪ {vi′}, then

L(vi, F
′
i ) =

2|Fi|+1∏
j′=1

2∏
k=1

(Nij′k

Nij′

)Nij′k . (8)

For nodes in parent node set Fi, the j-th possible combinations

of infection statuses is denoted as πij . Assume that the

situations (XFi = πij , Xi′ = 0) and (XFi = πij , Xi′ = 1)
correspond to the j′1-th and j′2-th possible combinations of

infection statuses for nodes in F ′
i , respectively. Then, we have

Nijk = Nij′1k +Nij′2k,

Nij = Nij′1 +Nij′2 .
(9)

According to Lemma 1, the following relationship

(Nijk

Nij

)Nijk

�
(Nij′1k

Nij′1

)Nij′1k ·
(Nij′2k

Nij′2

)Nij′2k

(10)
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always holds. Thus, we have

L(vi, Fi) =

2|Fi|∏
j=1

2∏
k=1

(Nijk

Nij

)Nijk

�
2|Fi|∏
j=1

2∏
k=1

(Nij′1k

Nij′1

)Nij′1k ·
(Nij′2k

Nij′2

)Nij′2k

=
2|Fi|+1∏
j′=1

2∏
k=1

(Nij′k

Nij′

)Nij′k

= L(vi, F
′
i )

(11)

and the theorem is correct. �
According to Theorem 1, for node vi, the maximum value

of likelihood L(vi, Fi) can be achieved after adding all other

nodes to the parent node set Fi. Therefore, if we simply pursue

a higher probability P̂ (S | T ), the inferred topology T will

become very complex and contain many parent-child influence

relationships that may not exist in reality.

From the view of statistics, if more nodes are included in

the parent node set Fi of node vi ∈ V , there will be a larger

statistical error for the computation of likelihood L(vi, Fi).
The reason is that given an Fi then for every possible combi-

nation πij of the infection statuses of the nodes in Fi (where

1 � j � 2|Fi|), we need to count the number of instances

from all the β historical diffusion processes to estimate the

corresponding probability P̂ (Xi = sk | XFi = πij) (where

sk ∈ {0, 1}) for the computation of L(vi, Fi). Therefore,

the number of probability estimations increases exponentially

with the cardinality of Fi. In each probability estimation,

a statistical error may be introduced when the number Nij

of corresponding instantiations is insufficient. For a given

infection status results S, the more probability estimations

to make, the fewer instances for each probability estimation,

resulting in a larger statistical error. In brief, the introduced

statistical errors are affected by two factors: (1) the number

2|Fi| of possible infection status combinations of the nodes

in set Fi and (2) the number Nij of instances to be used for

probability estimation.

To balance the likelihood and statistical error, we propose

a new scoring criterion g(T ) for diffusion network recon-

struction, which evaluates the quality of an inferred diffusion

network topology T as follows.

g(T ) = log P̂ (S | T )− 1

2

n∑
i=1

2|Fi|∑
j=1

log(Nij + 1)

=
n∑

i=1

(
logL(vi, Fi)−

1

2

2|Fi|∑
j=1

log(Nij + 1)
) (12)

where the base of log is 2, using Nij +1 is to avoid log of 0.

A higher value of g(T ) indicates that the current topology

T is a better inference result. As the scoring criterion g(T ) is

decomposable, maximizing the value of g(T ) is equivalent to

maximizing the value of each local score g(vi, Fi), where

g(vi, Fi) = logL(vi, Fi)−
1

2

2|Fi|∑
j=1

log(Nij + 1). (13)

Note that according to Theorem 1, inclusion of more parent

nodes for each node vi will increase the value of likelihood

L(vi, Fi). But, if there are too many parent nodes, the value

of the penalty term 1
2

∑2|Fi|

j=1 log(Nij + 1) tends to increase

exponentially, and then decreases the value of local score

g(vi, Fi). Thus, this penalty term can help us avoid adding

too much nodes into set Fi, and prevent a high statistical

error. Furthermore, for each node vi ∈ V , the parent node set

Fi selected by maximizing the value of local score g(vi, Fi)
is asymptotically consistent with the true parent node set of

vi. This nice property can be theoretically explained by the

following corollary.

Corollary 1: Let F̂i be the parent node set selected by the

scoring criterion g′(vi, Fi) = logL(vi, Fi)− 1
2

∑2|Fi|

j=1 λ for a

given node vi ∈ V based on infection status results S of β
historical diffusion processes, i.e., F̂i maximizes the value of

g′(vi, Fi) for a given vi. If λ satisfies conditions

lim
β→∞

λ

β
= 0,

lim
β→∞

λ = +∞,
(14)

then F̂i is a weakly consistent estimator of the true parent

node set F ∗
i of node vi, i.e.,

lim
β→∞

P (F̂i = F ∗
i ) = 1. (15)

Proof. Corollary 1 follows directly from Theorem 5 in refer-

ence [29]. �
As log(Nij+1) satisfies conditions limβ→∞

log(Nij+1)
β = 0,

and limβ→∞ log(Nij + 1) = +∞, according to Corollary 1,

the parent node set Fi selected using local score g(vi, Fi) tends

to be more consistent with the true parent node set of vi, when

there are more historical diffusion processes used for diffusion

network reconstruction.

To obtain an optimal Fi that maximizes local score

g(vi, Fi), one should intuitively find a few parent nodes that

are most likely to affect the infection of node vi, and one

should prevent the set of parent nodes from growing too large.

In fact, a theoretical upper bound for the number of parent

nodes can be derived from this local score g(vi, Fi).
Theorem 2: Given infection status results S of β histor-

ical diffusion processes, in order to maximize the value of

g(vi, Fi), the size |Fi| of parent node set Fi of node vi should

satisfy condition

|Fi| � log(φFi + δi), (16)

where

δi = 2N1 log
β

N1
+ 2N2 log

β

N2
+ log(β + 1), (17)
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N1 and N2 respectively refer to the number of instances of

situations Xi = 0 and Xi = 1 in S.

Proof. For an empty parent node set, the local score g(vi, ∅)
can be calculated as

g(vi, ∅) = log
(N1

β

)N1 ·
(N2

β

)N2 − 1

2
log(β + 1). (18)

If a non-empty parent node set Fi can maximize the value of

g(vi, Fi), relationship g(vi, Fi) � g(vi, ∅) should hold, which

can be expressed as

logL(vi, Fi)−
1

2

2|Fi|∑
j=1

log(Nij + 1)

� N1 log
(N1

β

)
+N2 log

(N2

β

)
− 1

2
log(β + 1)

(19)

For the nodes in Fi, there would be 2|Fi| possible combina-

tions of their infection statuses. In fact, partial combinations

may have no instances in S, and we have denoted the number

of these non-existent combinations as φFi . If the j-th combi-

nation has no instances, i.e., Nij = 0, then log(Nij +1) = 0;

otherwise, Nij � 1, and log(Nij + 1) � log 2 = 1. Then, the

lower bound of 1
2

∑2|Fi|

j=1 log(Nij + 1) is as follows.

1

2

2|Fi|∑
j=1

log(Nij + 1) � 1

2

(
2|Fi| − φFi

)
. (20)

Moreover, since L(vi, Fi) � 1, we have

logL(vi, Fi) � 0. (21)

Combining Eqs. (19)–(21), we have relationship

1

2

(
2|Fi|−φFi

)
� −N1 log

(N1

β

)
−N2 log

(N2

β

)
+
1

2
log(β+1)

(22)

which can be transformed as

|Fi| � log
(
φFi

+ 2N1 log
β

N1
+ 2N2 log

β

N2
+ log(β + 1)

)
.

(23)

Thus, the theorem is correct. �
Given the local score g(vi, Fi) and Theorem 2, we can

apply a greedy search procedure to find the most probable

parent nodes for vi. The procedure starts from an empty parent

node set Fi, and expands Fi by iteratively adding a node

combination (i.e., a subset of V \{vi}) that increases the value

of the current g(vi, Fi) the most. If no candidate parent node

for vi exists or for any node subset W ⊆ V \{vi}, the number

of nodes in set Fi ∪W always exceeds the theoretical upper

bound, i.e., |Fi ∪ W | > log(φFi∪W + δi), then the greedy

search procedure stops. In this way, we can efficiently achieve

a locally optimal Fi. A similar greedy search procedure is

used commonly in many other applications, such as influence

maximization [30] and classification [28], due to its efficiency

and good result quality.

B. Pruning Method

During the greedy search procedure, to find for each node

vi ∈ V a candidate parent node or node set that can be added

to its current parent node set Fi, a straightforward method is to

traverse all node combinations from the candidate parent node

set V \ {vi}. This straightforward method is inefficient since

there are
∑n−1

i=1

(
n−1
i

)
combinations, where n is the number of

nodes in the network. Instead, we prune the candidate parent

nodes to reduce the number of possible node combinations

and avoid redundant computations.

Given the fact that the infections of nodes are only caused

by their parent nodes with a certain probability, the infections

of the parent nodes and corresponding child nodes should

have positive correlations. In contrast, if the infection statuses

of two nodes have a negative or extremely low positive

correlation, there is a very low probability that these two nodes

have an influence relationship between them.

To quantify the correlation between two variables, mutual

information (abbreviated as MI) is a commonly used criterion

and can be estimated as

MI(Xi, Xj) = P̂ (Xi, Xj) log
P̂ (Xi, Xj)

P̂ (Xi)P̂ (Xj)
(24)

MI(Xi, Xj) ∈ [0, 1]. A higher MI value indicates that

variables Xi and Xj have a greater correlation. However, the

correlation evaluated by MI is not equivalent to the positive

correlation of infections. This is because when situations

Xi = 0 and Xj = 1 (or Xi = 1 and Xj = 0) have a

significantly great correlation, i.e., the infection statuses of

nodes vi and vj have a significantly negative correlation, the

value of MI still could be high.

In order to exactly evaluate the positive correlation between

the infections of nodes, we modify the original MI metric as

a new version called infection MI to measure the infection

correlation. The infection MI between the infections of nodes

vi and vj , denoted by IMI(Xi, Xj), is defined as

IMI(Xi, Xj) =

MI(Xi = 1, Xj = 1) +MI(Xi = 0, Xj = 0)

− |MI(Xi = 1, Xj = 0)| − |MI(Xi = 0, Xj = 1)|.
(25)

Given the above definition of infection MI, when the infec-

tion statuses of nodes vi and vj have a significantly negative

correlation, i.e., |MI(Xi = 1, Xj = 0)| or |MI(Xi =
0, Xj = 1)| has a significantly great value, the value of

IMI(Xi, Xj) tends to be negative. When infections of nodes

vi and vj tend to be independent, the value of infection MI will

be close to 0. When the value of IMI(Xi, Xj) is a relatively

great positive value, it indicates that the infections of nodes

vi and vj have a positive correlation.

In a real-world diffusion network, each node vi often has a

limited number of parent nodes. The infections of these parent

nodes and the node vi often have relatively great positive

correlations. Except for a few nodes whose infections have

negative correlations to vi’s infections, the majority of nodes in

the network do not have influence relationships to vi, resulting
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Algorithm 1: The TENDS Algorithm

Input : Node set V = {v1, . . . , vn}, infection status

results S = {S1, . . . , Sβ} observed on V .

Output: The diffusion network G = (V,E).
1 E ← ∅; // set of inferred directed edges

2 for each vi ∈ V do
3 for each vj ∈ V (j 
= i) do
4 Calculate the infection MI value IMI(Xi, Xj)

using Eq. (25);

5 Partition all non-negative infection MI values into two

groups by K-means (with K = 2 and one mean fixed at

0) and set τ to the largest value in the group with mean

close to 0;

6 for each vi ∈ V do
7 Pi ← ∅; // vi’s candidate parent node set

8 Ci ← ∅; //vi’s possible parent node combination set

9 Fi ← ∅; // vi’s inferred parent node set

10 for each vj ∈ V (j 
= i) do
11 if IMI(Xi, Xj) > τ then
12 Pi ← Pi ∪ {vj}; // insert vj into Pi

13 for each W ⊆ Pi, |W | � log(φW + δi) do
14 Calculate g (vi,W ) using Eq. (13);

15 Ci ← {Ci,W}; // add a new element W to Ci

16 while Ci 
= ∅ do
17 W ∗ ← arg max

W∈Ci

g (vi,W );

18 if |Fi ∪W ∗| � log(φFi∪W∗ + δi) then
19 Fi ← Fi ∪W ∗;

20 Ci ← Ci\W ∗;

21 E ← {(vj , vi) | vj ∈ Fi} ∪ E; // (vj , vi) is directed

in very small infection MI values (close to 0). These very small

infection MI values form a compact cluster with a very small

mean (close to 0).

Inspired by this line of reasoning, we introduce a heuristic

pruning method based on the infection MI values with the

goal of screening out insignificant candidate parent nodes

for each node. After calculating the infection MI value for

each two nodes in the network, we remove each negative

infection MI value. Then, by performing a modified K-means

algorithm with K = 2 and one of the two means fixed at 0

through all iterations of K-means, we can efficiently partition

all non-negative infection MI values into two groups, where

one group has a small mean close to 0. Let τ be the largest

value in the group with a mean close to 0. Then, for each

IMI(Xi, Xj) � τ , we regard the corresponding node vj as an

insignificant candidate parent node for node vi and exclude vj
from the candidate parent node set of vi. This pruning method

allows us to screen out insignificant candidate parent nodes,

and thus enables the TENDS algorithm to focus on parent

node combinations that are more likely to exist in the real

diffusion network.

C. Algorithm

Based on the proposed scoring criterion and pruning

method, we propose the TENDS algorithm for the problem

of reconstructing diffusion network topologies with only the

infection status results.

The TENDS algorithm, outlined in Algorithm 1, takes as

inputs node set V of the objective diffusion network G and

a set S of infection status results observed on V across β
diffusion processes. It first initializes the inferred directed

edge set E of G as an empty set (line 1), following by

calculating the infection MI value for each node pair (lines

2–4), and performing the modified K-means algorithm on all

the non-negative infection MI values (with K = 2 and one

mean fixed at 0 through all K-means iterations) to find an

infection MI threshold τ (line 5), which is used to screen

out insignificant candidate parent nodes. Then, the TENDS

algorithm infers the incoming edges to each node vi ∈ V
by the following five steps: (1) Firstly, three empty sets Pi,

Ci and Fi are initialized to record vi’s candidate parent

nodes, possible parent node combinations and inferred parent

nodes, respectively (lines 7–9). (2) Secondly, for each node

vj ∈ V (j 
= i) (line 10), if the corresponding value of

IMI(Xi, Xj) is larger than the infection MI threshold τ (line

11), then the node vj will be inserted into the candidate parent

node set Pi of vi (line 12), otherwise it will be regarded

as an insignificant candidate parent node of vi. (3) Thirdly,

for each possible parent node combination W ⊆ Pi that has

a size less than log(φW + δi) (line 13), the corresponding

local score g(vi,W ) is calculated and recorded (line 14), and

the node combination W is added into possible parent node

combination set Ci as a new element (line 15). (4) Fourthly,

if the theoretical upper bound for the size of a parent node set

is not exceeded (line 18), the inferred parent node set Fi will

be continuously expanded with the parent node combination

W ∗ ∈ Ci that has the currently greatest value of g(vi,W )
(W ∈ Ci) until no more candidate parent node combinations

exist (lines 16–20). (5) Finally, a directed edge from each node

in Fi to vi is added to the inferred edge set E of the objective

diffusion network G (line 21).

D. Complexity Analysis

The most computationally expensive process in TENDS

consists of the following two parts. (1) To disqualify insignif-

icant candidate parent nodes, calculating infection MI values

for each node pair requires O(βn2) time, and performing K-

means clustering on non-negative infection MI values takes

O(tn2) time, where n is the number of nodes in the network,

β is the number of diffusion processes, and t is the number

of K-means iterations (t � n). (2) To find candidate parent

node sets, calculating a local score requires O(βη), where η
is the size of the largest possible parent node combination.

Calculating all local scores requires O(η2κηnβ) time, since

there are at most
∑η

i=1

(
κ
i

)
< ηκη candidate parent node

combinations for each node, where κ denotes the maximum

number of candidate parent nodes for each node (η � κ).

Since most candidate parent nodes are insignificant (discussed
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TABLE II
PROPERTIES OF LFR BENCHMARK GRAPHS USED FOR EXPERIMENTS

Graphs n K T
LFR1-5 100,150,200,250,300 4 2
LFR6-10 200 2,3,4,5,6 2

LFR11-15 200 4 1,1.5,2,2.5,3

in Section IV-B), after screening out these nodes with the

proposed infection MI-based pruning method, κ is usually

much smaller than n, i.e., κ� n.

In summary, the overall time complexity of TENDS is

O(βn2+tn2+η2κηnβ), where t� n, η � κ� n. Therefore,

the running time of TENDS depends mainly on the network

size and the number of diffusion processes.

V. EXPERIMENTAL EVALUATION

We first introduce the experimental setup, and then report

on experiments designed to gain insight into the effectiveness

and efficiency of the TENDS algorithm on both synthetic and

real-world networks. To this end, we investigate the effects of

diffusion network size, the average node degree, the degree

dispersion of the diffusion network, the initial infection ratio,

the propagation probability, the number of diffusion processes,

and the infection MI-based pruning method on the accuracy

and running time of TENDS. All algorithms are implemented

in Java, running on a desktop PC with an Intel Core i3-6100

CPU at 3.70GHz and 8GB RAM.

A. Experimental Setup

Networks. We adopt the LFR benchmark graphs [31] as

the synthetic networks. By using different graph generation

parameters, such as the number n of nodes, the average degree

K of each node, and the degree distribution parameter T
(larger T implies less dispersion of degrees), we generate three

series of graphs with properties summarized in Table II. In

addition, we adopt two real-world networks, i.e., NetSci [32],

which is a coauthorship network containing 379 scientists and

1602 coauthorships, and DUNF [10], which is a microblogging

network with 750 users and 2974 following relationships, for

the experimental evaluation.

Infection Data. The infection status results S can be

obtained by simulating β diffusion processes on each network

with randomly selected initially infected nodes in each simu-

lation (the initial infection ratio is α). Corresponding cascades

are also recorded for the cascade-based algorithms in the

experiments. In each diffusion process, each infected node tries

to infect its uninfected child nodes with a given propagation

probability, which is subjected to a Gaussian distribution with

mean μ and variance 0.05, to ensure that more than 95% of

all propagation probabilities are within the range from μ−0.1
to μ+ 0.1.

Performance Criteria. To evaluate the accuracy of the

TENDS algorithm on the reconstruction of diffusion network

topologies, we report the F-score (i.e., the harmonic mean of
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Fig. 1. Effect of Diffusion Network Size

precision and recall) of its inferred directed edges, which can

be calculated as

F -score =
2 · Precision ·Recall

Precision+Recall

Precision =
NTP

NTP +NFP
, Recall =

NTP

NTP +NFN

where NTP denotes the number of true positives, i.e., the

edges in the real network that are inferred correctly by the

algorithm; NFP denotes the number of false positives, i.e.,

edges that do not exist in the real network, but that are inferred

falsely by the algorithm; and NFN denotes the number of false

negatives, i.e., edges that exist in the real network, but that are

not inferred by the algorithm.

Benchmark Algorithms. Among the existing infection

timestamp-based algorithms, embedding-based methods do

not infer an explicit diffusion network structure. Therefore,

we compare our algorithm with the state-of-the-art convex

programming-based approach NetRate [9] and the high per-

formance submodularity-based algorithm MulTree [21]. In

addition, as the PATH algorithm [6] requires all path connected

node triples, which are difficult to obtain in practice, we

choose the infection timestamp-free approach LIFT [7] for

comparison. Since NetRate infers the propagation probability

between each two nodes in the network, we give NetRate a

preferential treatment in accuracy comparisons. Specifically,

when calculating the F-scores of edges whose propagation

probabilities exceed a threshold, we use different thresholds

to find the highest F-score and report it as the accuracy of

NetRate. Moreover, since MulTree and LIFT need users to

specify the number of edges to be inferred, we provide the real

number m of edges in the network to these two algorithms.

B. Effect of Diffusion Network Size

To study the effect of diffusion network size on algorithm

performance, we adopt five synthetic networks, i.e., LFR1–

5, where the size varies from 100 to 300. We simulate 150

diffusion processes on each network (i.e., β = 150). In each

simulation, 0.15n nodes are randomly selected as the initial

infected nodes (i.e., α = 0.15), and the mean μ of propagation

probability is set to 0.3.

Fig. 1 reports the F-score and running time of each algo-

rithm, from which we can observe that (1) a larger diffusion
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Fig. 2. Effect of Average Node Degree

network size tends to degrade the accuracy of NetRate, LIFT,

and MulTree, while the accuracy of TENDS is reasonably

insensitive to the diffusion network size and outperforms the

other algorithms. (2) The running time of each algorithm

increases with the diffusion network size. LIFT executes the

fastest (but with low accuracy), and TENDS is an order of

magnitude faster (and has higher accuracy) than both MulTree

and NetRate.

C. Effect of Average Node Degree

The edge density of diffusion network can affect the number

of influence relationships. The average node degree, i.e., the

total number of edges divided by the total number of nodes,

is usually used to represent the edge density of a network.

To study the effect of a network’s average degree on

algorithm performance, we test the algorithms on five synthetic

networks, i.e., LFR6–10, where the average degree varies from

2 to 6. We simulate 150 diffusion processes on each network

(i.e., β = 150). In each simulation, 0.15n nodes are randomly

selected as the initially infected nodes (i.e., α = 0.15), and

the mean μ of propagation probabilities is set to 0.3.

Fig. 2 illustrates the F-score and running time of each

algorithm, from which we can observe that (1) as the average

degrees of diffusion networks increase, accuracy of MulTree,

TENDS, and LIFT decrease. The accuracy of NetRate in-

creases when the average degree increases from 2 to 5 and

then decreases when the average degree reaches 6. Compared

with the other tested algorithms, the TENDS algorithm has

the best accuracy. (2) The running time of MulTree, NetRate,

and TENDS increase with the growth of average degree,

and TENDS shows a significant running time advantage over

MulTree and NetRate.

D. Effect of Node Degree Dispersion

If a diffusion network has a large degree dispersion, i.e.,

different nodes have different numbers of edges, then there will

be variations in the influence diffusion capabilities of different

parts of the network, which can affect the diffusion processes

and the final infection statuses of nodes.

To study the effect of the node degree dispersion on algorith-

m performance, we test the algorithms on five synthetic net-

works, i.e., LFR11–15, where the degree distribution parame-

ters vary from 1 to 3 (the corresponding standard deviation of

1 1.5 2 2.5 3

Degree Dispersion

0.2

0.4

0.6

0.8

1

F
-s

c
o

re

MulTree

NetRate

LIFT

TENDS

(a) F-score

1 1.5 2 2.5 3

Degree Dispersion

10
0

10
2

10
4

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

MulTree

NetRate

LIFT

TENDS

(b) Running Time

Fig. 3. Effect of Node Degree Dispersion of Diffusion Network

the degree varies from about 0.8 to about 0.4). We simulate

150 diffusion processes on each network (i.e., β = 150). In

each of these simulations, 0.15n nodes are randomly selected

as the initially infected nodes (i.e., α = 0.15), and the mean

propagation probability μ is set to 0.3.

Fig. 3 reports the F-score and running time of each algo-

rithm, from which we can observe that (1) an increase in the

degree distribution parameter tends to reduce the accuracy

of MulTree. The accuracy of NetRate, LIFT, and TENDS

is reasonably insensitive to degree dispersion, and TENDS

performs better than other algorithms. (2) Degree dispersion

has little effect on the running times of the algorithms, and

TENDS has better running time performance than NetRate

and MulTree, and LIFT is the fastest.

E. Effect of Initial Infection Ratio

The ratio of initially infected nodes may affect the number

of final infected nodes in a diffusion process.

To study the effect of the initial infection ratio on perfor-

mance, we test the algorithms on real-world networks NetSci

and DUNF with different initial infection ratios α (varied from

0.05 to 0.25). For each initial infection ratio, we simulate 150

diffusion processes on each network (i.e., β = 150) with the

mean propagation probability μ fixed at 0.3.

Figs. 4–5 report the F-score and running time of each

algorithm on NetSci and DUNF, repectively. From the figures,

we can observe that an increase of initial infection ratio

tends to improve the accuracy of MulTree, but degrades

the accuracy of LIFT and NetRate. TENDS is reasonably

insensitive to variations in the initial infection ratio and has

the best accuracy. Further, an increase in the initial infection

ratio has little effect on the running time of TENDS and LIFT,

but results in longer running time for MulTree and NetRate. It

is also noted that similar experimental results can be observed

on synthetic networks LRF1–15.

F. Effect of Propagation Probability

The propagation probabilities between nodes may affect the

correlations between the infections of parent nodes and corre-

sponding child nodes. Therefore, the propagation probabilities

may affect the accuracy of diffusion network reconstruction.

Generally, higher propagation probabilities are expected to

enhance the correlations between the observed infection sta-

tuses of parent nodes and corresponding child nodes, and they
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Fig. 5. Effect of Initial Infection Ratio on DUNF

will likely help the algorithms identify influence relationships

between nodes more effectively, resulting in an accuracy

improvement for the algorithms.

To study the effect of the propagation probability on al-

gorithm performance, we test the algorithms on real-world

networks NetSci and DUNF with different propagation proba-

bility settings, where we vary the mean propagation probability

μ from 0.2 to 0.4. For each propagation probability setting,

we simulate 150 diffusion processes on each network (i.e.,

β = 150). In each simulation, 0.15n nodes are randomly

selected as the initial infected nodes (i.e., α = 0.15).

Figs. 6–7 report the F-score and running time of each

algorithm on NetSci and DUNF, repectively. We can observe

that the accuracy of each algorithm increase as the propagation

probability increases. Further, TENDS generally achieves the

best accuracy, with MulTree being close in one setting. The

running times are similar to what is observed in pervious

experiments. Similar experimental results can also be observed

on synthetic networks LRF1–15.

G. Effect of The Number of Diffusion Processes

The topology reconstruction of a diffusion network is based

on the observed results of diffusion processes. Hence, the

number of diffusion processes may affect the accuracy of the

reconstructed topology. Generally, more diffusion processes

will expose more information about a diffusion network, and

this may help diffusion network reconstruction algorithms

achieve more accurate inference results.

To study the effect of the amount of diffusion processes

on algorithm performance, we test the algorithms on real-

world networks NetSci and DUNF with different number β
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of diffusion processes (β varies from 50 to 250). In each

diffusion process, we randomly select 0.15n nodes as the

initially infected nodes (α = 0.15), and the mean propagation

probability μ is set to 0.3.

Figs. 8–9 show the F-score and running time of each

algorithm on NetSci and DUNF, respectively. We can observe

that a larger number of diffusion processes often helps the

algorithms achieve more accurate results on network structure

inference. TENDS achieves the best accuracy when compared

with the other algorithms. To analyze the infection statuses

collected from more diffusion processes, the algorithms usu-

ally require longer running time, except for that TENDS takes

relatively more time when the number of diffusion processes

is 50. This is because the more diffusion processes, the more

infection data to analyze, resulting in relatively greater compu-

tation costs. Nonetheless, an insufficient number of diffusion

processes will decrease the statistical significance of the real

influence relationships, so that TENDS tends to take into

account more candidate parent nodes to find the most probable

parent nodes. Compared with MulTree and NetRate, TENDS

shows a significant advantage in terms of running time, while

LIFT has the lowest running time. Similar experimental results

can also be observed on synthetic networks LRF1–15.

H. Effect of Infection MI-based Pruning Method

To screen out insignificant candidate parent nodes and elim-

inate redundant computations during the influence relationship

inferencing, TENDS adopts an infection MI-based pruning

method, which finds an infection MI threshold τ for the

identification of insignificant candidate parent nodes.
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To study the effect of the infection MI-based pruning

method on the performance of TENDS, we test TENDS on

real-world networks NetSci and DUNF with different infection

MI thresholds. Since the running time of TENDS with a very

small infection MI threshold (i.e., TENDS without effective

pruning on candidate parent node) on the networks is pro-

hibitively long and beyond acceptable, we omit to report the

corresponding performance results. We vary the MI threshold

from 0.4τ to 2τ , and for each MI threshold, we simulate 150

diffusion processes on each network (i.e., β = 150) with

0.15n initially infected nodes that are randomly selected in

each simulation (i.e., α = 0.15) and the mean propagation

probability μ fixed at 0.3.

Figs. 10–11 report the F-score and running time of TENDS

with different infection MI thresholds on NetSci and DUNF,

respectively. We can observe that the infection MI threshold τ
found by the infection MI-based pruning method is able to help

TENDS achieve a nearly optimal accuracy. When the infection

MI threshold is less than 0.6τ , the smaller MI threshold the

lower accuracy of TENDS. When the MI threshold is more

than τ , the larger infection MI threshold the lower accuracy of

TENDS. This is because a smaller infection MI threshold has

a weaker effect of pruning, and thus leaves more insignificant

candidate parent nodes for parent node selection, causing

precision degradation for TENDS; in contrast, if the infection

MI threshold is too large, it may screen out the real candidate

parent nodes, resulting in a lower recall for TENDS. Further,

compared with using a small infection MI threshold less than

0.6τ , using the infection MI threshold τ found by the infection

MI-based pruning method markedly reduces the running time

of TENDS. Similar experimental results can also be observed
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Fig. 10. Effect of Infection MI-based Pruning Method on NetSci
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Fig. 11. Effect of Infection MI-based Pruning Method on DUNF

on synthetic networks LRF1–15.

In addition, the infection MI measurement is modified

from traditional MI metric to help better reflect the positive

correlations of node infections. To verify the effectiveness of

this modification, we also execute TENDS with the traditional

MI instead of the infection MI, and report the corresponding

performance in Figs. 10–11. From the figures, we can observe

that compared with using traditional MI, using infection MI

enables our approach to achieve a reasonably better accuracy

and slightly higher efficiency. The reason behind is that

infection MI can distinguish positive and negative correlations

of node infections, while traditional MI mixes up these two

types of correlations. Therefore, using infection MI will find

each node relatively less candidate parent nodes, which are

more reasonable.

VI. CONCLUSION

In this paper, we have investigated the problem of how to

reconstruct the topology of a diffusion network based only on

final node infection statuses observed from a set of diffusion

processes. To this end, we have designed a decomposable

scoring criterion, which balances the likelihood of inferred

topology and statistical error, and transforms the problem of

diffusion network reconstruction into finding for each node in

the network a set of most probable parent nodes. Furthermore,

we have presented a heuristic pruning method to eliminate

redundant computations during the search of most probable

parent nodes. Extensive experiments on both synthetic and

real-world networks offer evidence that the proposed approach

is effective and efficient.
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