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Department of Computer Science

NTNU, Trondheim, Norway
noervaag@ntnu.no

Abstract—Dense subtensor detection is a well-studied area,
with a wide range of applications, and numerous efficient ap-
proaches and algorithms have been proposed. Existing algorithms
are generally efficient for dense subtensor detection and could
perform well in many applications. However, the main drawback
of most of these algorithms is that they can estimate only one
subtensor at a time, with a low guarantee on the subtensor’s
density. While some methods can, on the other hand, estimate
multiple subtensors, they can give a guarantee on the density
with respect to the input tensor for the first estimated subsensor
only. We address these drawbacks by providing both theoretical
and practical solution for estimating multiple dense subtensors
in tensor data. In particular, we guarantee and prove a higher
bound of the lower-bound density of the estimated subtensors.
We also propose a novel approach to show that there are multiple
dense subtensors with a guarantee on its density that is greater
than the lower bound used in the state-of-the-art algorithms. We
evaluate our approach with extensive experiments on several real-
world datasets, which demonstrates its efficiency and feasibility.

Index Terms—Tensor, Dense Subtensor, Dense Subgraph, Mul-
tiple Subtensor Detection, Density Guarantee.

I. INTRODUCTION

In many real-world applications, generated data are com-

monly represented as multidimensional array data, referred to

as tensor [1]. Tensors have been used in several important

domains, including geometry and physics, as well as computer

science [2], [3]. As a result of the growth in the number

of applications involving tensors, combined with the increase

of researchers’ interests, numerous tensor-related approaches

have been proposed, including tensor decomposition [4], [5]

and tensor factorization [6]–[8].

An important task related to tensors, addressed in this

paper, is the detection of dense subtensors in a (stream of)

tensors. Dense subtensor detection has many applications,

including detecting intrusions and changes in communication

networks [9], [10], detecting fake reviews [11], and detecting

cliques in social networks [12]. The task of detecting dense

subtensors is generally hard, and the problem of detecting

the densest subtensors is mainly an NP-complete or NP-

hard problem [13], [14]. Thus, instead of detecting exactly

the densest subtensor, approximation is commonly used, and

these methods usually have a polynomial time complexity,

depending on the dimensions and the size of the tensor. M-

Zoom [15] and M-Biz [16] are among the current state-of-

the-art dense subtensor detection algorithms. They extend the

approaches on dense (sub)graph detection, such as [17], [18],
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into tensor detection by considering more dimensions for a

specific problem to obtain highly accurate algorithms. Further,

they utilize a greedy approach to provide local guarantee for

the density of the estimated subtensors. M-Zoom and M-Biz

are able of maintaining k subtensors at a time. Each time

a search is performed, a snapshot of the original tensor is

created, and the density of the estimated subtensor in each

single search is guaranteed locally on the snapshot. Hence,

M-Zoom and M-Biz only provide a density guarantee with

respect to the current intermediate tensor rather than the orig-

inal input tensor. A newer approach, called DenseAlert [19],

was developed to detect an incremental dense subtensor for

streaming data. Despite its efficiency, however, DenseAlert can

estimate only one subtensor at a time, and it can only provide

low density guarantee for the estimated subtensor. Hence, it

might miss a huge number of other interesting subtensors in

the stream.
Extensive studies have shown that DenseAlert, M-Zoom,

and M-Biz generally outperform most other tensor decom-

position methods, such as [20], [21], in terms of efficiency

and accuracy. Nevertheless, an important drawback of these

methods is that they can only provide a loose theoretical

guarantee for density detection, and that the results and

the efficiency are mostly based on heuristics and empirical

observations. More importantly, these methods do not provide

any analysis of the properties of multiple estimated subtensors.

We aim at addressing these drawbacks by proposing a novel

technique for estimating several dense subtensors. First, we

provide a well-founded theoretical solution to prove that there

exist multiple dense subtensors such that their density are guar-

anteed to be between specific lower and upper bounds. Second,

to demonstrate applicability, we introduce a new algorithm,

named MUST (MUltiple Estimated SubTensors), which not

only supports the aforementioned proof, but also provides an

effective method to estimate these dense subtensors.
To give an overview of the differences between our method

and the existing approaches, Table I compares the character-

istics of MUST against current state-of-the-art algorithms. In

summary, the main contributions of this work are as follows:

1) We present a novel theoretical foundation, along with

proofs showing that it is possible to maintain multiple

subtensors with a density guarantee.

2) We provide a new method that is capable of estimating

subtensors with a density guarantee that is higher than those

provided by existing methods. Specifically, the new density

bound for the dense subtensor is 1
N (1 + N−1

min(a,
√
n)
), while
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TABLE I: A brief comparison of between existing algorithms and MUST

Approximation Multiple estimation
support

Single density
guarantee

Multiple density
guarantee

Number of
guaranteed estimations

Bound guarantee*

Goldberg’s [13] � 1 1

GREEDY [17] � � 1 1
N

GreedyAP [22] � � 1 1
N

M-Zoom [15] � � � 1 1
N

DenseAlert [19] � � 1 1
N

M-Biz [16] � � � 1 1
N

FrauDar [23] � � 1 1
N

ISG+D-Spot [24] � �

MUST � � � � min(1 + n
2N , 1 +N(N-1)) 1

N (1 + N-1
min(a,

√
n) )

* N is the number of ways of tensor (with graph, we consider its number of ways is 2 because we can represent a graph in a form of matrix). a is the size
of the densest region.

the current widely-used bound is 1/N . Here, n and a denote

the size of the tensor and the densest subtensor, respectively,

and N is the number of ways of the tensor.

3) We prove that there exist at least min(1+ n
2N , 1+N(N −

1)) subtensors that have a density greater than a lower bound

in the tensor.

4) We perform an extensive experimental evaluation on real-

world datasets to demonstrate the efficiency of our solution.

The proposed method is up to 6.9 times faster and the

resulting subtensors have up to two million times higher

density than state-of-the-art methods.

The rest of this paper is organized as follows. Section II

describes the preliminaries for the method and the related

work. Section III elaborates on the theoretical foundation

for providing a new density guarantee of dense subtensors.

Section IV presents the solution for detecting multiple dense

subtensors with a density guarantee. Section V discusses the

evaluation of our method and explains its applicability. Finally,

Section VI concludes the paper and outlines the future work.

Reproducibility: The source code and data used in the pa-

per are publicly available at https://bitbucket.org/duonghuy/

mtensor.

II. BACKGROUND, RELATED WORK AND NOTATION

The problem of finding the densest subgraphs is generally

NP-complete or NP-hard [13], [25]. Due to the complexity

of the exact algorithm with which an exponential number of

subgraphs must be considered, it is infeasible for large datasets

or data streams. Therefore, approximation methods are com-

monly used for detecting the densest regions [17], [26], [27].

Ashiro et al. [26] proposed an efficient greedy approximation

algorithm to find the optimal solution for detecting the densest

subgraph in a weighted graph. Their idea is to find a k-vertex

subgraph of an n-vertex weighted graph with the maximum

weight by iteratively removing a vertex with the minimum

weighted-degree in the currently remaining graph, until there

are exactly k vertices left. Charikar [17] studied the greedy

approach (GREEDY) further, which showed that the approxi-

mation can be solved by using linear programming technique.

Specifically, the author proposed a greedy 2-approximation for

this optimization problem, with which a density guarantee of

the dense subgraph is greater than a half of the maximum

density in the graph. Many algorithms have later adopted

the greedy method with a guarantee on the density of dense

subgraphs targeting specific applications, such as fraud de-

tection, event detection, and genetics applications [22], [23],

[28], [29]. Common for these works is their use of the greedy

2-approximation to find a dense subgraph.

Inspired by the theoretical solutions in graphs, numerous

approaches have been proposed to detect dense subtensors

by using the same min-cut mechanism [16], [19]. As men-

tioned earlier, mining the densest subtensor in a tensor is

hard, and an exact mining approach has a polynomial time

complexity [13], thus making it infeasible for streaming data

or very large datasets. To cope with this, approximate meth-

ods/algorithms are commonly used. Among the proposed al-

gorithms, DenseAlert [19], M-Zoom [15], and M-Biz [16] are

– because of their effectiveness, flexibility, and efficiency – the

current state-of-the-art methods. They are far more faster than

other existing algorithms, such as CPD [20], MAF [9], and

CrossSpot [30]. DenseAlert, M-Zoom, and M-Biz adapt the

theoretical results from dense (sub)graph detection, i.e., [29],

[31], [32], to tensor data by considering more dimensions than

two. The algorithms utilize a greedy approach to guarantee the

density of the estimated subtensors, which has also been shown

to yield high accuracy in practice [30]. However, the adopted

density guarantee is the same as in the original work, which

also applies for the more recent algorithm, ISG+D-Spot [24].

This means that with an N -way tensor, the density guarantee

is a fraction of the highest density with the number of the

tensor’s way N . ISG+D-Spot converts an input tensor to a

form of graph to reduce the number of ways, but it drops all

edges having weight less than a threshold. As a result, ISG+D-
Spot only provides a loose density guarantee.

As discussed in Section I, DenseAlert, M-Zoom and M-

Biz can only guarantee low density subtensors. These methods

employed the same guarantee as in the original work without

any further improvement in the density guarantee. To address
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the limitations of the previous approaches, we generalize the

problem by maintaining multiple dense subtensors, with which

we provide a concrete proof to guarantee a higher lower bound

density and show that they have a higher density guarantee

than the solutions in prior works.

In the following, we present the fundamental preliminaries

of the dense subtensor detection problem, based on [16], [19].

Definition 1 (Tensor). A tensor, T, is a multidimensional array
data. The order of T is its number of ways. Given a N -way
tensor, on each way, there are multiple spaces, each of which
is called a slice.

Definition 2 (SubTensor). Given an N-way tensor T , Q is a
subtensor of T if it is composed by a subset s of the set of
slices S of T , and there is at least one slice on each way of
T . Intuitively, Q is the left part of T after we remove all slices
in S but not in s.

Definition 3 (Entry of Tensor). E is an entry of an N-way
(sub)tensor T if it is a subtensor of T and is composed by
exactly N slices.

Definition 4 (Size of a (sub)Tensor). Given a (sub)Tensor Q,
the size of Q is the number of slices that compose Q.

Definition 5 (Density). Given a (sub)tensor Q, the density of
Q, denoted by ρ(Q), is computed as: ρ(Q) = f(Q)

size of Q , where
f(Q) is mass of the (sub)tensor Q, and is computed as the
sum of every entry values of Q.

Definition 6 (Weight of Slice in Tensor). Given a tensor
T . The weight of a slice q in T is denoted by wq(T ), and
is defined as the sum of entry values composing by the
intersection of T and q.

Definition 7 (D-Ordering). An ordering π on a (sub)tensor Q
is a D-Ordering, if

∀q ∈ Q, q = argmin
p∈Q∧π−1(p)≥π−1(q)

wp(πq), (1)

where πq = {x ∈ Q|π−1(x) ≥ π−1(q)}, π−1(q) is to indicate
the index of the slice q in π ordering, and wp(πq) is the weight
of p in πq . Intuitively, the D-Ordering is the order that we pick
and remove the minimum slice sum in each step.

The principal of D-Ordering in tensor data is the similar

to the min-cut mechanism in dense subgraph detection, like

GREEDY [17], [26].

Definition 8 (Mining Dense Subtensor Problem). Given a
tensor T . The problem of dense subtensor detection is to find
subtensors Q ∈ T that maximize the density of Q.

For readability, the notations used in this paper are summa-

rized in Table II. In the rest of the paper, when specifying a

(sub)tensor, we use its name or set of its slices interchangeably.

Example 1. Let us consider an example of 3-way tensor T as
in Figure 1. The value in each cell is the number of visits that

TABLE II: Table of notations

Symbols Description

T , Q Tensor data T , Q
Ii The i-th dimension of tensor I
|Ii| Number of slices on way Ii of a tensor I
T ∗ Densest subtensor T ∗
Z, z0 Zero subtensor Z with zero point z0
B Backward subtensor
F Forward subtensor
n,N Size and number of ways of tensor data
ρ, ρ∗ Density ρ, highest density ρ∗ in tensor
ρ(Q) Density of (sub)tensor Q
π An ordering π
Q(π, i) A subtensor of Q formed by a set of slices {p ∈

Q, π−1(p) ≥ i}
ρπ(i) Density of subtensor Q(π, i)
q A slice of a tensor
a Size of densest subtensor
b Number of slices in Zero subtensor such that not in densest

subtensor
m Size of Zero subtensor Z, m = a+ b
f(Q) Mass of the (sub)tensor Q
wq(T ) Weight of slice q in T

(2,1)

0

7

5

(2,2)

0

2

5

(2,3)

3

0

0

0

1

(1,3)

(1,2)

(1,1)

1
0

3

(3,2)

(3,1)

User

Page

Date

Fig. 1: An example of 3-way tensor.

a user (mode User) visits a web page (mode Page) on a date
(mode Date). The values of hidden cells are all zero. The set
of slices of tensor T is {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2)}. A subtensor Q formed by the following slices
{(1,2), (1,3), (2,1), (2,2), (3,1)} is the densest subtensor (the
yellow region) and the density of Q is (5+5+7+2)/5 = 3.8.

The problem of mining dense subtensors [16], [19] can be

presented and solved as follows. Given a list of n variables

dπ(i) (1 ≤ i ≤ n), where dπ(i) is calculated during the

construction of D-Ordering. Its value at each time is picked by

the minimum slice sum of the input (sub)tensor. Then, a Find-
Slices() function finds the index i∗ = argmax

1≤i≤n
ρπ(i), which is

the location to guarantee a subtensor with a density greater

than the lower bound. Find-Slices(), shown in Algorithm 1,

is a function that was originally defined in [15], [16], [19],

which is a principal function for estimating a subtensor, such

that its density is greater than the lower bound. The density

of an estimated subtensor is guaranteed as follows.
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Algorithm 1 Find-Slices

Require: A D-Ordering π on a set of slices Q

Ensure: An estimated subtensor S

1: S ← ∅, m← 0
2: ρmax ← −∞, qmax ← 0
3: for (j ← |Q|..1) do
4: q ← π(j), S ← S ∪ q
5: m← m+ dπ(q)
6: if m/|S| > ρmax then
7: ρmax ← m/|S|
8: qmax ← q
9: end if

10: end for
11: return Q(π, π−1(qmax))

Theorem 1 (Density Guarantee) [16], [19]). The density of
the subtensor returned by the Algorithm 1 is greater than or
equal to 1

N ρ∗, where ρ∗ is the highest density in the input
tensor.

Proof. The proof of this theorem was provided in [16], [19].

For convenience, we recall their proof as follows. Let q∗ ∈ T ∗

be the slice such that π−1(q∗) ≤ π−1(q), ∀q ∈ T ∗. This means

that q∗ is the slice in the densest subtensor having the smallest

index in π. Therefore ρπ(i
∗) ≥ ρπ(π

−1(q∗)) ≥ 1
N ρ∗.

III. THE NEW DENSITY GUARANTEE OF SUBTENSOR

As can be inferred from the discussion above, the basic

principle underlying DenseAlert, M-Zoom, and M-Biz is The-

orem 1. It is worth noting that this theorem guarantees the

lower bound of the density on only one estimated subtensor

from an input tensor. To the best of our knowledge, none of

existing approximation approaches provides a better density

guarantee than GREEDY. Based on this, we can raise the

following questions: (1) Can this lower bound be guaranteed

higher? (2) Are there many subtensors having density greater

than the lower bound? (3) Can we estimate these subtensors?

In this section, we answer question (1) by providing a proof

for a new higher density guarantee. Questions (2) and (3)

will be answered in the next section by providing a novel

theoretically sound solution to guarantee the estimation of

multiple dense subtensors that have higher density than the

lower bound.

A. A New Bound of Density Guarantee

We prove that the estimated subtensors provided by the

proposed methods have a higher bound than in the state-of-

the-art solutions.

In [16], [19], the authors showed that the ,density of the sub-

tensor ρπ(π
−1(q∗)) ≥ 1

N ρ∗, hence satisfying Theorem 1. A

sensible question is: Can we estimate several subtensors with

a higher density guarantee than the state-of-the-art algorithms?

In the following subsections, we introduce our new solution

to improve the guarantee in the aforementioned Find-slices()
function and show how a density with higher lower bound

than that in [16], [19] can be provided. We present several

theorems and properties to support our solution to estimate

multiple dense subtensors.

Definition 9 (Zero Subtensor). Given a tensor T , T ∗ is the
densest subtensor in T with density ρ∗, π is a D-ordering on T ,
and z0 = min

q∈T∗
π−1(q) is the smallest indices in D-Ordering

π of all slices in T ∗. A subtensor called Zero Subtensor of T
on π, denoted as Z = T (π, z0), and z0 is called zero point.

Theorem 2 (Lower Bound Density of the Estimated Subten-

sor). Given an N-way tensor T , and a D-ordering π on T . Let
Z and z0 be a Zero Subtensor and a zero point, respectively.
Then, there exists a number b ≥ 0 such that the density of the
estimated subtensor Z is not less than Na+b

N(a+b)ρ
∗, where a and

ρ∗ are the size and density of the densest subtensor T ∗.

Proof. We denote w0 = wπ(z0)(Z). Further, note that because

T ∗ is the densest subtensor. Then,

∀q ∈ T ∗, wq(T
∗) ≥ ρ∗ ⇒ w0 ≥ ρ∗.

Due to the characteristic of D-Ordering, we have

wq(Z) ≥ wπ(z0)(Z) = w0, ∀q ∈ Z.

Consider a way Ii among the N ways of the tensor T . Then,

f(Z) =
∑

q∈T∗∧q∈Ii
wq(Z) +

∑
q/∈T∗∧q∈Ii

wq(Z).

Furthermore, regarding the way we choose Z, we have

T ∗ ⊆ Z ⇒
∑

q∈T∗∧q∈Ii
wq(Z) ≥

∑
q∈T∗∧q∈Ii

wq(T
∗) = f(T ∗).

Therefore,

f(Z) ≥ f(T ∗) +
∑

q/∈T∗∧q∈Ii
wq(Z) ≥ f(T ∗) + bIiw0, (2)

where bIi is the number of slices in Z on dimension Ii that

are not in T ∗. Let b =
∑N

i=1 bIi . Applying Eq. 2 on N ways,

we get

Nf(Z) ≥ Nf(T ∗) + w0

∑
bIi

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + w0b

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + bρ∗

⇒ρ(Z) ≥ Na+ b

N(a+ b)
ρ∗

The equality happens when b = 0 or in the simple case when

N = 1. However, if these conditions hold, the Zero Subtensor

becomes the densest subtensor T ∗. In the next paragraphs, we

consider the higher order problem of tensor with order N > 1.

Property 1. The lower bound density in Theorem 2 is greater
than 1

N of the highest density and this bound is within [ 1N (1+
a(N−1)

n ), 1].

Proof. Let Z be the fraction of the density of the estimated

subtensor, and R denote densest subtensor. We have the

following properties about the lower bound fraction:
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1) In the simplest case, when N = 1, the lower bound rate

values both in the previous proof and in this proof are 1.

This means that the estimated subtensor Z is the densest

subtensor, with the highest density value. Otherwise,

R ≥ Na+b
N(a+b) =

a+b
N(a+b) +

(N−1)a
N(a+b) > 1

N , ∀N > 1.

Moreover, since the size of Z is not greater than

n, we have

R ≥ 1
N (1 + (N−1)a

(a+b) ) ≥ 1
N (1 + a(N−1)

n ).
2) In conclusion, we have the following boundary of the

density of estimated Zero Subtensor, Z:

ρ(Z) =

{
ρ∗, if N = 1 ∨ b = 0
1
N (1 + a(N−1)

n )ρ∗, if a+ b = n.

In an ideal case, when the value of b goes to zero, the estimated

subtensor becomes the densest subtensor, and its density can

be guaranteed to be the highest.

B. A New Higher Density Guarantee

In this subsection, we provide a new proof to give a new

higher density guarantee of dense subtensor.

Theorem 3 (Upper Bound of the Min-Cut Value in Tensor).
Given an N-way tensor T with size n, and a slice q is
chosen for the minimum cut, such that the weight of q in T
is minimum. Then, the weight of q in T satisfies the following
inequality:

wq(T ) ≤ Nρ(T ) (3)

Proof. Because q is a slice having the minimum cut, we have

wq(T ) ≤ wp(T ), ∀p ∈ T . Summing all the slices in the tensor

gives

|T |wq(T ) ≤
∑
p∈T

wp(T ) = Nf(T )

⇒wq(T ) ≤ Nf(T )

|T | = Nρ(T )

Let Ti(1 ≤ i ≤ a) be the subtensor right before we remove

i-th slice of T ∗, and qi be the slice of T ∗ having the minimum

cut wi at the step of processing Ti. Since the size of the densest

T ∗ is a, we have a indexes from 1 to a. Note that T1 is the

Zero subtensor Z. Further, let MIi denote the index of the last

slice in way Ii of T ∗ that will be removed. Then, we have

following property:

Property 2 (Upper Bound of the Last Removed Index). The
minimum index of all MIi , 1 ≤ i ≤ N , denoted by M , is not
greater than (a−N + 1), i.e., M = min(MIi) ≤ a−N + 1.

Proof. Let MIi ,MIj be the indexes of the last removed slices

of the two ways Ii and Ij . Further, assume that the difference

between MIi , MIj is Δ(MIi ,MIj ) = |MIi −MIj | ≥ 1, and

that we have N numbers (N ways) and the maximum (the last

index) is a. Then, we get

max(MIi)−min(MIi) ≥ N − 1

⇒M = min(MIi) ≤ a−N + 1

Theorem 4. The sum of min-cut of all slices from index 1 to
M is greater than the mass of the densest subtensor T ∗:

M∑
i=1

wqi(Ti) ≥ f(T ∗) (4)

Proof. Let E be any entry of the densest subtensor T ∗ and E
is composed by the intersection of N slices, qIx(1 ≤ x ≤ N),
qIx is on the way Ix.

Assume that the first removed index of all the slices

composing E is at index i. Since this index cannot be greater

than M , the entry E is in Ti, and its value is counted in

wqx(Tx). Therefore, we have:
∑M

i=1 wqi(Ti) ≥ f(T ∗)

Let ρmax be the maximum density among all subtensors

Ti, (i ≤ i ≤M). According to Theorems 3 and 4, we have

f(T ∗) ≤
M∑
i=1

wqi(Ti) ≤
M∑
i=1

Nρ(Ti) ≤MNρmax (5)

⇒aρ∗ ≤ N(a−N + 1)ρmax

⇒ρmax ≥ ρ∗

N

a

a−N + 1
. (6)

Theorem 5 (Better Density Guarantee of Dense Subtensor).
The density guarantee of dense subtensor mining by min-cut
mechanism is greater than 1

N (1 + N−1
min(a,

√
n)
)ρ∗.

Proof. According to Theorem 2 and Property 1, we have

ρmax ≥ ρ(T1) ≥ 1

N
(1 +

a(N − 1)

n
)ρ∗ (7)

Furthermore, by Inequation 6, we also have

ρmax ≥ ρ∗

N

a

a−N + 1
≥ 1

N
(1 +

N − 1

a
)ρ∗ (8)

By combining Eq. 7 and Eq. 8, we get

ρmax ≥ 1

N
(1 +

1

2
(
a(N − 1)

n
+

N − 1

a
))ρ∗

⇒ρmax ≥ 1

N
(1 +

N − 1√
n

)ρ∗

Note that since ρmax ≥ 1
N (1 + N−1

a )ρ∗, we finally have

ρmax ≥ 1

N
(1 +

N − 1

min(a,
√
n)

)ρ∗

IV. THE SOLUTION FOR MULTIPLE DENSE SUBTENSORS

As shown in Theorem 2, ρ(Z) ≥ Na+b
N(a+b)ρ

∗, where Z =

T (π, z0) is the Zero subtensor. As discussed before, the

state-of-the-art algorithm, DenseAlert, can estimate only one

subtensor at a time, and a density guarantee is low, i.e., 1
N of

the highest density. M-Zoom (or M-Biz) is, on the other hand,

able of maintaining k subtensors at a time by repeatedly calling

the Find-Slices() function k times, with the input (sub)tensor

being a snapshot of the whole tensor (i.e., the original one).

Recall, however, that such processing cannot guarantee any

density boundary of the estimated subtensors with respect to

the original input tensor. Therefore, the estimated density of

the subtensors is very low. With this, an important question
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is: How many subtensors in n subtensors of D-ordering as in

Algorithm 1 having density greater than a lower bound density

and what is the guarantee on the lower bound density with

respect to highest density? This section answers this question.

A. Forward Subtensor from Zero Point

Again, given a tensor T , T ∗ is the densest subtensor in T
with density ρ∗. π is a D-ordering on T , and the zero point

z0 = min
q∈T∗

π−1(q) is the smallest indices in π among all slices

in T ∗ (cf. Definition 9).

Definition 10 (Forward Subtensor). A subtensor is called i-
Forward subtensor in T on π, denoted by Fi, if Fi = T (π, z0−
i), 0 ≤ i < z0.

Let us consider an i-forward subtensor Fi = T (π, i), i < z0.

Because i < z0, Z ⊆ Fi. This means that f(Fi) ≥ f(Z). As

a result of Theorem 2, we have the following:

Nf(Z) ≥ (Na+ b)ρ∗

⇒ (Na+ b)ρ∗ ≤ Nf(Z) ≤ Nf(Fi)

⇒ (Na+ b)ρ∗ ≤ N(a+ b+ i)ρ(Fi)

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗.

From the above inequality, we get the following theorem.

Theorem 6. The density of every i-Forward subtensor Fi =
T (π, i), where i ≤ N × (N − 1) is greater than or equal to
1/N of the highest density in T , ρ∗.

Proof. From the above inequality, ρ(Fi) ≥ Na+b
N(a+b+i)ρ

∗.
If we have i ≤ N(N − 1), then

⇒ a+ b+ i ≤ a+ b+N(N − 1)

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ Na+ b

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+ a(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+N(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗ ≥ 1

N
ρ∗

Property 3. Among n subtensors T (π, i), 1 ≤ i ≤ n, there is
at least min(z0, 1 + N(N − 1)) subtensors having a density
greater than 1

N of the densest subtensor in T .

Proof. According to Theorem 6, there is at least min(z0, 1+
N(N − 1)) forward subtensors that have density greater than
1
N of the highest density.

B. Backward Subtensor from Zero Point

We have considered subtensors formed by adding more

slices to Z. Next, we continue investigating the density of

the subtensors by sequentially removing slices in Z.

Definition 11 (Backward Subtensor). A subtensor is called
i-Backward subtensor in T on π, denoted by Bi, if Bi =
T (π, z0 + i), i ≥ 0.

Let us consider an i-backward subtensor Bi. We show that

its density is also greater than the lower bound density.

Property 4. The density of the 1-Backward Subtensor, B1 is
greater than or equal to 1

N ρ∗.

Proof. Due to the limitation of space, we omit the proof and

provide it in an extension supplement upon request.

Theorem 7. Let Bk denote the k-Backward subtensor, Bk =
T (π, z0 + k). Density of Bk is greater than or equal to 1/N
of the highest density in T, ∀k ≤ b

N .

Proof. Note that f(Bi) = f(Bi+1)+wπ(z0+i)(Bi). Let B0 =
Z, and in the following we let wi(Bi) = wπ(z0+i)(Bi) for

short. Then, we have

Kf(Z) = K(f(B1) + w0(B0))

= K(f(B2) + w0(B0) + w1(B1))

= Kf(Bk) +K
k−1∑
i=0

wi(Bi).

Because T ∗ ⊆ Z, then:

Kf(Z) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗
wq(Z), (9)

By substitution, we get

Kf(Bk) +K
k−1∑
i=0

wi(Bi) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗
wq(Z)

⇒ Kf(Bk) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗
wq(Z)−K

k−1∑
i=0

wi(Bi).

We denote the set Q = {q| q ∈ Z ∧ q /∈ T ∗} by

{q1, q2, . . . , qb}. Note that Bi ⊆ Z. Thus ∀j, i, wqj (Z) ≥
wqj (Bi) ≥ wi(Bi), and wπ(z0)(Z) ≥ wπ(z0)(T

∗) ≥ ρ∗.
On the other hand, we have the condition of k: b − k ×

K ≥ b − k × N ≥ 0. In conclusion, this gives the following

inequality:

Kf(Bk)−Kf(T ∗) ≥
∑

q∈Z∧q/∈T∗
wq(Z)−K

k−1∑
i=0

wi(Bi)

≥
k−1∑
i=0

K∑
j=1

wq(i×K+j)
(Z)−Kwi(Bi) +

b∑
i=k×K+1

wqi(Z)

≥ (b− k ×K)× Eπ(z0)(Z)

≥ (b− k ×K)ρ∗

⇒ Kρ(Bk)(a+ b− k) ≥ Kaρ∗ + (b− k ×K)ρ∗

⇒ ρ(Bk) ≥ Ka+ b− k ×K

K(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥ K(a− k) + b

K(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥ 1

K
ρ∗ ≥ 1

N
ρ∗.

Theorem 8. Assume that the size of the Zero subtensor Z, (a+
b), is sufficiently big. Let Bk denote the k-Backward subtensor.
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The density of Bk is greater than or equal to 1/N of the
highest density in T, ∀k ≤ min( a

N , (a+b)(N−1)
N2 ).

Proof. Assume Ix is the way that has the smallest number of

slices in T ∗, with a number of slices s. Then, s ≤ a/N .

Let Q = {q ∈ Z} = {q1, . . . ,qs, . . . , qa, . . . , qa+b}, denote

the set of slices in Z, and (a + b) be the size of the Zero

subtensor.

Let Bk be a k-Backward Subtensor of T , with 1 ≤ k ≤
(a+b)
N . Then,

Nf(Z) =

s∑
i=1

wqi(Z)+
a+b∑

i=s+1

wqi(Z) ≥ f(T ∗)+
a+b∑

i=s+1

wqi(Z).

Because Nf(Z) = N(f(Bk) +
∑k−1

i=0 wi(Bi)), the above

inequality can be rewritten as

⇒ N(f(Bk) +
k−1∑
i=0

wi(Bi)) ≥ f(T ∗) +
a+b∑

i=s+1

wqi(Z).

The subtensor Bi is a backward subtensor of Z by removing

i slices in Z, i.e., Bi ⊆ Z and ∀j, i, Eqj (Z) ≥ Eqj (Bi) ≥
Eπ(z0+i)(Bi). Hence,

Nf(Bk) ≥ f(T ∗) +
a+b∑

i=s+1

wqi(Z)−N
k−1∑
i=0

wi(Bi)

= f(T ∗) +
k−1∑
i=0

N∑
j=1

wq(s+i×N+j)
(Z)−Nwi(Bi)

+

a+b∑
i=s+k×N+1

wqi(Z)

≥ f(T ∗) + (a+ b− kN − s)wπ(z0)(Z).

Because

a+ b− kN − s ≥ a+ b− kN − a

N

≥ (a+ b)(N − 1) + b

N
− kN

≥ 0, ∀k ≤ (a+ b)(N − 1)

N2
,

we have

Nf(Bk) ≥ aρ∗ + (a+ b− kN − s)ρ∗

Nf(Bk) ≥ (2a+ b− kN − s)ρ∗

⇒ ρ(Bk) ≥ (2a+ b− kN − s)

N(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥ 1

N

2a+ b− kN − s

a+ b− k
ρ∗

⇒ ρ(Bk) ≥ 1

N

(a+ b− k) + (a− k(N − 1)− a/N)

a+ b− k
ρ∗

⇒ ρ(Bk) ≥ 1

N
(1 +

(a− kN)(N − 1)

N(a+ b− k)
)ρ∗

⇒ ρ(Bk) ≥ ρ∗

N
, ∀k ≤ a

N
.

C. Multiple Dense Subtensors with High Density Guarantee

In this subsection, we show that there exist multiple sub-

tensors that have density values greater than a lower bound in

the tensor.

Theorem 9. Given an N-way tensor T with size n >> N ,
an order π is a D-Ordering on T , and Algorithm 1 processes
m = (n − N) subtensors. Then, there are at least min(1 +
n
2N , 1 + N(N − 1)) subtensors among m subtensors, such
that they have density greater than 1/N of the highest density
subtensor in T .

Proof. Let Z denote the Zero subtensor of T on π by

Algorithm 1, and the zero index is z0, such that N ≤ n− z0.

Then, we have the following:

1) By Theorem 6, there are at least min(N(N − 1), z0)
forward subtensors F1, F2, . . . , having density higher

than 1
N ρ∗.

2) By Theorems 7-8, there are backward subtensors

B1, B2, . . . , having density higher than 1
N ρ∗. The princi-

ple of the number of backward subtensors having density

greater than 1
N of the highest density is as follows:

{
b
N , by Theorem 7.

min( a
N , (a+b)(N−1)

N2 ), by Theorem 8.
(10)

From Eq. 10, there is at least max( b
N ,min( a

N , (a+b)(N−1)
N2 ))

backward subtensors having density greater than the lower

bound.

If a
N ≤ (a+b)(N−1)

N2 , then number of backward subten-

sors having density greater than the lower bound is at least

max( a
N , b

N ) ≥ a+b
2N .

Otherwise, we have

min(
a

N
,
(a+ b)(N − 1)

N2
) =

(a+ b)(N − 1)

N2
≥ a+ b

2N
.

Hence, the number of backward subtensors is at least a+b
2N .

Further, if we combine this with the number of forward

subtensors, then there is at least min(1+ n
2N , 1+N(N − 1))

subtensors in the tensor having density greater than a lower

bound. This can be proved as follows.

According to Theorem 8, we have the number of backward

subtensors having density greater than the lower bound, de-

noted by bw, and bw ≥ (a+b)
2N . By Theorem 6, we have the

number of subtensors having density greater than the lower

bound, we denote this by fw, and fw ≥ min(N(N −1), z0).

If z0 ≥ N(N −1), then the number of subtensors that have

density values greater than a lower bound is 1 + fw + bw ≥
1+N(N−1), where 1 is used to account for the zero subtensor.

643



Otherwise (i.e., z0 ≤ N(N − 1)), we have a + b + z0 = n,

and we get

1 + fw + bw ≥ 1 +
(a+ b)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
(n− z0)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
n

2N
+

z0(2N − 1)

2N

⇒1 + fw + bw ≥ 1 +
n

2N
.

This gives that the number of subtensors having density

values greater than the lower bound is 1+fw+bw ≥ min(1+
n
2N , 1 +N(N − 1)).

If (a+ b) ≤ n−N(N − 1), then we have at least N(N −
1) forward subtensors having density greater than 1

N of the

highest density.

Otherwise, if n >> N such that

(a+ b) ≥ n−N(N − 1) ≥ 2N3

⇒ then we get
(a+ b)

2N
≥ N(N − 1).

In conclusion, we have at least N(N−1) backward subtensors,

each having density greater than 1
N of the highest density. By

adding the zero subtensors, we have at least (1 +N(N − 1))
subtensors having density greater than 1

N of the highest density

each.

Our approach described above can be employed to improve

the state-of-the-art algorithms on estimating multiple dense

subtensors using Algorithm 2.

Algorithm 2 Multiple Estimated Subtensors

Require: A D-Ordering π on a set of slices Q of tensor T
Ensure: Multiple estimated subtensors with guarantee on

density

1: Initialization() � density measure ρ, build tensor

2: TS← ∅, S ← ∅
3: Number of estimated subtensors: mul← 0
4: mul← min(1 + n

2N , 1 +N(N − 1))
5: for (j ← |Q|..1) do
6: q ← π(j)
7: S ← S ∪ q
8: TS.add (S, ρ(S))
9: end for

10: Sort TS by descending order of density

11: return top-mul subtensors having highest density in TS

Complexity discussion. In order to estimate k dense sub-

tensors, the complexity of M-Zoom and M-Biz are high.

The worst-case time complexity of M-Zoom and M-Biz is

O(kNnlogn) [16]. Its complexity increases linearly with

respect to the number of estimated subtensors, k.

Focusing on the proposed solution, MUST, the complexity

includes the cost of D-Ordering, which is O(Nnlogn), and

the cost of executing Algorithm 2, which utilizes Google

Guava ordering1, is O(nlogn), in the worst case. In total, the

complexity MUST is O(Nnlogn), which does not depend on

the number of estimated subtensors k.

V. EXPERIMENTAL RESULTS

In this section, we present the results from our experi-

mental evaluation, where we evaluate the performance of our

proposed method in terms of both the execution time (i.e.,

efficiency) and the accuracy of the density of the estimated

subtensors (i.e., effectiveness).

A. Experimental Setup

We used four widely-used density measures in our experi-

ments: arithmetic average mass (ρa) [17]; geometric average

mass (ρg) [17]; entry surplus (ρe) [29], with which the surplus

parameter α was set to 1 as default; and suspiciousness

(ρs) [30]. Note that in M-Zoom (M-Biz), Dense-Alert, and in

this work, the density measure used for the proof of guarantee

is arithmetic average mass. Nevertheless, the only difference

among the density measures is the choice of coefficients.

Hence, we can utilize the same proof for other mass measures

to get similar results. In this paper, we specifically provide

theoretical proofs for density guarantee of dense subtensors.

Here, it is worth noting that we can easily extend and apply

our proofs of higher density for dense subgraphs, as well.

We implemented our approach based on the implementation

used in the previous approaches [15], [16], [19]. We compared

the performance of the proposed solution with the state-of-the-

art algorithms, M-Zoom and M-Biz (where M-Zoom was used

as the seed-subtensor). To do this, in our experiments, we run

the algorithms using M-Zoom, M-Biz, and MUST to get top

10 subtensors that have the highest density. We carried out

all the experiments on a computer running Windows 10 as

operating system, having a 64-bit Intel i7 2.6 GHz processor

and 16GB of RAM. All the algorithms were implemented

in Java, including M-Zoom and M-Biz, the source codes for

which were provided by the authors2.

B. Datasets

In order to evaluate the performance of the proposed so-

lution and compare it with the state-of-the-art algorithms, we

used the following 10 real-world datasets:

• Air Force, which contains TCP dump data for a typical U.S.

Air Force LAN. The dataset was modified from the KDD

Cup 1999 Data and was provided by Shin et al. [16].

• Android, which contains product reviews and rating meta-

data of applications for Android from Amazon [33].

• Darpa, which is a dataset collected by MIT Lincoln Lab

to evaluate the performance of intrusion detection systems

(IDSs) in cooperation with DARPA [34].

• Enron Emails, provided by the Federal Energy Regulatory

Commission to analyze the social network of employees

during its investigation of fraud detection and counter

terrorism.

1https://opensource.google.com/projects/guava
2https://github.com/kijungs/mzoom
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TABLE III: Summary of the real-world datasets used in the experiments

Dataset Instance Structure Entry Size #Instances #Ways Data Type

Air Force
(protocol, service, flag, s-bytes, d-bytes,

#connects
3 × 70 × 11 × 7,195 ×

4,898,431 7 TCP Dumps
counts, srv-counts, #connects) 21,493 × 512 × 512

Android (user, application, score, date, rate) rate 1,323,884 × 61,275 × 5 × 1,282 2,638,173 4 Ratings

Darpa (s-ip, d-ip, date, #connects) #connects 9,484 × 23,398 × 46,574 4,554,344 3 TCP Dumps

Enron Emails (sender, receive, word, date, count) count 6,066 × 5,699 × 244,268 × 1,176 54,202,099 4 Text, Social Network

Enwiki (user, page, time, #revisions) revisions 4,135,167 × 14,449,530 × 132,079 57,713,231 3 Activity Logs

Kowiki (user, page, time, #revisions) revisions 662,370 × 1,918,566 × 125,557 21,680,118 3 Activity Logs

LBNL Network (s-ip, s-port, d-ip, d-port,date, packet ) packet 1,605 × 4,198 × 1,631 × 4,209 × 868,131 1,698,825 5 Network

NIPS Pubs (paper, author, word, year, count) count 2,482 × 2,862 × 14,036 × 17 3,101,609 4 Text, Academic

StackO (user, post, favourite, time) favourite 545,195 × 96,678 × 1,154 1,301,942 3 Activity Logs

YouTube (user, user, connected, date) connected 1,221,280 × 3,220,409 × 203 9,375,374 3 Social Network

• Enwiki and Kowiki provided by Wikipedia3. Enwiki and

Kowiki are metadata representing the number of user revi-

sions on Wikipedia pages at given times (in hour) in English

Wikipedia and Korean Wikipedia, respectively.

• LBNL-Network, which consists of internal network traffic

captured by Lawrence Berkeley National Laboratory and

ICSI [35]. Each instance contains the packet size that a

source (ip, port) sends to a destination (ip, port) at a time.

• NIPS Pubs, which contains papers published in NIPS4 from

1987 to 2003 [36].

• StackO, which represents data of users and posts on the

Stack Overflow. Each instance contains the information of

a user marked a post as favorite at a timestamp [37].

• YouTube, which consists of the friendship connections be-

tween YouTube users [38].

We selected these datasets because of their diversity, and

because they are widely used as benchmark datasets in the

literature [16], [19]. A more detailed information about the

datasets are listed in Table III.

C. Density of the Estimated Subtensors

Figure 2 shows the density of the estimated subtensors

obtained with M-Zoom, M-Biz, and MUST. In the figure,

we plot the average (AVG) and the low boundary (BOUND)

density of the top-10 estimated subtensors. As shown, although

the estimated subtensors found by M-Zoom and M-Biz have

guarantee locally on the snapshot, the density of the subtensors

drops dramatically with respect to the increasing number of

the estimated subtensors, k. On all the datasets, the average

and the bound density of the estimated subtensors with MUST

are much higher than those obtained with M-Zoom and M-Biz

in all density measures. MUST also outperforms M-Zoom and

M-Biz on density accuracy of estimated subtensors, focusing

on both the average and boundary of density of the top ten

estimated subtensors.

In particular, on the Air Force dataset, the average density

with MUST is up to 546% higher than with M-Zoom and M-

3https://dumps.wikimedia.org/
4https://nips.cc/

Biz, using the arithmetic average mass measure, and more than

891% higher on the Darpa dataset using entry surplus measure.

In terms of lower bound of density of the estimated subtensors,

there is a huge gap between the proposed algorithm and the

baseline algorithms. For instance, on the Air Force dataset,

the lower bound of density of the estimated subtensors with

MUST are more than 360 times and two million times bigger

than with both baseline algorithms, when applying arithmetic

average mass and entry surplus measure, respectively.

D. Diversity and Overlap Analysis

An important difference between MUST and other ap-

proaches is its ability to estimate multiple subtensors. Hence,

important aspects worth evaluating and discussing are (1) how

much difference it is between estimated subtensors, and (2) the

fractions of overlap among the detected subtensors. Intuitively,

MUST sequentially removes one slice which has a minimum

slice weight at a time. Finally, the algorithm picks the top k
highest densities among estimated subtensors.

In this subsection, we evaluate the diversity of the top

three estimated subtensors by MUST, M-Zoom on the Enwiki,

Kowiki, and Air Force datasets to analyze the overlap fractions

of subtensors. We use arithmetic average mass (ρa) as the

density metric and the used diversity measure is the same

as in [15]. The diversity of two subtensors is the average

dissimilarity between pairs of them. Here, we chose the

Enwiki, Kowiki, and Air Force datasets because they contain

anomaly and fraud events, and that they are commonly used

for this type of benchmark [15], [19].

Table IV shows the diversity of the top three estimated

subtensors by MUST and M-Zoom. We observe that the

obtained diversities by MUST are 36.2%, 37.2%, and 20.8%

on Enwiki, Kowiki, and Air Force, respectively. The overlap

between the subtensors are acceptable and considerable in

many contexts, e.g. anomaly and fraud detection, because

groups of fraudulent users might share some common smaller

groups or some fraudsters. Another reason is that fraudulent

behaviors of users might happen in just some specific periods

of time. Compared to M-Zoom, M-Zoom can find more

diverse subtensors, which can be explained as follows. M-
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(a) Air Force
(ρa)

(b) Air Force
(ρg)

(c) Air Force
(ρs)

(d) Air Force
(ρe)

(e) Darpa (ρa) (f) Darpa (ρg) (g) Darpa (ρs) (h) Darpa (ρe)

(i) Android (ρa) (j) Android (ρg) (k) Android (ρs) (l) Android (ρe) (m) Enron (ρa) (n) Enron (ρg) (o) Enron (ρs) (p) Enron (ρe)

(q) StackO (ρa) (r) StackO (ρg) (s) StackO (ρs) (t) StackO (ρe) (u) Kowiki (ρa) (v) Kowiki (ρg) (w) Kowiki (ρs) (x) Kowiki (ρe)

(y) Enwiki (ρa) (z) Enwiki (ρg) (aa) Enwiki (ρs) (ab) Enwiki (ρe) (ac) YouTube
(ρa)

(ad) YouTube
(ρg)

(ae) YouTube
(ρs)

(af) YouTube
(ρe)

(ag) NIPS (ρa) (ah) NIPS (ρg) (ai) NIPS (ρs) (aj) NIPS (ρe) (ak) LBNL (ρa) (al) LBNL (ρg) (am) LBNL (ρs) (an) LBNL (ρe)

Fig. 2: Average and bound of density on datasets (K: thousand, M: million, B: billion). Best viewed in color and zoom mode.

Zoom is specifically designed to find different subtensors by

creating a snapshot of the data at each detection process, and

it mines a block in this intermediate tensor. The results of

this is, however, that M-Zoom cannot provide guarantee on

the density of the detected subtensors, except on the first

subtensor. This is one of the drawbacks of M-Zoom, and

as discussed below (Section V-E), the effectiveness of M-

Zoom on network attack detection greatly drops with multiple

subtensors.

E. Effectiveness on Network Attack Detection

Air Force is specifically suitable for evaluating network

attack detection ability. As mentioned earlier, it is a dataset

of TCP dump data of a typical U.S. Air Force LAN. It

contains the ground truth labels of connections, including both

intrusions (or attacks) connections, and normal connections. In

detail, there are 972,781 connections as normal, while other

connections are attacks. This dataset is widely used for the

task of detecting anomaly and network attacks.

Here, we demonstrate the efficiency, and the effectiveness

of our proposed method on anomaly and network attack

detection, and compare it with M-Zoom. We analyze the

three highest subtensors returned by M-Zoom and MUST in

the experiment in Section V-D on Air Force, and then we

compute how many connections in the estimated subtensors

are normal activities or attack5. Table V shows the connections

in the top three subtensors detected by MUST and M-Zoom

using arithmetic average mass (ρa) as the density metric.

We observe that all connections in the top three subtensors

found by MUST are attack connections with no false positive.

This is because MUST guarantees the density of all multiple

subtensors it finds. With M-Zoom, it has the same result in

the top two subtensors. However, in the third subtensor, only

56,433 connections are attack, and 151,080 other connections

are normal among 207,513 connections. In other words, M-

Zoom produces a high rate of false positives, which in turn

means that MUST outperforms M-Zoom, when used in the

task of network attack detection, using the Air Force dataset.

F. Execution Time

In terms of execution time, to evaluate the performance of

the algorithms, we recorded the runtime of the algorithms on

real-world datasets using four measures of the density to return

5We provide the Matlab code to analyze attack connections in the code
repository at https://bitbucket.org/duonghuy/mtensor/src/master/data/.
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Fig. 3: Average runtime for a (sub)tensor on datasets. Best viewed in color.

TABLE IV: Diversity of estimated subtensors

Dataset # Volume Density Diversity Dataset # Volume Density Diversity Dataset # Volume* Density Diversity

M
U

S
T

Enwiki

1 1 × 2 × 2 2397.6

36.2% Kowiki

1 2 × 2 × 2 273.0

37.2% Air Force

1 X1 × 2 × 1 × 1 × 1 1,980,948

20.8%2 1 × 4 × 5 2375.7 2 4 × 4 × 5 258.5 2 X1 × 1 × 1 × 1 × 1 1,930,307

3 1 × 3 × 3 2355.9 3 4 × 4 × 4 240.5 3 X1 × 2 × 1 × 2 × 2 1,772,991

M
-Z

o
o
m

Enwiki

1 1 × 2 × 2 2397.6

96.7% Kowiki

1 2 × 2 × 2 273.0

99.4% Air Force

1 X1 × 2 × 1 × 1 × 1 1,980,948

70.8%2 1 × 2 × 3 1961.5 2 2 × 2 × 3 246.0 2 X1 × 1 × 1 × 1 × 1 263,295

3 2 × 3 × 3 908.25 3 16 × 41 × 45 181.6 3 X2 × 5 × 4 × 3 × 3 60,524

* Where X1 = 1× 1× 1, and X2 = 3× 4× 2.

TABLE V: Network attack detection on Air Force in the top three subtensors

# Volume Density (ρa) # Connections # Attack Connections # Normal Connections # Ratio of Attack

M
U

S
T 1 2 (1 × 1 × 1 × 2 × 1 × 1 × 1) 1,980,948 2,263,941 2,263,941 0 100%

2 1 (1 × 1 × 1 × 1 × 1 × 1 × 1) 1,930,307 1,930,307 1,930,307 0 100%

3 8 (1 × 1 × 1 × 2 × 1 × 2 × 2) 1,772,991 2,532,845 2,532,845 0 100%

M
-Z

o
o
m 1 2 (1 × 1 × 1 × 2 × 1 × 1 × 1) 1,980,948 2,263,941 2,263,941 0 100%

2 1 (1 × 1 × 1 × 1 × 1 × 1 × 1) 263,295 263,295 263,295 0 100%

3 4320 (3 × 4 × 2 × 5 × 4 × 3 × 3) 60,524 207,513 56,433 151,080 27%

Fig. 4: Runtime while varying k. Best viewed in color.

top ten density subtensors. Then, we calculated the average

runtime of the algorithms per each estimated subtensor. The

results from this experiment are shown in Figure 3. We

observe that MUST is much faster than M-Zoom and M-

Biz on all the datasets. Specifically, it is up to 6.9 times

faster than M-Zoom and M-Biz to estimate a subtensor. The

obtained results fit well with our hypothesis and or complexity

discussion in Section IV. The explanation for this is that in

MUST the algorithm needs only a single maintaining process

to get dense subtensors, while in M-Zoom and M-Biz, they

repeatedly call the search function k times to be able to get k

dense subtensors. The proposed method, MUST, runs nearly

in constant time independent of the increase of the number of

subtensors; whereas the execution times of both M-Zoom and

M-Biz increase (near)linearly with respect to value of k.

G. Scalability

We also evaluate the impact of the number of estimated

subtensors (k) to the performance of the algorithms. Here, we

performed experiments on the Enron and YouTube datasets.

With arithmetic average mass, we measured the runtime while

varying k within {10, 20, 30, 40, 50}. Figure 4 shows

the results of this experiment. As shown in the figure, the

execution time of M-Zoom and M-Biz increase linearly with

the increasing value of k, while the running time of MUST is

constant with respect to the value of k. These results conform

well with our complexity analysis in Section IV.

In conclusion, MUST outperforms the current state-of-the-

art algorithms for solving the dense subtensor detection prob-

lem, from both a theoretical and experimental perspective.
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VI. CONCLUSION

In this paper, we proposed a new technique to improve the

task of dense subtensor detection. As discussed, the contribu-

tions are both theoretical and practical. First, we developed

concrete theoretical proofs for dense subtensors estimation

in a tensor problem. An important purpose of this was to

provide a guarantee for a higher lower bound density of

the estimated subtensors. In addition, we developed a new

theoretical foundation to guarantee a high density of multiple

subtensors. Second, extending existing dense subtensor detec-

tion methods, we developed a new algorithm called MUST

that is less complex and thus more efficient than existing

methods. Our experimental experiments demonstrated that the

proposed method significantly outperformed the current state-

of-the-art algorithms for dense subtensor detection problem.

It is significantly more efficient and effective than the base-

line methods. In conclusion, the proposed method is not

only theoretically sound, but is also applicable for detecting

dense subtensors. Nevertheless, when developing the proposed

method, we observed that existing approaches (including ours)

treat each tensor slice independently, and that they do not

consider the relation among the slices within a tensor. To

address this, in our future work, we will study the connection

among slices when projecting on a way of a tensor. In addition,

we will explore applying our method on graph data, and

using it to solve event detection problems, such as change

and anomaly detection.
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