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Abstract—Misplaced data in a tuple are prevalent, e.g., a value
“Passport” is misplaced in the passenger-name attribute,
which should belong to the travel-document attribute instead.
While repairing in-attribute errors have been widely studied, i.e.,
to repair the error by other values in the attribute domain,
misplacement errors are surprisingly untouched, where the true
value is simply misplaced in some other attribute of the same tu-
ple. For instance, the true passenger-name is indeed misplaced
in the travel-document attribute of the record. In this sense,
we need a novel swapping repair model (to swap the misplaced
passenger-name and travel-document values ‘“Passport”
and “John Adam” in the same tuple). Determining a proper
swapping repair, however, is non-trivial. The minimum change
criterion, evaluating the distance between the swapping repaired
values, is obviously meaningless, since they are from different
attribute domains. Intuitively, one may examine whether the
swapped value (“John Adam”) is similar to other values in the
corresponding attribute domain (passenger-name). In a holistic
view of all (swapped) attributes, we propose to evaluate the
likelihood of a swapping repaired tuple by studying its distances
(similarity) to neighbors. The rationale of distance likelihood
refers to the Poisson process of nearest neighbor appearance.
The optimum repair problem is to find a swapping repair
with the maximum likelihood on distances. Experiments over
datasets with real-world misplaced attribute values demonstrate
the effectiveness of our proposal in repairing misplacement.

I. INTRODUCTION

Misplaced attribute values are commonly observed, e.g.,
owing to filling mistakes in Web forms, mis-plugging cables
of sensors, or missing values of sensors during transfer.
Downstream applications built upon the misplaced data are ob-
viously untrusted. Cleaning such misplacement is demanded.

A. Sources of Misplaced Attribute Errors

Misplaced attribute values could be introduced generally in
all ETL steps, ranging from data production to consumption.

1) Entry Error: Misplaced attribute values may occur when
data are entered into the database. For instance, a value
“Passport”, which should be input in the attribute travel-
document, is mistakenly filled in attribute passenger-name.
Similar examples are also observed in medical data [31] and
procurement data [7]. Even in the IoT scenarios, since workers
may occasionally mis-plug the cables of sensors during equip-
ment maintenance, misplacement occurs frequently (200 out of
5.2k tuples in the real Turbine dataset used in the experiments
as introduced in Section VII-A1l).

2) Extraction Error: When integrating data from various
sources, information extraction and conversion frequently in-
troduce misplaced attribute values. For instance, CSV files
from different sources often have various delimiters and abuse
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is difficult to avoid [40]. It needs great effort to manually
correct them step by step. Similarly, misplaced errors may also
occur when performing Optical Character Recognition (OCR)
on handwritten forms [23]. Inaccurate rectangle labeling ob-
viously leads to misplaced errors.

3) Shift Error: In the IoT scenario, data are often trans-
ferred in the form of comma separated records, and parsed
as database tuples when received (see Example 1 below).
If an attribute value is missing owing to sensor failure or
replacement, the values next to the missing/replaced one are
shifted to wrong places, a.k.a. shift error. Similar examples
are also observed in medical data [31] and government data
[20]. In the real FEC dataset [20], since commas in values are
mistakenly interpreted as separators, a number of 3.3k tuples
are observed with misplacement out of 50k (see details in
Section VII-A1 of experiment datasets).

B. Challenges

1) In-attribute errors vs. Misplaced-attribute errors: While
misplaced attribute values are commonly observed in practice,
they are surprisingly untouched in research studies. To the best
of our knowledge, existing data repairing approaches [15],
[25], [33], [38], [39], [41] (see Section VIII-A for a short
survey) often focus on in-attribute errors, and thus repair the
error by other values in the attribute domain. For example,
use some value of passenger-name to repair the value
“Passport”. Or similarly, use some other voltage value to
repair t,[voltage] = 13.7 in Figure 1 below.

For the misplaced-attribute errors, however, the true values
are indeed in the tuple but in wrong places. That is, we
can significantly narrow down the candidates for repairing
misplaced attribute values. Obviously, swapping the data in
the tuple is preferred to repair the misplaced attribute values.
For instance, the value “Passport” in the misplaced attribute
passenger-name should be swapped with the value “John
Adam” in attribute travel-document in the same tuple. !

2) Minimum change vs. Maximum likelihood: To evaluate
whether misplacement is correctly repaired, the minimum
change criteria [9], widely considered for repairing in-attribute
errors, does not help. Measuring the swapping repaired values
“Passport” and “John Adam” is meaningless, since they are
from the domains of different attributes.

Intuitively, we may study the likelihood of a tuple by
investigating how similar/distant its values are to the values
in other tuples. The rationale of the distance likelihood refers

'Swapping may apply to multiple misplaced attributes (see Definition 1).

IEEE
computer
pSOCIe

ty



Data Center
A A A3 Aq
[ time, voltage, temperature, direction |

—F ¢

] 1§:03,33|.4, 14‘.2, 8
t7[ 15:08,292, 209, 3
13[15:13,263, 258, 0
14[15:18,324, 317, 359
15[ 15:23,267, 164, 351 |
te[ 15:28,168, 157, 344
t7[15:33,309, 140, 335
to[15:40,137, 333, 330
A

time

voltage

= T
_Turbine == temperature  direction

(a) Comma separated records (b) Parallel coordinate

Fig. 1. Sensor readings from wind turbine, where misplaced attribute values
13.7, 33.3 occur in ¢y, and should be repaired by swapping voltage and
temperature values as in %}

to the Poisson process of nearest neighbor appearance, where
the neighbors of a given tuple ¢; are the tuples ¢; having
the minimum tuple distances defined in Formula 1 to ¢; (see
Section II-B for details). In this sense, # with misplacement in
Figure 1(b) in Example 1 could be identified, since its (time,
voltage, temperature, direction) value combination is distant
from other tuples in the dataset, i.e., low likelihood.

C. Our Proposal

We notice that tuples with misplaced values are often
distant from other tuples (see motivation Example 1 below).
Intuitively, one may apply the multivariate outlier detection
techniques, e.g., distance-based [19], to detect tuples deviating
markedly from others. However, directly applying the multi-
variate outlier detection may return false-positives, i.e., true
outliers without misplaced values. In this sense, we propose to
further investigate the detected tuple by swapping its attribute
values. If the tuple after swapping has closer neighbors, e.g.,
becomes inliers, it is more confident to assert misplacement
and apply the swapping as repairs.

Informally, the swapping repair problem is thus: for each
tuple (say fp) in relation instance r, see whether there exists
a tuple #, by swapping the attribute values in %y, such that ¢
is more likely (more similar to the neighbors in r) than %;
if yes, we return the most likely swapping repair having the
least distances to neighbors in 7.

Example 1. Consider a collection of sensor readings in wind
turbine in Figure 1, where the sensor data are transferred
from devices to data center through wireless communication
networks, in a form of comma separated records. Misplaced
values are frequently observed for various reasons. For in-
stance, shifting errors occur when the power supply of some
sensor is interrupted or some packages of a tuple are lost
in data transmission, as discussed in Section I-A. Moreover,
during equipment maintenance, workers may occasionally
mis-plug the cables of sensors for monitoring temperature
and voltage, as shown in Figure I(a). In addition, sensor may
be reordered in the upgrade of wind turbine. While the data
collection protocol is updated immediately in the device, the

modification of schema definition in the data center is delayed.
Misplaced values are observed in a short period of schema
updating.

As shown in Figure 1(a), the voltage and temperature
values in the latest record (denoted by t,) are misplaced, which
are very different to those in the nearby tuples ts, ts, t7. A false
alarm will be triggered, owing to the sudden “changes”.

As plotted in the parallel coordinate in Figure 1(b), by
swapping the voltage and temperature values of t, with
true misplacement, it will accord perfectly with other tuples
having similar timestamps, e.g., ts,ts, t7. In this sense, we
propose to evaluate the likelihood of repaired tuple by whether
having values (on all attributes time, voltage, temperature,
direction) similar to other tuples.

The existing in-attribute repair, e.g., constraint-based [38],
uses the value in the same attribute to repair the misplaced er-
ror in ty, i.e., t[voltage] = 16.8 and t}[temperature] = 31.7.
As shown, the repair is not as accurate as the swapping repair,
where 33.3 and 13.7 are indeed the true values of voltage and
temperature, respectively, but simply misplaced.

Attribute direction reports the direction of a wind turbine
measured in degrees, with domain values ranging from 0 to
359. As shown in Figure I(a), data entry simply changes its
pattern starting at ty, from values around 0 to values near
359. We have ty[direction] = 359, which is distant from the
previous direction values in tuples t, to t3. However, swapping
repair will not be performed on ty, since by swapping the value
of direction with any other value in the tuple, it is still distinct

from the nearby tuples such as ti, ts, t3. That is, the likelihood

of the swapped tuple does not increase.

D. Contributions

Our major contributions in this study are as follows.

We formalize the optimum swapping repair problem in
Section III. A pipeline is further presented to jointly repair
both misplacement and in-attribute errors.

We show that, if considering all the n tuples in r as
neighbors in evaluating a repair, the optimum repair problem
is polynomial time solvable (Proposition 1) in Section IV. This
special case is not only theoretically interesting, but also used
to efficiently solve (Algorithm 1) or approximate (Algorithm
2) the problem with any number x of neighbors.

We present that, if considering a fixed number x of neigh-
bors, the optimum repair problem can be solved in polyno-
mial time (Proposition 2) in Section V. Bounds of neighbor
distances are devised (Proposition 3), which enable pruning
for efficient repairing.

We develop an approximation algorithm, by considering a
fixed set of neighbors, in Section VI.

We conduct an extensive evaluation in Section VII, on
datasets with real-world misplaced attribute values. The exper-
iments demonstrate that our proposal complements the existing
data repairing by effectively handling misplacement.

Table I lists the frequently used notations.
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TABLE I
NOTATIONS

Symbol  Description

R relation schema, with m attributes

r  relation instance over R, with n tuples

to  tuple in 7 to detect and repair misplaced attribute values

x  number of considered nearest neighbors

r-nearest-neighbors (k-NN) of ¢ from r, for simplicity N (t)
x  swapping repair of fy, having repaired tuple t; = xto
distance cost of swapping repair x over tuples r with K-NN,
for simplicity ©(x)

T potential set of k-NN, T' C r

Swapping Repair with All Neighbors, in Section IV-B
Swapping Repair with x Neighbors, Algorithm 1

Swapping Repair with Fixed Neighbors, Algorithm 2

Sample 1 m— Sample 2 m——

(a) (b)

Frequency
Frequency

original value k-NN distance

Fig. 2. Inconsistent value distribution vs. consistent distance distribution of
two different samples from the same dataset

II. DISTANCE-BASED LIKELIHOOD EVALUATION

In this section, we first illustrate the deficiencies of evalu-
ating the likelihood of a tuple w.r.t. value distribution. It leads
to the intuition of considering the distances of the tuple to
its neighbors. We use the likelihood on distance to evaluate a
repair in the following Section IIL

A. Why Not Using Value Distribution

To evaluate the likelihood of a tuple, a natural idea is to
investigate how likely each value in the tuple belongs to the
claimed attribute. By studying the joint distribution of values
in multiple attributes, the likelihood of the tuple is calculated
[25]. A tuple with misplaced attribute values is outlying in the
value distribution, and thus has a low likelihood.

Unfortunately, as mentioned in the Introduction, owing to
data sparsity and heterogeneity, the value distribution could
be unreliable. For instance, in Figure 2(a), we observe the
value distributions of two different samples (i.e., Sample 1 and
Sample 2) with 4k tuples randomly sampled from the Magic
dataset [4], respectively. As shown, the value distribution of
Sample 1 (red) is largely different from that of Sample 2
(blue), which are indeed two samples of the same dataset.
Some value in Sample 1 even does not appear in Sample 2.
The likelihood of a value computed based on these inconsistent
value distributions would obviously be inaccurate.

Intuitively, instead of directly evaluating how likely a tuple
contains attribute values appearing exactly in the value dis-
tribution, we may alternatively check whether the tuple has
values similar to other tuples, in order to be tolerant to data
sparsity and heterogeneity. If the tuple is distant from others,
(either misplaced-attribute or in-attribute) errors are likely to
occur. By coincidence, the tuple becomes similar to some
neighbors after swapping certain attribute values. We would
assure the misplacement and repair, such as %, in Figure 1 in
Example 1.

Therefore, in this study, we propose to learn the distribution
of distances between a tuple and its neighbors. As illustrated
in Figure 2(b), more consistent distance distributions are
observed in two different samples. The consistent distance
distributions (in contrast to the inconsistent value distributions)
are not surprising referring to the Poisson process of nearest
neighbor appearance [28] (see explanation in Section II-B).
The likelihood computed based on the consistent distance
distribution would be more reliable.

B. Likelihood on Distances to Neighbors

Consider a relation instance r = {#, ..., t,} over schema
R = (Ay,...,Ay,). For each attribute A € R, let A be any
distance metric having 0 < A(t;[A], t;[A]) < 1, where t;[4]
and t¢;[A] are values from the domain dom(A) of attribute
A. For instance, we may use edit distance [26] or pre-trained
embedding technique [30] with normalization [22] for string
values, or the normalization distance [10] for numerical values.
By considering L' norm the Manhattan distance [16] as the
distance function on all attributes in R, we obtain the tuple
distance A(t;[R], t;[R]), or simply A(t;,t;),

A(4[R], [R]) = Y A(t[A], t;[A]).

A€ER

(1

Let N/(t;) be the k-nearest-neighbors (k-NN) of ¢; from
r, denoted by N (¢;) for simplicity. As illustrated in [28], the
random generation of data from a particular underlying density
function induces a density function of distance to the nearest
neighbors. In relational data, it means that the appearance of
nearest neighbors N/ (#;) of a tuple ¢ can be approximated
with Poisson process [28]. That is, the distances between a
tuple t; and its nearest neighbors t; € N/ (t;) follow an
exponential distribution, A(%;, t;) ~ Ezp(\), and we can write
the probability distribution of the distances as

F(A(t, tj)) = )\exp_AA(‘:-tJ)’ @)

where A > 0 is the parameter of the distribution, often called
the rate parameter.

The (log) likelihood of a tuple # in r is thus computed by
aggregating the probabilities f(A(#, #;)) on the distances to
its neighbors 1

)= logf(Alto, )
tENS(to)
=rlog(\) = A D A(te, t). 3)

tEeN(to)
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Example 2. Consider the relation v = {t,t2, ts, la, l5, ts,
tz, to} with schema R ={time, voltage, temperature, di-
rection} in Figure 1. The normalized distance between t
and t; on voltage is A(ty|voltagel, t;|voltage]) = 1 —
exp 1373091 — 1 By aggregating the distances on all
attributes in R referring to Formula 1, we have A(ty,t7) =
3.061. Given rk = 4, the k-NN of ty is N (t) = {to, la, s, t7 },
where A(lo, to) = 0, Aty ta) = 2.995, A(ty, ts) = 3.068,
and A(ty, t7) = 3.061. Suppose that X\ = 2 of the exponential
distribution f(A(t;,t;)) in Formula 2. The likelihood of dis-
tances between ty and N (o) is {(ty) = 3 % log(2) — 2 % (0 +
2.995 + 3.068 + 3.061) = —15.248.

III. PROBLEM STATEMENT

As introduced in Section I-B1, misplacement can be re-
paired by simply swapping attribute values in a tuple. We
first formally define the swapping repair in Definition 1.
Recognizing the deficiencies of existing criteria in Sections
I-B2 and II-A, we introduce the distance likelihood in Formula
3 to evaluate a swapping repaired tuple. The optimum repair
problem is thus to find the swapping repair with the maximum
likelihood.

A. Swapping Repair

We use a m x m matrix x to denote the swapping repair
of attribute values in a tuple ¢, with m attributes.

Definition 1. Swapping repair of tuple ty is a matrix x having

m

E zi; =1,
i=1
m
E xij = 1,
j=1

1<j<m

iije{o,l}, 1<i<m,1<j<m
The swapping repaired tuple
t = xty
has t)[A;] = to[A;] if z;; = 1.

For a reliable [41] or certain [15] attribute A; that should
not be modified in repairing, we may simply set z;; = 1.

Example 3. Consider tuple ty in Figure 1. Suppose that we
have a swapping repair x for ty as follows,

1 0 0 O
x— 0 0 10
01 0 0}’
0 0 0 1
where Z?:l zi; =1,1<j <4 and Z‘;:l xi; =11<
1 < 4. Each x;; = 1, for instance w33 = 1, denotes that

t[temperature] = ty|voltage|, where A; = voltage, A5 =
temperature. The corresponding repaired tuple is thus

10 0 0\ /1540 15:40
, oo 1 o] |7] (333
b=xb=145 1 0 o] 333 13.7

000 1)\ 33 330

B. Repairing Problem
For any swapping repair x, the corresponding repaired tuple
t, = xto has likelihood £(t}). It is desired to find the optimal
swapping repair x with the maximum likelihood Z(to)
Referring to Formula 3, to maximize the likelihood E(to)
it is equivalent to minimize the distances between ¢, and its

K-NN in 7, i.e.,
> > AlwlAdala) @

> A t) =
tENS () Ai€R

tENE(t})
= > D> D m

HENr(t) A;€R AjER

A(to[A;], uAil)-

Thereby, we define the distance cost of swapping repair x
over the k-NN of the repaired tuple #; = xt.

Definition 2. The k-NN distance cost of a swapping repair X is

Of(x) =0(x)= Y > D> m-Al4;) ulA]).

ti €N (xto) Ai€R AjER

&)

To find the repair x with the maximum likelihood #(xt),
it is equivalent to minimize the x-NN distance cost O(x).

Problem 1. For a tuple ty in relation r over schema R, the
OPTIMUM REPAIR problem is to find a swapping repair x such
that the k-NN distance cost ©(X) is minimized.

The corresponding decision problem is thus to determine
whether there is swapping repaired tuple with likelihood
higher than the input tuple .

Problem 2. For a tuple t, in relation r over schema R, the
REPAIR CHECKING problem is to determine whether exists a
swapping repair x with k-NN distance cost O(x) < O(1),
where 1 is an identity matrix (unit matrix) of size m.

Here, ©(1) denotes the x-NN distance cost of the input tuple
ty = Tty without swapping.

Example 4 (Example 3 continued). Given k = 4, the K-NN
of the swapping repaired tuple t} in Example 3 is N(t) =
{to, t1, ta, tz}. According to Formula 5, the k-NN distance cost
isOx)=(1x04+1x1+1*x1+1%0)+ (1%0.309+ 1=
0.095+1%0.393+1%1) + (1#0.197+1%0.593 + 1% 1+ 1
1)+ (1 %0.068 + 1 % 0.909 4+ 1 % 0.259 4+ 1 % 0.993) = 8.816.
Consider another swapping repair for ty as follows,

100 0
|00 01
0010
0100

That is, swapping the voltage and direction attribute values. It
has N(t§) = {to, ta, tg, t7} with k-NN distance cost O(x") =
(1%0+1%14+1%0+1%1)+(1%0.197+1%1+1%0.798+1%1) +
(1%0.1134+114+1%141%1)+(1x0.0674+1x1+1x1+1x1) =
11.175.

As the first swapping repair x in Example 3 has
lower distance cost, it leads to the repaired tuple t, =

(15:40,33.3,13.7, 330).
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C. Joint Repair Pipeline

In addition to the studied misplacement errors, there are a
wide range of errors that happen in real datasets, as discussed
in [7]. For instance, let tg = (15:45, 26.5, 0, 16.1) be another
tuple appearing after #, in Figure 1. The value 0 is not
only dirty (a default direction value returned owing to device
disturbance) but also misplaced in the temperature attribute.
While this study focuses on repairing misplacement errors, we
further consider joint repair to address other co-existing errors.

When addressing various kinds of errors, as studied in
[12], [15], the order of repair steps affects the final results.
It is worth noting that applying first the in-attribute repair
would destroy the original ground truth of misplaced values,
e.g., modifying the true temperature value 16.1 misplaced in
direction. In this sense, the swapping repair is suggested to
be performed before handling other types of errors. Moreover,
as discussed in [13], since the in-attribute error repair can
help resolving conflicts and duplications, the imputation for
incomplete values can be enriched and improved. Therefore,
the missing data imputation could be finally performed after
swapping and in-attribute repair. (See experiments on varying
the order of repair steps in Figure 11 in Section VII-C.)

The dirty values may lead to the corresponding distances
corrupted. While the dirty values have negative effects, our
swapping repair model is compatible with existing data clean-
ing techniques to handle such a case. The rationale is that
humans or machines always try to avoid mistakes in practice
[24]. In this sense, we argue that dirty values are often not
significantly far from the corresponding truths as well as some
other values in the same attribute. For instance, a default
direction value 0 is returned rather than a random irrational
value 65536, when the device is disturbed. Although the
computed distances will also be dirty, they could be close,
e.g., the default value O is close to other direction values. A
correct swapping repair would lead to closer distances, while
an incorrect swapping leaves the distances large and thus will
not be performed. For instance, a correct swapping repair
i =(15:45, 26.5, 16.1, 0) of t5 has a closer neighbor distance
ZtleN(té) A(té, tl) = 7579, where N(té) = {tg, t5, t(;, ts},
compared to an incorrect swapping repair t§ =(15:45, 16.1,
26.5, 0) with distance ZtleN(tg;) A(t,t) =10.485, where
N(t]) ={t), ts, ts, ts }-

Given a dataset, one may first check each tuple # in r
whether swapping repair is applicable. If a swapping repaired
tuple ¢ is returned with significantly higher likelihood (lower
distance cost) w.r.t. , the tuple f, contains misplaced attribute
values and should be repaired to t). Otherwise, tuple % is not
changed in swapping, i.e., no misplaced attribute values found.

Example 5. Ler tg =(15:45, 26.5, 0, 16.1) be another tuple
appearing after ty in Figure 1. The value 0 is not only
dirty (a default direction value returned owing to device
disturbance) but also misplaced in the temperature attribute.
After swapping repair by our proposal, we have t§ =(15:45,
26.5, 16.1, 0). Existing in-attribute repair technique, e.g., [38],

is then applied to repair the dirty value in ti[direction]. It
returns a jointly repaired tuple t§ =(15:45, 26.5, 16.1, 330).

IV. ALL NEIGHBORS

We show (Proposition 1) that if all tuples in 7 are considered
as neighbors when evaluating a repaired tuple, i.e., kK = |7|,
the optimum repair problem is polynomial time solvable.

It is worth noting that the result is not only interesting for
the special case of k = |r|, but also enables the efficient
computation for repairing with general x (Algorithm 1 in
Section V) and the approximation (Algorithm 2 in Section VI).

In the following, we first formalize the repairing problem
as integer linear programming, which can thus be efficiently
solved as an assignment problem in Section I'V-B.

A. ILP Formulation
For x = |r|, the k-NN distance cost in Formula 5 is rewritten
Olx) =" > > @i A(to[As] ulA]). (6
ter A;€R Aj;ER

The optimum repair problem can be formulated as Integer
Linear Programming (ILP) [36].

n m m
minZZinjdlij

I=1 i=1 j=1

m

Zl’ij =1, 1<j<m

=1

m

> @y =1, 1<i<m

j=1
fEijE{O,l}, 1<i<m,1<53<m

where z;; = 1 denotes t)[A;] = t[A;], otherwise 0; and
diij = A(to[4;], 4[A:]), 1 <1< n,1<i<m,1<j<m,

is the distance between #[A;] and t}[A;], where tj[A;] is
replaced with #[A4;].

Example 6. Consider tuple ty for repairing and tuples r =
{t1, to, t3, ta, ts, le, t7, to} in Figure 1. Let k = |r| = 8.
For each neighbor 1, € r, we obtain the distance d;;; =
A(to[A;], ti[Ai]) on attributes Aj;, A; € R, for instance,
di23 = A(to[temperature], t,[voltage]) = 0.095.

To minimize Y, >, Z;"Zl x;jdyj, the ILP solution
leads to a repair x, which is same as that in Example 3,
ie, t) = xty = (15:40,33.3,13.7, 330).

B. Solving as Assignment Problem

While existing ILP solvers [29] can be employed, we show
below that the optimum repair problem with k = |r| can be
solved efficiently as an assignment problem, i.e., the minimum
weight perfect matching (MWPM) problem [21].

Consider a complete bipartite graph G = (U, V; E) with m
worker vertices (U) and m job vertices (1), and each edge
(u;,v;) € E has a nonnegative cost w;;. A matching is a
subset M C E such that at most one edge in M is incident
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upon v, for each v € U U V. A matching M is said perfect if
every vertex in UUYV is adjacent to some edge in M. The cost
of a matching M is defined as 3., .yes wij- The MWPM
problem is to find a perfect matching M * with minimum cost.

We now present the algorithm SRAN(%, ), Swapping Re-
pair with All Neighbors, which considers all the tuples in 7 as
neighbors. Specifically, we interpret the attributes in R as the
agents and tasks in the MWPM problem, ie., U = V = R.
Given fy and r, we define the weight

wij =Y Alto[Az], 0l Ail) = Y duijy

tier tier

(N

for 1 < i < m,1 < 7 < m. By using the Hungarian
method [21], it returns an optimal matching M*. For each
(us,v;) € M*, we assign z;; = 1, ie., {)[A;] = t[A4;]. It
forms a swapping repair x with cost

o) =3 3 3 ;- AlholA]], ulAl)

tier A;€R AjER

m m
= E E fl,’,;j?l),,‘,j = E U},]

i=1 j=1 (ui,vi)EM™

(®)

Proposition 1. The SRAN algorithm returns an optimal repair
in O(nm® + m?) time, where n = |r|,m = |R|.

Example 7. Consider tuple ty in Figure 1 for repairing.
The SRAN algorithm employs all the tuples in r, ie., r =
{ty, to, t3, ta, t5, tg, t7, to }, as neighbors when evaluating the
swapping repaired tuple.

Referring to Formula 7, we initialize the weight w;; for
each variable m;j, e.g, wa3 = 0.095 4 0.983 + 0.999 +
0.593 4+ 0.999 + 1 + 0.909 4 1 = 6.578. The swapping repair
problem is then solved as an assignment problem, having
U = V ={time, voltage, temperature, direction} together
with the corresponding weight w;; for each edge (u;,v;) € E.

By calling the Hungarian method for solving the MWPM
problem, a perfect matching M* is computed, having M* =
{(ul, ’Ul), (’UQ, '1)3), (U.3, UQ), (U4, U4)} with total weight 22.467.
The corresponding optimal swapping repair for 1y can thus be
generated accordingly. For example, (uz, v3) € FE denotes that
t)[voltage] = to[temperature]. Consequently, the repaired
tuple is t) = (15:40,33.3,13.7,330) with cost 21.374.

V. FIXED NUMBER OF NEIGHBORS

As discussed at the beginning of Section IV, the hardness
originates from the number x of nearest neighbors. We show
(in Proposition 2) that for a fixed number « of neighbors from
r in evaluating a repaired tuple, the optimum repair problem
can be solved in polynomial time.

Let us first present the quadratic programming formulation
of the repairing problem, which sparks the solution in Section
V-B by calling the aforesaid SRAN algorithm on all neighbors
in Section IV-B. Pruning technique is devised for efficient
repairing.
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Fig. 3. The objective of quadratic programming

A. QP Formulation

The x-NN distance cost in Formula 5 is rewritten as

Ox) =>"u > > mj- Alto[A;], ulAd),

tier A;€RAER

©)

where 3, = 1 denotes that 7; is the k-NN of the repaired tuple
t) = xto, i.e., { € N(xtp); otherwise y; = 0.

The optimum repair problem can be formulated as Quadratic
Programming (QP) [27].
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yl€{071}7 Slg

where both z;; and y; are variables to solve.

Figure 3 illustrates the relationships among variables y;,
variables z;; and constants d;;;. Let y denote the vector of
variables y;, x be the matrix of variables z;; as in Definition
I, and D be the tensor of constants d;;;. The objective
Dol Y D imy Doy Tijdyj is rewritten as y - D : x. As the
tensor multiplication has law of commutation, we first consider
the double inner product between tensor D and x, having

m m m m

) igE— Z Z Z Z dlijx,,qéipéjq,

i=1 j=1p=1g=1

ip = ; 5 jq = 4
O,Z#p Ovj#q

Then the dot product between y and the aforesaid double inner
product result D : x is exactly the distance cost ©(x).

Example 8 (Example 6 continued). By transforming the
problem to quadratic programming, each tuple t €
{t1, to, t3, ta, t5, e, t7, to} is associated with a variable vy,
which denotes whether it is considered as one of the k-NN

726



for the repaired t), = xly. For instance, given k = 4, there
are only four tuples in r having y, = 1. Variables z;; and
constants dy;; have the same meaning as in Example 6.

By minimizing the objective Y ;" yi > i Zm i iy iz,
leads to a QP solution where the result of variables Tij s
the same as that in ILP in Example 6, and y; = yy = y7 =
Yo =1, yo = ys = ys = y¢ = 0. The repaired tuple is
th = xty = (15:40, 33.3,13.7, 330).

B. Solving as All Neighbors

Referring to the aforesaid QP formulation, we show that
the repairing problem with s neighbors can indeed be solved
by calling SRAN algorithm for all neighbors. The idea is to
consider (all) the sets 7' C r as potential K-NN, compute
the optimal repair over each 7' by calling SRAN(%y, T'), and
among them return the one with the minimum distance cost.

Algorithm 1, SRKN(#y,r,T,S), Swapping Repair with x
Neighbors, presents the recursive computing of considering
all the subsets of r with size x, where T is the current
set of potential xK-NN, and S denotes the remaining tuples
that may form potential x-NN. To initialize, we have T =
{tl,tg,...,t,@}, = 7"\ T= {t,{_;_l,t,g_;_g,...,t"},

Let x* be the currently known best solution with distance
cost 0* = ©F(x*) as defined in Formula 5. Initially, we have
x* = SRAN(fy, T') and 6* = @'TTl(x*) referring to Formula 6.

Lines 1 to 4 generate the next potential 7’ by removing one
tuple ¢, from 7" and adding another ?, from S. (Lines 5, 6, 13
and 14 are used for pruning, which will be introduced below.)
For this 7", Line 7 calls SRAN(#, T’) to find the optimal
repair x over 7. If its cost # is lower than the currently
known best 6%, x will become x*. Line 12 recursively calls
the algorithm for the current 77 and S’.

Algorithm 1: SRKN(ty,r,T,5)

Input: #, a tuple considered for repairing, r a set of tuples,
T current set of potential xK-NN,
S remaining tuples that may form potential x-NN
Output: an optimal swapping repair x* of ¢
1 for each t, € T do

2 for each t; € S do

3 T' + T\ {tp} U{te}s

4 S S\ {te}s

5 6%im « lower bound computed by Formula 11;
6 lf 9* > 911]11] then

7 xestAN(m,TU;

3 0« @lTT,ll(x) by Formula 8;
9 if 0 < 6" then

10 0" « 0;

1 X" =X

12 SRKN(tO,’/', TI,SI);

13 else

14 | break;

15 return x*

Example 9. Consider the tuples in r in Figure 1. Given k = 4,
we initialize T = {tl, to, 3, t4}, S = T’\ T'= {t5, tg, t7, t()}
The currently known best solution x* with distance cost

0* = 11.079 for ty is calculated by calling the algorithm
SRAN(tp, T). Lines I to 3 remove one tuple t; from T and
add another tuple ty from S to generate the next potential
subset T’ {ta, t3, ta, t5}. (By ignoring Lines 5 and 6
which will be introduced below for pruning) Line 7 calls the
algorithm SRAN(ty, T') to generate the swapping repair X,
and the corresponding distance cost 0 is calculated according
to Formula 8 in Line 8, having 6 = 12.370 > 0*. It thus
considers the next tuples in S. When we have the distance
cost 8 < 0*. it updates the currently known best swapping
repair X* with distance cost 0* accordingly, and recursively
calls the algorithm SRKN(to, r, T',S’) using the current T’
and S' in Line 12.

Proposition 2. Algorithm I SRKN returns an optimal repair
in O(n"*(km? +m?)) time, where n = |r|,m = |R)|.

C. Pruning by Bounds on Neighbor Distances

Given any set 7/ C r, we propose to compute a lower
bound of distance cost §%" for the optimal repair over 7".
As illustrated in Line 6 in Algorithm 1, if the lower bound
0% is no better than 6*, this 7" can be pruned (as presented
below, the recursion on 7" stops as well).

1) Bounds on Neighbor Distances: We study the distance
cost on each tuple t; € r for potential repairs. It is utilized to
compute the bound of distance costs on any set 7' C 7.

For each tuple #; € r, by calling x' = SRAN(t, {#;}),
we compute the optimal repair x' over one (all) neighbor .
Referring to Formula 6, the corresponding distance cost 61" is

" = O, (x ZZ i

=1 j=1

(10)

Given any set T' C r of potential x-NN, we define §2i" =
Ztle 7 0", The proposition below shows that 873" is a lower
bound of the distance cost for the optimal repair x* over 7.

Proposition 3. For any tuple set T C r, we have

0[713111 — Z 6;11111 S ®|,IT|(X*),

teT

Y

where x* is an optimal swapping repair of ty over T.

Example 10 (Example 9 continued). Consider a potential
subset T = {ta,13, 14,15} in Example 9. We compute the
distance cost 9?““ for each t, € T' w.rt. tuple ty, using
Formula 10. For example, we have 95““ = 1% 0.274 +
1%0.983 4+ 1%0.999 + 1«1 = 3.256. The lower bound
mi” of T'" is computed referring to Formula 11, having
min — gmin 4 gmin 4 gmin —H9m‘“ = 12 370. For any possible
swappmg repair of ty, e.g., , x"tg =(15:40, 330, 33.3,
13.7) with distance cost @Ig; |(x”) = 12.661 in Example 4,
we always have ™ < @lTT,ll(x*).

2) Pruning by Bounds: We show that the lower bound in
Proposition 3 enables not only the pruning of the current 7’
in Line 6 in Algorithm 1, but also the subsequent recursion
on 7" in Line 12.
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To ensure correctness of pruning, tuples ¢, € r are sorted in
ascending order according to """, It guarantees that the lower
bounds of considered sets are non-decreasing in recursion.

Proposition 4. For the set T' considered in Line 3 in
Algorithm 1, it always has 0P < 03",

Once we have 62" > 6* in Line 6 in Algorithm 1, all the

subsequent sets (say T”') in the recursion on T’ always have
6™ > 0* and thus can be directly pruned as well.
Example 11 (Example 9 continued). In order to guarantee
the correctness of pruning in Line 6 in Algorithm 1, we
first sort the tuples 1, € r in an ascending order w.rt.
Omin - having r = {lo, t1, tr, ta, ls, t5, t3, t2}. Suppose that
T = {tlo,t1,tz,ta} and S = {ts, t5, l3, t2}, with the currently
known minimum distance cost 0* = 8.816. The next potential
subset T' = {t1, t7, 14, 1} has lower bound 03" = 1.797 +
2.229+2.790+2.978 = 9.794. Since we have 0* < 01", ie.,
the condition in Line 6 is not satisfied, the enumeration of S
can be directly stopped in Line 2. The reason is that the lower
bounds of the next potential T’ must be in an ascending order
(Proposition 4), with distance cost greater than 6*.

VI. FIXED SETS OF NEIGHBORS

Instead of considering (all) the potential sets 7" C r of k-
NN to compute an exact solution in Algorithm 1, we propose
to heuristically consider a number of fixed neighbor sets.
Intuitively, the x-NN of a tuple should be close with each
other as well. Rather than enumerating all the subsets of r
(with size k), we may consider only the x-NN of each tuple
; € r as potential set 7.

Algorithm 2, SRFN(%y,r), Swapping Repair with Fixed
Neighbors, presents the approximation computation. Let T be
the x-NN of each tuple ¢; in r

T = {Nrﬁ(tl) | t € T‘}. (12)

Line 2 considers only the set 7' € T as potential xK-NN for
evaluating a repair. For each T' € T, the computation of a
repair is generally similar to Lines 5-11 in Algorithm 1.

Algorithm 2: SRFN(%y,7)

Input: #, a tuple considered for repairing, r a set of tuples
Output: a near optimal swapping repair x* of
1 T < all sets T of potential xk-NN defined in Formula 12;
2 for each T € T do
6%+ Jower bound computed by Formula 11;
if 6* > 6" then
X < SRAN(to, T);
0« @‘TTl(x) by Formula 8;
if 0 < 6™ then
0" « 0,
9 x* — x;
10 return x*

N AW

Example 12. Consider tuple ty in r in Figure 1 with Kk =
4. Rather than enumerating all the possible subsets T C r
with size k to compute an exact solution in Algorithm 1, we

TABLE 1II
DATASET SUMMARY

Dataset |7 # clean tuples  # error tuples |R|  #DCs
Magic 19k 17k 2k (synthetic) 10 4
Restaurant 864 764 100 (synthetic) 4 7
Chess 28k 26k 2k (synthetic) 6 12
Skin 245k 242k 3k (synthetic) 4 3
Turbine 52k 5k 200 (real) 9

FEC 50k 46.7k 3.3k (real) 15 15

consider only the k-NN of each tuple t; € r as potential set T.
For instance, given T = N/ (t4) = {to, t1, t, tr} in Line 2 in
Algorithm 2, we first compute the lower bound of distance cost
by Formula 11’ having aljl_l‘ill = agxin + ellnin + eflnin + o;nin -
0+ 1.797 4+ 2.790 + 2.229 = 6.816. As the currently known
minimum distance cost is greater than 0%, we call the SRAN
algorithm to compute the swapping repair x for ty, which
leads to the repaired tuple xty = (15:40, 33.3,13.7,330).

VII. EXPERIMENT

In this section, we evaluate our proposal over real-world
misplaced attribute values. Moreover, we show how the swap-
ping repair complements existing methods to remedy both
misplaced-attribute and in-attribute errors in a dataset.

A. Experimental Settings

All programs are implemented in Java. Experiments are per-
formed on a machine with 3.1GHz CPU and 16GB memory.

1) Datasets: We employ 6 real datasets in evaluation. Table
II lists the major statistics of the datasets.

Turbine is a dataset with real misplaced attribute values and
manually labeled truth, collected by a world leading wind
turbine manufacturer. Each tuple records 9 data fields of a
wind turbine, including timestamp, site id, turbine id, three
phase voltage values and three temperature values of pitch
inverters. As introduced in Example 1, owing to mis-plugging
by workers, three phase voltage values and the temperature
values of three pitch inverters are misplaced. There are total
200 tuples with misplacement and manually labeled truth.

FEC [2] is another dataset with real-world misplaced errors
and manually labeled truth. Each tuple records a committee
registered with the Federal Election Commission, including
federal political action committees, party committees, etc. As
identified in [20], the FEC dataset has some rows with the
wrong number of columns, leading to data type errors, i.e.,
misplacement. When parsing the raw data, since commas in
values are mistakenly interpreted as separators, a number of
3.3k tuples are observed with misplacement out of 50k.

Magic [4] consists of generated data to simulate the reg-
istration of high energy gamma particles in a ground-based
atmospheric Cherenkov gamma telescope using the imaging
technique. The classification task is to discriminate the images
generated by primary gammas (signal, class label g) from the
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images of hadronic showers initiated by cosmic rays in the
upper atmosphere (background, class label h).

Chess [1] represents the positions on board of the white
king, the white rook, and the black king. The classification
(with 18 classes) is to determine the optimum number of turns
required for white to win the game, which can be a draw if it
takes more than sixteen turns.

Restaurant [5] is a collection of restaurant records contain-
ing 112 duplicates. Each record includes four attributes, name,
address, city and type. It has been used as a benchmark dataset
in record matching [32] and data cleaning [39].

Skin [6] is collected by randomly sampling B,G,R values
from face images of various age groups (young, middle, and
old), race groups (white, black, and asian), and genders. It is
utilized to evaluate the scalability for our proposed approaches.

2) Error Generation: Since the Magic, Restaurant, Chess
and Skin datasets are originally clean, following the same
line of evaluating data cleaning algorithms [8], we introduce
synthetic errors in the data.

To inject misplaced-attribute errors, we consider a set of
attributes W C R for replacement, e.g., W = {A;, Ao, A3}.
For any tuple tg# that is originally clean (ground truth), the
corresponding dirty tuple f, is generated by randomly re-
assigning the values on attributes W, such as #[4;] =
t#[As), to[As] = 7 [As], to]As] = t¥[A;]. Each value £ [A;]
is only re-assigned once.

To inject in-attribute errors (for evaluating the joint repair
of swapping and existing methods), we consider various types
of errors, including errors detectable by constraints, outliers
and missing values. Following [8], FDs are discovered by
TANE [17] and detectable errors are generated based on the
mined FDs. Moreover, we randomly remove/modify cells from
various attributes as missing/outlier values.

3) Evaluation Criteria: For numerical values, to measure
the repair accuracy, we employ the repair error measure, root-
mean-square error (RMS) [18]. For each tuple ?, it evaluates
how close the repaired result % to the corresponding truth t# ;

RMS(tF, 1)) = \/ZAER % The lower the RMS
error is, the more accurate the repair is (closer to the truth).

For categorical values, e.g., in FEC, Restaurant and Chess,
we measure the accuracy on whether a repair equals exactly
the ground truth. Let truth be the set of truths for dirty values
and found be the set of repair results returned by cleaning
algorithms. The accuracy is given by accuracy = W,
i.e., the proportion of dirty values that are accurately repaired.
We also utilize the accuracy measurement to evaluate the error
detection accuracy for both numerical and categorical data.

4) Baselines and Implementation Details: For reference,
we compare our proposed approach against several competing
in-attribute repair methods, including the constraint based data
repair algorithms HoloClean [33], ER [15], DD [38], and the
non-constraint based data cleaning approaches SCARE [41],
ERACER [25] and DORC [39].

SCARE [41] performs data repairing based on the proba-
bilistic correlations between reliable attributes with correct val-
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Fig. 4. Swapping repair (SRFN) over Turbine data with 200 tuples containing
6 real-world misplaced attributes

ues and flexible attributes with possible dirty values. Trusted
data are used in SCARE, i.e., the tuples without injected errors
in the Magic, Restaurant and Chess datasets of synthetic errors,
or the tuples without errors identified in the Turbine and FEC
datasets with real-world errors. The sizes of trusted data are
reported in Table II. We utilize all the trusted data to train
the prediction model. The left-hand-side (LHS) attributes of
the aforesaid discovered FDs are considered as the reliable
attributes for SCARE.

ER [15] determines certain fixes with editing rules defined
on value equality. Similar to SCARE, the reference data of ER
are the tuples without synthetic errors injected or real-world
errors identified. The sizes of reference data used in ER are
the same as the trusted data for SCARE, reported in Table II.
We discover CFDs from the clean data by [14] as editing rules
to find certain fixes.

HoloClean [33] employs not only the constraints but also the
statistical learning to repair dirty values. Again, general DCs
are discovered from the clean data by [11] for HoloClean. The
number of discovered DCs is presented in Table II. These rules
cover all the attributes with synthetic or real-world errors. We
adapt its open source implementation [3] for misplacement
repair by using other values in the same tuple as candidates
for the erroneous cell.

DD [38] introduces extensions with distance functions.
Since DCs with distance functions are not directly supported
in the current HoloClean implementation [3], we consider the
repair under the DD (neighborhood) constraints on distances
[38]. Again, DDs are discovered from the clean data by [37].

ERACER [25] iteratively learns a global relational depen-
dency model, i.e., linear regression model for numerical data
and relational dependency network for categorical data in our
experiments, to infer the probabilistic relationships among
attributes. Again, the same LHS attributes of FDs are utilized
as the determinant attributes for ERACER.

DORC [39] minimally repairs the outliers (e.g., the tuples
with misplaced attribute values) to existing points (tuples).
Since the exact algorithm needs to call the costly ILP solver,
we use the quadratic time approximation version QDORC.

B. Swapping Repair of Misplaced-Attribute Errors

Figures 4 and 5 report the repair and error detection results
over the real misplaced errors in Turbine and FEC datasets
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Fig. 6. Comparing the approximate swapping repair SRFN to the exact SRKN
over Skin with 3k tuples containing 2 misplaced attributes

under various numbers of tuples in r. It is worth noting that
there are no existing approaches dedicated to repair misplaced-
attribute errors. For reference, we report the results of directly
applying in-attribute repair methods, including the constraint
based data repair algorithms HoloClean [33], ER [15], DD
[38], and the non-constraint based data cleaning approaches
SCARE [41], ERACER [25] and DORC [39]. In particular,
the SCARE approach considers the distribution of values in
the attribute domain and across attributes. As shown in Figures
4 and 5, approaches with higher error detection accuracy lead
to more accurate repair accuracy as well.> Indeed, it is not a
fair comparison, and a more reasonable yet practical evaluation
is to perform joint repair, as presented in Section VII-C below.
Nevertheless, as shown in Figures 4(b) and 5(b), comparing to
the multivariate outlier detection approaches handling outliers,
e.g., DORC, ERACER and SCARE, the swapping repair SRFN
is very effective in repairing misplacement, with a higher mis-
placed error detection accuracy. The reason is that multivariate
outlier detection may return false-positives of misplaced errors,
i.e., true outliers without misplaced values.

To show the scalability of our proposal, Figure 6 reports the
results over a large Skin dataset with up to 245k tuples. While
the complexity of the exact Algorithm 1 SRKN is high, the
approximate Algorithm 2 SRFN reduces the complexity and
shows significantly lower time costs in Figure 6. Nevertheless,
the RMS error of SRFN is still very close to that of SRKN.

Figure 7 presents the results with different distance func-
tions, i.e., using pre-trained embedding Glove [30] and edit
distance [26]. As shown, the repair accuracy is improved with
the help of pre-trained embedding techniques, comparing to

2ER and HoloClean with clearly worse results are omitted in Figure 4.
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Fig. 7. Varying the number of nearest neighbors x in swapping repair over
Restaurant data with 50 tuples containing 2 misplaced attributes
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Fig. 8. Joint repair over Magic data with 1k tuples containing 2 misplaced

attributes and 1k tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values

traditional measurement function edit distance. In addition to
the exact SRKN and the approximate SRFN, we also report
SRAN as baseline, where all the tuples are considered as
neighbors (and thus the result of SRAN does not change with
k). As shown in Figure 7(a), the approximate SRFN shows
almost the same results as the exact SRKN, when & is small.
The repair accuracy is lower if & is too large, since irrelevant
tuples may be considered as neighbors and obstruct repairing.
When k = n, it is not surprising that SRKN shows the same
results as SRAN. To determine a proper k, one can sample
some data from 7, manually injecting misplaced errors, and
see which x can best repair these errors (like Figure 7). The
remaining data are then evaluated using the selected k.

C. Joint Repair of Misplaced-Attribute and In-Attribute Errors

Figures 8, 9 and 10 report the results with various error
types, including misplacement, constraint detectable errors,
outliers and missing values as injected in Section VII-A2.
As shown, ERACER and SCARE, which can handle various
types of errors, achieve a better performance than the other
baselines alone.® Figures 8(b), 9(b), and 10(b) present the joint
repair where our proposal SREN is paired with the existing
in-attribute repair approaches. As shown, SRFN+ERACER
and SRFN+SCARE show higher accuracy. The result is not
surprising referring to the better performance of ERACER and
SCARE, compared with DORC and so on in Figures 8(a), 9(a),
10(a). The joint repair such as SRFN+SCARE shows better
performance than any individual ones. These promising results

3ER and HoloClean with clearly higher RMS error are omitted in Figure 8.
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Fig. 9. Joint repair over Restaurant data with 50 tuples containing 2 misplaced
attributes and 50 tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values
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Fig. 10. Joint repair over Chess data with 1k tuples containing 2 misplaced
attributes and 1k tuples having in-attribute errors, including 1/3 constraint
detectable errors, 1/3 outliers and 1/3 missing values

demonstrate not only the necessity of studying swapping
repairs for misplacement, but also the practical solution for
jointly remedying both error types.

To illustrate that the order of repair steps affects the
final results of the joint repair in Section III-C, Figure 11
considers various combinations of swap, repair and impute
steps. SCARE [41] is considered in repair and imputation,
and SRFN is used for swapping. The results verify that dirty
values in attributes have little effect on the swapping repair
for the misplaced errors. The pipeline Swap-Repair-Impute
achieves the best performance. In contrast, other pipelines such
as Repair-Impute-Swap applying in-attribute error repair first
have low accuracy.

VIII. RELATED WORK

While distance has been recognized as an important signal
of data cleaning in [39], this paper is different from other stud-
ies such as [34] and [35] in both the conceptual and technical
aspects. (1) The concepts on distances are different. While
this paper studies the likelihood of distances between tuples,
[34] considers the constraints on distances and [35] learns
regression models to predict the distances among attributes. (2)
The problems are different. This paper proposes to maximize
the distance likelihood of a tuple by swapping its values
to address misplacement errors. Instead, [34] is to minimize
the changes towards the satisfaction of distance constraints
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Fig. 11. Joint repair (SREN+SCARE) using various pipelines over (a) Magic
and (b) Chess data with 1k tuples containing 2 misplaced attributes and 1k
tuples having in-attribute errors, including 1/3 constraint detectable errors, 1/3
outliers and 1/3 missing values

to eliminate in-attribute errors, and [35] imputes the missing
values w.r.t. the predicted distances on an attribute. (3) The
devised techniques are also very different given the aforesaid
distinct problems. In order to avoid enumerating the x-NN
combinations for all the possible swapping repaired tuples,
this paper considers approximately the fixed sets of neighbors.
On the contrary, [34] proposes to utilize the bounds of repair
costs for pruning and approximation. Moreover, [35] imputes
each incomplete attribute individually in approximation, which
is unlikely in the scenario of this study (swapping occurs
between at least two attributes).

A. Data Repairing

While no studies have been found to address misplacement,
as illustrated in Section III-C, our proposal could complement
the existing approaches to repair both misplaced-attribute and
in-attribute errors. We briefly summarize below the typical
data repairing methods, for in-attribute errors. Editing rules
(ER) rely on certain regions [15] to determine certain fixes,
where constraints are built upon equality value relationships
between the dirty tuples and master data. Owing to the strict
value equality relationships, the numerical or heterogeneous
values with various information formats often prevent finding
sufficient neighbors from master data. It makes the dirty val-
ues barely fixed. Statistical-based approaches employ statistic
models for data repairing. In SCARE [41], the attributes in a
relation for repairing are divided into two parts, i.e., reliable
attributes with correct values and flexible attributes with dirty
values. Probabilistic correlations between reliable attributes
and flexible attributes are then modeled, referring to the value
distribution. The repairing objective is thus to modify the
data to maximize the likelihood. ERACER [25] constructs
a relational dependency network to model the probabilistic
relationships among attributes, where the cleaning process
performs iteratively and terminates when the divergence of
distributions is sufficiently small.

B. Outlier Detection and Cleaning

Distance-based outlier detection [19] determines a fraction
p and distance threshold € according to data distributions, and
considers an object as an outlier if at least p of objects have
distances greater than e to it. Our proposed methods share the



similar idea that a tuple with occasionally misplaced attribute
values is outlying. In this sense, it extends the existing outlier
detection technique, i.e., (1) detecting outliers as suspected
tuples with potentially misplaced values, and (2) swapping
attribute values in an outlier to see whether it possibly becomes
an inlier. Of course, an outlier may not be changed after
repair checking (i.e., no swapped tuple shows higher likelihood
than the original outlier tuple). It denotes that no misplaced
values are detected in this outlier tuple. In contrast, the existing
DORC [39] repairs all the outlier tuples by the values of other
tuples, to make each outlier an inlier. It may excessively over-
repair the outliers where no errors indeed occur.

IX. CONCLUSION

In this paper, we first summarize the sources of misplaced
attribute values, ranging from Web forms to IoT scenarios,
covering all the ETL phases. Unlike the widely considered
in-attribute errors, the true value of misplaced-attribute error
is indeed in some other attribute of the same tuple. While
swapping repair is intuitional, it is non-trivial to evaluate the
likelihood of a tuple on whether its values belong to the cor-
responding attributes. As illustrated in Section II-A, owing to
the sparsity and heterogeneity issues, studying the distribution
directly on values may not work. Instead, we argue to evaluate
the likelihood by how the values are similar/distant to others.
The rationale of distance likelihood lies in the Poisson process
of nearest neighbor appearance. To find the optimum swapping
repair with the maximum distance likelihood, we show that
the optimum repair problem is polynomial time solvable, in
Proposition 1, when considering all the tuples as neighbors;
devise an exact algorithm for a fixed number of neighbors,
together with bounds of distances in Proposition 3 for pruning;
and propose an approximation algorithm by considering fixed
sets of neighbors. Extensive experiments on datasets with real-
world misplaced attribute values demonstrate the effectiveness
of our proposal in repairing misplacement.
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