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Abstract—Deep neural networks (DNNs), especially convolu-
tional neural networks (CNNs), have been effective in various
data-driven applications. Yet, DNNs suffer from several major
challenges; in particular, in many applications where the input
data is relatively sparse, DNNs face the problems of overfitting to
the input data and poor generalizability. This brings up several
critical questions: “Are all inputs equally important?” “Can we
selectively focus on parts of the input data in a way that re-
duces overfitting to irrelevant observations?” Recently, attention
networks showed some success in helping the overall process
focus onto parts of the data that carry higher importance in the
current context. Yet, we note that the current attention network
design approaches are not sufficiently informed about the key
data characteristics in identifying salient regions in the data. We
propose an innovative robust feature learning framework, scale-
invariant attention networks (SAN), that identifies salient regions
in the input data for the CNN to focus on. Unlike the existing
attention networks, SAN concentrates attention on parts of the
data where there is major change across space and scale. We
argue, and experimentally show, that the salient regions identified
by SAN lead to better network performance compared to state-of-
the-art (attentioned and non-attentioned) approaches, including
architectures such as LeNet, VGG, ResNet, and LSTM, with com-
mon benchmark datasets, MNIST, FMNIST, CIFAR10/20/100,
GTSRB, ImageNet, Mocap, Aviage, and GTSDB for tasks such
as image/time series classification, time series forecasting and
object detection in images.

Index Terms—attention module, attention networks, convolu-
tional neural networks

I. INTRODUCTION

Deep neural networks (DNNs), including convolutional

neural networks (CNNs) have seen successful applications in

many data engineering domains, such as text processing [1],

[2], data alignment [3], recommender systems [4], time series

search and processing [5]–[7], and media search and analysis

[8]–[12]. More recently, CNNs’ successful application in a

variety of data-intensive domains has led to a shift away from

feature-driven algorithms into the design of CNN architectures

crafted for specific datasets and applications.

DNNs owe their success to large depth and width: this

introduces a large number of trainable parameters (from tens

of thousands [13] to hundreds of millions [14]) and enables

learning of a rich and discriminating representation of the

data [13]–[17]. However, as [18] points out, “increase in
the depth of the network can lead to model saturation or
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Fig. 1: Overview of conventional attention module

even degradation in accuracy”. More specifically, in many

applications where the input data is relatively sparse, DNNs

face the problems of overfitting to the input data and poor

generalizability. This brings up several critical questions: “Are

all inputs equally important?” “Can we selectively focus on

parts of the input data in a way that reduces overfitting

to irrelevant observations?” Works such as [19]–[21] has

shown that salient information can help improve the model

performance, both deep learning and machine learning models.

A. Attention Networks

The need for working with a limited number of trainable

parameters to learn high performing network architectures

necessitates techniques to help focus on the most relevant parts

of the data. One way to achieve this is through fusion of multi-

modal data characteristics, such as channel (i.e. latent) and

spatial relationships in images, where information transferred

from different modalities help strengthen and weaken their

individual impacts [17]. Another common approach is to learn

multi-scale features [16] to capture a rich representation of

data. More recently, attention networks gained popularity as

a more effective way to tackle this challenge [22]. Com-

monly, networks with attention modules have two, feature
and attention, branches (see Figure 1). The feature branch

is analogous to the conventional networks where the neural

structure extracts features from data, whereas, in the attention

branch, the network aims to quantify the importance of the

input features to focus on. The attention mechanism, on

the other hand, enables the network to focus on a specific,

contextually-relevant, subset of the features [23].
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Attention mechanisms have been developed for different

types of data. For instance, the original attention network

(proposed by Bahdanau in [22]) was designed to recover

attention to help identify a subset of input features important

to a given state in a recurrent neural network (RNN) used for

analyzing sequence data. In image analysis, on the other hand,

the attention branch may aim to translate the spatial and chan-

nel level contextual relationship into an attention mask [17].

Since the introduction of the attention mechanism, there has

been significant amount of work done that has enabled state-

of-the-art networks, enriched with attention mechanisms, to

outperform their predecessors [17], [23]–[26]. While these and

other works, some of which discussed in Section II, have

provided strong evidence regarding the promise of the atten-

tion mechanisms in reducing overfit and improving accuracy,

we note that the current approaches suffer from a shared

shortcoming: While the existing mechanisms leverage multi-
modal information, they fail to consider information that a
cross-scale examination of the latent features may reveal.

B. Contributions: Scale-Space Attention Networks (SAN)

In a recent work, [21] has shown that scale-space based

approaches can be used to inform the design of CNNs – in

particular, even though localized features, like SIFT, may not

lead to very accurate classifiers themselves, the information

these features capture at different scales might nevertheless

be used to inform the design of the hyper-parameters (e.g.

number of layers, number of kernels per layer) of CNNs. In

this paper, we build on a similar observation and argue that a

scale-space driven technique can also be used to design better

attention mechanisms that can help focus attention of the deep

neural network to parts of the data that are most critical.

Fundamentally, a CNN architecture extracts increasingly

complex (multi-scale) features through layers of interleaved

convolutional and pooling layers, coupled with non-linearity

enablers, such as ReLU and tanh functions. In this paper, we

show that we can adapt the CNN architecture to implement

a robust scale-space based attention mechanism that focuses

processing onto contextually salient aspects of the data. In

particular, we propose a novel scale-space attention network,

SAN, which brings together the following key ideas:

– Identifying salient changes in scale-space: Traditional

attention mechanism consider layers in isolation when

generating attention. In this paper, we argue that com-

paring and contrasting latent features from two adjacent

layers, to locate salient changes in scale-space, is a more

effective attention strategy.

– Attention to extrema: Given that a neighborhood in the

input is likely to have changes in varying amplitudes,

we argue that the attention should be given to extrema,

where the changes in scale-space are local maxima.

– Attention region extraction through smoothed ex-
trema: We translate these extrema into attention masks

by applying a convolutional operation around the ex-

trema – this helps avoid noisy artifacts in the latent rep-

resentation which could adversely affect performance.

As we experimentally validate in Section IV, the proposed

SAN framework has the following advantages: (a) SAN detects

and describes salient changes in the latent features to identify

detailed and diverse attention masks that help boost network

performance while retaining finer details of the patterns. (b)

SAN consistently performs better than the competitors in both

bottleneck and full attention scenarios (see details in Section

IV-C). (c) SAN framework is able to learn a high-performing

network architecture with minimal computational overhead.

C. Organization of Paper

The following sections are organized as follow: Section II

discusses current state-of-the-art approaches and their short-

comings, Section III presents the proposed framework, in

Section IV we evaluate SAN, and in Section V we conclude.

II. RELATED WORK

Successful application of DNNs in diverse domains [6]–

[12], [27], [28] has motivated the community to devise novel

network architectures that outperform the prior art.

A. Design of DNNs

A common approach to design DNNs is to hand-craft

specialized network architecture for specific domain and data.

As early as 1998, Lecun [29], proposed a five layer convo-

lutional network to detect hand-written digits. The increas-

ing prevalence of more complex datasets, such as ImageNet

[30], led to more complex design of the hand-crafted net-

works [14]–[16], [31], [32]. These span from 10s to 100s

of layers with hundreds of millions of trainable parameters.

While these networks have different architectures, they often

leverage common design optimizations that have been shown

to improve the network performance. For instance, batch-

normalization [33] is used to address the problem of co-

variate shift in the network by normalizing individual batch

output of the layers to facilitate early convergence of the

network; ReLU [34] is used to handle the problem of vanishing

gradients by eliminating the negative gradient in the feed

forward phase of the network. To help with the design of

new architectures or for improving existing ones, recently

several hyper-parameter search strategies have been proposed:

these include, grid-search [35] and random search [36]. Both

strategies perform principled hyper-parameter search and have

shown to determine an optimal hyper-parameter configuration,

however, they heavily rely on domain expert input to hand-

craft hyper-parameter search space. In a recent work, [21]

has shown that scale-space based approaches can be used to

inform the design of the hyper-parameters (e.g. number of

layers, number of kernels per layer) of CNNs.

B. Attention Networks

Despite these advances, traditional DNNs are still faced

with the problem of performance degradation with the increase

in the depth [18]: these networks tend to saturate after a

certain depth and networks suffer from limited generalization

of input data into a fixed-length encoding [22]. Attention
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mechanisms [17], [22], [24], [25] aim to address this issue.

In [22], attention is used for improving thesequence translation

task, from English to German, using recurrent neural nets

(RNNs). This work highlighted that not every input feature

(word) in a sequence is equally important, rather focusing on

a different subset of input features may be more appropriate

at different stages of the translation process. Building on this

observation, attention has been applied to different applications

(image captioning [1], recommender systems [4], multi-task

learning [5], question generation [2]) and different network

architectures, including CNNs [37] and LSTMs [38]. [17] was

one of the early efforts in attentioned image understanding;

the authors proposed a residual attention mechanism which

emulates residual learning by introducing the attention module

as a residual connection comprising of an autoencoder module.

Convolutional block attention module [24] and bottleneck

attention module [25] proposed to leverage spatial and channel

relationships in an image dataset to learn attention masks that

summarize the importance of channels in the images and locate

where the most information resides spatially. In this paper, we

argue that these works suffer from global (rather than local)

summarization and from the fact that they do not leverage

cross-layer information for discovering attention. To address

this shortcoming, we propose an informed attention network

that leverages salient changes in latent features and transform

them into rich (diverse and detailed) attention masks.

III. SAN : SCALE-SPACE ATTENTION NETWORKS

As discussed in Section I, the success of deep neural

networks can be credited to the increase in their depths and

widths thanks to modern hardware. This increase has enabled

these networks to learn sufficiently complex patterns contained

in the dataset. Convolution Neural Networks (CNNs), which

seek multi-scale features, have proven especially successful in

image and time series understanding. However, not every part

of the data is of equal importance for extracting features and

avoiding overfitting, especially in the presence of sparse data,

necessitates the network to learn the importance (attention) of

different parts of the data. In this section, we present a novel

scale-space attention network (SAN) framework that identifies

salient changes in latent features across scales and translates

them into robust (detailed and diverse) attention (Figure 3).

A. Convolutional Neural Networks and Attention Modules

A convolutional neural network (CNN [37]) is a type of

neural network that works by leveraging the local spatial

arrangements by establishing connections among small spatial

regions across adjacent layers (Figure 2).

1) Convolutional Neural Architectures: A CNN consists of

several complementary components organized into layers:

• Each convolution layer links local-spatial data (i.e., pixels

at the lowest layer) through a set of channels (or kernels)

that represent the local spatial features.

• Since each convolution layer operates on the output of

the previous convolution layer, higher layers correspond

Fig. 2: Outline of a convolutional neural network [21]: a

sequential arrangement of layers with localized spatial connec-

tions interleaved with pooling operations that scale the features

extracted from the image. In this paper, we consider two

positions for integrating the attention branches: in bottleneck

(b) attention, we only attach attention modules right before

subsampling (marked with � in the figure); in full (f) attention,

the attention modules are applied at each and every trainable

layer (marked with � in the figure)

to increasingly complex features obtained by combining

lower-complexity features.

• Since relevant features of interest can be of different

sizes, pooling/subsampling layers are introduced among

convolution layers: these pooling layers carry out down-

sampling of the output of a convolution layer, thereby

(given a fixed kernel size) effectively doubling the size

of the feature extracted by the corresponding filter.

Intuitively, a CNN searches for increasingly complex local

features that can be used for understanding (and interpreting)

the content of a dataset. Such latent features (deep represen-
tations) are fundamental to the success of the deep neural

networks, as each layer in the network sequentially feeds on

the latent features (output) of the previous layers to learn rich

and abstract features. More formally, a neural network (N ) is

a sequential arrangement of layers (L), mainly convolutional

and dense layers, to map the input X to output Y as follows:

Y = N (X) = LL(LL−1(. . .L2(L1(X)))); (1)

here, X ∈ R
N×D and Y ∈ R

N×O where N is the number

of samples, D is the dimensionality of the sample, O is the

number of class labels, and L is the number of layers. Any

given layer Ll can be generalized (perceptron) as,

Ll(Xl) = σl(WlXl +Bl), (2)

where Xl (the output of layer l−1, s.t. Xl = Yl−1) is the input

to the layer l (for l = 1, X1 = X) and σl, Wl, and Bl are

the layer’s activation function, weight, and bias respectively.

Note that, if the lth layer has ml neurons and the (l − 1)
th

layer has nl neurons, then Yl ∈ R
ml×1, Xl ∈ R

nl×1,

Wl ∈ R
ml×nl and B ∈ R

ml×1.

2) Attention Masks: As discussed in Sections I-A and II,

several researchers noticed that significant amount of waste in

learning and inference effort can be avoided if the attention

is directed towards parts of a data that are likely to contain

interesting patterns. This is achieved by attaching so called

attention modules to this neural architecture, where the output

of the attention module is used to weight the features learned

in the CNN [17], [23], [24]. Such attention mechanisms have
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Fig. 3: Abstract overview of the proposed attention module

shown to help improve the network performance by facilitating

the network with the ability to learn to highlight important and

suppress unimportant features.

In CNNs, attention is achieved through the introduction of

attention masks. As visualized in Figure 1, the layer contains

an additional component called attention mask (Ma
l ):

La
l = Ll �Ma

l 〈Yl〉. (3)

Here, Ma
l highlights the important local regions in the image,

and/or suppresses the unimportant regions. However, conven-

tional attention mechanisms fail to consider information that

a cross-scale examination of the latent features may reveal,

and, in this paper, we argue that salient changes in the scale-

space can be identified through a cross-scale examination of

the latent features and the extrema in these changes can be

leveraged for more effective attention masks.

B. Feature Search in Scale-Space

In the literature, there are several localized feature extraction

algorithms for images: these include SURF [39], HOG [40],

and SIFT [41]. In particular, SIFT has been the de facto
representation strategy for content-based image retrieval as

these features have shown robustness against rotation, scaling,

and various distortions. Intuitively, each feature corresponds to

a region in a given image that is different from its neighbor-

hood, also in different image scales. These stable patterns are

extracted through a multi-step approach, including (a)scale-

space construction, (b) candidate key-point identification, (c)

pruning of poorly localized, non-robust features, and (d)

descriptor extraction.

The scale-space used for feature search is constructed

through an iterative smoothing process, which uses Gaussian

convolutions to create different versions of the input data,

each with different amount of detail. Robust localized features

are then located where the differences between neighboring

regions (possibly in different scales) are large – in other words,

these keypoints are located at the local extrema of the scale

space defined by the difference-of-Gaussian (DoG) of the input

image. More specifically, an l-layer state space of an input

image, I, is defined as a set of data matrices {I0, . . . , IL},

where Il = I{σ0 × kl}, is a smoothed version of the input

image for some smoothing parameter σ0 and a scaling param-

eter k > 1. Given this, a DoG, G, is created by considering

a sequence of difference matrices {D0, . . . ,DL−1}, where

Dl = |Il+1 − Il| and feature candidates are sought at the

local maxima and minima of the resulting DoG: each Dl[x, y]
(where x and y are the rows and columns, respectively) is

compared against its 26 (= 33−1) neighbors (spatial neighbors

in the scale l and neighboring scales l− 1 and l+ 1) and the

triplet 〈l, x, y〉 is selected as a candidate only if it is close to

being an extremum among these neighbors1.

C. Scale-Space Attention Networks (SAN)

Despite their success in object recognition and image search,

SIFT features described above have recently been overshad-

owed by CNNs in many image recognition tasks [10]–[12],

[27], [28]. Yet, as discussed earlier, this advantage of CNNs

are subject to several constraints: most importantly, due to the

large number of parameters that need to be learned from data,

CNNs require a lot of data objects for training. Features likes

SIFT, on the other hand, are (a) relatively cheaper to obtain

and (b) since they encode the key domain knowledge “a robust

feature is one that is maximally different from its immediate

neighborhood both in space and scale” algorithmically, they do

not require training data. In this section, we construct a novel

attention module for CNNs based on a similar observation:

“the CNN should pay special attention to latent features that
are maximally different from their immediate neighborhood
both in space and scale”. In particular, unlike conventional

attention mechanisms (Equation 3), we propose to leverage

outputs from two adjacent layers when constructing the atten-

tion module:

La
l = Ll �Ma

l 〈Yl,Yl−1〉. (4)

As discussed in the rest of this section, here Ma
l ∈ [0, 1], is

a soft-attention mask obtained by identifying and augmenting

the salient local regions within the latent features based on

1The number of neighboring triplets may be less than 26 if the triplet is at
the boundary of the image or scale space.
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(a) Previous layer (conv 1) (b) Current layer (conv 2)

(c) DoC construction (d) Extrema extraction

(e) Extrema smoothing (f) Learned SAN mask

Fig. 4: Sample outputs of the various components of SAN–

these samples are taken at the first bottleneck position in VGG-

16, implementing attention on the outputs from conv 1 (Yl−1)

and conv 2 (Yl), with 64 channels (kernels) represented here

using an 8× 8 grid. (4a) shows the output from conv 1; (4b)

shows the output observed at conv 2; (4c) shows the DoC

extracted from these two layers; (4d) highlights the detected

extrema; and (4e) shows the output of the extrema smoothing

step; finally, (4f) shows the 64 detailed and diverse attention

masks learned by the proposed SAN module

informative local changes. More specifically, we propose to

compare latent features (outputs) from two adjacent layers,

l − 1 and l to help identify the robust salient region, as

opposed to relying only an individual layer output, Ll, as

in conventional attention networks. We detail the process,

visualized in Figure 5, next:

1) Difference-of-Convolutions (DoC) Construction: Fig-

ures 4a and 4b show sample kernels learned in two consecutive

layers. In this paper, we argue (and experimentally show in

Section IV) that we can learn diverse attention masks by

considering these two adjacent layers together. In order to

extract salient regions in layer l, we first construct a difference-

Fig. 5: Overview of the difference-of-convolutions (DoC)

construction module in SAN: the module takes latent features

(Y ) from two consecutive layers (l− 1 and l) and transforms

the latent features Yl−1 into the same basis space as Yl by

taking average along the channel axis (Y l−1), followed by

the expansion of the channel dimension through replication to

obtain Y
′
l−1; finally, we take the absolute difference (�Yl =

|Yl − Y
′
l−1|) to obtain the DoC

of-convolutions (DoC) representation, which helps facilitate

localization of scale-space changes that are prominent in

an image. Note that unlike SIFT [41], where the DoG is

constructed by performing a pixel-by-pixel subtraction of two

Gaussian smoothed images, in SAN, we seek the difference

among the latent features Yl−1 and Yl, where the convolution

kernels themselves are learned from the data. Therefore, the

DoC is computed from the outputs of the two consecutive

convolution layers, l − 1 and l, as follows:

�Yl = |Yl − Yl−1| (5)

As we experimentally show in Section IV, taking the absolute

difference (as opposed to simple difference) has significant

positive impact on the attention performance – this is because

attention needs to be given to, not only maxima, but extrema of

the difference of Gaussians. In addition, taking a non-absolute

difference might cause multiple counter-intuitive effects in the

network: first, the introduction of negative gradients may lead

vanishing gradient problem as positive and negative gradients

might cancel each other; secondly, the negative difference

to sigmoid function will push the attention towards “0”, as

sigmoid(x) ∈ [0, 0.5], ∀ x ≤ 0.

Note, however, that there is a significant problem with the

Equation 5: the latent features from the two layers do not have

one-to-one correspondence, therefore the difference operation

is not well defined: Yl ∈ R
H×W×C and Yl−1 ∈ R

H×W×C′
,

where H and W is height and width of the input image and

C and C ′ are the number of channels/kernels in the layers, l
and l−1, respectively. Therefore, the set of channels (kernels)

C and C
′ where C = |C| and C ′ = |C′| potentially represent

two different sets of basis vectors. Therefore, to implement

DoC over these different sets of basis vectors, we propose to

take average along the channel dimension, s.t.

Y l−1[h,w, 1] =
1

C

C∑

c=1

Yl−1[h,w, c]

∀h = 1 . . . H,w = 1 . . .W

(6)
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where Y l−1 ∈ R
H×W×1 represents the channel average of

Yl−1. We, then, expand the channel dimension of Y l−1 as

Y
′
l−1 = stack(Y l−1, C

′), (7)

where C ′ is the number of channels of Yl and the “stack”

operation allows for stacking C ′ many replicas of Y l along

the channel dimension to obtain Y
′
l−1 ∈ R

H×W×C′
. Conse-

quently, the representative Y
′
l is now comparable to Yl and

the proposed attention mechanism, SAN, can be applied on

two adjacent convolutional layers with different number of

channels without a padding operation to align the dimensions.

Given the above, we define the salient change across the

latent features (updating the Equation 5) as follows:

�Yl = |Yl − Y
′
l−1|. (8)

Here, �Yl represents the change in latent features defined

in terms of the absolute difference between the two latent

features. We present sample results in Figure 4c: as we see in

the figure, the DoCs discovered using two consecutive CNN

layers retain large degrees of detail.

2) Extrema Detection: The SAN attention mechanism

leverages the computed values of �Yl to learn the attention

mask Ma
l ; but, we cannot use DoC directly as an attention

mechanism: One reason for this is that the DoC itself can be

subject to noise. This problem can be resolved by using the

extrema of DoC rather than the DoC itself. However, simply

detecting an extremum by exploring the neighborhood and

marking it as “1” if it is a local extremum and “0” if not, might

lead to a salt-and-pepper noise in attention, severely limiting

the network’s learning ability. Since our goal is to focus on

the changes that are robust and prominent, we instead propose

a weighted extrema detection mechanism, as follows:

∀h = 1 . . . H,w = 1 . . .W, c = 1 . . . C

Y e
l [h,w, c] = αh,w,c ×�Yl[h,w, c],

(9)

where

∀h′ ∈ {h− 1, h, h+ 1}, w′ ∈ {w − 1, w, w + 1}
αh,w,c =

#of�Yl[h,w, c] ≥ �Yl[h
′, w′, c]

9
.

(10)

Here, α ∈ (0, 1] is the weighing parameter representing the

portion of the DoC neighborhood (3 × 3 region around the

coordinates 〈h,w〉) for channel c in layer l smaller than the

DoC value �Yl[h,w, c]. As we see in the degree of contrast

present in the sample results in Figure 4d, this step helps

highlight the salient points in the DoC while suppressing non-

informative regions – the use of localized weighing suppresses
noisy perturbations and retains more salient latent changes.

3) Extrema Smoothing: While the soft extrema detection

mechanism on �Yl proposed above allows for highlighting
salient changes and suppressing the noise through localized

weighing, this operation can still leak certain amount of noise

and artifacts in the weighed output, Y e
l [h,w, c]. Therefore, we

further propose to leverage trainable convolutional layers, with

kernels the same size as the kernels (k) of the feature extrac-

tion branch of the network, to smooth away such artifacts:

Y a
l = σ

(
Y e
l ∗W k

l + bkl
)

(11)

The application of this additional convolutional layer acts

as a blurring operation that smooths the unintended extrema

artifacts, thus enabling the learning of a more robust attention

mask. Sample results are presented in Figure 4e – note that,

the smoothing operation, not only eliminates artifacts, but

also boosts diversity relative to the pre-smoothed version of

the extrema. The validity of this observation and the positive

impact of this additional smoothing step are validated in the

experimental evaluation section (Section IV, Table IX).

4) Attention Mask Recovery: In the final step of SAN, we

pass the convolved output, Y a
l , through the sigmoid function

to learn the final attention mask, Ma
l , highlighting the salient

attention regions:

Ma
l = sigmoid(Y a

l ). (12)

Intuitively, the sigmoid function takes a real-valued vector of

attentions and maps them to values in the range [0, 1] such

that entries in the vector that are away from 0 are saturated to

0 or 1 depending on whether they are negative or positive,

respectively, and entries ∼ 0 take a non-boundary value

between 0 and 1 following a sigmoid shape. Consequently,

Ma
l serves as a soft attention mask s.t. Ma

l [h,w, c] ∈ [0, 1]
for layer l.

Figure 4f illustrates the rich (detailed and diverse) attention

masks learned by the proposed scale-space attention network,

SAN, as it intelligently uses the outputs of two adjacent

convolutional layers to discover salient local regions to focus

the attention.

IV. EXPERIMENTS

In this section, we experimentally evaluate of the proposed

SAN framework and compare it against the baseline, non-

attentioned networks (LeNet-5 [29], VGG [14] and ResNet

[15] - see Section IV-B) as well as the major competitors

(CBAM [24], BAM [25], and RAN [23] (see Section IV-D

for more details) in bottleneck and full positions (IV-C).

We implemented SAN in Python environment (3.5.2) using

Keras Deep Learning Library (2.2.4-tf) [42] with TensorFlow

Backend (1.14.0) [43]. All experiments were performed on

an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with

32GB RAM equipped with Nvidia Tesla P100 GPU with 16

GiB GDDR5 RAM with CUDA-10.0 and cuDNN v7.6.42.

A. Datasets

• For the simpler LeNet network, we consider data sets

recorded in controlled environments:

– MNIST contains 60k and 10k training and testing

handwritten digit images of 28× 28 resolution [13].

2Results presented in this paper were obtained using NSF testbed:
“Chameleon: A Large-Scale Re-configurable Experimental Environment for
Cloud Research”
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(a) LeNet-5 (b) VGG-16

(c) RESNet-18

Fig. 6: Overview of the network architectures for LeNet-5 [29], VGG-16 [14], and RESNet-18 [15]. Colors represent, Blue:

Convolution (stride=1), Light-Blue: Convolution (stride=2), Orange: avg-pooling (avg), Red: max-pooling (max), Black: fully

connected (fc), and Yellow: output layer (fc-softmax)

Fig. 7: RESNet-18 with bottleneck attentions (attention applied before pooling layers)

– FMNIST contains 60k and 10k training and testing

images of 28× 28 resolution with 10 classes [44].

• For the more complex VGG/ResNet Network, we con-

sider data sets recorded in real-world settings:

– CIFAR10/20/100 contains 50k training and 10k test-

ing images, respectively, with 32×32 resolution and

the dataset contains 10, 20, and 100 labels [45].

– GTSRB dataset contains 39,209 and 12,630 training

and testing images for 43 unique traffic sign [46].

– GTSDB is an object detection dataset with bounding

boxes representing the positions of signs [47].

– ImageNet contains ∼1.23 million images for 1K

real-world entities, with ∼1K images per entity [30].

• For recurrent networks, we consider multi-variate time

series data sets:

– Mocap: contains sensor (62) recording for 184 sub-

jects for 8 gestures [48].

– FFC: constains flight statistics for fuel usage, includ-

ing temperature and wing position for 500 flights.

B. Baseline (Non-Attentioned) Architectures

1) LeNet-5: Designed for recognizing handwritten dig-

its [29], LeNet-5 is a relatively simple network with 5 train-

able (2 convolution and 3 dense) and 2 non-trainable layers

using average pooling (Figure 6a). LeNet demonstrated that

localized image features (handcrafts) can be substituted by

deep features through the use of back-propagation of the

classification error. The two convolution layers contain 6

and 16 kernels and dense layers have 120 and 84 kernels.

Hidden layers are tanh and the final layer is softmax. LeNet’s

simplicity has made it the benchmark architecture for datasets

recorded in constrained environments, such as MNIST, and

FMNIST, in many works [33], [49], [50].
2) VGG: With the increase in complexity of data [30],

a deeper and more complex architecture was required. An

answer to this requirement was the VGG network [14] (Figure

6b), a 16 and 19 layer networks with 13 and 16 convolution

layers respectively and 3 dense layers, with interleaved 5 max-

pooling layers. VGG demonstrated that small kernel sizes (e.g.

3 × 3) can achieve better accuracies than using large kernels

(e.g. 5 × 5 or 11 × 11). Furthermore, VGG leverages ReLU

as the hidden activation to overcome the problem of vanishing

gradient, as opposed to tanh. Furthermore, the network uses

a convolutional layer with kernel size 1× 1 as 7th, 10th and

13th layers in the network to introduce additional non-linearity

and uses rectification operation. In addition to the kernel size,

VGG proposed to slide the convolution kernel by 1 unit in

each spatial direction and pooling kernel by 2 units along

each spatial dimension. Given the ability of VGG network

to learn the complex pattern in the real-world dataset, we use

the network on datasets, such as CIFAR10/20/100, GTSRB,

and ImageNet that contains complex, real-world objects.
3) ResNet: As seen in Section I, much of the success of

neural networks lies in their depth and width, however, as [18]

shows, the network saturates, and may even degrade, after a

certain depth is reached. ResNet [15] demonstrated that the

problem of accuracy saturation/degradation might be alleviated
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(a) Input

(b) CBAM mask (c) BAM mask (d) SAN mask

(e) Input

(f) CBAM mask (g) BAM mask (h) SAN mask

Fig. 8: Attention masks learned by CBAM, BAM and SAN module for GTSRB dataset when placed at the first bottleneck

position in VGG-16: SAN masks are more diverse and retain finer details from the input images

by the use of residual connections (Figure 6c). We consider

ResNet architecture for two depths: 18 and 50. For instance,

ResNet-18 consists of 17 convolutional layers with varying

(64, 128, 256, and 512) number of convolutional kernels, a 2D

maxpooling layer, a global average layer, and a fully connected

layer. First convolutional layer uses a kernel size of 7× 7 and

the remainder use 3 × 3 as kernel size. Each convolutional

layer is followed by batch-normalization [33] and ReLU [34].

4) LSTM-4: We used a 4 layers LSTM architecture com-

prised of 64 LSTM units each, with average pooling following

every two recurrent layer, and final dense layer with softmax
(classification) and linear (forecasting) as output activation.

We compare SAN to recurrent attention network (RAN) [23].

C. Positioning the Attention Modules

As noted in Equation 1, and seen in Figure 6, a neural

network is a sequence of layers interleaved by sub-sampling

(pooling) layers. This means that there are multiple locations

in the network where the latent features are being generated

and transfered forward. As we have discussed in Section III-A,

in this paper, we consider two alternative attention strategies:

– Bottleneck placement strategy: attention modules are

applied before the data is down-size at pooling layers.

– Full placement strategy: in this case, attention modules

are placed for every trainable layer in the network.

Figure 7 shows the version of the ReSNet-18 networks ex-

tended with attention modules, under bottleneck strategy.

D. Competitors

In this section, we consider the following competitors:

– Non-Attentioned Baselines: As the basic baseline, we

consider the networks without any attention module. In

particular, we explore four types of baseline architec-

tures: LeNet-5, VGG, RESNet, LSTM-4 (see Section

IV-B for more details).

– Convolutional Block Attention Network (CBAM): CBAM

is an attention module [24] that is designed to leverage

contextual relationships among channel and spatial latent

features to learn the attention mask. This is achieved

by sequentially considering channel attention followed

by spatial attention. Intuitively, the channel attention

helps learn “meaningfulness” of the image, followed

by spatial attention to learn “where” this meaningful

information lies in the image. [24] suggested that the

CBAM modules are placed after convolutional layers.

– Bottleneck Attention Module (BAM): In contrast to the

CBAM’s sequential approach towards learning channel
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(a) VGG-16 model architecture

(b) RESNet-18 model architecture

Fig. 9: Model training time (in seconds)

and spatial attention, BAM [25] computes channel and

spatial attention simultaneously, similar to inception net-

works [16]. BAM creates three branches in the network,

1) feature branch, 2) channel branch, and 3) spatial

branch. In the feature branch, the latent features are

propagated forward, similar to the conventional net-

works, whereas channel and spatial branch learn the

respective attention masks. Note that unlike CBAM

(which relied on conventional convolution layers), BAM

used dilated convolution layers. BAM recommended that

the attention modules be placed before the bottleneck.

– Recurrent Attention Network (RAN) [23]aims at learning

the subset of input feature at t while relying on the model

output at time t-1.

As described above, CBAM and BAM use different (full vs.

bottleneck) attention module placement strategies. In this pa-

per, we consider both strategies when comparing SAN against

the competitors. Figure 8 displays bottleneck attention for

three sample images under CBAM, BAM, and the proposed

SAN attention mechanisms.

Note also that CBAM and BAM rely on different (conven-

tional and dilated) types of convolution layers. We, therefore,

trained two different versions of the proposed attention mod-

ules: SAN-c with conventional convolution layers and SAN-d

with dilated convolutional kernels.

E. Experimental Results

1) Classification Accuracy: To evaluate the effectiveness

of SAN framework, and demonstrate its robustness to the

network architecture, in this section we measure classification

accuracies on three network architectures (LeNet-5, VGG-16,

Fig. 10: Model training time (seconds) for LeNet-5

and RESNet-18) and on seven benchmark datasets (MNIST,

FMNIST, CIFAR10/20/100, GTSRB and ImageNet)3. Top-

1 ans Top-5 Classification accuracy results are presented in

Tables I, IV, II, and III. We define top-k accuracy as the ratio

of the experiments in which the true class label is observed

among top-k candidate class labels.

Figure I shows top-1 and top-5 classification results for

the complex ImageNet dataset for VGG-16 and RESNet-18

network architectures. As we see in this figure, SAN-c and

SAN-d consistently outperform the baselines and the attention

competitors, CBAM and BAM. We see in the figure that

the results are relatively comparable for bottleneck and full

strategies and also that the version of SAN which uses dilated

convolutional kernels provides the overall highest accuracy

gains under all scenarios. On the average, the accuracy gains

provided by SAN-d is 4.91× the accuracy gains provided

by CBAM and 1.68× the accuracy gains provided by BAM

over the baseline. BAM’s inception-style approach of having

independent parallel branch allows for better summarization of

contextual information into attention mask than CBAM, how-

ever, the approach of taking the global average and maximum

to summarize entire spatial information into single value limits

the performance gains. SAN leverages the salient changes in

latent features to identify points of attention to outperform

both of these competitors.

In Table IV, we evaluate the classification performance of

different architectures on MNIST and FMNIST datasets with

LeNet-5 architecture. Note that the LeNet-5 architecture is a

special case, where the same architecture with SAN attention

module represents both bottleneck and full attention model, as

LeNet has only 2 convolution layers and each layer is followed

by a down-sampling layer thus making it both bottleneck and

full attention architecture simultaneously. Therefore, Table IV

does not present full and bottleneck results separately. As we

see in the figure, thanks to the simplicity of the data, the

baseline architecture has 98.37% (for MNIST) and 89.43%

(for FMNIST) classification accuracy without any attention.

Even in this scenario where there is very limited room for

improvement, SAN-d improved the accuracy to 98.7% (for

MNIST) and 89.94% (for FMNIST). In contrast, CBAM

resulted in a drop in accuracy to 97.88% (for MNIST) and

3We train two types of SAN models, first with conventional convolutions
(CBAM) and SAN d with dilated convolutional kernels (BAM).
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TABLE I: Model classification accuracies (top-1 and top-5) for ImageNet data for VGG-16/RESNet-18 model architecture

VGG-16 RESNet-18
Bottleneck Full Bottleneck Full

Datasets Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 71.90 90.6 71.90 90.60 70.40 89.45 70.40 89.45

CBAM 72.40 90.97 72.43 91.25 70.95 89.63 70.73 89.91
BAM 72.89 92.46 73.06 92.96 71.12 89.99 71.35 90.45

SAN-c 73.01 93.24 73.87 93.58 71.64 91.45 71.88 91.53
SAN-d 73.57 93.97 74.26 94.07 72.01 92.87 72.38 92.93

TABLE II: Model classification accuracies (top-1 and top-5) for VGG-16 model architecture

Bottleneck Full
Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB CIFAR10 CIFAR20 CIFAR100 GTSRB
Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 72.70 93.12 45.17 70.01 31.07 53.01 96.21 99.84 72.70 93.12 45.17 70.01 31.07 53.01 96.21 99.84

CBAM 76.57 95.23 46.14 72.56 32.17 54.02 96.38 99.96 74.65 94.26 45.74 72.16 32.51 54.67 97.45 100.00
BAM 76.15 94.85 48.95 76.89 32.96 55.65 96.85 100.00 76.42 95.63 46.79 73.68 35.96 61.45 97.73 100.00

SAN-c 78.42 97.86 50.23 78.99 34.58 58.99 97.96 100.00 79.89 97.99 51.14 82.99 37.59 63.48 98.31 100.00
SAN-d 79.01 99.50 52.84 82.03 36.14 61.23 98.25 100.00 81.24 99.98 54.88 86.48 39.03 68.45 98.95 100.00

TABLE III: Model classification accuracies (top-1 and top-5) for RESNet-18 model architecture

Bottleneck Full
Datasets CIFAR10 CIFAR20 CIFAR100 GTSRB CIFAR10 CIFAR20 CIFAR100 GTSRB
Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Base Model 68.55 90.51 49.32 73.00 37.83 62.95 97.85 99.98 68.55 90.51 49.32 73.00 37.83 62.95 97.85 99.98

CBAM 73.76 96.40 53.39 80.34 40.95 65.65 98.11 99.99 74.40 97.42 51.73 75.89 40.74 67.97 98.52 100.00
BAM 73.42 93.42 53.53 81.13 40.72 65.39 98.42 100.00 72.67 96.71 54.77 82.64 40.49 67.01 98.95 100.00

SAN-c 74.82 97.86 55.23 85.82 41.74 67.10 99.24 100.00 75.03 98.99 52.74 78.95 44.14 72.43 99.53 100.00
SAN-d 78.89 99.97 56.53 87.26 41.49 66.95 99.76 100.00 79.67 100.00 54.94 83.98 47.06 74.42 99.85 100.00

TABLE IV: Model classification accuracies (top-1 and top-5)

for LeNet-5 model architecture

Datasets MNIST FMNIST
Accuracy Top-1 Top-5 Top-1 Top-5
Base Model 98.37 99.98 89.43 99.87

CBAM 97.88 99.98 89.27 99.85
BAM 98.52 99.99 89.64 99.90

SAN-c 98.56 99.99 89.75 99.92
SAN-d 98.70 100.00 89.94 99.96

89.27% (for FMNIST). Attention using BAM, on the other

hand, provides some gains (98.52% for MNIST) and 89.64%

for FMNIST), but lower than the gains provided by SAN-d.

In Tables II and III, we evaluate the application of different

attention modules on VGG-16 and RESNet-18 architectures

and evaluate their performance on relatively complex CI-

FAR10/20/100 and GTSRB datasets, under bottleneck and full

attention placement strategies. These two figures reconfirm

that, overall, SAN-d is the best attention strategy, providing

significant up to 9.71% accuracy gains over the baseline.

Figure 8 provides sample attention masks to explain the

key reasons behind the accuracy gains of SAN. As we see in

this figure, SAN is able to learn rich (diverse and detailed)

and robust attention masks. In stark contrast, CBAM learns

only a single attention mask shared across all channels in the

convolutional layer, severely limiting its ability to learn rich

attention. While BAM does learn an explicit attention mask

for each individual channel, it is able to retain coarser details

- adding only limited richness to the network. In short, SAN’s

ability to account for the differences between two consecutive

convolutional layers enables rich and robust attention masks

leading to significant boost in network performance.

Table V demonstrates that SAN is able to outperform

CBAM and BAM for deeper networks as well. SAN’s ability

to learn salient changes across layers proves beneficial, also

when the level of abstraction increases in deeper networks.

2) Model Training Time: In Figures 9 and 10, we compare

the computational cost (training time) of SAN framework

against the competitors. The figures show that the proposed

SAN mechanism introduces much smaller training overhead

than the competitors, CBAM and BAM. While SAN-d, with

dilated convolutional kernels, requires more training time than

SAN-c, the difference is slight, and higher accuracy gains

of SAN-d makes that difference worthwhile. One important

observation comparing Figures 9a and 9b, is that on the same

data, SAN provides significantly higher training execution

gains over CBAM and BAM on (residual connection-based)

RESNet-18 than on VGG-16. In fact, while the training cost

for SAN strategies are similar for both networks, CBAM

and BAM’s training costs doubles when residual connections

are introduced. This indicates that the scale-invariant robust

attention generated through DoC extrema lead to a much more

effective use of the residual connections. Overall, SAN pro-

vides models with higher classification accuracies compared

to CBAM and BAM, at a significantly lower training cost.

3) Time Series Classification and Forecasting: In Table VI

and VII, we see that SAN outperforms the base model as well

as RAN for both classification and forecasting of multi-variate

time series. For the classification task (Table VI), we observe

that, while all three models are able to reach 100% model

accuracy, SAN leads to 43% drop in model loss compares to
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TABLE V: Classification accuracy for deeper models - CI-

FAR10 (VGG-19 and ResNet-50) - Bottleneck

Network VGG-19 ResNet-50
Accuracy Top-1 Top-5 Top-1 Top-5

Base 69.48 86.95 67.79 90.86

CBAM 70.24 89.85 65.82 89.74
BAM 71.41 94.01 68.76 94.51

SAN-c 77.14 96.21 71.36 96.89
SAN-d 77.36 96.88 72.73 97.25

TABLE VI: Model classification accuracy and loss for Mocap

dataset for LSTM model4

Metric Accuracy Loss (MAE)
Position Bottleneck Full Bottleneck Full
Base Model 100.00 100.00 0.1118 0.1118

RAN 100.00 100.00 0.1055 0.0751

SAN 100.00 100.00 0.0641 0.0084

TABLE VII: Model forecasting accuracy for flight fuel con-

sumption dataset for LSTM model4

Metric Accuracy (cos. sim.) Loss (MAE)
Position Bottleneck Full Bottleneck Full
Base Model 0.9672 0.9672 40.88 40.88

RAN 0.9526 0.9745 37.04 33.40

SAN 0.9745 0.9773 33.40 31.48

TABLE VIII: Model object detection accuracy for GTSDB

dataset for VGG-16 architecture

Position Bottleneck Full
Base Model 86.79

CBAM 88.25 90.67
BAM 89.87 91.71

SAN-c 92.45 93.01
SAN-d 93.88 95.63

Base model and 39% for RAN attention module for bottleneck

positions, and for full attention position, SAN leads to 92%

drop in loss against Base model and 89% against RAN, this

demonstrated that the importance of input features learned

(attention mask) by SAN is more informed and robust than the

mask learned by RAN. For the forecasting task, SAN leads to

maximum accuracy and minimum forecasting error4.

4) Object Detection: In Table VIII, we observe that for both

bottleneck and full positions, SAN can better learn to detect

objects of interest in an image. This highlights the importance

of leveraging the salient changes across layers(while using

only a single trainable layer in the attention module) as

opposed to CBAM and BAM which rely on more than one
trainable layers in each module.

5) Ablation Studies: We finally present, in Table IX, abla-

tion studies that validate the three key hypotheses underlying

the SAN attention framework:

– Cross-layer channel alignment: As discussed in Section

III-C1, the latent features from layers l − 1th and lth

4In Section IV-E3, we present both model accuracy and loss. As in
classification results, all models reach 100% accuracy, therefore, we leverage
model loss as a measure to compare the models and for forecasting, loss is
used to measure the divergence of the forecasting results from ground truth.

layer are not represented on the same basis; therefore,

we propose an efficient transformation that maps these

two layers onto a common basis, without padding. In

Table IX, w CCA refers to case where channel alignment

is used as described, whereas w/o CCA refers to the case

where channels are not aligned.

– Absolute difference for extrema DoC construction: As

discussed in Section III-C1, we seek attention at the

extrema of the DoC – not only maxima – in order to

prevent the “sigmoid” operation on the latent features to

wipe-out heavily negative values, we define DoC using

absolute difference. In Table IX, w Abs refers to case

where absolute differences are used to construct DoC,

whereas w/o Abs refers to the case where simple (non-

absolute) difference is used.

– Attention to the extrema of DoC: As mentioned above, to

seek points of attention, we look at the extrema of DoC.

In Table IX, w Extrema refers to case where an extrema

search step is applied on the DoC, whereas w/o Extrema
refers to the case where the DoC is used directly without

seeking its extrema.

– Extrema smoothing: As discussed in section III-C3,

while extrema help identify the salient points in the

latent features, smoothing of these extrema can help

eliminate noise and improve robustness. In Table IX, w
Smoothing refers to case where a final smoothing step is

applied, whereas w/o Smoothing refers to the case where

the smoothing step is omitted.

As we see in the table, the highest accuracies are obtained

when all four steps are combined. It is especially interesting to

see that, alone, extrema detection does not improve accuracy

– results with extrema detection, but without smoothing (#4)

are not better than results without extrema detection (#3);

however, when combined with the final smoothing step (#5)

to eliminate artifacts, extrema detection is very effective in

boosting the overall accuracy.

V. CONCLUSION

In this work, we presented a robust and model-independent

attention module that aims to guide the attention of the

network architecture to salient localized regions in the im-

age to boost the network accuracy, with minimal training

overhead. To achieve this goal, we propose an innovative

robust feature learning framework with novel scale-invariant

attention networks (SAN) that identify salient regions in the

input data using extrema of the difference of Gaussians. Unlike

the existing attention networks, SAN primarily concentrates

attention on parts of the data where there is major change

across space and scale. We experimentally evaluated and

showed that the proposed attention module, SAN, can be

successfully applied to various state-of-the-art architectures,

such as LeNet-5, VGG-16, and RESNet-18, as an add-on to

significantly boost the effectiveness, including for benchmark

datasets . Experiments further showed that, SAN leads to

minimal training overhead in comparison to the attention

modules, such as CBAM, BAM, and RAN.
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TABLE IX: Model classification accuracy vs model architecture and dataset summarizing the performance of different blocks

involved in devising SAN module (“–”: incompatible configuration when two layers have different channel counts)

Architectures LeNet-5 VGG-16 RESNet-18
Datasets MNIST FMNIST CIFAR10 CIFAR20 CIFAR100 GTSRB CIFAR10 CIFAR20 CIFAR100 GTSRB
0 Base Model 98.37 89.43 72.7 45.17 31.07 96.21 68.55 49.32 37.83 96.21

1 no-Abs, no-CCA,
– – 68.83 39.48 22.07 93.25 65.82 46.36 41.53 93.51no-Extrema, no-Smoothing

2 Abs,no-CCA,
– – 70.45 42.17 30.99 93.96 68.83 48.42 42.3 94.01no-Extrema, no-Smoothing

3 Abs,CCA,
98.34 89.55 73.95 40.19 32.34 95.98 71.53 49.17 42.86 96.23no-Extrema, no-Smoothing

4 Abs, CCA,
98.17 89.28 72.79 42.3 29.21 94.96 70.59 48.62 42.17 96.34Extrema, no-Smoothing

5 Abs, CCA, 98.56 89.75 78.42 50.23 34.58 97.96 74.82 55.23 44.14 98.31Extrema, Smoothing
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