
Online Indices for Predictive Top-k Entity and
Aggregate Queries on Knowledge Graphs

Yan Li
University of Massachusetts, Lowell

yan li1@student.uml.edu

Tingjian Ge
University of Massachusetts, Lowell

ge@cs.uml.edu

Cindy Chen
University of Massachusetts, Lowell

cchen@cs.uml.edu

Abstract—Knowledge graphs have seen increasingly broad
applications. However, they are known to be incomplete.
We define the notion of a virtual knowledge graph which
extends a knowledge graph with predicted edges and their
probabilities. We focus on two important types of queries:
top-k entity queries and aggregate queries. To improve query
processing efficiency, we propose an incremental index on top
of low dimensional entity vectors transformed from network
embedding vectors. We also devise query processing algo-
rithms with the index. Moreover, we provide theoretical guar-
antees of accuracy, and conduct a systematic experimental
evaluation. The experiments show that our approach is very
efficient and effective. In particular, with the same or better
accuracy guarantees, it is one to two orders of magnitude
faster in query processing than the closest previous work
which can only handle one relationship type.

I. Introduction

A knowledge graph is a knowledge base represented as

a graph. It is a major abstraction for heterogeneous graph

representation of data with broad applications including web

data [1], user and product interactions and ratings [2], med-

ical knowledge and facts [3], and recommender systems [4],

[5]. Due to the enormous and constantly increasing amount

of information in such knowledge bases and the limited

resources in acquiring it, a knowledge graph is inherently

incomplete to a great extent [5].

Fig. 1: Illustrating a virtual knowledge graph.

We consider it as a virtual knowledge graph, i.e., a graph

complemented with probabilistic edges. The probabilistic

edges are virtual and predicted with an estimated proba-

bility, given by an algorithm A associated with the graph,

as formulated in Section II and discussed in Section V-B.

Figure 1 illustrates a virtual knowledge graph where we

have different vertex types including users (e.g., Amy, Bob),

restaurants, grocery stores, and styles of food (e.g., Italian,

Mexican). The graph also has different relationship types in

edges (illustrated with various colors) such as “rates high” (of

a restaurant), “frequents” (a grocery store), and “belongs to”

(a style of food). This knowledge graph is incomplete. For ex-

ample, it misses the information that Amy likes Restaurant 2

(i.e., would give a high rating) with a certain probability, and

she likes Restaurant 3 with a certain probability, illustrated

as red dashed edges in Figure 1.

We envision that one of the major uses of a virtual

knowledge graph is to answer entity information queries

given another entity and a relationship. For instance, in

Figure 1, a useful query may be (Q1) “What are the top-5

most likely restaurants Amy would rate high but has not

been to yet?”. Another query, which involves aggregation, is

(Q2) “What is the average age of all the people who would

like Restaurant 2?”.

A knowledge graph consists of triples (i.e., edges) in the

form of (h, r, t), where h is the head entity, r is a relationship,

and t is the tail entity. For example, (Carol, frequents, Grocery

store 1) is such a triple in the graph of Figure 1. Each of

the two example queries above is either, given h and r, to

query information about t (Q1), or, given t and r, to query

information about h (Q2).

Due to the potentially gigantic number of entities in a

large knowledge graph, it would be very slow and less than

desirable to process each entity on the fly and select the

top ones with the highest probabilities. Moreover, adding to

the difficulty, there can be thousands or more relationships

in a heterogeneous knowledge graph. Our experiments in

Section VI show that queries are over 3 orders of magnitude

faster with our index compared to no index—the larger the

knowledge graph, the greater the difference.

Then, how can one possibly index a virtual knowledge

graph which has potential edges not even materialized? We

propose to leverage, and build upon, the knowledge graph

embedding techniques [5] for this purpose. Informally, knowl-

edge graph embedding performs automatic feature extraction

and dimensionality reduction and produces a different vector

for each vertex and each relationship type of the graph. These

embedding vectors incorporate all relevant information in

the vertex types, relationship types, and the graph topology.

Many knowledge graph embedding algorithms produce vec-

tors that maintain a constraint within a triple (h, r, t) for each

relationship type r that holds between entities h and t such as

h+r ≈ t [6], where the boldface symbols h, r, and t represent

1057

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00096

the embedding vectors of h, r, and t, respectively. Embedding

has been shown to be the state-of-the-art technique for link

prediction in knowledge graphs [5] .

The basic idea is that we perform spatial indexing of the

embedding vectors. Then for a query (Q1) that is given the

head entity h and a relationship type r and that requests

information on the tail entity t (either top matches or

aggregate information), we first use the embedding vectors

h and r to calculate a new vector h + r, and then look up

the spatial index to find entities whose embedding vectors

are close to point h+ r in the multidimensional space. It is

analogous for the other type of query (Q2) where we search

the neighborhood of point t− r for head entities.

One problem with the above basic approach is that

common spatial indices, including the R-tree variants, do

not work well for high dimensionalities such as tens and

hundreds for graph embedding vectors [7]. Operating in

high dimensionalities severely penalizes performance. Our

solution is to first use a Johnson-Lindenstrauss (JL) type

random projection [8] into a low dimension space (such as

3), and then build a spatial index in this low dimension space.

However, classical JL transform and its analysis require the

resulting dimensionality to be rather high, at least in the

hundreds. Thus, we perform a novel analysis of accuracy

guarantees for any low dimensions.

We observe that building such an index is still very time

and space consuming, and the search space is very uneven

given the space of queries. In other words, it is wasteful to

build a full index while most nodes will never be visited.

Thus, analogous to a cracking index of B+ tree [9], [10] in

a relational database, we propose a novel way to build a

cracking R tree index online as needed by queries. In addition

to adopting a greedy approach for this purpose, we devise

an algorithm that performs A* search with top-k best choices

in building the index. Finally, we propose query processing

algorithms using this index for both top-k and aggregate

queries, and give a novel proof of the accuracy guarantees

using the martingale theory and Azuma inequality [11].

To the best of our knowledge, this is the first work

that proposes an incremental index technique for answering

predictive queries with accuracy guarantees. The closest

related work, H2-ALSH, uses locality sensitive hashing (LSH)

for approximate nearest neighbor search [12], but can only

handle one relationship type. H2-ALSH uses collaborative

filtering and searches for entities of one type that are closest

to an entity of another type based on the inner product

distance metric—hence it can only handle relationship of

a single type, but not heterogeneous knowledge graphs.

Nevertheless, even for a homogeneous graph with a single

relationship type, our cracking index does not incur a long,

offline index-building time as H2-ALSH does, and our query

processing time is one order of magnitude faster than H2-

ALSH for a smaller dataset and two orders of magnitude

faster for a larger dataset. That is, our method scales better

due to our overall tree-structure index (unlike the flat buckets

of LSH) with a cost logarithmic of the data size. In summary,

our contributions are as follows:

• The notion of a virtual knowledge graph and its indexing

for top-k and aggregate predictive queries.

• Graph embedding transform with provable accuracy

guarantees (Section III) combined with an incremental

index technique (Section IV).

• Query processing algorithms for top-k and aggregate

queries with a novel proof of accuracy (Section V).

• A comprehensive experimental study using real-world

knowledge graph datasets (Section VI).

II. Problem Formulation

A knowledge graph G = (V,E) is a directed graph whose

vertices in V are entities and edges in E are subject-property-

object triple facts. Each edge is of the form (head entity,

relationship, tail entity), denoted as (h, r, t), and indicates a

relationship r from entity h to entity t.

Definition 1. (Virtual Knowledge Graph) A virtual knowl-

edge graph G = (V, E) induced by a prediction algorithm A
over a knowledge graph G = (V,E) is a probabilistic graph
that has the same set of vertices (V) as G, but has edges
E = E ∪ E′, where each e ∈ E′ is of the form (h, r, t, p),
i.e., a triple (h, r, t) extended with a probability p determined
by algorithm A. Accordingly, edges in E have a probability 1.

Remarks. Logically, a virtual knowledge graph G can be

considered as a complete graph, even though some edges may

have tiny or zero probabilities. However, we never materialize

all the edges—only the highest probability ones are retrieved

on demand. The algorithm A needs to return a probability for

a retrieved edge not in E. In this paper, we focus on two types

of queries over G, namely the top-k queries and aggregate

queries. A top-k query is that, given a head entity h (resp.

tail entity t) and a relationship r, we return the top k entities

t (resp. h) with the highest probabilities in E′. In the same

context, an aggregate query returns the expected aggregate

value (COUNT, SUM, AVG, MAX, or MIN as in SQL) of the

attributes of entities t (resp. h) in E′. Q1 in Section I is an

example of a top-k query, while Q2 is an aggregate query.

Note that alternatively we could have the query semantics

for all the edges in E ∪ E′; however, we focus on E′ in

this paper as it contains previously unknown edges in the

graph and is of practical significance to applications such as

recommender systems. As part of the graph, for each entity

point, we know its set of neighbors as in E. Thus, for our

default semantics that only considers E′, if index access in

Section V retrieves an entity point that is a neighbor (in E)

of the query entity, we simply skip it and continue to the

next entity (this is typically insignificant as real knowledge

graphs’ node-degrees follow the power law [13], and most

nodes have relatively low degrees in E).

Due to the large number of entities, a brute force way

of iterating over every entity would be slow and undesir-

able. Furthermore, materializing all edges in E′ would be

too costly, since knowledge graphs are known to be very

incomplete [5], and there can be many relationships (e.g., in

1058

Freebase [14]). In this paper, we propose a novel and efficient

indexing method to solve this problem, based on a knowledge

graph embedding algorithm A, which has been shown to be

the state-of-the-art technique for link prediction [5].

III. Transform of Embedding Vectors

A. Overall Approach

We first apply an existing knowledge graph embedding

scheme, such as TransE [6] or TransA [15], to get the embed-

ding vectors of each node and relationship type. This embed-

ding is the algorithm A that induces the virtual knowledge

graph. We aim to index these embedding vectors. However,

typically they are of tens or hundreds of dimensions, which

is too inefficient for commonly used spatial indices. Hence,

in this section, we apply the Johnson-Lindenstrauss (JL)

transform [8] to convert the embedding vectors into a low

dimension (such as 3) before indexing them.

B. Transforming to Space S2

A knowledge graph embedding scheme results in vectors

of dimensionality d in the vicinity of tens or hundreds, in

an embedding space S1. There is one vector for each vertex

(entity) and for each relationship type. We then perform JL

transform on these vectors. However, a major technical chal-

lenge is how to provide accuracy guarantees, since classical

JL transform and its proof of distance preservation require

the resulting dimensionality to be typically rather high, at

least in the hundreds—while we need it to be a small number

α (e.g., 3). Let this α-dimensional space be S2. Specifically,

the mapping of this transform is:

x �→ 1√
α
Ax

where the α×d matrix A has each of its entries chosen i.i.d.

from a standard Gaussian distribution N(0, 1), and d is the

dimensionality of S1. Intuitively, each of the α dimensions

in S2 is a random linear combination of the original d
dimensions in S1, with a scale factor 1√

α
, so that the L2-

norm of x is preserved.

Note that our proof of the following result, Theorem 1,

is inspired by, but differs significantly from that in [8]. In

particular, the analysis and proof in [8] only apply to the

case when the ε below is between 0 and 1 for the upper

bound; moreover, we obtain a tighter bound for a small

dimensionality α and a relaxed ε range. For succinctness and

clarity, the proofs of all the theorems/lemmas in the paper

are in our technical report [16].

Theorem 1. For two points u and v in the embedding space

S1 that are of Euclidean distance l1, their Euclidean distance l2
in space S2 after the transform has the following probabilistic

upper bound:

Pr[l2 ≥
√
1 + ε · l1] ≤ Δu(ε)

.
=

(√
1 + ε

eε/2

)α

(1)

for any ε > 0, where α is the dimensionality of S2. Similarly,

the probabilistic lower bound is

Pr[l2 ≤
√
1− ε · l1] ≤ Δl(ε)

.
=

(√
1− ε · eε/2

)α

(2)

for any 0 < ε < 1.

To see an example of the upper bound, we set ε = 3, and

suppose the JL transform has dimensionality α = 3, then

with confidence 91.2%, l2 < 2l1. For an example of lower

bound, by setting ε = 15
16 (again α = 3), we have that, with

confidence at least 94%, l2 > l1
4 .

IV. Cracking and Uneven Indices for Virtual

Knowledge Graphs

Once we transform all entity points into the low-

dimensional space S2, we perform indexing in order to

answer queries on the virtual knowledge graph. A simple

approach is to just use an off-the-shelf spatial index, such

as an R-tree [7]. However, we observe that this can be quite

wasteful, given that the number of entities is often huge, and

that the query regions (e.g., using h+ r to search for top-k

tail entities with embedding t) are typically skewed and only

cover a small fraction of the whole space of entity points.

This motivates us to build a cracking and uneven R-tree

index (similar ideas work on other variants of index too).

The basic idea is that we bulk-load/build an R-tree index

in a top-down manner, and continue the “branching” on

demand—only as needed for queries. As a result, regions in

the embedding space S2 that are more relevant to queries

(e.g., h + r) are indexed in finer granularities, while the

irrelevant regions stay at high levels of the tree. Thus, unlike

the traditional R-trees that are balanced, the index that we

build is imbalanced (uneven).

A. Preliminary: R-tree Bulk-Loading Algorithm

We first give some background on the top-down R-tree

bulk-loading [17], as shown in the algorithm BulkLoad-

Chunk. Later in this section, we will devise our cracking

index algorithms on top of BulkLoadChunk. We are index-

ing a set of rectangular objects D (for our problem, they are

actually just a set of points—a special case of rectangles—in

space S2). The basic idea of BulkLoadChunk is to first sort

D into a few sort orders D(1), D(2), ..., D(S), for example,

based on the 2α coordinates of the α-dimensional rectangles

(e.g., S = 2α). Note that each D(i) is a sorted list of

rectangles.

Then BulkLoadChunk performs a greedy top-down con-

struction of the R-tree. Due to dense packing, it is known

in advance how many data objects every node covers. Each

time, we perform a binary split of an existing minimum

bounding region (MBR) at a node based on one of the sort

orders and a cost model. A cost model penalizes a potential

split candidate that would cause a significant overlap between

the two MBRs after the split. The cost model (which we omit

in the pseudocode) is invoked in the cost function in line 4

of the BestBinarySplit function. This binary split is along

1059

Algorithm 1: BulkLoadChunk (D, h)

Input: D: rectangles in a few sort orders D(1), ..., D(S)

(D(i) is a list of rectangles in a particular sort

order)

h: the height of the R-tree to build

Output: the root of the R-tree built

1 if h = 0 then
2 return BuildLeafNode(D(1))

3 m← �D(1)

M � //M is capacity of a nonleaf node;
m is # rectangles per child node’s subtree

4 {D1, ...,Dk} ←Partition (D,m) //k = M unless in
the end

5 for i← 1 to k do
6 ni ← BulkLoadChunk(Di, h− 1) //Recursively

bulk load lower levels of the R-tree.

7 return BuildNonLeafNode(n1, ..., nk)

Function Partition (D,m) //partition data into
k parts of size m

1 if |D(1)| ≤ m then
2 return D //one partition

3 L, H← BestBinarySplit (D,m)
4 return concatenation of Partition(L,m) and

Partition(H,m)

Function BestBinarySplit (D,m) //find best
binary split of D

1 for s← 1 to S do
2 F,B ← ComputeBoundingBoxes(D(s),m)

3 for i← 1 to M − 1 do
4 i∗, s∗ ← i and s with the best cost(Fi, Bi)

5 key ← SortKey(Ds∗
i∗·m, s∗) //sort key of split

position
6 for s← 1 to S do

//split each sorted list based on key of s∗

7 L(s), H(s) ← SplitOnKey(D(s), s∗, key)

8 return L,H

one of the M − 1 boundaries if we are partitioning a node

into M child nodes (thus it requires M − 1 binary splits).

This choice is greedy.

Some functions are omitted for succinctness. For instance,

ComputeBoundingBoxes takes as input a sorted list of

rectangles and the size m of each part to be partitioned,

and returns two lists of bounding rectangles F (front) and

B (back), where Fi and Bi are the two resulting MBRs

if the binary split is at the ith (equally spaced) position

(1 ≤ i ≤ M − 1). Lines 3-4 of BestBinarySplit get the

optimal split position with the least cost—position i∗ of sort

order s∗, and line 5 retrieves the split key from that sort

order list. Based on this binary split, we maintain (i.e., split)

all the S sorted lists in lines 6-7, and return them.

B. Insights and Node-Splitting Cost Model

Instead of doing offline BulkLoadChunk, we build a

cracking and partial index online upon the arrival of a se-

quence of queries. We start with some insights and informal

description of performing on-demand top-down bulk-load of

R-tree upon a query’s rectangle region Q. The BulkLoad-

Chunk algorithm in general indexes rectangle objects. In our

case, we only index data points (i.e., entities). In the complete

R-tree BulkLoadChunk, all nodes are fully partitioned top-

down until the leaves at the bottom, resulting in a balanced R-

tree. In our online incremental build, however, we only grow

the partitions of nodes that contain the data points in query

region Q; moreover, we do not need to break a partition if

it contains data points all in Q. Thus, we end up seeing an

R-tree that is imbalanced with some partitions unsplit yet. As

also demonstrated in our experiments (Section VI), the saving

is significant since the full balanced index is quite wide.

Fig. 2: Illustration of a contour in a cracking R-tree.

Definition 2. (Contour). The contour C of a cracking R-tree
is the set of current partitions (inside nodes) that do not have a

corresponding child node, together with any terminal leaf nodes.

We say that each such partition or leaf node is an element e
of the contour.

Figure 2 illustrates a contour that is shaded and has eight

elements, one of which is a leaf node (the number of data

points that it covers is small enough). We first have a basic

observation as stated below.

Lemma 1. Consider a contour of the R-tree at any time instant.

Each element of the contour contains a mutually exclusive set

of data points, and together they contain all the data points.

Definition 3. (Leaf Distance). At time t during the lifetime
of a cracking R-tree index, if two data points d1 and d2 are in
the same element of the contour (i.e., the same leaf node or the

same partition), then we say that their leaf distance at time t,
denoted as lt(d1, d2), is 0. Otherwise, their leaf distance is 1.

Thus, leaf distance is a time-variant binary random variable

that depends on the sequence of incoming queries. We next

have the following lemma (the proof follows directly from

the algorithm).

Lemma 2. Consider two data points d1 and d2 in a partition.
After a binary split at time τ , if d1 and d2 are still in the

same partition, then in every sort order s, the positions of d1
and d2 can only be closer or stay the same due to the split. If
d1 and d2 are separated into two partitions due to the split,

then lt(d1, d2) = 1 for any t > τ .

1060

From Lemma 1, we know that all the required data points

in the query region Q must be in the current contour C of

the index. Thus, our incremental index building algorithm

will locate each element e ∈ C that overlaps with Q and

determine if we need to further split e for the query. At

this point, we need to revise the cost model to optimize the

access cost for the current query region Q, in addition to the

previous cost function that penalizes the MBR overlap due

to the split. Intuitively, after the split, the data points in Q
should be close to each other to fit in a minimum number of

pages (i.e., their leaf distance should be small). Based on the

principle of locality in database queries [18], this optimization

has a lasting benefit.
1) Node-Splitting Cost Model: The key idea is that we

extend the cost model into a two-component cost (cQ, cO),

where cQ is the cost estimate for accessing query region Q,

while cO is the cost incurred by overlaps between partitions.

At a contour C of the index at any time instant, we define

cQ to be the minimum number of leaf pages to accommodate

all the data points in Q, given the current configuration of

elements in C and any possible future node splits. Lemma 2

implies that after every split, the leaf distance between any

d1, d2 ∈ Q still in the same partition is expected to either

get smaller or stay the same, while two separated points will

be in different leaf nodes. This leads to the following result.

Lemma 3. At a contour C of an index, a lower bound of the
number of leaf nodes that we need to access and process is∑

e∈C� |Q∩e|N �, where Q ∩ e is the set of data points in the

element e (of C) that are also in the query region Q, and N is

maximum number of data point entries that can fit in a leaf

node.

Note that for each leaf node accessed forQ, we will need to

convert each data point in it to the original embedding space

S1 and calculate the distance to the query center point (e.g.,

h+r, to be detailed in Section V). Hence, the number of leaf

nodes accessed and processed is a reasonable measure of the

first cost component cQ. The second component of cost is cO ,

the cost for overlaps between partitions. We increment cO by

βh · ‖O‖
min(‖L‖,‖H‖) (β ≥ 1) at each binary split during the runs

of the algorithm, where O is the overlap region between two

resulting partitions L and H of the binary split, ‖ · ‖ denotes

the volume of a region, h is the height of the R-tree where

the split happens, and β ≥ 1 is a constant indicating that an

overlap higher in the R-tree has more impact and is more

costly (as an R-tree search is top-down).
A remaining issue is that cQ and cO are two types of cost

measured differently—making the whole node-splitting cost a

composite one. However, it is important to be able to compare

two node-splitting costs, as required by our index building

algorithms in Section IV-C. We observe that, for our problem,

the query region Q is derived from a ball around the center

point (e.g., h+r), and is hence continuous in space and should

not be too large (otherwise the links are too weak). Thus, it

is reasonable to attempt to achieve optimal cQ as a higher

priority. As a query-workload optimized approach, we treat

cQ as the major order and cO as the secondary order when

comparing two composite costs.

C. Incremental Partial Index Algorithms

Having developed the cost model, we are now ready to

present our online cracking index algorithms. The algorithms

incrementally build an index and use it to search at the same

time. The idea is that for the initial queries more building

of the index is done, while it is mainly used for search (and

little is changed to the index) for subsequent queries. Overall,

the cracking index only performs a very small fraction of

the binary splits performed by the full BulkLoadChunk, as

verified in our experiments in Section VI.
1) Main Algorithm: With the insights given in Section

IV-B, we describe our main cracking index algorithm, Incre-

mentalIndexBuild, based on the key functions given under

BulkLoadChunk in Section IV-A. IncrementalIndexBuild

takes as input a query region Q and the current index I (with

contour C). Initially I (and C) is just a root node containing

all the data points.

(1) Instead of a top-down complete bulk-load, upon a query

region Q, we perform an incremental partial top-down

build of index I to the elements in the current contour

that overlap Q. We store a set of data points contained

in each element e of the current contour C in addition to

its MBR. A non-leaf element e contains the S sort orders

of the data points.

(2) The incremental algorithm probes I until it reaches an

element e in C that has data points contained in Q, and

calls Partition over e.
(3) The Partition function simply returns its input D if it

satisfies the stopping condition, which is Q ∩ e = ∅ or
� |Q∩e|N � = � |e|N � , where e is the current element of C
that has the D partition.

(4) If a Partition call returns from its line 2 (i.e., already

smallest partition at its level), we then call BulkLoad-

Chunk over it (the same as line 6 of BulkLoadChunk).

(5) The cost function in line 4 of BestBinarySplit is revised

as stated in Section IV-B.

In (3) above, the stopping condition of binary partition

over an element e in the current contour is either Q ∩ e =
∅ indicating that e is irrelevant to Q, or � |Q∩e|N � = � |e|N �
indicating that almost all the data points in e are in Q. A

special case of the latter stop condition is when e is a single

leaf node that has data points in Q, although in general it

may stop at an element larger than a leaf without splitting

it. In (4) above, the top-down recursive algorithm proceeds

to the next lower level of the tree.
As part of this top-down probing process, the qualified

data points are found and returned. Note that we can start

processing the first query when the index only has a root

node. As more queries come, the index grows incrementally

and the node splits are optimized for the query usage

(via the cost functions in Section IV-B1). As shown in our

experiments in Section VI, only a very small fraction of the

splits are performed compared to BulkLoadChunk, since the

1061

space of queried embedding vectors is much smaller than that

of all data points. Thus, the amortized cost of incremental

index building is much smaller than bulk loading.
2) More Split Choices: Our main indexing algorithm makes

a greedy choice to select a locally optimal cost for each split,

as the original bulk loading algorithm does. However, we

observe that, since we are now only incrementally build the

index for each query, we may afford to explore more than

one single split choice. We will iterate over a small number

(e.g., k = 2 to 4) of split choices, with the goal of getting

a good global index tree. Furthermore, we will use A∗ style

aggressive pruning to cut down the search space for a query.
The key idea is to use a priority queue Q (a heap) to keep

track of “active” contours as change candidates. We do not

adopt a change candidate until it completely finishes its splits

for the current query and is determined to be the best plan

based on A∗ pruning. The sort order of the priority queue

is the two-component cost of a contour. The minimum cost

contour (i.e., change candidate) is popped out from Q, and

is expanded (with the top-k choices for the next split). The

algorithm is shown in Top-kSplitsIndexBuild.

Algorithm 2: Top-kSplitsIndexBuild (I,Q)
Input: I : current index; Q: query region

Output: revised index

1 if Q does not exist yet then

2 create a priority queue Q

3 add into Q the initial contour C with only the root

node of I and cost (
∑

e∈C�Q∩eN �, 0) as weight

4 while Q is not empty do

5 C ← pop head of Q

6 e← first element of C whose MBR overlaps Q

7 while Q ∩ e = ∅ or � |Q∩e|N � = � |e|N � do
//stopping condition

8 e← next element of C whose MBR overlaps Q

9 if e = null then
10 break

11 if e = null then
12 return the index with C //all e ∈ C are

exhausted

13 process e as IncrementalIndexBuild does, except:

14 in BestBinarySplit, we get top-k best splits

15 for each of the k splits do

16 C′ ← C+ the split

17 cQ ← C.cQ − � |Q∩e|N �+ � |Q∩e′|N �+ � |Q∩e′′|N � //e
is split into e′ and e′′

18 cO ← C.cO + βh · ‖O‖
min(‖L‖,‖H‖)

19 add C′ into Q with cost (cQ, cO) as weight

In lines 1-3, we create the priority queue Q for the very

first query. Initially, the index only has the root node, and

this contour is added into Q with the two-component cost

as discussed in Section IV-B (the overlap cost is 0). Line 5

pops out the head of the queue which has the least cost. The

stopping condition of processing an element e in line 7 is the

same as that in IncrementalIndexBuild.

Lines 6 and 8 are based on a certain traversal order such as

depth-first-search. If all elements of the top change candidate

(contour) satisfy the stopping condition, and hence the next

element is null (lines 9-12), this candidate must be the best

among all. Otherwise, in lines 13-19, we will continue to

process (split) this change candidate and expand it with the

top-k splits. We add these k new candidates into Q with

updated costs as their weights.

V. Algorithms to Answer Queries

Let us now proceed to discussing the algorithms to answer

queries on a virtual knowledge graph, given the indexing

algorithms in Section IV. The accuracy guarantees are shown

in Theorems 2 and 4 below. The intuition is that the original

space S1 typically has 50-100 dimensions but is very sparse.

The JL transform provably preserves pairwise point-distances

(Theorem 1), while top-k and statistical queries are based on

such point-distances.

A. Top-k Queries

We first consider queries that ask for top-k tail entities,

given a head entity h and a relationship r (note that an-

swering queries for top-k head entities given t and r is

analogous and is omitted). We use boldface letters h and r

to represent the corresponding vectors in S2. The basic idea

of our algorithm is to iteratively refine (reduce) the query

rectangle region, until the k data points nearest to h+r’s

corresponding vector in the original space S1 are identified,

which correspond to the matches with top-k probabilities

based on the embedding algorithm. The algorithm is shown

in FindTop-kEntities.

Algorithm 3: FindTop-kEntities (I, h, r)
Input: I : current index; h: head entity; r: relationship

Output: top-k entities most likely to have relationship

r with h
1 q← h+r
2 probe I for the smallest node that contains q, and get k

data points Nq

3 rq ← r∗k(Nq) · (1 + ε)
4 Q ← region of B(q, rq)
5 while data points in Q have not been all examined do

6 Nq ←top-k data points so far closest to q in S1
7 rq ← r∗k(Nq) · (1 + ε)
8 Q ← region of B(q, rq)

9 Top-kSplitsIndexBuild (I,Q)
10 return Nq

In line 2, we probe the current index and locate the element

e (either a partition or a leaf) in its contour that contains q.

Recall that the data points in e are sorted in several orders;

we arbitrarily pick one sort order s, and traverse the data

1062

points of e in increasing distance from q based on the linear

order in s, and get the first k data points. This is the set Nq

in line 2. In line 3, r∗k(Nq) denotes the kth smallest distance

to q’s corresponding vector in S1 after mapping the data

points in Nq to S1. Recall that our ultimate goal is to find

closest entities in S1. The ε in line 3 is based on the accuracy

guarantees in Theorem 1, and will be discussed in our next

two theorems. In line 4, we get the minimum bounding box

region of the ball in S2 centered at q with radius rq . Then

the traversal order of data points in line 5 is exactly the same

as that described above for line 2.

Within the loop in lines 5-8, in line 6, we maintain the top-

k data points that are closest to q’s corresponding vector in

S1. Consequently, the rq in line 7 must be non-increasing

over all the iterations, and so is the Q in line 8 (and hence

the Q in line 5 used for the next iteration). Note that lines 7-8

are identical to lines 3-4. Based on the final query region Q,

line 9 updates the incremental index. Now we analyze our

top-k entity query processing algorithm. Theorem 2 below

provides data-dependent accuracy guarantees, while Theorem

3 addresses the performance of the algorithm.

Theorem 2. With probability at least
∏k

i=1

[
1− mα

i

eα(m2
i
−1)/2

]
,

FindTop-kEntities does not miss any true top-k entities,

where mi =
r∗k
r∗i
(1 + ε), while the expected number of miss-

ing entities compared to the ground-truth top-k entities is∑k
i=1

mα
i

eα(m2
i
−1)/2

.

Theorem 3. For the final query region Q in FindTop-

kEntities and 0 < ε′ < 1, the probability that a data point
with distance at least r∗k · 1+ε

1−ε′ from q in S1 may get into Q
is no more than (1− ε′)α · eα(ε′− ε′2

2).

B. Aggregate and Statistical Queries

Consider the following queries: What is the total number

of restaurants that Amy may like? What is the average

distance of the restaurants that Amy likes? These queries

involve statistical aggregation over the virtual knowledge

graph.

The relevant entities are within a ball with radius rτ
around the query center point such as h+r. The ball cor-

responds to a probability threshold of pτ (e.g., a small value

0.05). To decide the probabilities, we let the entity closest to

the query center point have probability 1 for the relationship,

and other entities’ probabilities are inversely proportional to

their distances to the query center point. In general, for each

data point in the ball, we may need to access its record with

attribute information for aggregation and/or for evaluating

the predicates. When there are too many such data points,

we may use a sample of them to estimate the query result.

Note that in this ball, each data point only has a certain

probability to be relevant (in the relationship with the head

entity h), with probabilities in decreasing order from the

center to the sphere of the ball. Without knowledge of the

distribution of a relevant attribute in these data points, our

accessed sample is the a points closest to the center (i.e., with

top-a probabilities) among a total of b points in the ball.

COUNT, SUM, and AVG Queries. The estimations of

COUNT, SUM, and AVG query results are similar. Let us begin

with a SUM query. The expectation of a SUM query result is:

E[s] =

∑a
i=1 vi · pi∑a

i=1 pi
/∑b

i=1 pi
(3)

where a is the number of accessed data points out of a total

of b data points in the ball, p1 ≥ p2 ≥ · · · ≥ pa ≥ · · · ≥ pb
are the data point probabilities, and vi (1 ≤ i ≤ a) are

the retrieved attribute values to sum up. Note that we know

the number of entities in each element of an index contour,

and hence can estimate the b − a probabilities (based on

the average distance of an element to a query point). The

numerator in Equation (3) is the expected sum of the attribute

value in the retrieved sample. This needs to be scaled up by a

factor indicated in the denominator of Equation (3), the ratio

between the cardinality of the sample and the cardinality of

all data points.

We now give a novel analysis, based on the martingale

theory [11] in probability, to bound the probability that the

ground truth SUM result is at a certain distance away from

the expectation in Equation (3). Note that the analysis is

nontrivial since the entities/points are correlated w.r.t. their

memberships in relation r with entity h in question (as the

entities are connected by edges/paths in the graph).

Theorem 4. In the algorithm for answering SUM queries, let

the expectation in Equation (3) be μ. Then the ground truth

answer S to the query must satisfy the following:

Pr[|S − μ| ≥ δμ] ≤ 2e−2δ2μ2
/∑a

i=1 v2
i+(b−a)v2

m

where vm is the maximum attribute value being summed

among the b− a data points not accessed.

We can maintain minimum statistics on |vm| at R-tree

nodes to facilitate accuracy estimates. Alternatively, we may

estimate |vm| based on the known sample values |vi| (i ≤ a),
without relying on any domain knowledge of the attribute.

This is the same as how we estimate the expected MAX value

discussed shortly.

Note that Theorem 4 is for our general algorithmic frame-

work. If the algorithm accesses all data points in the ball,

i.e., a = b, the result in the theorem still holds. Moreover,

from Theorem 4, we can also get similar results for COUNT

and AVG queries. For COUNT queries, we simply replace vi
and vm in the theorem by 1, as COUNT can be considered

as SUM(1). For AVG queries, the analysis result is essentially

the same as the bound in Theorem 4, as we need to divide

both μ and the increment bound in the proof by the count.

MAX and MIN Queries. Such queries select the MAX or

MIN value of an attribute among the b data points in the

ball centered at the query point such as h+r. As before, we

may access a sample of a closest data points to estimate the

1063

result. We only discuss MAX queries; the treatment for MIN

queries is analogous. Again, we estimate the expected value,

and then bound the probability that the true MAX is far away

from this expectation.

First let us estimate the expectation of MAX of the a
accessed data points. Without loss of generality, we rearrange

the index of the a data points so they are in non-increasing

value order {(ui, pi)}, where u1 ≥ · · · ≥ ua. Then the

expectation of sample MAX is:

E[MS] = u1p1+u2(1−p1)p2+ · · ·ua(1−p1)...(1−pa−1)pa

Next, given an n-value sample chosen uniformly at random

from a range [0,m], we can estimate the maximum value

m from the sample as (1 + 1
n)ms where ms is the sample

maximum value [19], which leads to the following result for

expected MAX based on the E[MS] above:

E[M] =

(
E[MS]− min

1≤i≤a
vi

)(
1 +

1∑a
i=1 pa

)
+ min

1≤i≤a
vi

(4)

We can then use martingale theory to bound the probability

that the ground truth MAX result is far from the value in

Equation (4). This is similar to Theorem 4; hence we omit

the details–the main idea is that from data point i − 1 to

point i, the change to the expected MAX value Yi − Yi−1

should be bounded in a small range [Bi, Bi + di], where

di = max(0, [vi − E[MS]] ·
(
1 + 1∑a

i=1 pa

)
) for i ≤ a and

di =
E[MS]∑a
i=1 pa

for i > a.

VI. Experiments

A. Datasets and Setup

We use three real world knowledge graph datasets: (1)

Freebase data. Freebase [14] is a large collaborative knowl-

edge base, an online collection of structured data harvested

from many sources, including individual, user-submitted wiki

contributions. Google’s Knowledge Graph was powered in

part by Freebase. The dataset we use is a one-time dump

through March 2013. (2) Movie data.This is another popular

knowledge graph dataset, which describes 5-star rating and

free-text tagging activity from MovieLens, a movie recom-

mendation service [20]. Entities include users, movies, genres,

and tags. Ratings are made on a 5-star scale, with half-star

increments (0.5 stars to 5.0 stars). We create two relationships

for ratings: a user “likes” a movie if the the rating is at

least 4.0 (in the range between 0 and 5.0); a user “dislikes” a

movie if the rating is less than or equal to 2.0. There are also

relationships “has-genres” and “has-tags”. (3) Amazon data.

This dataset [2], [21] contains product reviews and metadata

from Amazon, including 142.8 million reviews spanning May

1996 to July 2014. The review rating scale ranges from 1 to

5, where 5 denotes the most positive rating. Nodes represent

users and products, and edges represent individual ratings.

We create relationships “likes” and “dislikes” in the same

way as movie data. In addition, the data contains “also

viewed” and “also bought” relationships. Some statistics of

the datasets are summarized in Table I.

TABLE I: Statistics of the datasets.

Dataset Entities Relationship
types

Edges

Freebase 17,902,536 2,355 25,423,694
Movie 312,710 4 17,356,412

Amazon 10,356,390 4 22,507,155

We implement all the algorithms in Java. We also use

the graph embedding code from the authors of [6], a high-

dimensional index PH-tree from the authors of [22], and the

H2-ALSH code from [12] for comparisons. The experiments

are performed on a MacBook Pro machine with OS X version

10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB 1600 MHz

DDR3 memory, and a Macintosh hard disk.

B. Experimental Results

Queries. In order to systematically explore as much as

possible the space of queried embedding vectors (e.g., h+ r)
in S2, for each query we either (1) randomly choose a head

entity and a relationship and query the top-k tail entities,

or (2) randomly choose a tail entity and a relationship and

query the top-k head entities. We measure the execution time

and accuracy of a sequence of queries—to evaluate how the

response time evolves.

Freeebase (Top-k). In the first set of experiments, we use

the Freebase data to compare a few approaches. Two of these

approaches are our main cracking index method and the top-

k split-choice index build method. One baseline approach is

what one would do without our work—answering the top-

k entity queries without using an index by iterating over

all possible entities. The second baseline uses a state-of-the-

art high-dimensional index, called PH-tree [22], to index the

high-dimensional (50 or 100 dimensions) embedding vectors

directly, without transforming them to S2. Another baseline

approach goes a step further by using an R-tree index by

bulk-loading it, without our cracking index techniques. The

results are the average of at least ten runs.

Note that for general knowledge graphs, such as the

Freebase data, we cannot use the H2-ALSH scheme [12]

because it can only work with one relationship type—H2-

ALSH is basically a locality sensitive hashing mechanism

working with collaborative filtering. Later we will use other

datasets to compare against H2-ALSH.

In Figure 3, we examine the execution times of the ap-

proaches described above over the Freebase data. For the

top-k split-choice index build method, there is a parameter of

how many choices to take into account at each split. We show

the results when this parameter is 2 or 4, respectively (i.e.,

the last two groups of bars). Recall that our cracking index

methods do not have offline index building, but start to shape

the index when queries arrive online. Hence, we measure

the index building time (if any), as well as the execution

times of the 1st, 6th, 11th, and 16th queries to evaluate

how the response time evolves over the initial sequence of

queries. Among these approaches, only PH-tree and bulk-

loading have an offline index building time, which are quite

1064

No index PH-tree Bulk Cracking 2 choices 4 choices
Method

100

101

102

103

104

105

106

E
la

ps
ed

 ti
m

e
(m

s)

Index building
Q1
Q6
Q11
Q16
Average query

Top 2 Top 5Top 10
Query

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
re

ci
si

on
@

K

No index PH-tree H2-ALSH Bulk =3 Bulk =6 Cracking 2 choices
Method

100

101

102

103

104

E
la

ps
ed

 ti
m

e
(m

s)

Index building
Q1
Q6
Q11
Q16
Average query

H2-ALSH =3 =6
Method

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
re

ci
si

on
@

K

Top 2 query
Top 5 query
Top 10 query

Fig 3 Method vs. elapsed time (Freebase) Fig 4 Accuracy (Freebase) Fig 5 Method vs. elapsed time (movie) Fig 6 Accuracy (movie)

No index PH-tree H2-A:2 H2-A:10 Bulk:2 Bulk:10 Crack:2 Crack:10 2 choices
Method

100

101

102

103

104

105

106

E
la

ps
ed

 ti
m

e
(m

s)

Index building
Q1
Q6
Q11
Q16
Average query

H2-ALSH Our index
Method

0.97

0.975

0.98

0.985

0.99

0.995

1

P
re

ci
si

on
@

K

Top 2
Top 5
Top 10

0 5 10 15 20
Number of queries

102

103

104

105

106

In
de

x
no

de
s

sp
lit

 to

Bulk loading
Cracking

0 5 10 15 20
Number of queries

100

101

102

103

In
de

x
si

ze
 (

K
B

)

Bulk loading
Cracking

Fig 7 Method vs elapsed time (Amazon) Fig 8 Accuracy (Amazon) Fig 9 #Nodes (Freebase) Fig 10 Index size (movie)

significant due to the large amount of data. PH-tree also has

a high query cost. This is because it directly indexes the

embedding vectors of dimensionality at least 50, which makes

its search performance suffer significantly, almost as slow

as no index (but just a linear search). The advantage of the

bulk-loading approach is that the query response time is fast

and even over the sequence of queries that we examine. The

no-index approach has a significant overhead for each query,

which is the main motivation of our work. The cracking index

methods have no offline index building time, and the shape

of the partial index is based on the online queries. The first

query has a relatively high response time due to the initial

setup for creating the index nodes (yet it is still about 30

times faster than bulk-loading in the log plot). The execution

time sharply drops with more queries, and quickly flattens

to a value slightly smaller than the bulk-loaded index.

Note that one may fire off the first query before the real

online queries come, so that all online queries are fast. Thus,

in Figure 3, we also show the average per-query execution

time of 10,000 online queries after the first one issued offline.

The cracking index leads to slightly better query performance

than bulk-loading since it uses a different cost function in

the greedy algorithm for node splitting, which optimizes the

splits of data points based on the queries in the workload

(Section IV-B), while a bulk-loaded offline index has no

knowledge of the online queries. Although in both cases, the

performance lower bound is guaranteed by Theorems 2 and

3, there can still be variations in practice (while satisfying the

lower bound). In other words, the space of queried embedding

vectors (e.g., h+r) in S2 is skewed, and is much smaller than

that of all data points.

Among the 2-choice, 3-choice, and 4-choice node-split

methods, they have slightly increasing costs than the main

cracking index method with a single choice, but the query

processing cost is eventually less when the number of choices

is more. This is because a larger search space is examined

with more choices. In addition, since our optimization is only

with respect to one query, the exploration of extra search

space with the A* aggressive pruning is still affordable when

the number of choices is small. An example query with this

dataset is that given a tail entity corresponding to the name

“Rapper” and a relationship type “/people/person/profession”,

we search for top-k head entities not in the training data (or

removed before training), the result of which includes “Snoop

Dogg”, “Kanye West”, and “Lil Wayne”.

Since knowledge graphs are inherently incomplete with

most relations/edges absent [5], it is also the case with

the datasets that we use—even the latest snapshot of the

dataset will still have many edges missing. It is a challenge

to evaluate the accuracy of link prediction or recommender

systems [23]. One way is to mask some edges in the training

data for testing purpose, while another way is to use a crowd-

sourcing service like Amazon Mechanical Turk to provide

an interface for everyday users where they could specify

whether or not the recommendations are relevant [24].

While these methods may be helpful to some degree to

1065

evaluate a link prediction method, they will not be effective

for the predictive top-k queries that we study, because it is not

true that the masked k edges must be the top-k most likely

edges, as there are a large number of edges (relations) missing

in the dataset. We randomly mask 5 edges from our datasets,

and find that they are typically in the top-10 list, but not

necessarily top-5. For example, there are many movies that

a user would really like to watch, but only a small fraction

of them are in the dataset, as the user may not have time to

watch them all, or she simply may not know all those movies

(which is why a recommender system is needed).
Since previous studies show that graph embedding is the

state-of-the-art method for link prediction [5], and since

evaluating the effectiveness of graph embedding for link

prediction is beyond the scope of this paper, we focus on

evaluating our major contribution, which is the incremental

R-tree indexing method to speed up predictive top-k and

aggregate queries. Thus, we need to compare the accuracy

loss with and without using our index. In Figure 4, we

examine the accuracy of our indexing methods with respect

to the no-index method. Since the no-index method is our

base, we study the accuracy loss from using an approximate

index (due to the transform from the embedding space S1 to

S2). We use the precision@K metric, which is commonly used

in information retrieval [25]. In our context, precision@K

is the precision of the top-k result tuples using our index

compared to the top-k tuples under the no-index method.

From Figure 4 we can see that the precision@K of our

indexing methods is high on average (at least 0.97).

Movie (Top-k). We next move on to the movie data. Here

we query the top-k movies that a particular person likes or

dislikes (but these facts are not in the training data). We

note that, even with this dataset, the closest previous work,

H2-ALSH [12], still does not fully handle it, since H2-ALSH

can only take into account one relationship type (say, “like”)

when doing the collaborative filtering and building H2-ALSH.

However, other relationship types such as “dislike” has the

opposite semantic meaning and would help the prediction of

“like” too. Thus, our method is a more holistic approach for

virtual knowledge graphs. Nonetheless, we run H2-ALSH as

well for a single relationship type to observe its performance.
We show the execution time results in Figure 5, where

we also compare the two parameter choices of the dimen-

sionality of the S2 (and hence the index), α = 3 versus

α = 6. We can see that the index building time of H2-

ALSH is slightly faster than bulk-loading R-trees when the

dimensionality α = 3. However, H2-ALSH’s query processing

time is much longer, partly due to the fact that it is not a

hierarchical structure, and each bucket could still be very

large. Furthermore, we see that, when the index dimension-

ality is higher such as α = 6, there are significant overheads

both in bulking loading (building) the index and in query

processing. This is because these indices have a harder time

with higher dimensionalities such as 6, as overlap regions

tend to be much higher. An example of query results is that

a particular person (with id “176299”)’s top-k “like” movie

list includes “152175, Ghosts (1997), Horror”, “156903, The

Waiting (2016), Thriller”, and “3457, Waking the Dead (2000),

Drama|Thriller”, where the first field is the movie ID, the

second field is the movie name (and year), and the third field

is the genre(s) of the movie. It seems that this person likes

the thriller/horror type of movies.

In Figure 6, we report the accuracy. The H2-ALSH numbers

are based on the report from running the code of the au-

thors [12], comparing to its no-index case. The precision@K

of all these approaches are quite high (at least 0.945), and

our cracking index methods are slightly more accurate. This

is partly due to the way our embedding space transform

preserves the distance. Moreover, when the dimensionality

is higher, α = 6, it is slightly more accurate than α = 3,
since higher dimensionality of the transform to S2 preserves

the distance better. Of course, this is associated with much

higher index operation costs, as shown in Figure 5.

Amazon (Top-k). In the next set of experiments, we use the

Amazon dataset. The performance result is shown in Figure

7. Here we also examine the overhead when we vary the

“k” parameter as in top-k results. In particular, we compare

two cases k = 2 (labeled “H2-ALSH: 2” in Figure 7) and

k = 10 (labeled “H2-ALSH: 10”). We see that increasing

k from 2 to 10 has a slight impact on the performance of

H2-ALSH, but has little or no impact on the performance

of our index approaches. This is because this change of

number of result tuples likely still has retrieved data points

within the same index node. One interesting and important

phenomenon when we compare Figure 7 with Figure 5 is that

as we increase the dataset size (in particular, the number of

entities)—as the case in going from movie dataset to Amazon

dataset, the increase in query processing overhead is much

higher for H2-ALSH than for our indexing approaches. Our

query processing time is one order of magnitude faster than

H2-ALSH for the movie dataset and two orders of magnitude

faster for the Amazon dataset. Our method scales better due

to its overall tree-structure index (unlike the flat buckets of

LSH) with a cost logarithmic of the data size. We measure

the accuracy in precision@K of these approaches in Figure

8. The comparison result is similar to those of other datasets.

Index Size. We now compare the number of index nodes split

into, as well as the index size, between a bulk loaded index

and our cracking index. The results are shown in Figure 9 for

the index-node counts with the Freebase dataset, and in Fig-

ures 10 and 11 for the index sizes with the movie dataset and

Amazon dataset, respectively (all three datasets show similar

trends). We examine the node numbers and index sizes after

different numbers of initial queries. For all three datasets, the

cracking and uneven index has a very small fraction of node-

count and index size than the full bulk-loaded index. This is

because the search space is highly uneven and the queried

space is only a small fraction. Furthermore, we observe that

the convergence of node number and index size is very fast—

typically after around 10 queries.

AggregateQueries. We next study approximately answering

1066

0 5 10 15 20
Number of queries

101

102

103

104

105

In
de

x
si

ze
 (

K
B

)

Bulk loading
Cracking

0 20 40 60 80 100
Elapsed time (ms)

0.75

0.8

0.85

0.9

0.95

1

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y
0 20 40 60 80

Elapsed time (ms)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

0 50 100 150
Elapsed time (ms)

0.7

0.75

0.8

0.85

0.9

0.95

1

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

Fig 11 Index size (Amazon) Fig 12 COUNT queries (FB) Fig 13 AVG queries (movie) Fig 14 AVG queries (Amazon)

0 20 40 60 80 100
Elapsed time (ms)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

0 20 40 60 80
Elapsed time (ms)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q
ue

ry
 r

es
ul

t a
cc

ur
ac

y

Fig 15 MAX queries (Freebase) Fig 16 MIN queries (movie)

aggregate queries. Recall that there is a tradeoff between

sample size (execution time) and query result accuracy. We

first examine COUNT queries using the Freebase dataset,

i.e., the expected count of tail entities given the head and

relationship. The result is in Figure 12. The tradeoff between

execution time and accuracy (compared to accessing all data

points up to a probability threshold 0.01) is clearly seen

here. The accuracy is measured as 1− |vreturned−vtrue|
vtrue

, where

vreturned and vtrue are query returned aggregate value and

the ground truth aggregate value (from accessing all points

until a probability threshold is reached), respectively. Figure

13 shows the result of AVG queries using the movie dataset.

The attribute being aggregated is the year of the movie—

i.e., the query returns the average year of the movies that a

particular user likes. We see a similar tradeoff as in Figure 12.

When the execution time (hence the number of closest data

points visited) reaches a certain value, the accuracy stays at a

high level. This is because the data points are in a decreasing

order of probability; thus the entities that are visited later

have smaller probabilities and hence have lower weight in

query result. We then use the Amazon dataset and measure

the AVG queries. We add an attribute to each product entity

called “quality”, which is the average rating this product

has received (based on all existing ratings of the product).

Then we query the average quality of all the products that

a particular user likes. The result is shown in Figure 14.

Compared to the movie dataset, the Amazon dataset takes

slightly longer time to get to high accuracy due to the much

larger size of the Amazon data.

Finally, we examine the MAX/MIN queries. For the Free-

base dataset, we add an attribute popularity to each entity

that is the number of related entities (i.e., in-degree plus

out-degree)—indicating how popular an entity is. We issue a

query to return the maximum popularity of the target entity

set. For the movie dataset, we issue a query which returns

the minimum year (i.e., the oldest age) of a movie among

all the ones that a particular user would like. The result of

these two queries are displayed in Figure 15 and Figure 16,

respectively. We can see that MAX and MIN queries show

a similar tradeoff between performance and accuracy as we

have observed for other aggregate queries. These results also

verify our analysis in Section V-B.

Summary.The experiments show that our cracking index is

very effective in accomplishing our goal for answering two

types of important queries of virtual knowledge graphs—

top-k entity queries and aggregate queries. The cracking

index methods do not have offline index building time, and

it takes a little longer for first query (but still 30 to 40

times faster than bulk-loading), with the query processing

time slightly shorter than that of the bulk-loaded index. 2

or 3 choice node-split methods provide a tradeoff between a

slight increase of initial queries’ processing time and getting

better performance over the long run. The previous work H2-

ALSH cannot handle multiple relationships as in a knowledge

graph. Nonetheless when restricted to only one relationship

type, our cracking index methods have much smaller over-

head for query processing while providing similar or slightly

better accuracy; moreover, our methods scale better for larger

datasets. The cracking indices only split a tiny fraction of

nodes than a full bulk-loaded index, and is very compact

and efficient. Lastly, our approximate aggregation methods

can obtain high accuracy after a short processing time of the

initial data points closest to the query center. Our analysis

provides a theoretical guarantee.

VII. Related Work

Graph embedding. Graph embedding represents a graph

in a low dimensional space that preserves as much graph

property as possible—an elegant method to accomplish auto-

matic feature extraction and dimensionality reduction. Early-

days graph embedding, e.g., [26], is based on matrix fac-

torization. It represents graph properties in a matrix and

1067

factorizes this matrix to obtain node embedding. More re-

cently, researchers have proposed deep learning based graph

embedding methods such as using random walks [27] and

autoencoders [28]. Most knowledge graph embedding is

based on edge reconstruction based optimization, in partic-

ular minimizing margin-based ranking loss. Such embedding

methods include TransE [6], TransA [15], KGE-LDA [29],

TransD [30], SE [31], MTransE [32], puTransE [33], among

others. We have discussed TransE earlier, but our methods

can be adapted for most of the other knowledge graph

embedding methods, as they all minimize some loss function

on h, r, and t for all the edge triplets in the training graph.
Cracking B+ tree and spatial indexing. A cracking B+

tree index [9], [10] aims to amortize the index costs over

query processing and dynamically modifies a half-way built

B+ tree during query processing. Our proposed indexing

is fundamentally different. First, we work with a spatial

index R-tree with completely different techniques. Second,

our work has a different goal—we are not trying to reduce

index maintenance costs; our R-tree index cracking is to

avoid splitting R-tree nodes based on the query search space.

R-tree is typically the preferred method for indexing spatial

data. We use a bulk-loading algorithm of R-tree [7], which

is commonly used for efficiently loading data into the index.

Note that our method can be easily adapted for other variants

of R-tree index (e.g., R+ tree or R* tree) as well.
Dimensionality reduction & nearest neighbors. High

dimensionality is a great challenge for k-nearest neigh-

bors (k-NN) queries. Efficient dimensionality reduction in-

cludes random projection [34] and locality sensitive hashing

(LSH) [13]. We use a particular type of random projection,

JL transform [8], but modify it significantly to get a low

dimension and provide theoretical guarantees. Different LSH

schemes are based on different similarity metrics. The one

that is closest to our work is H2-ALSH [12]; we have

discussed it in detail and compared against it.

VIII. Conclusions and Future Work

We propose an incremental index to answer top-k entity

and aggregate queries over a virtual knowledge graph. Our

scheme is based on knowledge graph embedding and trans-

forms embedding vectors to a lower dimensional space for

indexing. We prove a tight bound on the accuracy guarantees.

Furthermore, we devise query processing algorithms and

novel analysis of result accuracy. Experiments show that our

index is very concise, and is efficient in answering queries

with accuracy guarantees. As future work, we would like

to consider dynamic knowledge graph updates. Intuitively,

when there are local updates, the embedding changes should

be local too, as most (h, r, t) soft constraints still hold. We

plan to do incremental updates on our partial index.

Acknowledgments. This work is supported in part by NSF

grant IIS-1633271.

References

[1] Google, “Google inside search,” https://www.google.com/intl/en us/
insidesearch/features/search/knowledge.html, 2018.

[2] Amazon data. Available at http://jmcauley.ucsd.edu/data/amazon/, 2019.
[3] M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag,

“Learning a health knowledge graph from electronic medical records,”
Scientific Reports, vol. 7, 2017.

[4] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowl-
edge base embeddings for explainable recommendation,” Algorithms,
vol. 11, 2018.

[5] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of the
IEEE, vol. 104, 2016.

[6] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013.

[7] S. Shekhar and S. Chawla, Spatial Databases: A Tour. Prentice Hall,
2003.

[8] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of
Johnson and Lindenstrauss,” Random Structures and Algorithms, vol. 22,
2003.

[9] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in CIDR,
2007.

[10] F. M. Schuhknecht, A. Jindal, and J. Dittrich, “The uncracked pieces in
database cracking,” in VLDB, 2013.

[11] N. Alon and J. Spencer, The Probabilistic Method. New York: Wiley,
1992.

[12] Q. Huang, G. Ma, J. Feng, Q. Fang, and A. K. H. Tung, “Accurate and
fast asymmetric locality-sensitive hashing scheme for maximum inner
product search,” in KDD, 2018.

[13] A. Rajaraman and J. Ullman, Mining of Massive Datasets, 2010.
[14] Freebase data. Available at https://developers.google.com/freebase/,

2013.
[15] Y. Jia, Y. Wang, H. Lin, X. Jin, and X. Cheng, “Locally adaptive

translation for knowledge graph embedding,” in AAAI, 2016.
[16] Y. Li, T. Ge, and C. Chen. Online indices for predictive top-k entity

and aggregate queries on knowledge graphs. Technical report at http://
www.cs.uml.edu/∼ge/paper/index predictive tech report.pdf, 2019.

[17] H. Alborzi and H. Samet, “Execution time analysis of a top-down r-tree
construction algorithm,” Information Processing Letters, vol. 101, 2007.

[18] P. J. Denning, “The locality principle,” Communication Networks and
Computer Systems, 2006.

[19] A. A. Borovkov, Mathematical Statistics. CRC Press, 1999.
[20] Movielens data. Available at https://grouplens.org/datasets/movielens/

latest/, 2017.
[21] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering,” in WWW, 2016.
[22] T. Zaschke, C. Zimmerli, and M. C. Norrie, “The PH-tree: a space-

efficient storage structure and multi-dimensional index,” in SIGMOD,
2014.

[23] H. Cheny, C. Chung, H. Huang, and W. Tsui, “Common pitfalls in train-
ing and evaluating recommender systems,” ACM SIGKDD Explorations
Newsletter, 2017.

[24] T. Schnabel, P. N. Bennett, S. T. Dumais, and T. Joachims, “Short-term
satisfaction and long-term coverage: Understanding how users tolerate
algorithmic exploration,” in WSDM, 2018.

[25] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

[26] B. Shaw and T. Jebara, “Structure preserving embedding,” in ICML,
2009.

[27] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014.

[28] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, 2016.

[29] L. Yao, Y. Zhang, B. Wei, Z. Jin, R. Zhang, Y. Zhang, and Q. Chen,
“Incorporating knowledge graph embeddings into topic modeling,” in
AAAI, 2017.

[30] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in ACL, 2015.

[31] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured
embeddings of knowledge bases,” in AAAI, 2011.

[32] M. Y. C. Z. M. Chen and Y. Tian, “Multilingual knowledge graph
embeddings for cross-lingual knowledge alignment,,” in IJCAI, 2017.

[33] Y. Zhao, Z. Liu, and M. Sun, “Representation learning for measuring
entity relatedness with rich information,” in IJCAI, 2015.

[34] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction,” in KDD, 2001.

1068

