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Abstract—Stream Processing Engines (SPEs) are used for real-
time and continuous processing with stateful operations. This
type of processing poses numerous challenges due to its as-
sociated complexity, unpredictable input, and need for timely
results. As a result, users tend to overprovision resources, and
online scaling is required in order to overcome overloaded
situations. Current attempts for expediting stateful processing
are impractical, due to their inability to uphold the quality of
results, maintain performance, and reduce memory require-
ments.

In this paper, we present the SPEAr system, which can
expedite processing of stateful operations automatically by
trading accuracy for performance. SPEAr detects when it
can accelerate processing by employing online sampling and
accuracy estimation at no additional cost. We built SPEAr on
top of Storm and our experiments indicate that it can reduce
processing times by more than an order of magnitude, use more
than an order of magnitude less memory, and offer accuracy
guarantees in real-world benchmarks.

1. Introduction

Modern applications process large volumes of data in
real-time. Examples of such applications include high-
frequency trading, social network analysis [1], targeted ad-
vertising [2], click-stream analysis [3], [4], urban analytics,
real-time data visualization [5], [6], complex event process-
ing, to name a few. Their goal is to capture exact or approx-
imate patterns to use them for online, time-critical, decision
support. Stream processing is considered a prime candidate
for those applications, due to its focus on continuous execu-
tion under a specified delay target, and optimized design for
workloads with a single pass over data. As a result, Stream
Processing Engines (SPEs) have rapidly evolved in the past
decade [7], [8], [2], [1], [9], [3], [10], [11], with a number
of SPE prototypes being adopted by industry (e.g., Storm,
Spark, Flink, Kafka, etc.), and financial reports projecting
that the streaming analytics market size will surpass 10
billion US dollars by 2021 [12], [13].

Real-time data ingestion combined with continuous pro-
cessing of uncharted data streams makes timely processing
a challenge for SPEs. Workloads are submitted to SPEs
in the form of continuous queries (CQs), whose resources

are provisioned at submission time and remain constant for
the duration of the execution [14], [15], [8], [1], [16], [9],
[17]. In order to achieve timely production of results, it
is paramount to conduct processing in main memory (i.e.,
avoid spilling/fetching data to/from secondary storage) [3].
Often, the characteristics of input streams are unknown at
every point in time for the lifetime of a CQ, and tend
to fluctuate [18], [19]. To ensure Service Level Objectives
(SLOs), users overprovision resources based on load estima-
tions from historical data [20], [21], [22], [23], [24], [25].
On the one hand, over-provisioning resources leads to high
operational costs. On the other hand, under-provisioning
resources leads to missed delay targets, which jeopardizes
the usefulness of the results.

In the past, various solutions have been proposed to
maintain an SPE’s performance at acceptable levels. Load
shedding enables an SPE to drop tuples when the input
load exceeds its processing capacity [20], [22], [21], [24],
[26]. Despite the fact that load shedding is able to reduce
load, it fails to deliver results of specified accuracy in
rapidly fluctuating streams without manual intervention [22].
Sketches and approximation algorithms reduce the memory
usage of a stateful operation in a CQ at the expense of
accuracy [27], [28], [29], [30]. Such techniques can only be
used in specific problems, such as frequency counting [29],
[30], [31], membership inclusion [32], etc. Furthermore,
sketches increase the processing overhead per data point
significantly [32], [29], [33]. On top of this, sketches require
manual tuning to preserve accuracy, which is error-prone,
time-consuming, and impractical in real-time. Elastic SPEs
are able to alter resources without disrupting execution [7],
[34], [35], [36]. Nonetheless, the scaling process is de-
manding in time and resources, and suitable for situations
of prolonged load increases [34], [7]. Finally, incremental
processing solutions have been proposed for SPEs as a
method to avoid processing and storing tuples more than
once [37], [38], [39], [40]. However, incremental techniques
are applicable to a limited number of stateful operations
and their merits are diminished when holistic stateful op-
erations are part of a CQ (e.g., percentiles). In conclusion,
each of the existing techniques has its own shortcomings
and cannot limit resource usage while delivering acceptable
performance without manual intervention.

In this paper, we present the SPEAr system (from SPE
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rides (time, route, fare)
cq = rides

.time(x -> x.time)

.slidingWindowOf(15, 5, MINUTES)

.percentile(x -> x.fare, 0.95)

Figure 1: Example CQ in functional notation.

Accelerator), which represents a proactive approach to expe-
dite processing and reduce memory usage by approximating
results automatically. Furthermore, SPEAr’s approximate
results are within users’ accuracy specifications. SPEAr
detects opportunities for expedited processing in real-time,
without making any assumptions on data patterns, and
without the need for manual intervention. It does so by
accumulating data information in an online fashion. At the
time of processing, SPEAr estimates the accuracy of an
approximate result built from an incremental data sample.
In the event that the approximate result is within the user’s
accuracy specification, SPEAr produces the approximate re-
sult. Otherwise, SPEAr processes the whole window. To the
extent of our knowledge, SPEAr is the only SPE that can (i)
detect opportunities for expediting execution without manual
intervention, and (ii) produce results within an accuracy
specification at no additional runtime cost. Our experimental
evaluation indicates that SPEAr can reduce processing time,
memory usage, and deliver accurate results. In particular,
our experiments on real-world datasets show that SPEAr
reduces processing times and main memory usage by up to
two orders of magnitude compared to a state-of-the-art SPE.

Contributions: The contributions of this work are as
follows:

• A novel stream processing model to decrease ex-
ecution time and main memory usage. Our model
is compatible with current SPEs and overcomes the
shortcomings of existing techniques.

• The design of the SPEAr system, which adopts our
proposed model without incurring additional over-
heads. Its design consists of incremental sampling,
accuracy estimation, and expedited execution.

• Experimental results on Apache Storm using real
datasets highlight SPEAr’s resource savings, perfor-
mance gains, and delivery of accurate results.

Outline In Sec. 2 we present background information
for our work. Then, in Sec. 3 we analyze the shortcomings
of existing solutions, along with the details of our proposed
model. In Sec. 4 we present SPEAr’s execution details, and
in Sec. 5 we discuss our experimental results. Finally, in
Sec. 6 we present additional related work, and conclude our
paper in Sec. 7.

2. Background on SPEs

In order to aid our presentation, we use the CQ presented
in Fig. 1, whose syntax is similar to those offered by many
SPEs (e.g., Kafka, Storm, Beam, Flink, Spark etc.). The CQ
of Fig. 1 receives the rides stream, whose tuples’ attributes
are time, route id, and fare amount.

CQ definition: A CQ can have one or more input
streams Si, with i = 1, . . . , N , and is structured as a
sequence of operations, each one receiving an input stream
and producing an output stream. An operation is called
stateless if it does not require previous tuples to apply its
transformation (i.e., buffering of tuples is unnecessary). An
operation is called stateful, if it requires previous tuples to
apply its transformation (i.e., buffering of tuples is neces-
sary) [18]. The CQ of Fig. 1 produces the 95 percentile of
fares on sliding windows of 15 minutes. The time operation
is stateless, as it annotates each tuple with its corresponding
time value. The percentile operation is a stateful operation
as it produces the 95 percentile on the set of tuples that
constitute a window. A stateful operation g(Sw

i ) → Rw

receives a window of tuples Sw
i as input, which is a subset

of Si generated by a windowing function W : Si → Sw
i ,

with w = 1, . . .∞. For each input window Sw
i , g produces

a window result Rw. W can produce windows based on
the number (count-based) or the timestamp (time-based) of
tuples. In addition, W can assign each tuple to one or more
windows. In the former case, W produces tumbling (non-
overlapping) windows; whereas in the latter case it produces
sliding (overlapping) windows. Tumbling windows require a
range, whereas sliding windows require both a range and
a slide. In the CQ of Fig. 1, percentile is defined over a
sliding window with a range of 15 minutes, and a slide of
five minutes. In this work, we focus on the performance of
stateful operators, as they present numerous challenges.

CQ execution: State-of-the-art SPEs are designed to
operate either on clusters of multi-core servers or on the
Cloud. An SPE turns a CQ into a distributed execution
plan, which is modeled by a directed acyclic graph (DAG).
Each operation of a CQ has its own execution stage in the
topologically-sorted DAG. An SPE allocates resources for
each stage, which are (a) the number of V workers (i.e.,
number of CPU processes/threads), and (b) the available
memory b for each worker [1], [11], [8]. b is pivotal in
each worker’s performance, since it controls the amount of
data that can be processed without spilling to secondary
storage [20], [41]. Often, secondary storage S is independent
of workers’ contexts, is globally accessible (e.g., S3) [4], and
offers two methods: (i) store data, store(τ), and (ii) retrieve
data identified by τW , get(τW ). The number of workers
(V) and the memory budget (b) are defined when a CQ
is submitted. The propagation of tuples between execution
stages materializes using partitioning techniques [18], [19].
A possible DAG for the example CQ is illustrated in Fig. 2.
The left-most stage represents the input and is materialized
by a single worker, which distributes tuples to the workers of
the time stage. The output of the time is sent to the window
stage’s workers, which buffer tuples until a window Sw

i is
complete. At window completion, each Sw

i is pushed to the
workers of the percentile stage, which process their input
and produce a window result Rw.

SPE stateful processing: Sw
i ’s tuples are processed

when there is a guarantee that Sw
i is complete. To this

end, SPEs are equipped with two mechanisms for managing
Sw
i ’s lifecycles: trigger that monitors when each window
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Figure 2: The execution DAG for the
CQ of Fig. 1.

Figure 3: Tuple arrival. Figure 4: Watermark arrival.

is complete; and evict that identifies and discards fully
processed tuples. Those two mechanisms are essential for
strict delivery semantics, out-of-order tuples’ processing,
and fault tolerance [9], [42]. Current SPEs support trigger
with the use of watermarks, which are control-tuples carry-
ing a timestamp (τW ). Those are sent by SPE components
periodically, and the receipt of a watermark τW indicates
that all tuples timestamped τ ≤ τW have been observed [2],
[9], [10], [42]. In most SPEs, watermarks are produced by
data source operators, and are propagated by downstream
workers accordingly. At tuple arrival, a stateful operation
worker stores tuples in its memory buffer of size b until
a window is complete. This is a requirement in order to
guarantee delivery semantics, and fault tolerance [2], [42].
If at any point prior to receipt of a watermark, all of a
worker’s memory budget b is used, then the worker spills
consequent tuples to S . At watermark arrival, a stateful
operation worker identifies completed windows, and stages
them for processing. Next, we present the design details
followed by each worker at tuple and watermark arrival
by current SPEs. For our presentation we will assume the
window semantics of the example CQ of Fig. 1.

Tuple arrival: Fig. 3 illustrates the two possible designs
for when a tuple arrives among existing SPEs. The single
buffer design dictates that all tuples are stored in a single
buffer based on their order of appearance. This design is
adopted by Storm [1] and its advantage is that each tuple is
stored only once. In contrast, the multiple buffers design
dictates that a copy of each tuple is stored in a buffer
for each of the windows that it participates in. Flink uses
this design, whose merit is that each window is ready for
processing at watermark arrival [42]. However, the use of
multiple buffers requires additional memory per tuple, which
leads to low storage utilization. In Fig. 3, the new tuple with
timestamp 61 participates in windows: (50, 65), (55, 70),
and (60, 75) (according to the CQ of Fig. 1). With the single
buffer design, the tuple is appended to the buffer and the
worker thread becomes dormant until the arrival of the next
tuple. In contrast, with the multiple buffers design, a copy
of the tuple is stored on the buffer for each window.

Watermark arrival: A worker has to prepare the window
ending on or before τW when the corresponding watermark

arrives. In the event that the worker spilled tuples to S ,
then it has to retrieve them. With the single buffer design,
the worker scans existing tuples and gathers all the tuples
belonging to the window ending on τW . At the same time, it
evicts expired tuples. Turning to the multiple buffers design,
the worker picks the buffer corresponding to the window
ending in τW , and stages it for processing. Fig. 4 presents
the window preparation process when the watermark with
timestamp 69 arrives and triggers the processing of window
(50, 65). With the single buffer design, a worker scans its
buffer to (i) collect window’s (50, 65) tuples, and (ii) evict
expired tuples. Then, it sends tuples for processing. Some
SPEs that use this design, mark a window’s newly arrived
tuples to offer incremental processing [43], [44]. In the
example of Fig. 4, tuples timestamped 61 and 62 are marked
as “new” since they are processed for the first time. Con-
versely, with the multiple buffers design, the worker picks
the window’s (50, 65) buffer, and stages it for processing.
The full scan of the buffer is avoided with this design at the
expense of additional memory space.

3. Our Approach

Incoming stream’s properties are unknown and tend to
fluctuate overtime [7]. Hence, the exact resources needed
for each window cannot be precisely predicted, which leads
to situations where V workers are not capable of fitting all
tuples in b. In this case, a worker has to spill data to S and
processing speed drops. In order to avoid this, users either
overprovision resources, or scale-out processing [7], [34],
[45], [46], [47], which lead to increased operational costs
and temporal performance degradation. On top of those,
there are no guarantees that data will not end up in S , or that
an SPE will avoid constant re-configuration. To this end,
SPE processing needs to be expedited in an opportunistic
manner. When possible, an SPE should examine if only part
of a window can be processed to produce results within
user-defined accuracy levels. This thesis is conceptualized
into the following requirements:

R1 Maintain quality: Each window result Rw has to be
produced within SLOs and abide to a user-specified
level of accuracy.
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Algorithm 1 Approximate SPE: Tuple Arrival

1: procedure TUPLERECEIVE(τ )
2: if ¬b.full() then
3: b.put(τ)
4: else
5: b.replace(τ)

6: S.store(τ)

R2 Process fraction of the data: When possible, results
need to be produced by processing a fraction of Sw

i ,
since a window’s size is the dominating factor in
terms of runtime and storage cost.

R3 React to changes: An SPE needs to be able to iden-
tify opportunities for expedited processing without
manual intervention or by relying on historical data
patterns.

R4 Being generally applicable: Processing a fraction
of Sw

i while preserving accuracy needs to be appli-
cable to a plethora of stateful operations.

Existing techniques are unable to deliver all of the above
requirements. Below, we analyze the shortcomings of the
most widely-used alternatives.

Load shedding enables an SPE to drop tuples when
load exceeds existing processing capacity [20], [22], [24].
Despite the fact that load shedding can be effective under
load, it fails to deliver accuracy guarantees without manual
intervention, especially in rapidly fluctuating streams [22],
or without relying on historical data (i.e., fails R1) [21].
Also, existing techniques, do not react to changes in data
(i.e., fail R3) [26].

Sketches [48], [28], [29], [33], [30], [6] decrease the
memory footprint of a stateful operation at the cost of
additional processing (due to the use of complex hash
functions). For instance, a CountMin sketch requires each
tuple to be passed to as many hash functions as is the size
of the sketch [29]. Furthermore, to reconstruct the result
of the sketch, each distinct group needs to be maintained in
memory (a CountMin retains only the estimated frequencies
and not the groups themselves). As a result, processing time
per tuple is increased and the storage benefit is diminished
(i.e., fail R2). In addition, sketches require fine tuning to
adapt to fluctuating streams (i.e., fail R3), and can only be
used in specific problems (i.e., fail R4).

Incremental stream processing offers techniques that
avoid processing tuples more than once [49], [38], [39],
[40]. Even though those techniques reduce the update cost of
a window’s result, they can only be applied in associative
stateful operations (i.e., fail R4). In addition, incremental
processing techniques have to accommodate all tuples in
main memory and do not adapt to changes in data (i.e., fail
R2 and R3).

Elastic SPE processing offers techniques for adjusting
resources in an online fashion [34], [50], [35], which are
effective for long-lasting input surges. However, such tech-
niques incur significant overhead on temporal increases in
input and fail to produce timely results during short-term

Algorithm 2 Approximate SPE: Watermark Arrival

1: procedure WATERMARKRECEIVE(τW )
2: (R̂w, εw)← g(b)
3: if εw ≤ ε then
4: return R̂w

5: return g(S.get(τW ))

spikes (i.e., fail R1) [34]. As a result, those techniques are
slow to react and cannot keep the operational cost low (i.e.,
fail R3) [7], [34].

3.1. Approximate Stream Query Processing

Approximate Query Processing (AQP) offers techniques
for processing a fraction of the data to produce a result with
a well-defined accuracy [51], [52], [53], [54]. The fraction
of data processed is defined as a budget, in terms of either
IO operations or response time. As a result, an AQP system
takes less time to produce a result by approximating its exact
value. Due to AQP’s useful functionality, it is offered by
many commercial DBMSs (e.g., Oracle 12c, SQL Server,
Redshift etc.).

Inspired by the performance benefits of AQP and in-
cremental processing, we propose an approximate stream
processing model, which delivers all of the requirements
R1-R4 for faster execution. Due to the unavailability of data
(or metadata) prior to processing in SPEs, online sampling
is the only option for our model, which requires two user-
defined parameters: (a) accuracy ε, and (b) memory budget
b. The first controls the accuracy of a window result Rw: the
lower the error, the higher the accuracy of an approximate
window result R̂w. The memory budget b controls the
processing performance to produce Rw, and ties well with
the memory budget b of each SPE worker. Our approximate
stream processing model dictates different behavior at tuple
and watermark arrival, which are presented in Alg. 1 and 2.

The core idea of our model is that b is used to ac-
commodate either a simple random sample of Sw

i ’s tuples
or Sw

i ’s metadata, in case Sw
i cannot fit in main memory

b. If the memory budget b has not been depleted, then a
newly-arrived tuple (τ ) is stored in it; otherwise, a stochastic
process is used to replace one of the tuples in b (Alg. 1).
In any case, τ is stored in S as is common practice [4].
Alg. 2 indicates that when a watermark τW is received,
an estimate of the accuracy (εw) and an approximate result
(R̂w) are calculated solely from b’s contents. If εw is within
the user-defined accuracy ε, then R̂w is produced as the
window’s result; otherwise, the whole window is fetched
from S and the exact result Rw is produced. This model
abides with the aforementioned requirements, since it (i)
delivers results within the user-defined accuracy ε (R1);
(ii) produces a result based on a fraction of the window’s
data (R2); (iii) reacts to data characteristics (R3); and (iv)
supports a plethora of relational operations (R4). SPEAr
adopts the proposed model and is designed to not incur
overhead when εw > ε.

1108



4. SPEAr Overview

We built SPEAr on top of Apache Storm v1.2 and
adopted the latter’s execution engine [1]. A SPEAr cluster
consists of a coordinating process, named Nimbus. Pro-
cessing occurs in a distributed set of workers, which are
able to accommodate a constant number of worker threads.
Nimbus is responsible for scheduling operations to available
workers, monitoring the execution of CQs, and does not
participate in the processing critical path. Worker threads
handle execution, which involves reliable tuple delivery,
state management, and application of a CQ’s operations. We
built SPEAr on top of Storm because it follows the single
buffer design, which results in minimal memory usage per
worker.

SPEAr’s implementation required changes in Storm’s
core classes: TopologyBuilder, WindowManager, and
BaseWindowedBolt. In terms of CQ definition, we created
SpearTopologyBuilder which exposes Fig. 5’s API. This
class enables users to define stateful operations with a
b and an (ε,α) pair. Turning to runtime, we extended
each operator’s WindowManager to operate based on our
proposed model. In turn, each manager incrementally
gathers information on a window’s tuples at tuple arrival
(explained in Sec. 4.1), and performs an accuracy estimation
at window completion (explained in Sec. 4.2). As far as
BaseWindowedBolt is concerned, we extended it to a
SpearBolt that disassociates execution into production and
delivery of a result. Based on the estimated accuracy, the
appropriate method is called as we explain below.

SPEAr follows our proposed model (Sec. 3) and allows
a user to submit CQs with an accuracy (ε) and a memory
budget (b) specification for each stateful operation. The CQ
of Fig. 1 is shown in Fig. 5 for SPEAr: each worker-
thread of the percentile operation carries an ε and a b. b
is configured using the budget() method and is set to 1MB.
This configures each worker-thread to store as many fare
values as can fit in a 1MB buffer. If at any point a worker-
thread requires additional memory to accommodate input,
it will be spilled to S . Future versions of SPEAr will be
able to accommodate dynamic methods for online budget
estimation. ε is defined with the error() method and indicates
that a result can not deviate more than 10% from the exact
value, for 95% of the windows. The second argument of
error() is called confidence (α) and controls the confidence
intervals for approximate results [51], [52], [53], [54].

SPEAr supports mean-like stateful operations, including
the most popular aggregate functions (e.g., count, sum,
average, quantile, variance, stddev) [5]. Those operations
are supported both in scalar and grouped formats. Scalar
operations produce a single result per window, whereas
grouped operations produce a set of results per window.
The CQ of Fig. 5 features a scalar operation. If the CQ
carried a grouping clause, then a percentile value would
be produced per distinct group. Furthermore, SPEAr offers
an API for defining custom approximate stateful operations.
A user has to define an accuracy-estimation function, and
SPEAr follows the execution workflow dictated by our

cq = rides
.time(x -> x.time)
.slidingWindowOf(15, 5, MINUTES)
.percentile(x -> x.fare, 0.95)
.budget(1MB)
.error(10%, 95%)

Figure 5: CQ of Fig. 1 for SPEAr.

proposed model. At the moment, relational joins can be
implemented using the API for custom stateful operations,
because a widely-accepted metric for measuring join accu-
racy does not exist [55], [56], [21], [57], [58]. All of the
aforementioned functionality is applicable on time-/count-
based tumbling/sliding windows.

Depending on the type of the operation (i.e., scalar
or grouped), SPEAr’s execution steps differ in terms of
sampling, statistics accumulation, accuracy estimation, and
processing. The novelty of SPEAr emanates from its ability
to offer the aforementioned functionality without (i) in-
curring overhead in the form of additional scans on Sw

i ,
(ii) without erring on the accuracy specification, and (iii)
offering better performance compared to exact processing.
Those are achieved by designing SPEAr in order to: sample
tuples and accumulate windows’ statistics within the bud-
get, and estimate accuracy and results without introducing
additional scans on Sw

i (Tuple arrival). In the event that a

R̂w’s εw > ε, SPEAr’s performance is identical to normal
execution (Watermark arrival). In the following sections
we provide SPEAr’s execution steps for scalar and grouped
operations.

4.1. Tuple Arrival

Each SPEAr worker uses its b to accommodate infor-
mation used for R̂w incrementally. As discussed in [59],
approximate results rely on (i) simple random samples
(s.r.s), and (ii) statistical information on the data distri-
bution. A naive approach to stream approximation would
introduce an additional scan of Sw

i at window completion.
To avoid this, we adopted the proposed model’s tuple arrival
algorithm (Alg. 1) to current SPEs’ workflows. To this
end, SPEAr either accumulates statistical information or
updates an incremental sample at tuple arrival. The sample
and the statistical data are stored in b. In detail, when a
worker receives a tuple, it extracts its timestamp (or unique
number in the case of count-based windows). The window(s)
that the tuple corresponds to is/are determined using the
timestamp. The steps taken by SPEAr differ between scalar
and grouped operations.
Scalar: For each Sw

i , an s.r.s. is required to avoid low
accuracy due to temporal locality in input [59]. To ensure
that an Sw

i ’s sample is an s.r.s., SPEAr employs reservoir
sampling, which delivers a sample with size ≤ b. Moreover,
SPEAr uses part of b to maintain Sw

i ’s statistical estimates
incrementally. Those are essential for accuracy estimation,
which takes place at watermark arrival. For scalar opera-
tions the aggregated values’ variance is needed. The incre-
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mental sampling and variance calculation occur when b’s
methods put/replace are called. Those calls pose negligible
overhead compared to IO occurring at tuple arrival. For the
CQ of Fig. 5, the reservoir sample of each Sw

i carries up
to |�106f−1�−2| values (we assume that each fare requires
f bytes). In the previous formula, the total number of
values stored in b is reduced by 2 because SPEAr maintains
fare values’ variance and the size of Sw

i . On non-holistic
scalar operations (i.e., incremental), SPEAr incrementally
updates Rw at tuple arrival (akin to incremental processing
techniques). SPEAr uses b’s contents only when an anomaly
is detected in tuple delivery (e.g., failure, late tuples, out-
of-order delivery). For instance, for the mean fare calcu-
lation, SPEAr maintains an incremental sum per window.
At window completion, SPEAr uses the sum to produce
Rw. In the event of a delivery anomaly, SPEAr estimates
the accuracy of R̂w (i.e., εw). If εw ≤ ε, then SPEAr does
not have to scan b to produce the mean. Currently, SPEAr
supports only percentile in terms of holistic operations by
modifying the algorithm presented in [48]. At tuple arrival, b
accommodates a reservoir sample, and at watermark arrival,
SPEAr is able to determine if the sample is sufficient to
produce R̂w.

Grouped: Previous work on AQP for grouped operations
advises that R̂w needs to include every distinct group of
Sw
i [59], [51], [54]. For example, if the CQ of Fig. 1

contained a group-by operation on the route field, then a
percentile value needs to be produced for each distinct route.
In this scenario, Rw is a set of (r, v) pairs, where r is

a route and v the percentile result. R̂w needs to be a set
with the same cardinality (i.e., |Rw| = |R̂w|) and contain

the same route values (i.e., R̂w = [(r, v)|∀r ∈ Rw]). To
achieve this, SPEAr uses stratified sampling, which dictates
that each group’s sample size needs to be proportional to its
original size [59]. Stratified sampling requires two passes
over Sw

i , when the number of distinct groups is unknown:
(i) one pass to establish each group’s frequency; and (ii)
one pass to construct the sample. SPEAr’s novelty lies in
decoupling the two passes in order to avoid scanning Sw

i
twice at window completion.

Due to the lack of prior information for Sw
i , SPEAr can

solely accumulate each group’s frequency while the window
is active. Therefore, b is used to track each group’s frequency
in Sw

i . This constitutes a fundamental difference between
SPEAr and AQP systems, which rely on offline sampling
that (in turn) enables them to build samples with one scan.
SPEAr does not have this privilege and building a stratified
sample requires an additional scan of Sw

i . As a result, SPEAr
constructs the sample only after a window is complete. To
achieve this, SPEAr maintains each group’s frequency and
variance for the value that is used in the stateful operation.
Those metrics are needed by the basic congress sampling
technique used by SPEAr [59]. b can accommodate up to
�b(r+4+f)−1� distinct groups’ information, where r is the
size of a group’s identifier in bytes, 4 is the number of bytes
for the frequency count, and f is the bytes needed to ac-
commodate the variance. If b can not accommodate enough

values, then SPEAr reverts back to normal processing.
If Fig. 5’s CQ required the 95 percentile fare value

for each route, then R̂w would produce a record for each
distinct route in Sw

i . In this case, b is used to accommodate
each group’s frequency in Sw

i . This information is used at
watermark arrival to derive the size of the sample needed for
each group. By modifying stratified sampling to be applied
this way, SPEAr does not introduce additional scans of Sw

i
compared to the single buffer design. Finally, when the
number of groups is defined by the user at CQ submission,
then SPEAr is able to create a stratified sample at tuple
arrival, by dividing b equally among the distinct groups of
Sw
i . In this case, no scans of Sw

i are needed and SPEAr

produces R̂w at a minimal cost.

4.2. Watermark Arrival

At watermark arrival, a SPEAr worker produces an
accuracy estimate εw, and an approximate result R̂w. If
εw ≤ ε, then R̂w is pushed out as Sw

i ’s result; otherwise,
the worker has to process the whole Sw

i and produce an
exact result Rw. The latter case entails that tuples might be
accessed from secondary storage S . SPEAr’s challenge is to
make an accurate estimation of εw, and if εw > ε, then not
introduce significant overhead to the execution critical path.

Only a subset of Sw
i ’s tuples are used to produce R̂w.

Therefore, it is essential to measure the deviation of R̂w

from Rw, which is represented as εw : Rw, R̂w → R.
εw differs among stateful operations, especially between
distributive/algebraic, and holistic operations [60]. SPEAr
carries different εw functions depending on the stateful
operation, and allows users to define their own metric. Out-
of-the-box, SPEAr uses the relative error for algebraic and
distributive stateful operations [51], [54], [53]. For grouped
stateful operations, εw has to aggregate all groups’ estimated
errors into a single value. To this end, SPEAr calculates the
error for each group egw, and then combine all egw values by
using one of the error functions presented in [59] (Equations
in Def. 3.1). SPEAr uses the same accuracy metric for
quantile approximations presented in [48], which is used
to define a φ-quantile approximate value.

In order to estimate εw, SPEAr assumes that accuracy
estimates are normally distributed. In essence, a window
Sw
i of size N is represented by a sample Tw, where |Tw| =

n < N . Given an operation g(), ĝ(Tw) is an estimator of
g(Sw

i ). SPEAr’s goal is to estimate the expected error of
ĝ(Tw). For instance, if g is the arithmetic mean of a group
of values v, given a user-defined budget b = n (where n is
the sample size), then the mean estimate is ȳ = 1

n

∑n
i=1 vi,

where vi ∈ Tw. The exact value for the window’s mean is
μ = 1

N

∑N
i=1 vi, where vi ∈ Sw

i . The confidence intervals
can be established using the sample’s variance s [61], as
follows:

Ȳlow = ȳ − ts√
n

√
1− n

N
, Ȳhigh = ȳ +

ts√
n

√
1− n

N

ȳ is the sample mean, t is the value of the normal deviate
corresponding to the desired confidence probability (e.g.,
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1.96 for α = 95% and 2.58 for α = 99%), n is the sample
size (or budget b), and s is the samples’ standard devia-
tion. SPEAr follows the same confidence interval estimation
technique to establish the accuracy of R̂w. SPEAr treats
the confidence interval of R̂w as a relative distance to Rw.
If the relative distance is within the accuracy specified by
the user, then SPEAr returns R̂w as output; otherwise, the
whole window is processed. In order for SPEAr’s confidence
interval mechanism to provide accurate estimations, b can
not be small. This is a limitation imposed by Normal
approximation techniques (as a direct implication of the
Central Limit Theorem) [61]. As a result, the confidence
interval will be imprecise with a very small sample on
a skewed distribution. However, modern hardware is able
to accommodate samples with a size of tens of thousands
elements, which is ample for most distribution types. Below,
we present the steps taken by a SPEAr worker at watermark
arrival, for scalar and grouped operations.

Scalar: If the scalar operation is non-holistic, a worker
has incrementally prepared Rw (this is the case for asso-
ciative and (non-) invertible operations) [40] and pushes
it downstream. Otherwise, each SPEAr worker utilizes the
s.r.s. of size b. When a watermark arrives, the worker
performs a constant number of operations (less than ten)
to finalize R̂w. Next, it estimates the confidence interval
and makes a decision on whether to use the incrementally
processed R̂w. In case εw ≤ ε, then the worker produces R̂w;
otherwise, it scans Sw

i to produce Rw. The CQ of Fig. 5
contains the holistic operation of percentiles. Therefore,
at watermark arrival, the confidence interval needs to be
established. For the case of quantiles, the work of [48]
indicates that accuracy is estimated by comparing the sam-
ple’s size with Sw

i ’s size. This is done by comparing the
allocated budget b for a window with the expected budget
documented in [48]. If the allocated budget b is lower than
the one required for the approximate quantile algorithm to
provide an answer within the expected accuracy, then SPEAr
processes the whole window. Otherwise, it scans b and
produces the estimated quantile. Overall, SPEAr does not
introduce additional Sw

i scans for scalar operations: When

R̂w is acceptable (i.e., εw ≤ ε), then SPEAr has a worst-
case runtime cost of O(|b|) (this is the case for holistic
operations); when εw > ε, then the worst-case runtime cost
of becomes O(|Sw

i | + |b|) ∼= O(|Sw
i |), since |b| � |Sw

i |.
This is the same complexity as the normal processing of an
SPE.

Grouped: Turning to grouped operations, a SPEAr worker
establishes each group’s sample size at watermark arrival.
This process requires groups’ frequencies, which have been
incrementally established before the watermark’s arrival.
In addition, SPEAr calculates each group’s accuracy, and
aggregates them using the L1 accuracy metric [59]. If the
estimated L1 accuracy is within the specified level (i.e.,
εw ≤ ε), then SPEAr produces R̂w; otherwise, it has to
process all of Sw

i . In any case, Sw
i is either scanned once

to form the stratified sample and produce an approximate
result for each group; or prepare Sw

i for processing.

TABLE 1: Datasets and Queries Used

Total Win. Size Win. Slide Avg. Win.
Tuples Size

DEBS 56M 30 min. 15 min. ≈10K
GCM 24M 60 min. 30 min. 320K
DEC 4M 45 sec. 15 sec 47K

Similar to scalar operations, SPEAr does not introduce
additional scans on the window Sw

i . In case εw ≤ ε, a
SPEAr worker performs one scan of Sw

i . This scan is already
required by the single buffer design to evict expired tuples.
In case the estimated accuracy εw > ε, then a SPEAr worker
has to perform two scans of Sw

i : one for tuple eviction and
one for the actual processing. This is on par with normal
processing. To this end, SPEAr’s overhead is O(‖Sw

i ‖),
where ‖Sw

i ‖ indicates the number of distinct groups in Sw
i .

This runtime cost is bounded by b, since SPEAr does not
allow expediting a window if all the groups’ information
can not be accommodated in b. Therefore, the worst case
overhead is O(b)� O(|Sw

i |). Our experiments indicate that
this overhead is minimal when examined in the context of
continuous execution.

5. Experimental Evaluation

Our goal is to measure SPEAr’s ability to improve per-
formance, reduce main memory usage, detect opportunities
for faster processing, and preserve accuracy. We conduct the
experimental evaluation on an Amazon EC2 cluster with 9
r4.xlarge nodes. Each node runs on Ubuntu Linux 16.04,
OpenJDK Java v1.8, and has 4 virtual CPUs of an Intel
Xeon E5-2686 v4 with 32GBs of RAM. We set one node
as the master, running a single-instance Zookeeper v3.4.10
server and a single Nimbus process. We configure each of the
remaining nodes to accommodate up to four SPEAr workers.
In all experiments, we enable Storm’s acknowledgment and
back-pressure mechanisms to guarantee in-order delivery of
tuples.

For all CQs we set a single source operator that reads
data sequentially from a memory-mapped file. In turn, each
SPEAr worker applies a stateful operation whenever a win-
dow is complete. All workers forward their results to a
single worker, who persists output to secondary storage for
validation. All of the performance and accuracy numbers
we report are the arithmetic mean of seven runs, without
the maximum and the minimum reported values. In order
to measure processing times with high precision, we use
Storm’s metrics API, which provides periodic reporting of
runtime telemetry for each worker thread. Finally, for the
experiments that require sketch techniques, we use Stream-
Lib’s popular implementation for CountMin to compare
SPEAr with the state-of-the-art sketching technique.

In our evaluation we employ three real datasets. For each
one, we form a CQ with a single stateful operation on a
predefined event-time, time-based sliding window. Table 1
summarizes information on each dataset. Two of the datasets
feature grouped operations (DEBS and GCM) and one fea-
tures two scalar operations (DEC).
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Figure 6: Processing time on Median CQ for DEC.

ACM DEBS 2015 Challenge dataset (DEBS): This dataset
contains rides’ data from a Taxi Company. For DEBS we use
one of the challenge’s grouped operations, which features a
30 minute sliding window, with a 15 minute slide, for each
route’s average fare amount [62].
Google Cluster Monitoring dataset (GCM): For this
dataset we use part of the task-events stream and per-
form Query 1 from [17], which produces each scheduling
class’s average CPU time. In order to examine SPEAr’s
performance on larger windows, we set the window size
to 60 minutes and the slide to 30 minutes. Additionally, we
investigate the sensitivity of SPEAr on windows’ sizes.
DEC Network Monitoring dataset (DEC): For this dataset
we use time-based sliding windows of 45 seconds with a
slide of 15 seconds [22]. For DEC, we experiment with two
scalar operations: (i) the average, and (ii) the median TCP
packet size.

Unless specified otherwise, we set SPEAr’s budget b to
a value causes it to accelerate processing in the majority of
windows. In order to identify the proper b value for each
dataset, we analyzed their data characteristics offline, and
then hard-code those values in the CQs. For DEC, GCM,
and DEBS, we set b to 1,000 for the mean operation (150
for median), 4,000, and 2,000 tuples, respectively. Those
b values amount to 2.1% (0.3% for the median), 5%, and
20% of the average window size for DEC, GCM, and DEBS
(Table 1). The reason we set b on DEBS to be a large
percentage of the window size is because DEBS’s data
is sparse and most distinct routes appear once or twice
per window. Our analysis indicates that on average, for a
window size of ≈ 10K tuples, 5K distinct routes appear in
it. As a result, SPEAr needs to be able to accommodate at
least a tuple from each group to build a stratified sample. We
discovered that setting b = 2K tuples per worker allows the
acceleration of most windows in the dataset (at least 98.2%
of the windows). For all CQs we set the relative error to
10% and the confidence to 95% unless specified otherwise.

5.1. Scalability (Figures 6-7)

First, we quantified SPEAr’s scalability in terms of
processing time and amount of memory used. To this end,
we measured Storm’s and SPEAr’s processing time and
average memory consumption per worker on five different
levels of parallelism for the median operations of DEC. We
chose DEC’s median for our scalability experiment because
it requires maintaining and sorting each window without
the interference of groups, and cannot be incrementally
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Figure 7: Mean memory usage per worker on DEC.

processed. Fig. 6 illustrates the window processing time
(both mean and 95-percentile) when one, two, four, six,
and eight worker nodes are used (the average processing
time among all workers is presented). SPEAr is up to two
orders of magnitude faster compared to Storm in terms of
the average window processing time; and up to one order
of magnitude faster compared to Storm in terms of the 95
percentile window processing time. This happens because
SPEAr has to process b = 150 tuples per window (which
is the budget size) and achieves an error < 10% for at
least 99% of the windows. On the other hand, Storm has to
process many more tuples per window (the average window
size for DEC is 47K tuples). In addition, we measured the
average size of memory used for producing the result by
each worker. Fig. 7 illustrates the memory used by Storm
and SPEAr on both the average and the median TCP packet
size CQs. It is apparent that SPEAr uses a constant amount
of memory for both operations, which is equal to the budget
set for each CQ, since all the windows are accelerated.
SPEAr uses up to two orders of magnitude less memory
per worker for the median TCP packet size CQ.
Take-away: SPEAr achieves significantly lower processing
times compared to Storm (up to two orders of magnitude)
with only a fraction of the cluster nodes. Also, SPEAr
requires much less memory per worker (up to two orders of
magnitude) to produce a result within the specified accuracy
(i.e., SPEAr will avoid spilling data on secondary storage in
the event that the working set cannot fit in main memory).

5.2. Performance (Figure 8 and Table 2)

For the next experiment, we configure our cluster to use
up to four worker threads per CQ, each one running on a
single node in isolation. Our goal is to measure the mean
and 95-percentile window processing time for all datasets.
On top of that, for GCM and DEBS we compare SPEAr with
an implementation of the CQ that uses a CountMin sketch.
After analyzing each dataset offline, we allocate enough
space for the CountMin sketch to achieve a confidence of
95% and an error of up to 10% on all windows (equivalent
to SPEAr’s accuracy). Fig. 8 illustrates the mean and the 95-
percentile window processing times of Storm and SPEAr.

Starting from the mean CQ for DEC, we compared
SPEAr not only with Storm, but with an optimized version
for processing the mean using incremental techniques. In
detail, we modified Storm to incrementally update a running
count at tuple arrival. When a watermark arrives, it only
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Figure 8: Average and 95-percentile window processing time.

performs a division to produce the mean per window. This
is the optimal way for a mean, and we represent it as Inc-
Storm on Fig. 8a. Both Inc-Storm and SPEAr are three
orders of magnitude faster than Storm. Even though we do
not suggest using SPEAr for an incremental operation such
as the scalar mean, we can see that SPEAr is only 11%
slower compared to the optimal method for producing the
mean. For the median TCP packet size CQ, SPEAr reduces
processing time by almost an order of magnitude. Next,
on GCM, SPEAr reduces window processing time by more
than an order of magnitude compared to Storm for both
the mean and the 95-percentile case respectively (Fig. 8c).
This is due to the fact that GCM presents a small number
of distinct groups, whose results can be approximated with
only a small portion of the window’s tuples. In addition, the
performance gap on GCM is wider because the number of
groups are known for this CQ. As a result, SPEAr is able to
perform sampling at tuple arrival. Finally, Fig. 8d illustrates
the processing time of Storm and SPEAr on DEBS. For
this experiment, we set SPEAr’s budget b to 2,000 tuples,
which amounts for 20% of the average window size. As
mentioned earlier, DEBS is a sparse dataset since a large
portion of distinct groups appear on a window less than
three times. As a result, b needs to be set at a high enough
value to accommodate a stratified sample representing all
distinct groups. Our offline analysis of DEBS concluded
that a 2,000 tuple budget allows SPEAr to reduce window
processing time by 7.77 and 13 times for the mean and the
95-percentile case. With this budget setting, SPEAr is able
to accelerate at least 98% of the windows on each worker,
and avoid processing at least 25% of the total number of
tuples across all windows. To this end, the performance gap
compared to Storm is significant.

As far as the CountMin sketch is concerned, we com-
pared SPEAr against a CQ that uses CountMin to produce
the results of the grouped aggregate operations of GCM
and DEBS. To this end, we used a CountMin sketch for

TABLE 2: Proc. time (msec): SPEAr vs Storm/CountMin.

Mean 95-%ile

SPEAr CountMin SPEAr CountMin
GCM .12 40.26 .04 107.6
DEBS .09 3.7 .098 5.5

counting the sum of values and the frequency of appearance
of each distinct group for the grouped mean operation of
GCM and DEBS. Table 2 presents the average and 95-
percentile window processing times of SPEAr and Storm
with a CountMin sketch. It is apparent that SPEAr offers
much lower processing time compared to CountMin on both
datasets. In fact, the use of a sketch causes performance
degradation, which is justified by the application of the
computation-heavy hash functions required by CountMin.
SPEAr’s processing time is reduced by at least 9.89 times
for both the mean and for the 95-percentile case.
Take-away: SPEAr outperforms both Storm and Storm with
a CountMin sketch by at least an order of magnitude in both
the mean and the 95-percentile window processing time.
This is due to SPEAr’s ability to approximate windows’
results by processing less tuples, without introducing addi-
tional overhead.

5.3. End-to-end Processing Time (Figure 9)

Next, we measure SPEAr’s effects on end-to-end perfor-
mance. This involves analyzing the end-to-end processing
time achieved by Storm and SPEAr on a predetermined
dataset. All our datasets’ CQs carry time-based sliding
windows on event time. As a result, it is infeasible to
measure the effect of SPEAr on end-to-end processing
time, without including the waiting time for watermarks.
This happens because accumulating tuples and generating
a watermark dominates execution time, and the merits
of the processing speed achieved by SPEAr are dwarfed.
However, with a count-based window definition, workers
produce each window result by the time the configured
number of tuples are met. As a result, the measured time
reflects the total processing time required by each SPE.
For this experiment, we used DEC’s median CQ and set
its window semantics to be count-based with a range from
2,500, to 47,000 tuples (DEC’s mean window size). Fig. 9
presents the total processing time it takes for Storm and
SPEAr to produce DEC’s window medians. The reported
processing times were measured in our micro-benchmark
for which we used only a single worker. We set SPEAr’s
budget to 150 tuples to achieve ε ≤ 10% and α ≥ 99%.
Storm’s performance remains relatively constant since the
total amount of data processed remains the same. On the
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Figure 9: End-to-end Processing time on Median CQ for
DEC with count-based windows.

other hand, SPEAr’s performance increases as the window
size increases. This happens because the bigger the window
size becomes, the less tuples SPEAr processes (it carries a
constant sample size per window). As a result, the higher
the window becomes, the more tuples each window sample
represents. In the smallest window size, Storm and SPEAr
present comparable results since SPEAr processes a bigger
fraction of tuples. However, as the windows’ sizes increase,
the effect of SPEAr increases and it outperforms Storm.
Take-away: SPEAr is capable of improving end-to-end
processing time by more than an order of magnitude.

5.4. Window Size Sensitivity (Figure 10)

Next, we measure the effect of window size on SPEAr’s
performance. For this set of experiments, we use GCM and
measure the average and 95-percentile window processing
time with different window definitions. We set SPEAr’s
budget to 4,000 tuples, and execute the GCM operation
on three window size settings: 900, 1,800, and 3,600 sec
(with a slide of 450, 900, and 1,800 sec). Those translate
to an average window size of 84,000, 164,588, and 320,000
tuples respectively. The reason we choose GCM for mea-
suring SPEAr’s sensitivity is because it features a grouped
operation, and tuples for each group appear multiple times
per window.

Fig. 10 depicts the average and 95-percentile processing
time of Storm and SPEAr. When the window size is set to
900 sec, SPEAr achieves at least 2 times better processing
time compared to Storm. However, the budget of 4,000
tuples is not enough to expedite all of the windows. In
fact, SPEAr expedites only 68% of the total windows. This
comes from SPEAr’s accuracy estimation mechanism, which
identifies that the approximate result is likely to have an
average relative error ≥ 10%. Hence, the average and the
95-percentile window processing time contains the process-
ing times of windows that are fully processed. When, the
window size is set to 1,800 sec, SPEAr is able to accelerate
88% of the total number of windows. Consequently, the im-
provement in processing time compared to Storm increases
further. Finally, when the window size is set to 3,600 sec,
SPEAr is able to accelerate all windows and achieve more
than one order of magnitude lower window processing time
compared to Storm, with an average window relative error
of less than 10%.
Take-away: SPEAr is able to identify windows that cannot
be expedited. In those cases, SPEAr improves performance
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Figure 10: GCM processing time with varying window sizes.

up to 2 times compared to Storm. On larger windows,
SPEAr is able to improve performance further. Overall,
SPEAr’s accuracy estimation mechanism is able to react to
data changes and make the right decisions.

5.5. Error (Figure 11-12)

The next batch of experiments focuses on SPEAr’s
ability to identify opportunities for expediting processing,
and the success rate of its accuracy estimation. For this set
of experiments we use DEC and set the b to three different
values: 250, 500, and 1000 tuples. The rationale for selecting
those values, is a setting that is too low and will make SPEAr
avoid approximation (250), a setting that is relatively low
and will cause SPEAr to make false estimations (500), and a
setting that will cause acceleration and acceptable accuracy
on all windows (1000). Our expectation is to have SPEAr
present the aforementioned behavior and avoid accelerating
execution, when it comes at accuracy’s expense. We estab-
lished those b values offline by analyzing the DEC data.
For this experiment, error was set to 10% and confidence to
95%, and SPEAr is configured to produce the mean result
only at watermark arrival (i.e., no incremental optimization).
We do this to quantify the performance degradation caused
by SPEAr when the accuracy test fails (i.e., SPEAr adds
overhead).

Fig. 11 presents the error of SPEAr when compared
with the actual result on the DEC dataset. When b = 250,
SPEAr does not accelerate processing often (an error of
0 indicates that SPEAr performs normal processing). This
happens because SPEAr’s accuracy estimation mechanism
indicates that the interval is wider than 10% of the estimated
value. As a result, SPEAr chooses to process the whole
window. In fact, only 39.9% of windows are accelerated, and
33 of them produce a result which diverges more than 10%
from the actual answer. When b = 500, SPEAr accelerates
all windows, and its result diverges from the actual answer
by more than 10% in 23 windows. Finally, when b = 1000
SPEAr accelerates all windows, and only two windows have
an error more than 10%. In this case, SPEAr identifies that
the budget b is enough to safely accelerate a window.

Fig. 12 presents the average and 95-percentile processing
time on the DEC dataset (without the incremental processing
optimization). When b = 250, SPEAr’s performance is
worse than Storm’s, because SPEAr performs the check to
see if b is enough to accelerate processing. However, since
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Figure 11: Relative error per Window on DEC: the red
(flat) line indicates the user-defined accuracy; the blue line
indicates the error achieved by SPEAr.

it is not, SPEAr falls-back to exact processing and scans the
whole window. As a result, SPEAr’s performance is worse
than Storm’s. In contrast, when b ≥ 500 SPEAr outperforms
Storm by two orders of magnitude. This happens because b
is ample to safely accelerate windows, and SPEAr achieves
a significant performance improvement.
Take-away: SPEAr’s accuracy estimation mechanism expe-
dites processing without compromising accuracy. It is able
to accurately detect situations which are safe to accelerate
processing and results to significant performance gains.

6. Related Work

Incremental evaluation of CQs was first presented
in [43]. This work along with more contemporary articles on
incremental processing do not provide support for general
holistic operations [37], [49], [39], [40]. Previous work,
improves the amortized cost of updates and lookups for
associative and invertible opertions. Only the work of [37]
presents techniques for holistic operations, with a logarith-
mic update time, and a costly lookup time. The work of Wes-
ley et al [60] presents a solution for incremental processing
of distinct value quantiles. In comparison, SPEAr features
a constant update time, lookup time, and memory cost (b)
for holistic operations, and adopts all of the aforementioned
techniques for incremental processing.

Previous work on load shedding aims at maintaining an
SPEs performance under load without impacting accuracy of
results [20], [22], [24], [41]. The work of Babcock et al. [22]
focused on identifying shedding rates that maintain a low
error, but it does not guarantee that results’ accuracy will
be sustained on input load fluctuations. Semantic shedding
limits the error when the user provides a utility graph [20].
But, this approach is not feasible in queries whose goal
is to identify patterns in real-time. Finally, [24] presents
an optimal shedding algorithm, but without tight accuracy
guarantees in rapidly changing input.

A lot of work has been done on sketch-based techniques.
Hyperloglog [33] and CountMin sketch [29] are two of the
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Figure 12: DEC processing time with varying budget.

most widely-used techniques among sketches. Despite the
fact that those can provide accuracy guarantees and maintain
memory usage low, they do not react to data changes and
increase the computation per tuple. Finally, on a grouped
operation, the space benefit of a sketch are diminished. This
is due to the need to maintain the distinct groups in order
to re-construct a sketch’s information.

Finally, a lot of SPEs with the ability to add additional
workers have been previously presented [46], [50], [34],
[47]. Such SPEs are able to maintain performance, and are
geared towards long-term spikes in input. SPEAr’s goal is
to delay the need to scale-out, and it can complement those
techniques. We consider this line of work orthogonal to
SPEAr’s goals, since SPEAr can be extended to support
online reconfiguration of its resources.

7. Conclusion

Current SPEs’ challenges emanate from the uncharted
nature of stream processing, which dictates that data are
not known at CQ submission time. Moreover, continuous
execution increases the probability of fluctuating resource
needs. SPEAr reduces the effects of the aforementioned
characteristics proactively, postpones the need to scale re-
sources in real-time, and mitigates the need for resource
overprovisioning. Our evaluation indicates that SPEAr is
able to significantly reduce memory usage, and improve
performance in a plethora of stateful operations compared
to a state-of-the-art SPE. Moreover, SPEAr automatically
detects situations that allow expediting execution, and pre-
serves results’ accuracy. To the extent of our knowledge,
SPEAr is the first system of its kind that automatically
detects opportunities to accelerate processing, by applying
AQP principles in streaming without manual intervention.
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