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Abstract—This paper presents Sya; the first spatial probabilis-
tic knowledge base construction system, based on Markov Logic
Networks (MLN). Sya injects the awareness of spatial relation-
ships inside the MLN grounding and inference phases, which
are the pillars of the knowledge base construction process, and
hence results in a better knowledge base output. In particular,
Sya generates a probabilistic model that captures both logical and
spatial correlations among knowledge base relations. Sya provides
a simple spatial high-level language, a spatial variation of factor
graph, a spatial rules-query translator, and a spatially-equipped
statistical inference technique to infer the factual scores of
relations. In addition, Sya provides an optimization that ensures
scalable grounding and inference for large-scale knowledge bases.
Experimental evidence, based on building two real knowledge
bases with spatial nature, shows that Sya can achieve 70% higher
F1-score on average over the state-of-the-art DeepDive system,
while achieving at least 20% reduction in the execution times.

I. INTRODUCTION

Knowledge base construction has been an active area of

research over the last two decades with several system pro-

totypes coming from academia (e.g., [4], [6]) and industry

(e.g., [7], [12], [26]), along with many important applications,

e.g., web search [18], digital libraries [11], and health care [8].

The goal of knowledge base construction is to extract factual
structured data (i.e., knowledge base) from unstructured data

sources, e.g., Wikipedia, semantic web, and business logs.

Examples of such facts include “Alice is a spouse of Bob”

or “John has Ebola”. Most recently, the idea of probabilistic
(instead of factual) knowledge bases has been proposed, where

each extracted relation is associated with a probability of how

the system is confident that this relation is factual (e.g., see [9],

[10], [25], [36]). An example of such probabilistic relations is

“Alice is a spouse of Bob with 80% probability”.

Recently, Markov Logic Networks (MLN) [34] have been

a standard tool for building probabilistic knowledge base

construction systems. Examples of such systems include Deep-

Dive [36], ProbKB [9], and Archimedes [10]. In these MLN-

based systems, users express the knowledge base construction

logic using a set of first-order logic rules [16]. Then, such rules

are processed on two steps: 1) grounding, which evaluates

the rules to construct a ground factor graph [43] that encodes
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Fig. 1. Factual Scores of EbolaKB Using DeepDive and Sya.

the probability distribution of all extracted knowledge base

relations; and 2) inference, which estimates the marginal dis-

tribution (i.e., factual score) for each relation. Unfortunately,

current MLN-based knowledge base construction systems do

not fully utilize or acknowledge the importance of the spatial

information associated with various entities in extracted re-

lations. This immediately results in knowledge base relations

with less accurate factual scores. To better illustrate this issue,

we provide a real-example from epidemiology.

Example. We used DeepDive [36], a popular MLN-based

knowledge base construction system, to build a knowledge

base about Ebola infected counties in Liberia. First, we did

feed DeepDive system with data about sanitation levels [30]

in various counties in Liberia, namely EbolaKB. Figure 1(a)

shows a table of such information for four counties in Liberia,

namely, Montserrado, Margibi, Bong, and Gbarpolu. One of

these counties, Montserrado, was declared by United Nations

to have a high infection rate, hence marked as 1 (i.e., evidence)

in the second column of the table. The objective is to use

DeepDive to find out the marginal probabilities (i.e., factual

scores) that the other three counties would have high infection

rate as well or not (marked as question marks in the table).

Hence, we defined the following inference rule R with two

predicates P1 and P2 in DeepDive:
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P1: County X has high Ebola infection rate.

P2: Counties X and Y have same sanitation level.

R: If P1 & P2, then Y has high infection rate.

Given that the Montserrado county has a high Ebola infection

rate, and it is on the same sanitation level as Margibi, Bong,

and Gbarpolu counties, the inference in DeepDive used the

input evidence data to report that Margibi, Bong, and Gbarpolu

have high infection rates with factual scores 0.54, 0.52, and

0.63, respectively (second column in Figure 1(b)). Contrasting

these factual scores with the ground truth of infection rate

ranges of these four counties that are provided by the World

Health Organization [44] (first column in Figure 1(b)), we

consider the factual score of any county is correctly inferred

if it is within the corresponding ground truth infection rate

range. Then, by calculating the F1-score (i.e., the harmonic

mean of precision and recall) of correctly inferred counties,

DeepDive reported a low score of 0.39. This is mainly due to

the fact that the rule did not acknowledge the spatial proximity

of counties and its effect on the high infection rates. To remedy

this issue within DeepDive, we added one more predicate (P3)

and redefined the rule R to be:

P3: Counties X and Y are within 150 mi distance.

R: If P1 & P2 & P3, then Y has high infection rate.

With the new predicate, and feeding DeepDive with the

locations of all the four counties per the map in Figure 1(c),

DeepDive was able to adapt the factual scores of high Ebola in-

fection rates in Margibi and Bong to be 0.51 and 0.45, respec-

tively, as they are both within 150 miles from Montserrado,

while reducing the factual score of Gbarpolu to be 0.06 as it is

not within 150 miles from Montserrado. This example shows

that the location information could significantly change the

factual score in DeepDive. However, it also shows the obvious

limitation of DeepDive when dealing with spatial predicates

(e.g., P3). In particular, DeepDive treats any predicate as

a boolean function, which yields either true or false (i.e.,

satisfied or not). So, although one can define spatial predicates

in DeepDive (e.g., P3), internally DeepDive and its inference

engine do not do anything special for spatial predicates. Due

to this limitation, DeepDive has missed on the following two

major issues: (1) Margibi county is significantly closer to

Montserrado than Bong (Figure 1(c)), so, the factual score of

Margibi should be significantly higher than Bong. However,

DeepDive gives almost similar scores to both counties as

they both satisfy P3. (2) Gbarpolu is only 160 miles from

Montserrado, so, it should still have a good probability to be

similar to Montserrado. However, DeepDive gives it a score

that is close to 0 as it does not satisfy P3.

One interesting approach to simulate the spatial awareness

in DeepDive is to generate rules that define the distance as

a step function. For example, instead of having one rule R
corresponding to the predicate P3, we can define a rule for

each distance range (e.g., 10 < distance < 20, 20 ≤ distance

< 30, etc). However, as shown in Section VI, this comes

with tremendous latency in the grounding step which makes

it impractical to build knowledge bases.

Approach. In this paper, we present Sya; the first spatial

MLN-based knowledge base construction system. Sya embeds

the awareness of spatial relationships inside the grounding and

inference phases of the knowledge base construction. In par-

ticular, Sya automatically generates a probabilistic model [43]

that captures both logical and spatial correlations among its

variables. Then, this model is used along with an efficient

spatially-equipped statistical inference technique to infer the

factual scores of knowledge base relations. In the above

example, one can use Sya to redefine predicate P3 to be:

P3: The closer County Y to X, the higher its Ebola

infection rate.

With running this predicate, Sya was able to report the

factual scores of Margibi, Bong, and Gbarpolu counties to

be 0.76, 0.53, and 0.22, respectively. Given our ground truth

knowledge, this result reports F1-score of 0.85, which is more

accurate than what we get from DeepDive.

Challenges. Sya faces two main challenges in the grounding

and inference phases, respectively. The grounding challenge
is due to considering spatial correlations between all pairs of

random variables associated with knowledge base relations.

In case these variables are categorical with a large number

of domain values h, the generated spatial correlations among

each pair of variables will be of quadratic size in the number

of domain values (i.e., O(h2)). This can cause combinatorial

explosion problems during the grounding operation [43], and

later, the inference can become intractable. Thus, a pruning

strategy is needed to ground only spatial correlations that will

be effective in the inference phase. The inference challenge
is the slow convergence to accurate factual scores in the

presence of having spatial correlations among variables. In

general, existing MLN-based systems require approximate

inference techniques such as Gibbs sampling [46] to efficiently

handle large probabilistic models. However, standard Gibbs

sampling techniques depend on sequential updates of variables

during sampling, which results in a significant latency over-

head before convergence in case of having spatially-correlated

variables as shown in [24]. Thus, a new efficient variation of

Gibbs sampling is needed to handle these spatial correlations.

Contributions. Our technical contributions in this paper can

be summarized as follows:

• We define Sya architecture, which can be used to extend

any existing MLN-based knowledge base construction

system and make it support spatial awareness (Section II).

• We extend a popular datalog-like language, namely

DDlog [36], with spatial constructs that allow users to

easily express their spatial semantics (Section III).

• We introduce a new spatial variation of the factor

graph [43], namely Spatial Factor Graph, that is equipped

with support for spatial correlations among variables. We

also provide an optimization to heuristically prune inactive

spatial correlations during grounding. This allows us to

have a quality-scalability trade-off in Sya (Section IV).

• We introduce a new variant of Gibbs Sampling, namely

Spatial Gibbs Sampling, that exploits the Conclique [23]
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Fig. 2. Sya System Architecture.

concept from spatial statistics to efficiently sample from

spatially-correlated variables. The proposed algorithm is

extremely fast and has theoretical guarantees of conver-

gence as shown in [24] (Section V).

• We perform an extensive evaluation of Sya with Deep-

Dive [36] through building two real knowledge bases about

the water quality in Texas [39], namely GWDB, and the

air pollution in New York city [32], namely NYCCAS.

The results show that Sya can achieve 120% and 70%

higher F1-scores over DeepDive when building GWDB

and NYCCAS, respectively, with at least 20% reduction

in the execution time (Section VI).

II. SYA ARCHITECTURE

Figure 2 gives the high-level system architecture of Sya.

A domain expert would feed Sya with a set of inference

rules, along with input and evidence data. A casual user can

either use standard querying or visualization APIs to access the

produced knowledge base relations with their factual scores.

Internally, Sya is composed of three main modules, language,

grounding, and inference, described briefly below:

Language module. This module extends a high-level declar-

ative language, namely DDlog [36], with spatial data types

(e.g., Point and Polygon), spatial predicates (e.g., Distance and

Overlaps) and spatial UDFs (e.g., spatial objects extraction).

This module allows domain experts to express the spatial

semantics in the syntax of defining (1) the schema of database

relations used, and (2) rules for extracting relations, and corre-
lating them (i.e., inference rules). Once submitting the DDlog

program, this modules checks the syntax correctness and the

validity of used spatial constructs, compiles the program, and

forwards it to the grounding module. Details of the language

extensions are described in Section III.

Grounding module. This module receives the set of compiled

rules from the Language module. Then, it evaluates the rules

as spatial SQL queries (e.g., spatial join) against input (e.g.,

text and database relations) and evidence data. The output

is a spatial variation of the factor graph [43] representing

the knowledge base, and is stored in a relational database

with spatial data support (e.g., PostGIS and MySQL Spatial).

Details of this module are described in Section IV.

Fig. 3. Example on building EbolaKB using Sya Language.

Inference module. This module is triggered when it is re-

quired to estimate the factual scores (i.e., marginal probabil-

ities) of knowledge base relations (i.e., variables in a factor

graph). The module builds an in-memory pyramid index [3],

referred to as In-memory Spatial Factor Graph Index, that

partitions the spatial factor graph variables and correlations

into a set of concliques [23], i.e., groups of non-neighboring

spatial variables. Then, a novel Gibbs Sampling algorithm,

referred to as Spatial Gibbs Sampling, is applied on the

variables and correlations within each conclique to infer the

factual scores of their corresponding relations. In case there

is an update in the spatial factor graph, the in-memory index

is updated through bulk insertion and deletion, and then the

sampler is invoked on the concliques of the updated variables

only. Details of this module are described in Section V.

III. THE LANGUAGE MODULE

Users of MLN-based knowledge base construction systems

can use either native first-order clauses [16] (e.g., as in

ProbKB [9], and Archimedes [10]) or high-level datalog-like

languages (e.g., as in DeepDive [36] and SpannerLog [29])

to define the rules of constructing knowledge bases in a

declarative manner. However, datalog-like languages have an

advantage over native first-order rules in the integration with

RDBMS engines and the ease of translating the rules syntax

into equivalent SQL queries (details are in Section IV). In Sya,

instead of providing a completely new language, we choose

to extend the DDlog [36] language, a popular datalog-like

language for encoding MLN probability distributions, with

spatial data types, parameters, predicates, and user-defined

functions (UDFs) to help users express the spatial semantics

when building knowledge bases. Such extensions conform to

the Open Geospatial Consortium (OGC) standard [33].

Relations and Rules in DDlog. DDlog allows its users to

declare typical database relations to input/output data during

the grounding and inference operations. It also supports a

special type of variable relations, ended with a question mark

in its declaration, to specify random variables. For example,

the following statement declares a variable relation Y ?(s)
based on a typical input relation Data(s).

Y ?(s) : −Data(s)

The statement defines a different binary random variable

(taking either True or False) in Y ?(s) for each assignment

1179



to s in Data(s). Given variable relations, DDlog provides the

ability to define inference rules that express the correlation

among random variables in these relations. For example, the

following weighted inference rule defines one logical bitwise-

AND correlation for each entry in the output of equi-join

between the variable relations X and Y on attribute s.

@weight(0.7) X(r, s) ∧ Y (s) : −Z(r, s)[r = ”a”]

The predicate X(r, s) ∧ Y (s) is the head of the rule, and

Z(r, s) is the body atom. The body of the rule might contain

a condition predicate, e.g. [r = ”a”] which filters the entries

of relations based on the values that attribute r can take.

The @weight parameter determines the confidence in the

inference rule. Higher weights indicate higher confidence.

We describe the provided extensions by Sya in DDlog

relations and rules using the example program in Figure 3,

which builds the EbolaKB knowledge base in Section I.

Spatial Data Types. Sya adds four spatial data types, namely,

point, rectangle, polygon, and linestring, to the

schema declaration of relations in DDlog. For example, in

Figure 3, each of the statements S1 and S2, which declare

the input relation County and the variable relation HasEbola,

respectively, has one spatial attribute of type point.

Spatial Variables and Correlation Specification. Sya al-

lows its users to indicate which variables that we should

consider their spatial attributes when inferring the factual

scores of the knowledge base relations. A user can define

the @spatial(w) parameter on the schema declaration

of a variable relation to state that all instantiated variables

in such relation should consider spatial correlations among

themselves. Note that it is not allowed to annotate a variable

relation with @spatial(w), unless it has a spatial attribute

(e.g., HasEbola in Statement S2 in Figure 3). The w input in

@spatial(w) specifies the type of spatial weighing function

used during the grounding and inference steps (details are in

Section IV and V). This function could be either user-defined

in the DDlog program or built-in in Sya. For example, the type

exp in @spatial(exp) specifies an exponential distance

weighing [2] function that is already implemented in Sya.

Spatial Predicates. Sya extends the body of DDlog rules

with spatial predicates (e.g., overlaps, within, and

distance) and functions (e.g., union and buffer) to sup-

port the evaluation of spatial queries in the grounding module

(details are in Section IV). Spatial predicates can be composed.

For example, the inference rule R1 in Figure 3, which indicates

how neighboring Ebola infected counties affect each other, is

composed of two spatial predicates distance and within
that measure the distance between infected counties (using

latitude and longitudes coordinates), and check whether they

are located in Liberia or not, respectively.

Spatial User-defined Functions (UDFs). DDlog is powered

with the ability to provide UDFs to specify feature extraction

tasks that rely on integration with external tools (e.g., NLP pre-

processing libraries). For spatial information, automatically

extracting spatial entities (e.g., places) and relations from

Fig. 4. Example on Sya Grounding for EbolaKB.

unstructured data can be challenging for end users. Therefore,

Sya provides ready-to-use UDFs for spatial named entity

recognition (NER), and objects extraction from unstructured

text based on the GeoTxt library2.

IV. THE GROUNDING MODULE

The knowledge base construction rules represented by either

native first-order clauses or datalog-like languages (as shown

in Section III) can be viewed as a template for constructing

the probabilistic knowledge base model, which encodes how

knowledge base relations are linked to each other, and how

their factual scores are correlated. This model is typically rep-

resented by a data structure, called factor graph [43]. A factor

graph is a bipartite graph φ = {V,F} that has two sets of

nodes: (1) a set of random variables V = {v1, v2, ..., vm}, and

(2) a set of factors (a.k.a correlations) F = {f1, f2, ..., fn},
where each factor fi is a function fi(Vi) over a random

vector Vi ⊂ V indicating the correlation among the random

variables in Vi. Factors F together specify a joint probability

distribution over all the random variables V in these factors.

Ground Factor Graph. The process of constructing the

probabilistic knowledge base model as a factor graph is

called grounding, and the output factor graph is referred to

as a ground factor graph. In this process, we generate a

random variable v ∈ V for each possible knowledge base

relation and store it in a variable relation (e.g., HasEbola in

Figure 3). The generated random variables are called ground
atoms. Figure 4(a) shows an example of ground atoms in

the EbolaKB example. We also generate a weighted factor

f ∈ F for each possible grounding of an inference rule

(e.g., rule R1 in Figure 3) that satisfies the predicates and

conditions in the body of this rule. The generated factors

are called ground factors. Figure 4(b) shows an example of

ground factors of rule R1 in the EbolaKB example that satisfy

the distance and within predicates. Figure 4(d) depicts

an example ground factor graph based on ground atoms and

factors from Figures 4(a) and 4(b), respectively. Each factor

is represented by a square, and has edges with its variables

2https://github.com/geovista/GeoTxt
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represented by circles. All factors are associated with the same

confidence (i.e., weight) coming from the inference rule.

The joint probability distribution of a ground factor graph

can be defined as follows:

P (V = v) =
1

Z

∏
fi∈F

fi(Vi) = 1

Z
exp

( ∑
fi∈F

wfinfi(v)
)

(1)

where nfi is the number of true groundings of factor fi in

variables assignment v, wfi is the weight of fi, and Z is the

partition function, i.e., normalization constant. Note that the

distribution in Equation 1 represents the marginal inference,

which is commonly used in the knowledge base literature.

In this section, we describe how Sya extends the ground

factor graph to support spatially-correlated ground atoms (Sec-

tion IV-A). In addition, we discuss the database support in

Sya for constructing the factor graph in an efficient manner

(Section IV-B). Finally, we provide an optimization to prevent

the combinatorial explosion that could happen during the

grounding of spatial factor graph (Section IV-C).

A. Spatial Factor Graph

In MLN-based applications, the correlations between vari-

ables, which are knowledge base relations in our case, are cap-

tured in the factor graph using logical factors such as bitwise-

OR and imply. However, in the case of having variables

representing spatial phenomena (e.g., epidemiology), logical

correlations are not enough to obtain accurate inference scores

for these variables. In fact, ground atoms from the same type

of spatial variable tend to have high spatial correlation among

each other (e.g., HasEbola(Margibi) and HasEbola(Bong)).
This is one of the fundamental properties of spatial analysis,

where “everything is related to everything else, but nearby

things are more related than distant things”. We refer to these

ground atoms as spatial ground atoms.

A main limitation in using existing inference rules to capture

the spatial correlations between spatial ground atoms is that

there is no efficient way to represent the weight of the rule

as a function of distance between atoms. Existing MLN-based

knowledge base systems provide only two options to specify

weights in inference rules. The first option is to fix weights as

constants (e.g., the inference rule R1 in Figure 3). However, in

this option, we need to have a separate inference rule for each

possible distinct value of distance, which is impractical. For

instance, in the EbolaKB example, we would need to define a

new inference rule R2 similar to R1, but, with weight of 0.5

if the distance between two counties is less than 100, and so

on. The second option is to learn distinct weights for different

distance values based on training data. However, this option

requires enough training data available for all possible distance

values, which is impractical as well.

In Sya, we introduce a new type of factors, called spa-
tial factors, to capture the spatial correlations among spatial

ground atoms. Such factors are generated for each possible

pair of ground atoms from the same type of spatial variable

and assigned proper weights based on the relative distance

among atoms. We first provide a definition for spatial factors

over ground atoms coming from binary spatial variables, then

we extend this definition for the case of categorical variables.

Definition 1: Given two spatial ground atoms vj and vk of

a binary spatial variable, and a spatial weight wd(vj ,vk) based

on the distance d(vj , vk) between vj and vk, a spatial factor

ρj,k over vj and vk is a multi-valued function, where

ρj,k =

{
ewd(vj,vk) vj = vk

e−wd(vj,vk) otherwise
(2)

As shown in Equation 2, spatial factors favor similar values

of close ground atoms (i.e., spatial clustering), where each

factor specifies a unique weight based on the distance between

involved atoms. Generally, spatial correlations can be defined

on more than two grounds. However, we focus only on binary

correlations. The extension to high-order cases is intuitive as

well, but, out of scope of this paper.

We propose the spatial factor ρj,k in an exponential form to

easily extend the probability distribution P (V = v) in Equa-

tion 1 by directly adding the spatial weight wd(vj ,vk) as a new

potential function to the existing ones (i.e.,
∑

fi∈F wfinfi(v)).
Formally, given a set of spatial factors ρ, we extend the factor

graph φ = {V,F} to be a spatial factor graph G = {V, β},
which has the same set of random variables V , and a combined

set of non-spatial and spatial factors β = F ∪ ρ. As a result,

the equivalent probability distribution P (V = v) to the spatial

factor graph G becomes:

P (V = v) =
1

Z
exp

( ∑
fi∈F

wfinfi(v)

+
∑

ρj,k∈ρ
wd(vj ,vk)(1vj=vk

− 1vj �=vk)
) (3)

where 1vj=vk and 1vj �=vk are indicator functions. Fig-

ure 4(e) depicts an example spatial factor graph for EbolaKB

after adding the spatial factors defined over HasEbola atoms.

In Sya, there is no need to define inference rules for spatial

factors. These factors are automatically generated for variables

that are annotated with the @spatial(w) keyword in their

schema declaration, where the input w determines how to

calculate the weight wd(vj ,vk). For example, the type exp
in @spatial(exp) defined over statement S2 in Figure 3

indicates that wd(vj ,vk) should be calculated using exponential

distance weighing [2] function. Figure 4(c) shows an example

of grounding the spatial factors (highlighted with gray) that

are defined over HasEbola variables.

Spatial Factors for Categorical Variables. In case of hav-

ing knowledge base relations represented with a categorical

variable (i.e., a variable with h possible domain values),

the grounding process generates h instances of the ground

atom corresponding to each knowledge base relation, where

each instance indicates whether one possible domain value is

selected or not [36]. As a result, we adapt the spatial factor
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function in Equation 2 to be defined over a pair of instances

from two spatial ground atoms as follows:

Definition 2: Given two spatial ground atoms vj and vk of a

categorical spatial variable with h domain values, and a spatial

weight wd(vj ,vk) based on the distance d(vj , vk) between vj
and vk, a spatial factor ρj,k(tj , tk) over the instance of vj for

domain value tj , namely vj(tj), and the instance of vk for

domain value tk, namely vk(tk), is a multi-valued function,

where

ρj,k(tj , tk) =

⎧⎪⎨
⎪⎩
ewd(vj,vk) vj(tj) = vk(tk) = 1, tj = tk

e−wd(vj,vk) vj(tj) = vk(tk) = 1, tj �= tk

1 otherwise
(4)

Similar to Equation 2, Equation 4 favors similar domain

values of close ground atoms. In case the value of either vj(tj)
or vk(tk) is 0, we refer to ρj,k(tj , tk) as an inactive spatial

factor, because the factor value will be 1 and will not have any

effect on the joint probability distribution. Note that the joint

probability distribution can be extended in the categorical case

similar to Equation 3. Since we have h instances for each of

the two ground atoms vj and vk, we end up with h2 spatial

factors between vj and vk. This results in a combinatorial

explosion problem during the execution of grounding. More

details on this issue are in Section IV-C.

B. Rules Translation and Execution

Existing MLN-based knowledge base construction systems

(e.g., [9], [36]) efficiently construct the factor graph by eval-

uating its corresponding inference rules as SQL queries to

exploit the DBMS scalability and efficiency. As a result, Sya
provides a spatial rules-queries translator and a database driver

to evaluate the spatial extensions to these rules (shown in

Section III) as spatial SQL queries as well.

Spatial Rules-Queries Translator. Typically, the inference

rules are translated into a set of inner and outer join queries

with simple predicates to check (e.g., equality and range

checks). Sya extends this translation process with support for

two spatial queries; spatial join and range query. In case of

having a rule with a spatial predicate, e.g., distance, Sya
reroutes its translation into these spatial queries rather than the

original join queries. Moreover, Sya provides two effective

optimizations: (1) It supports creating on-fly spatial indices

(e.g., R-tree [20] and GIST [21]) on relations with spatial

attributes, making the evaluation of complex predicates (e.g.,

overlap) is efficient. (2) It provides a simple heuristic query

optimizer that re-orders the execution of nested spatial queries

that come from rules with multiple spatial predicates. Figure 5

shows an example of translating the inference rule R1 from

Figure 3, which has two spatial predicates distance and

within that are translated into a spatial join and range query,

respectively. Note that, although the distance predicate

comes before the within one in the rule, Sya re-orders their

translated queries to have the range query runs before the

spatial join to reduce the number of tuples to be joined.

Fig. 5. Example on Rules Translation in Sya.

Integration with Spatial Databases. Sya fully integrates with

scalable spatial database engines, e.g., PostGIS, and MySQL

Spatial to execute the translated queries. Such engines sup-

port both spatial and non-spatial queries. Thus, SQL queries

corresponding to rules with non-spatial predicates can still

be executed on them. In addition, Sya provides an abstract

database driver that supports defining the spatial storage,

functions and query capabilities needed to ground spatial

factor graphs. Such abstract can be extended by users to run

their spatial database engine choice inside Sya.

C. Scaling Up the Grounding of Spatial Factor Graph

The number of spatial factors ρ can easily explode when

dealing with categorical variables that have large domains

(i.e., the number of domain values h is large) (details are

in Section IV-A). This can significantly affect the scalability

of the knowledge base construction process. As a result, we

introduce an optimization for pruning the spatial factors that

are more likely to be inactive based on co-occurrence statistics

of their corresponding domain values in the input evidence

data. Basically, for each pair of domain values (i, j) of a spatial

categorical variable v, if these values co-occur with certain

probabilities that exceed a pre-defined threshold T in the

evidence input data, then we generate a spatial factor k(i, j)
over this pair of values. In case not passing the threshold T ,

we ignore all spatial factors defined over this pair of values

as they are considered inactive. Using Bayesian analysis, we

estimate the co-occurrence probabilities of (i, j) in two parts:

P (i|j) and P (j|i), where

P (i|j) = no. of i and j appear together in evidence data

no. of j appers in evidence data

and, similarly,

P (j|i) = no. of i and j appear together in evidence data

no. of i appers in evidence data

Note that the threshold T should be tuned by Sya users. We

discuss the effect of T on the performance of Sya, and show

its scalability-quality trade-off in Section VI.

V. THE INFERENCE MODULE

The main objective of the inference step is to estimate the

marginal probabilities of variables (i.e., ground atoms) in the

factor graph. In our case, such probabilities are considered

the output factual scores of the knowledge base relations. To
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Fig. 6. Example on In-memory Pyramid Index of Spatial Factor Graph.

perform this step in MLN-based knowledge base construction

systems, approximate inference via Gibbs sampling is com-

monly used [10], [28], [46], [47]. However, using existing

variations of Gibbs sampling to infer from the spatial factor

graph (i.e., factor graph with spatial factors) is inefficient, be-

cause the sampling nature in these algorithms relies on single-

site, or sequential, updates within the same inference epoch.

This, in turn, raises the need for a large number of iterations

(i.e., slow convergence) to obtain an acceptable output when

there are some variables that are spatially-correlated as shown

in [23]. In this section, we provide a new Gibbs sampling

algorithm, namely Spatial Gibbs Sampling, that overcomes

this limitation by employing efficient spatial statistics and in-

memory access techniques to guarantee the rapid convergence

in case of having spatially-correlated variables.

Main Idea. State-of-the-art parallelized Gibbs sampling algo-

rithms [46], [47] randomly partition the variables into a set

of buckets and then sample these buckets in parallel. Even

though these algorithms will finish the sampling iterations

faster than the sequential ones, they may not converge to an

acceptable solution as spatially-dependent variables might run

in parallel (i.e., independent of each other). This will force the

sampler to run additional inference epochs to converge, and

hence incur a significant latency overhead. Another solution

is to use block-based Gibbs sampling (e.g., [42]). However,

this solution requires joint sampling at each block, which is

computationally-inefficient as well.

In Sya, we devised an approach that combines in-memory

spatial partitioning technique, namely pyramid index [3],

with a well-known spatial statistics concept, namely con-

cliques [23], to heuristically partition the spatial factor graph

into a set of spatially-independent partitions. We refer to

this way of partitioning as concliques-based partitioning. The

resulting partitions can be sampled in parallel to each other

using standard Gibbs sampling. It is theoretically proven that

concliques-based partitioning makes Gibbs sampler converge

faster than traditional random partitioning [24]. First, we give

the details of the pyramid index and concliques concepts.

Then, we provide an algorithm that exploits such concepts

to provide our proposed spatial Gibbs sampling algorithm.

In-memory Spatial Factor Graph Index. Sya employs an

in-memory partial pyramid index [3] to spatially partition the

spatial factor graph. The pyramid index decomposes the whole

space into L locality levels (i.e., pyramid levels), where the

space in level l is partitioned into 4l grid cells. In each cell, Sya
stores a pointer-based index to the spatial ground atoms - along

with their connected factors - that have locations contained

in the cell’s spatial region. A spatial ground atom v may

contribute to up to L− 1 pointer-based indices: one per each

locality level starting from level 1 to the lowest maintained

grid cell containing the v’s location. The root level (Cell 0)

of the pyramid has no spatial relationships between atoms. In

addition, a factor node can be duplicated if it is connected to

more than one atom at different cells.

Since the pyramid index is a hierarchical space partitioning

technique, it guarantees to completely cover any given space

and allows Sya users to control the size of neighbourhood. A

locality level l acts like a “zoom” level (e.g., city block, entire

city). Another advantage of the pyramid index is its ability to

store data in non-leaf cells (i.e., cells that are not at the lowest

pyramid level), which helps in storing the spatial factor graph

efficiently at the different pyramid levels. Figure 6 shows an

example pyramid index of a spatial factor graph. The index is

assumed to have 3 levels only, where there are empty cells due

to not having variables contained in these cells. We show the

partitioning details of partial factor graph in cells C1, C6 and

C8. Note that the partial graph at C1 is divided into two sub

graphs at C6 and C8 because C6 and C8 are children of C1.

Also, factor node F4 is replicated in both C6 and C8 because

it is connected to V2 and V4 which are at different cells.

Initially, to build the pyramid, all spatial ground atoms are

used to build a complete pyramid of height L, such that all

cells in all L levels are present and contain a partial graph.

The initial height L is chosen according to the level of locality

desired. Once the initial build is done, a merging step is

called to scan all cells starting from the lowest level and

merge quadrants (i.e., four cells with a common parent) into

their parent if three of these quadrants are empty. Once an

incremental update is received, Sya performs a sequence of

splitting and merging operations over the pyramid cells, if

necessary. A cell is split only if it is over a capacity threshold

and splitting its contents spans at least two children cells.

Concliques-based Partitioning. A conclique is defined as a

set of locations such that no two locations in this set are neigh-

bours [23]. For example, the cells of locality level 2 in Figure 6

can be divided into four concliques: Q1 = {C5, C10, C12},
Q2 = {C6, C11, C13}, Q3 = {C7, C8, C14, C16} and Q4 =
{C9, C15, C17}. The main idea behind defining concliques

is ensuring the neighbouring independence between variables

in the same conclique set, and hence these variables can be

sampled in parallel. Assume there is a spatial factor graph

defined over the whole cells in the locality level 2 of Figure 6.

The sampling process over these cells can be done using

four iterations. The first iteration handles conclique Q1 by

initiating three threads to process C5, C10 and C12 in parallel.

In each thread, we sample the variables of its associated cell

sequentially using standard Gibbs sampling. After sampling

cells in Q1 is done, the second, third and fourth iterations can

be done sequentially to handle Q2, Q3 and Q4, respectively.
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Algorithm 1 Function SPATIALGIBBSSAMPLING (Spatial-

FactorGraph G, Instances K, Epochs E)

1: C ← Null /* Sampling Counters */
2: for all v ∈ V do in parallel
3: C[v] ← 0

4: e ← E
K /* No. of Epochs Per Instance*/

5: P ← BUILDPYRAMIDINDEXOFSPATIALFACTORGRAPH (G)
6: Q ← BUILDCONCLIQUESOFPYRAMIDINDEX (P )
7: L ← No. of Levels in P
8: while e �= 0 do
9: for all k ∈ {1, 2, ..., K} do in parallel

10: for all l ∈ {2, 3, ..., L− 1} do serially
11: T ← GETNONEMPTYCELLS (P , l)
12: U ← GETMINCONCLIQUESCOVER (Q, l, T )
13: for all u ∈ U do serially
14: for all t ∈ T ∩ u do in parallel
15: Ck[Vt] ← RUNSTANDARDGIBBSSAMPLER (Vt, G, Ck)

16: C ←
K∑

k=1
Ck

K , e−−
17: end while
18: for all v ∈ V do in parallel
19: v.Prob ← CALCMARGINALPROBABILITY (C, v)

Algorithm. Algorithm 1 depicts the pseudo code for the

spatial Gibbs sampler that takes the following three inputs: the

spatial factor graph G, the number of running instances K that

can run in parallel, and the number of inference iterations E.

The algorithm keeps track of the current counts of sampled

values in each variable v ∈ V through variable C, initialized

by zeros. The algorithm then starts by computing the number

of inference epochs that can be handled per each running

instance and stores it in variable e. Note that e represents

the actual number of inference epochs that run sequentially

because different inference instances execute in parallel. Each

of these inference instances then starts to process one inference

epoch in parallel (i.e., K inference epochs are running simul-

taneously). Then, the algorithm builds (1) a pyramid index of

the input spatial factor graph, referenced by variable P , and

(2) an index of concliques for each level in the pyramid index,

referenced by variable Q (Lines 5 and 6).

In each inference epoch (Lines 10 to 15), the algorithm

first traverses each pyramid level l, and gets the minimum set

of concliques U that cover the partial spatial factor graphs

in this level l (Lines 11 to 12). For example, the locality

level 2 in Figure 6 has two partial graphs at C6 and C8

cells. Then, the algorithm will return Q2 and Q3 as minimum

set of covering concliques. After that, for each conclique

u ∈ U , the algorithm processes the non-empty cells (i.e.,

that have partial graphs), associated with u in parallel. In

the running example, the algorithm starts with conclique Q2,

which has only cell C6 to process. After finishing Q2, the

algorithm processes Q3 which has only cell C8. At each

cell t, the algorithm sequentially samples all variables in

t using a standard Gibbs sampler. In our experiments, we

used the variation of Gibbs sampling inside DeepDive [36]

as it is computationally-efficient, easy-to-implement, and can

support incremental inference. Note that by traversing different

pyramid levels, the algorithm might sample the same variable

multiple times (i.e., it happens that one variable is connected

with two factors at different locality levels). However, this

situation will not harm the validity of results as shown in

System No. Rels No. Rules No. Vars No. Factors
GWDB 1 11 104K 39.5M
NYCCAS 1 4 34K 233K

TABLE I
STATISTICS OF KBS USED IN EXPERIMENTS.

block-based Gibbs sampling algorithms [42]. In addition, it

will not significantly increase the latency overhead compared

to the huge performance gain achieved from processing the

cells in each conclique in parallel.

After all inference instances finish their current inference

epoch, we set the values of C with the average of obtained

counts of samples from these instances (Line 16) and then

proceed to another inference epoch with the new counts. We

repeat this process e times, and then use the final counts of

samples to calculate and update the marginal probability of

each variable as in [43](Lines 18 and 19).

Complexity. The complexity of Algorithm 1 can be estimated

as O(L|V|+L+(EK )( 43 )(1− ( 14 )
L+1)|V|2) where O(L|V|) is

the cost of building the pyramid index (Line 5), O(L) is the

cost of building the concliques in all pyramid levels (Line 6),

and O((EK )( 43 )(1 − ( 14 )
L+1)|V|2) is the cost of applying the

Spatial Gibbs Sampling steps (Lines 8 to 19). The complexity

can be approximated to be O(L|V| + (EK )|V|2). Since the

value of V is significantly larger than L, the complexity can

be further approximated to be O((EK )|V|2).
VI. EXPERIMENTS

In this section, we experimentally evaluate the quality and

scalability of Sya, based on a real system implementation [35]

inside DeepDive [36]. We choose DeepDive as it is one of

the most popular probabilistic knowledge base construction

systems, with many success stories in vital applications (e.g.,

fighting human trafficking). In addition, DeepDive provides

an open-source implementation for both the grounding and

inference phases3. We compare the performance of Sya with

DeepDive while building two real knowledge bases. We also

extensively investigate the quality and convergence of Sya
under different system parameters.

A. Experimental Setup

Datasets. In our experiments, we have built two knowledge

base systems, namely GWDB and NYCCAS, using both Sya
and DeepDive. Table I illustrates the different statistics of these

systems including the number of input database relations (No.

of Rels), the number of inference rules (No. Rules) used to

build the knowledge bases, the number of variables (No. Vars)

and factors (No. Factors) in the generated factor graphs.

The GWDB system builds a knowledge base about the water

quality in Texas. The input to this system is the Texas Ground

Water Database (GWDB) relation [39], which is collected by

Texas Water Development Board (TWDB) about 9831 water

wells. It contains information about each well such as location,

depth and the concentration of different elements such as

3https://github.com/HazyResearch/deepdive
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Fig. 7. Example on a Rule for the GWDB KB in Sya and DeepDive.

fluoride and arsenic. We developed a program that consists

of 11 inference rules that infers the risk of drinking from each

well. For example, a certain well is considered dangerous if

the arsenic concentration exceeded a certain threshold defined

by the Environment Protection Agency and its location is near

from another risky well.

The NYCCAS system builds a knowledge base about the air

pollution concentrations in the New York city. The input data

is mainly a raster database relation maintained by the depart-

ment of Health and Mental Hygiene (DOHMH) [32] about

the annual predicated concentrations for specific elements in

the air. Unlike the GWDB system, we developed a smaller

program which has 4 inference rules only that relate different

guidelines from the Environment Protection Agency about the

air pollution with the observations from raster data. Note that

the factor graph statistics for NYCCAS are relatively small

compared to GWDB, and both have one input relation only.

In both systems, ground truth information (i.e., evidence

data) is available for all extracted knowledge base relations.

In addition, each variable has binary domain values. We will

increase the number of domain values only when we study the

effect of the pruning threshold T .

Rules. To have a fair comparison when building these knowl-

edge bases, we submitted two equivalent DDlog programs to

both Sya and DeepDive. Figure 7 shows an example on an

inference rule R1 used to develop the GWDB knowledge base

in both Sya and DeepDive. This rule indicates that the closer

a well to another safe well that has low arsenic level, the

higher probability this well becomes safe. As shown in the

figure, we used our spatial extensions of DDlog to express

the spatial semantics in Sya rules. In case of DeepDive, we

provided an equivalent user-defined function implementation

to the basic spatial functions. In the shown example, we de-

fined the calc_distance function that calculates distances

between all possible pairs of wells. All calculated distances are

materialized to be used along with the inference rule.

Evaluation Metrics. In all experiments, to measure the scala-
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Fig. 8. Comparison with DeepDive (Precision and Recall)

bility, we use the running times of the grounding and inference

phases. To measure the quality of factual scores, we use the

following three metrics: 1) Precision (Prec): the number of

predicted factual scores that match the ground truth within 0.1
error (i.e., correctly inferred scores), over the total number of

factual scores to be predicted. 2) Recall (Rec): the number

of correctly inferred scores (calculated similar to Prec), over

the total number of factual scores that should be predicated

correctly according to the evidence data. 3) F1-score: the

harmonic mean of precision and recall, which is calculated

as 2(Prec ∗Rec)/(Prec+Recall).
Environment. Both systems are implemented in C++. We run

all experiments on a single machine with Ubuntu Linux 14.04.

Each machine has 8 quad-core 3.00 GHz processors, 64GB

RAM, and 4TB hard disk. We use PostgreSQL, and its spatial

extension PostGIS, to execute SQL queries.

Parameters. Unless otherwise mentioned, we set the number

of inference epochs to 1000, the input of the @spatial
parameter (Section III) to the exponential distance weighing

function [2], and the pruning threshold T to 0.5. In Sya, we

built a pyramid index for both Texas state and New York city.

In each index, the number of pyramid levels L is 8, and the

locality level l is the lowest pyramid level (i.e., 8).

B. Experimental Results

1) Comparison with DeepDive using Different Datasets:
Figure 8(a) shows the precision results obtained by Sya and

DeepDive while building the GWDB and NYCCAS knowl-

edge bases. Due to the probabilistic nature of the sampling

algorithms, we run all inference rules for both systems 5

times, and after each run, we report the quality of the system

measured by the precision. Then, we average the obtained

scores for each system (we follow the same approach in all

precision and recall experiments in the paper). As shown

in the figure, Sya outperforms DeepDive significantly with

relative precision improvements of more than 53% in both

datasets. The main reason behind the impressive performance

of Sya is that the factual scores, in each of the two knowledge

bases, have spatial correlations among each other, which is a

common property in all spatial applications. These correlations

were properly utilized inside Sya using the spatial factors, and

hence results in more accurate factual scores. We also notice

that the variance between the precision values of Sya in both

datasets is significantly smaller than DeepDive. This verifies

our hypothesis that dealing with spatial predicates as a boolean
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Fig. 9. Comparison with DeepDive (F1-Score and Execution Time)

function, as in DeepDive, leads to inaccurate results. Recall the

EbolaKB example in the introduction, when Gbarpolu county

was only 10 miles more than the cut-off threshold, and yet, it

got a score that is close to 0.

Figure 8(b) shows the recall results obtained by Sya and

DeepDive while building the GWDB and NYCCAS knowl-

edge bases. For the GWDB dataset, we still have the same

conclusion that Sya is better than DeepDive. In this case, the

improvement ratio is around 60%. For the NYCCAS dataset,

we notice that Sya still has higher recall output, yet, with a

small improvement ratio of 9%. This is because the NYCCAS

dataset has a significant amount of its evidence data entries that

follow random assignments. This limits the recall of Sya and

makes it close to DeepDive.

Figure 9(a) shows the F1-score for both Sya and DeepDive

while building the GWDB and NYCCAS knowledge bases.

For the two knowledge bases, Sya were able to significantly

increase the F1-score compared to DeepDive. Specifically,

Sya has an F1-score improvement of 120% and 27% over

DeepDive in GWDB and NYCCAS, respectively. We can

conclude from the results of the three quality metrics that the

effect of considering the spatial correlations while inferring the

factual scores is huge and can significantly boost the quality

of the knowledge base outputs.

Figure 9(b) shows the grounding and inference times for

both Sya and DeepDive while building the GWDB and NY-

CCAS knowledge bases. As seen in the figure, the grounding

time of Sya is at maximum 15% higher than DeepDive in both

datasets due to the additional overhead of generating spatial

factors. We also observe that Sya has at least 30% reduction

in the inference time in both datasets. The main reason behind

this performance gain is applying the concliques-based parti-

tioning in the spatial Gibbs sampling algorithm (Section V),

which enables the parallel sampling for all variables within the

same conclique. Note that the grounding and inference times

of both systems are significantly low in NYCCAS compared to

GWDB because of the small size of the factor graph, however,

Sya still has the same improvement ratio.

2) Comparison with DeepDive using Step Function Rules:
In this experiment, we compare the performance of Sya with

DeepDive while using a step function in DeepDive to generate

a set of inference rules that approximate the spatial effect. For

example, we can use a step function to replace the inference

rule R1 in Figure 7 by the following set of range-based rules:

Rule R1(1) that defines @weight(0.9) for distance range
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Fig. 11. Effect of Pruning Threshold on Quality and Execution Time

0 ≤ D < 10, Rule R1(2) that defines @weight(0.8) for

distance range 10 ≤ D < 20, etc. Note that large weights are

associated with small distance values. Figure 10(a) shows the

F1-score for both Sya and DeepDive while varying the number

of generated step function rules in DeepDive from 11 to 11k.

We report the results for the GWDB knowledge base only.

By increasing the number of generated rules, we obtain more

accurate weights to be associated with the inference rules,

and hence achieve better F1-scores. However, as shown in

Figure 10(b), this comes with high latency in the grounding

phase as the number of generated SQL queries becomes large

as well (i.e., one SQL query per rule). For example, generating

11k step function rules, instead of the original 11 rules of

GWDB, requires more than 12 hours in the grounding phase

to obtain 20% less F1-score compared to Sya, which is the

best score achieved by DeepDive in our experiments.

3) Effect of Pruning Threshold: Figure 11(a) shows the

effect of changing the pruning threshold T on the precision

and recall of Sya. In this experiment, we report the results of

the GWDB knowledge base only. However, the same findings

apply on the NYCCAS dataset. We changed the number of

domain values of the generated relations to be 10 instead of 2.

This means that the number of spatial factors between any pair

of relations (i.e., ground atoms) is 100. By ranging the value of

T from 0.3 to 0.9, we obtain a trade-off between the precision

and recall results. When the value of T is small, the range of

allowed domain values is widened, and hence the recall value

becomes higher, and vice versa. For the precision case, by

increasing the value of T , we keep only the spatial factors that

are likely to be effective in capturing the spatial correlation,

and hence the probability of having accurate results becomes

higher. This results in higher precision values.

Figure 11(b) shows the effect of changing the pruning

threshold T on the grounding and inference times of Sya.

Obviously, increasing the value of T results in a less number of
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Fig. 13. Effect of Incremental Inference and Locality Level

spatial factors to be processed in both grounding and inference

phases, and hence the total running time drops significantly.

For example, by changing the value of T from 0.3 to 0.9,

the improvement ratio of total running time becomes 96%.

However, this might come with the cost of less recall results

as shown in Figure 11(a).

4) Effect of Number of Inference Epochs: Figure 12(a)

shows the effect of changing the number of inference epochs

on the quality of Sya and DeepDive. We report the results for

the GWDB knowledge base. We change the number of epochs

from 100 to 100k, while observing the F1-score for both

systems. We find that increasing the number of epochs allows

both systems to converge towards more accurate results, until

a threshold. The quality of both systems started to saturate

around 1000. Yet, we find that the difference in quality scores

at 10k and 100k compared to 1000 is higher in DeepDive than

Sya. For Sya, the average difference is 0.01. While it becomes

0.04 in case of DeepDive. Note that Sya is consistently better

than DeepDive regardless the number of epochs.

Figure 12(b) shows the effect of changing the number of

inference epochs on the inference time, reported in a log-

scale, of both Sya and DeepDive. We use the same experiment

setup in Figure 12(a). We can observe that Sya is still faster

than DeepDive in both small and large number of epochs, yet,

both systems are still within the same order of magnitude. The

improvement ratio of Sya over DeepDive ranges from 20% to

31% at maximum. This confirms the inference running time

results in Figure 9(b). We have also tried to re-run the same

experiment with different order of variables in the factor graph.

However, we got very similar numbers. This shows that Gibbs

sampler, in both standard and spatial variants, is still very

practical even though it has no guarantees of convergence.

5) Effect of Incremental Inference and Locality Level:
Figure 13(a) shows the effect of supporting the incremental

inference on the performance of both Sya and DeepDive while
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Fig. 14. Quality of Spatial Gibbs Sampling with Different Datasets

building the GWDB knowledge base. In this experiment, we

start with applying the inference on the whole factor graph

nodes. Then, we gradually change the values of some nodes

(i.e., query nodes), and calculate the corresponding average

time to finish the inference over these changed nodes. We

vary the number of changed nodes from 1 to 20. As we can

see, the incremental inference in Sya takes 40% less time

than DeepDive to finish the whole queries. Since most of the

changed nodes are spatially-correlated from the application

nature, Sya has a better chance to rapidly converge more than

DeepDive. This is because of the spatial support that Sya
injects in the Gibbs sampling approach.

Figure 13(b) shows the quality of Sya in building GWDB

and NYCCAS knowledge bases while varying the locality

level (i.e., pyramid level) from 1 to 8. In general, both cases

show that the F1-score of Sya increases when it uses more

localized pyramid cells. However, the localization has more

influence on GWDB than NYCCAS. This behaviour further

verifies that just providing precise locality level, while fixing

other parameters, could result in higher quality factual scores.
6) Quality of Spatial Gibbs Sampling: In this experiment,

we directly compare the quality of our proposed spatial
Gibbs sampling with the state-of-the-art Gibbs sampling [46],

[47], that has been used inside DeepDive, while varying the

sampling time from 10 to 10k seconds. For each sampling

algorithm, we measure the quality using the Kullback-Leibler

(KL) divergence [27] between the estimated marginal proba-

bilities using this algorithm and the true marginal probabilities

provided by the ground truth. Figures 14(a) and 14(b) show the

average KL divergence values for both sampling algorithms

while building the GWDB and NYCCAS knowledge bases,

respectively. Our proposed sampling achieves at least 49%

and 41% less divergence values in the GWDB and NYCCAS

cases, respectively, compared to the basic Gibbs sampling.

This confirms the superiority of Sya in the inference quality

results that have been shown in Figure 12(a).

VII. RELATED WORK

Traditional Knowledge Base Construction Systems. There

is a wide array of knowledge base construction systems that

are capable of extracting structured facts and relations. Such

systems can be broadly categorized into two categories: rule-
based systems (e.g., expert rules [12], [26] and crowdsourcing

rules [4], [7]), and machine learning-based systems (e.g.,

classification [13], [15], maximum-a-posteriori models [25],

[38], Markov Logic Networks (MLN) [9], [10], [36], and deep
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learning [45]). We refer to these as “traditional” systems. The

closest of these systems considering spatial attributes are [6]

and [41], which augment facts with their location information

(e.g., “lives at” attribute). However, no traditional system has

exploited the location information between entities or facts

during the construction. Sya, conversely, is the first MLN-

based knowledge base construction system that considers such

relationships to improve the knowledge base quality.
Geo-Knowledge Bases. Recent knowledge base systems have

been proposed to extract facts about spatial entities (e.g., lakes)

from Volunteered Geographic Information (VGI) [17] along

with Semantic Geospatial Web [14] (see [5] for a comprehen-

sive survey). In addition, a recent work has been focusing on

the problem of entity alignment between knowledge bases with

a special focus on spatial entities [40]. However, extracting and

maintaining facts about spatial entities is a vastly different

problem than we study in this paper. In Sya, we extract a

knowledge base of generic facts, yet, we exploit the spatial

information, if any, to improve the output quality.
Inference Techniques. The inference task uses a probabilistic

inference algorithm to compute the factual score (i.e., proba-

bility) associated with generated relations. Existing inference

algorithms in knowledge base construction systems are based

on either Gibbs sampling [46], Markov chain Monte Carlo

(MCMC) [1], [10], [28], [31], belief propagation [37], lifted

inference [19], or specialized Markov Logic Network algo-

rithms [22]. Sya provides a new variant of Gibbs sampling

that adapts Concliques-based partitioning [23].

VIII. CONCLUSIONS

We introduced Sya, a full-fledged system that provides

a native support for exploiting spatial relationships during

the MLN-based knowledge base construction process. We

introduced several extensions and optimization to provide

the efficiency and scalability of the grounding and inference

phases when dealing with spatially-correlated knowledge base

relations. We also studied the trade-off between the infer-

ence quality and runtime of Sya. We also showed that Sya
can significantly outperform the state-of-the-art MLN-based

knowledge base construction systems in terms of accuracy and

efficiency. In addition, Sya can be easily used to extend any

of these systems to make it support spatial awareness.
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