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Abstract—Materializing views is an important method to re-
duce redundant computations in DBMS, especially for processing
large scale analytical queries. However, many existing methods
still need DBAs to manually generate materialized views, which
are not scalable to a large number of database instances,
especially on the cloud database. To address this problem, we
propose an automatic view generation method which judiciously
selects “highly beneficial” subqueries to generate materialized
views. However, there are two challenges. (1) How to estimate the
benefit of using a materialized view for a query? (2) How to select
optimal subqueries to generate materialized views? To address
the first challenge, we propose a neural network based method
to estimate the benefit of using a materialized view to answer a
query. In particular, we extract significant features from different
perspectives and design effective encoding models to transform
these features into hidden representations. To address the second
challenge, we model this problem to an ILP (Integer Linear
Programming) problem, which aims to maximize the utility
by selecting optimal subqueries to materialize. We design an
iterative optimization method to select subqueries to materialize.
However, this method cannot guarantee the convergence of the
solution. To address this issue, we model the iterative optimization
process as an MDP (Markov Decision Process) and use the deep
reinforcement learning model to solve the problem. Extensive
experiments show that our method outperforms existing solutions
by 28.4%, 8.8% and 31.7% on three real-world datasets.

I. INTRODUCTION

In many OLAP systems, analytical SQL queries share com-

mon subqueries and building views on these subqueries can

avoid redundant computations and improve the performance.

For example, Figure 1 reports the redundant computations on

a real-world workload of Alibaba Cloud. Figure 1(a) reports

the number of total queries (denoted as total) and the number

of queries including redundant computation (denoted as re-

dundant) on six projects. Figure 1(b) illustrates the cumulative

percentage of queries including redundant computation among

total queries. To address this problem, many studies [20], [3],

[31], [34] propose to materialize views for the common sub-

queries for sharing computations. For instance, BigSub [20]

models the subquery selection problem as a bipartite labeling

problem and then designs an iterative optimization based

method to solve it. However, there are still two challenges.

First, it is challenging to evaluate the benefit of using a

materialized view to answer a query. Intuitively, the benefit

can be computed with the saved cost by using the materialized

view for the query. However, it’s not realistic to actually

1Guoliang Li is the corresponding author. This work was supported by NSF
of China (61925205, 61632016), Huawei, Alibaba, and TAL education.

rewrite queries with all possible views and execute all rewritten

queries to get the actual cost. Therefore, we design a cost

estimation model using deep learning. Although there are some

deep learning techniques for cost estimation [36], [29], they

are designed for estimating the cost of a single query but

cannot estimate the cost of a query rewritten by a view. To

address this challenge, we first extract significant features from

two kinds of information: query/view plans and query/view

related tables. We then split these features into numerical
features and non-numerical features. In addition, we design

different encoding models to transform different features into

hidden representations. For example, we use the sequence

encoding model to encode query/view plans, because plans

can be regarded as sequences. Finally, to capture the linear and

non-linear correlations between the cost and these features, we

design an effective model to estimate the cost, which consists

of two parts: a linear wide part and a non-linear deep part.

Second, it is hard to automatically select a set of high-

quality subqueries to materialize based on their benefits. To

address this issue, we model the subquery selection problem

as an ILP (Integer Linear Programming) problem. To avoid

the heavy overhead for computing actual optimal solutions, we

propose an iterative optimization method to get approximate

optimal solutions. Inspired by BigSub [20], we iteratively

compute the probability of selecting a subquery to materialize.

However, this method cannot converge to a stable result,

because different iterations have no memory ability and cannot

share feedback from optimization process, which leads to

repeated oscillation of optimization results. To address this

problem, BigSub [20] forbids turning selected subqueries to

unselected when the number of iterations exceeds a certain

threshold. However, BigSub would degenerate into a greedy

method and thus leads to poor results. To address this problem,

we propose to a reinforcement learning method, which trans-

forms the optimization process to an MDP (Markov Decision

Process) and then applies the deep reinforcement learning

model DQN (Deep Q-Network) to get a stable result.

In summary, we make the following contributions.

(1) We formally define the problem of automatically selecting

subqueries to materialize for sharing computations (see Sec-

tion II). Meanwhile, we propose an end-to-end learning-based

system for solving the problem (see Section III).

(3) We extract useful features from different perspectives for

estimating the benefit of using a view for answering a query.

We use different encoding models to encode different features
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Fig. 1. Redundant computation on several projects

Aggregate(group=[{user_id_1}],cnt=[COUNT()])
   Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
      Project(user_id_1=[user_id],memo=[memo])
        Filter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')])
           TableScan(table=[[user_memo])
      Project(user_id_2=[user_id],action=[action])
        Filter(condition=[AND(EQ(type, 1),EQ(dt, '1010'))])
           TableScan(table=[[user_action]])

Plan

s1
s3

s2

  select t1.user_id,count(*) as cnt 
from (
      select user_id,memo from user_memo
      where dt='1010'and memo_type = 'pen' )
 t1 inner join (
      select user_id,action from user_action
      where type = 1 and dt='1010' ) 
t2 on t1.user_id = t2.user_id
  group by t1.user_id;

 SQL Statement

s1

s3
s2

count

dt=‘1010’memo_type=‘pen’ dt=‘1010’
type=1

user_id_1,
memo

user_id_2,
action

user_id_1=user_id_2

user_memo user_action

Abstract Syntax Tree
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s3 Γ

σ
π

��
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Fig. 2. An example of a query and its subqueries

into hidden representations. We propose a neural network

model for cost estimation with views (see Section IV).

(4) We define the subquery selection problem as an ILP

problem and design a reinforcement learning method RLView

to obtain a converged solution (see Section V).

(5) Experimental results show that our methods outperform

existing approaches by 28.4%, 8.8% and 31.7% on three real-

world datasets (see Section VI).

II. PRELIMINARIES

A. Subquery and Cost
Subquery. A SQL query can be parsed into a syntax tree

as shown in Figure 2. We call each subtree a subquery. In

the example, we extract three subqueries (e.g., s1, s2 and

s3). Each query can be transformed to a logical plan, and

each subquery corresponds to a logical subplan. For simplicity,

we interchangeably use logical plan and query (subplan and

subquery) in the rest of this paper.

Cost. For a query (subquery), we consider its computation

cost to answer the query (subquery), such as CPU usage and

memory usage, and quantify them together by some pricing

strategies (e.g., pricing from cloud vendors). Therefore, the

cost of a query (subquery) is defined as follows.

Definition 1 (Cost): Given a query q (subquery s), we use

Aβ(q) and Aγ(q) (Aβ(s) and Aγ(s)) to denote the fees of

CPU usage and memory usage, respectively. For simplicity,

we regard the cost as the summation of these fees, denoted as

Aβ,γ(q) = Aβ(q) +Aγ(q) (Aβ,γ(s) = Aβ(s) +Aγ(s)).

B. Materialized View
Overhead of a materialized view. If a subquery is shared

by many queries in a query workload, we can materialize a

view for this subquery to avoid redundant computations. The

overhead of materializing a view for a subquery includes space

overhead of the materialized results and the computation cost

for this subquery. Therefore, we first define the space overhead

and then define the total overhead.

Definition 2 (Space Overhead): Given a materialized view

vs built on subquery s, the byte size of the materialized view

is denoted as usto(vs). If the fee of storing one byte is α, then

the overhead of storing vs is Aα(vs) = α · usto(vs).

Definition 3 (Total Overhead): The overhead of a material-

ized view vs built on the subquery s is the summation of the

space overhead of vs and the cost of s, which is denoted as

Ovs = Aα(vs) +Aβ,γ(s).

Benefit of a materialized view. Using a materialized view

to answer a query has a significant benefit, because we can

directly get the results of this subquery from the view and

avoid re-executing the subquery. The benefit can be calcu-

lated by the difference of query cost with/without using the

materialized view, which is defined as below.

Definition 4 (Benefit): Given a query q and a material-

ized view vs, the cost of executing q is Aβ,γ(q), the cost

of executing q using vs is Aβ,γ(q|vs), and the benefit is

Bq,vs = Aβ,γ(q) - Aβ,γ(q|vs).
Benefit of multiple materialized views. Given a set VS of

candidate views and a query q, we want to use the view

set to answer query q. However, these views in VS may not

be simultaneously used. For example, if two subqueries have

overlaps, we call them overlapping subqueries and they cannot

be used to answer a query together. For instance, s3 has

overlap with s1 and s2 in Figure 2, so we cannot use the

views of s1 or s2 if we use the view of s3. Formally, we

define overlapping subqueries as follows.

Definition 5 (Overlapping Subqueries): Given two sub-

queries si and sj , si and sj are overlapping subqueries if

and only if their plan trees have common subtrees.

Given a set VS of views, let V q
S denote a subset of VS and

there is no overlapping subquery in V q
S . We can compute the

total benefit of V q
S by Bq,V q

S
=

∑
vs∈V q

S
Bq,vs . To fully utilize

VS to answer query q, we want to find a maximal subset of

V q
S with the largest benefit that has no overlapping subqueries.

Utility of multiple materialized views. Given a query work-

load Q and a set of materialized views VS , we need to compute

the utility of using VS for Q. The utility is computed by the

total benefit of using VS for Q minus the total overhead of

building VS . Thus, we define UQ,VS
as follows.

Definition 6 (Utility): Suppose we build a set of materialized

views VS for the query workload Q = {q1, q2, · · · , qn}. We

denote the maximal view subset for the query q as V q
S ⊆ VS .

The utility is UQ,VS
=

∑
q∈Q

∑
vs∈V q

S
Bq,vs − ∑

vs∈VS
Ovs ,

where
∑

vs∈VS
Ovs

is the total overhead of building VS and∑
q∈Q

∑
vs∈V q

S
Bq,vs is the total benefit of using VS .

Each materialized view is built on an associated subquery,

and thus we can estimate its overhead (e.g., query cost and

cardinality) with some existing methods [29], [36]. However,

it’s not realistic to obtain the benefit Bq,vs due to the cost
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Fig. 3. The overview of system framework

Aβ,γ(q|vs) cannot be estimated directly. Thus we propose a

deep learning mode to evaluate the cost Aβ,γ(q|vs).
C. Materialized View Selection

Given a query workload Q, we aim to automatically select

the optimal subqueries to materialize. That is, the Material-
ized View Selection (MVS) problem can be modeled as an

optimization problem of maximizing the utility. Specifically,

the problem contains two optimization objects: the first is

to select optimal subqueries to generate materialized views

and the second is to select optimal materialized views for

each query under the constraint of overlapping subqueries.

Formally, we define the MVS problem as follows.

Definition 7 (MVS problem): Given a query workload Q
and a set of its possible subqueries SQ, we select subqueries

S ⊆ SQ to build materialized views VS and then select views

V q
S ⊆ VS for each query q ∈ Q as follows:

argmax
S∈SQ,V q

S∈VS

∑
q∈Q

∑
vs∈V q

S

Bq,vs −
∑

vs∈VS

Ovs

s.t. si, sj are not overlapping, ∀q ∈ Q, i, j ∈ [1, |V q
S |].

An intuitive method to solve the MVS problem is to

compute the utility for all possible subsets of SQ. However,

this method is not realistic when either SQ or Q are large.

Thus we propose a reinforcement learning model.

III. SYSTEM OVERVIEW

In this section, we present our system. As shown in Fig-

ure 3, our system contains three parts: pre-process, online-

recommendation and offline-training. First, given a query

workload, we extract candidate subqueries from the query

workload in the pre-process part. Next, we select some “highly

beneficial” subqueries to generate materialized views based on

two models in the online-recommendation part, where the two

models are trained in the offline-training part and the training

data is collected from the metadata database. Later, we rewrite

queries using the views. At last, we execute the rewritten

workload. Next, we discuss the details of the three parts.

Pre-process. This part contains three components: subquery
extractor, equivalence detector and subquery cluster. At first,

we use subquery extractor to parse query statements into log-

ical plans with the parsing tool in the query engine. For each

 A. [Aggregate, user_id, cnt, COUNT]
 B. Join, EQ, user_id, user_id, inner]
 C. [Project, user_id, memo]
 D. [Filter, AND, EQ, dt, ‘1010’, EQ, memo_type, ‘pen’]
 E. [Scan, user_memo]
 F.  [Project, user_id, action]
 G. [Filter, AND, EQ, type, ‘1’, EQ, dt, ‘1010’]
 H. [Scan, user_action]

Aggregate(group=[{user_id_1}],cnt=[COUNT()])
   Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
      Project(user_id_1=[user_id],memo=[memo])
        Filter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')])
           TableScan(table=[[user_memo])
      Project(user_id_2=[user_id],action=[action])
        Filter(condition=[AND(EQ(type, 1),EQ(dt, '1010'))])
           TableScan(table=[[user_action]])

operator
nodes 

s1s3

s2

q

: [C, D, E] s1

: [B, C, D, E, F, G, H] s3

: [F, G, H] s2

: [A, B, C, D, E, F, 
G, H] 

q

Fig. 4. Feature Extraction from Plans

query, we consider subplans, starting with Aggregate, Join
or Project, as subqueries. Later, we use equivalent detector
to infer whether two subqueries are equivalent and collect

equivalent subquery pairs. In particular, we use the method

EQUITAS [45] to detect equivalent subqueries. Then, we

cluster equivalent subqueries into a subquery cluster. For each

cluster, we select the subquery with the least overhead as the

candidate subquery. Thus, we build a materialized view based

on the selected candidate subquery and reuse the materialized

result for other queries. To check whether two queries are

overlapping queries, we maintain a list of cluster IDs for each

query q, which keeps all cluster IDs such that there exists a

query s in the cluster and s is a subquery of q. Then two

queries are overlapping queries if their lists have overlap.

Online-recommendation. This part contains two components:

cost/utility estimator and view selector.

(1) In cost/utility estimator, we aim to compute the utility

UQ,VS
. The challenge is to evaluate the cost Aβ,γ(q|vs). To

solve the issue, we design a cost estimation model to estimate

Aβ,γ(q|vs). In particular, we implement the cost estimation

model based on the deep learning technology. After that, we

can compute the benefit Bq,V q
S

and the utility UQ,VS
.

(2) In view selector, we aim to solve the MVS problem.

Specifically, we design a reinforcement learning based view

selection model to recommend optimal subqueries based on

the computed utility for generating materialized views.

Offline-training. We offline train the cost estimation model

and the view selection model. Training data are stored in the

metadata database. In particular, query plans, view plans, table

information (i.g., table size) and the actual cost of rewritten

queries can be collected from the query engine and then stored

in the metadata database. (1) Cost estimation. For a query

and a view, we collect the query plan, the view plan and the

associated table information as the features, and collect the

actual cost of the rewritten query as the target to train the

cost estimation model. (2) View selection. We first compute

the actual benefit for a query and a view by the actual cost of

the rewritten query, and then use the actual benefit to compute

intermediate rewards between different states for fine-tuning

the reinforcement learning model.
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IV. UTILITY ESTIMATION

In this section, we propose to estimate the cost Aβ,γ(q|vs)
for a query q and a materialized view vs. We first describe

different features associated with the cost (see Section IV-A)

and then introduce our model (see Section IV-B).

A. Feature Extraction

The useful features for evaluating the cost Aβ,γ(q|vs)
contain two parts: query/view plans and associated tables.

Plans. Given a query q and a materialized view vs, we first

extract features from the plans of the query q and the view

vs. In particular, the plan of vs corresponds to the plan of the

subquery s. As shown in Figure 4, each plan is a sequence and

each element in the sequence corresponds to an operator (e.g.,

Scan, Project, Filter and Join). For each operator, we extract

its associated attributes. Thus, each operator can be regarded as

an attribute sequence. In particular, we use prefix notation 1 to

represent condition attributes. For example, the Filter operator

of s1 is represented as the sequence [Filter, AND, EQ, dt,
’1010’, EQ, memo type, ’pen’], where Filter is the operator

type and the rest is the prefix notation of associated attributes.

Thus, the plan of q or s can be represented as a two-

dimensional sequence. First, each operator contains multiple

predicates, and we model each operator as the first layer

sequence. Second, each query contains multiple operators,

and we model each plan as the second layer sequence. For

example, s1 is the sequence [C,D,E], and C, D and E
respectively correspond to three sequences.

Associated Tables. Different tables indicate different query

results and thus lead to different cost. Therefore, we consider

the metadata information of associated tables for q and vs,

which is collected from metadata database. In particular,

the metadata includes two parts: the schema of input tables

(e.g., table names, column names and column types) and the

statistics of input tables (e.g., the number of tables, the number

of columns and the size of records).

In addition, the collected features can be split into nu-
merical features and non-numerical features. In particular,

numerical features indicate the statistics of input tables while

non-numerical features include two kinds of features: plan

sequence and table schema.

B. Wide-Deep Model

1) Model Architecture: We adopt a Wide-Deep model to

predict the cost Aβ,γ(q|vs). The model contains two parts:

a wide linear model and a deep model. The wide model

can capture the linear relation between input features and

results; while the deep model can better capture the non-linear
relation. As shown in Figure 5, we first collect tables, the

query and view plans as input features, which are divided into

numerical features and non-numerical features. We then use

the wide model and the deep model to estimate the cost.

In the wide part, we only need to consider numerical
features. The reason is that non-numerical features are discrete

1https://en.wikipedia.org/wiki/Polish notation

Affine Transformation ResNet Blocks

Regressor

Wide

Deep

numerical 
features 

non-numerical
features

plans

query

associated tables

view

loss

wide linear
model

deep
model

plan 
sequence 
encoding 

meta data

schema 
encoding

normalize

concat
concatDc

Dw

Dc

Dm De

Dr

Z2

Ŷ
Y

Fig. 5. Wide-Deep Model

and the change of their values are non-linear. Firstly, to

eliminate the difference in the magnitude of feature val-

ues, we normalize all numerical features fc1 , fc2 , · · · , and

then concatenate them into a fixed-length vector Dc =

concat(
fc1−μc1

σc1
,
fc2−μc2

σc2
, · · · ), where μci and σci are mean

value and standard deviation value of the feature fci . At

last, we use an affine transformation2 model Mw to linearly

transform Dc into Dw, which is denoted as Dw = Mw(Dc).
In the deep part, to make it possible to use non-numerical

features, we first design the schema encoding model (Mm)

and the plan sequence encoding model (Me) to convert

table schemas and query/view plans into fixed-length vectors

Dm and De, respectively. Later, for considering numerical
features, we concatenate the vector Dc with Dm and De,

and denote the result as Dr = concat(Dc, Dm, De). At last,

we implement the deep model (Md) with two deep residual

networks (ResNet [13]) blocks, which is efficient in many

real-world applications[17], [39]. In our settings, each ResNet

block contains two fully connected layers and two activation

layers. We successively calculate their outputs as follows.

Z1 = Dr ⊕ReLU(FC2(ReLU(FC1(Dr))))

Z2 = Z1 ⊕ReLU(FC4(ReLU(FC3(Z1))))

where Z1 and Z2 are output vectors of the first and second

ResNet block respectively, ReLU is the activation function,

FCi represents different fully connected layers, and ⊕ denotes

the element-wise plus.

Finally, we use a regressor (Mr), which is a two-layer fully

connected network and an activation layer, to merge outputs

of the wide and deep parts, and get the final predicted cost:

Ŷ = FC6(ReLU(FC5(Dw,Z2)))

2) Encoding Features: We explain the details of the two en-

coding models Me and Mm, which are respectively designed

to encode two kinds of non-numerical features: query/view

plans and input table schemas.

Keyword Embedding. All non-numerical features include

keywords (e.g., table names, column names and operator

types). To embed each keyword ki, we first use a one-hot

encoding to transform it into a fixed-length vector Oki
∈ Rnk ,

where the value of one particular dimension is 1 while the rest

are 0, and nk is the number of keywords. However, the one-hot

code is too sparse if nk is too big. To address this issue, we

2https://en.wikipedia.org/wiki/Affine transformation
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Keyword 
Embedding

String
Encoding

  1  [Project, user_id, action]
  2  [Filter, AND, EQ, type, ‘1’, EQ, dt, ‘1010’]
  3  [Scan, user_action]

LSTM1

LSTM1

LSTM1

LSTM2

  user_action,
  user_id, type, dt,
  String, Int, String

Keyword
Embedding

(a) an example of query/view plan sequence encoding 
(b) an example of associated 

table schema encoding 

Average pooling

Fig. 7. Non-numerical feature encoding examples

use the Keyword Embedding model to embed Oki
into a dense

vector by the formula DT
ki

= OT
ki
Wk, where Wk ∈ Rnk×nd

is the matrix parameter of Keyword Embedding and nd � nk.

We share the Keyword Embedding matrix for the two kinds of

features as their keywords belong to the same database.

String Encoding. The query/view plans contain strings, whose

number is not fixed and thus cannot be encoded like keywords.

To address this issue, as shown in Figure 8, we design a

novel model String Encoding to encode each string into a

fixed-length vector. We first regard each string str as a char

array and each char str[i] can be represented as a 128-

dimensional one-hot code Ostr[i] ∈ R128. Then we use the

Char Embedding model to transform Ostr[i] into a dense

vector DT
str[i] = OT

str[i]Wc ∈ Rnd , where Wc ∈ R128×nd

is the matrix parameter of Char Embedding. Therefore, we

get the dense vector sequence Dstr = [Dstr[1], Dstr[2], · · · ].
Next, we stack Dstr into a matrix Mstr and then use a CNN

(Convolutional Neural Network) model to convert the matrix

into another matrix M ′
str = CNN(Mstr). The reason of using

CNN is that CNN is able to capture local features and guaran-

tee translation invariance. The CNN model comprises two con-

nected convolution blocks, and each convolution block consists

of three layers: Conv2d → BatchNorm2d → ReLU ,

where Conv2d is the convolution layer, BatchNorm2d is

the BatchNorm layer and ReLU is the activation layer. In

our setting, the kernel size of Conv2d is 3 × 1. At last, we

use the average pooling technique to get the final fixed-length

vector Ds ∈ Rnd , where Ds[i] = Avg(M ′
str[:, i]) and Avg(·)

represents the average function.

Encoding Query/View Plan. As mentioned before, each

query/view plan is a two-dimensional sequence, so we utilize

the LSTM (Long Short-Term Memory [16]) model, which

is popularly applied in natural language processing[7], [41],

to capture the sequence structure of plans. Formmaly, each

plan can be denoted as a sequence fe = [f1
op, f

2
op, · · · ], where

f i
op = [f i,1

ks , f
i,2
ks , · · · ] is also a sequence and f i,j

ks is a keyword

Algorithm 1: Wide-Deep Model Training

Input: training features (X = {(q1, v1, t1), · · · }), training
targets (Y = {Aβ,γ(q1|v1), · · · }), table schema
encoding part Mm, query/view plan encoding part Me,
wide part Mw, deep part Md, regressor part Mr ,
learning rate lr, training epochs I , batch size bs.

Output: parameters θm, θe, θw, θd, θr for Mm, Me, Mw,
Md and Mr

extract numerical features Xm from {t1, t2, · · · };1
extract non-numerical features Xn from {(q1, v1, t1), · · · };2
for j ← 1 · · · I do3

training iterations I ′ = � |Y |
bs

�;4
shuffle(Xm, Xn, Y );5
for i ← 1 · · · I ′ do6

Xm
i , Xn

i , Yi ← sample bs data from Xm, Xn, Y ;7
Normalize and concatenate Xm

i into Dc;8
Dm = Mm(input table schema in Xn

i );9
De = Me(query/view plans in Xn

i );10
Dr = concat(Dc, Dm, De);11

Ŷi ← Mr(Mw(Dc),Md(Dr));12

lossi ← MSE(Yi, Ŷi);13
θm, θe, θw, θd, θr ← AdamOpt(lossi, lr);14

return θm, θe, θw, θd, θr;15

or string. Thus, as shown in the example of Figure 7 (a), we

first use Keyword Embedding or String Encoding to transform

f i,j
ks into a code Di,j

ks and thus get the sequence [Di,1
ks , · · · ] for

each operator f i
op. Then, we use an LSTM model LSTM1 to

transform each sequence [Di,1
ks , · · · ] into a fixed-length vector

Di
op = LSTM1([D

i,1
ks , · · · ]). After that, we use another LSTM

model LSTM2 to transform the sequence [D1
op, D

2
op, · · · ]

into the final vector De = LSTM2([D
1
op, · · · ]). Intuitively,

LSTM1 can capture the local sequence structure for each

element of the plan sequence while LSTM2 can capture the

sequence structure for the global plan sequence.

Encoding Table Schema. We regard the input table schema

feature as a set of keywords and formally denote it as

{k1, k2, · · · }. Figure 7 (b) shows an example of encoding the

set. We use Keyword Embedding to transform each keyword

ki into a dense vector Dki
and thus get a dense vector array

[Dk1 , · · · ]. We then use the average pooling technique to

transform the vector array into a vector Dm ∈ Rnd , where

Dm[i] = Avg([Dk1
[i], Dk2

[i], · · · ).
3) Model Training: The model training process is shown

in Algorithm 1. The model contains five parts: the table

schema encoding part Mm, the query/view plan encoding

part Me, the wide part Mw, the deep part Md and the

regressor part Mr. We aim to learn parameters of the five

parts by training data, which is composed of input features

and output targets. In particular, each input feature includes

a query q, a view v and the associated table information t
while its corresponding output target is the cost Aβ,γ(q|v).
At first, we respectively extract numerical and non-numerical

features from input features (lines 1-2). Next, we iteratively

train the model with the given epochs I . For each epoch, we

first compute the training iterations I ′ based on given batch

size bs, then shuffle all training data X,Y (lines 4-5). In each

iteration, we sample bs data (line 7) for batch training. After

that, we normalize and concatenate numerical features (line

8). As for non-numerical features, we use Mm and Me to
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encode them into vectors (lines 9-11). Later, we use Mw, Md

and Mr to compute the estimated cost Ŷi (line 12). Finally,

we use MSE (Mean Squared Error) metric as the loss function,

which is defined as MSE(Yi, Ŷi) =
1

|Yi|
∑

y∈Yi
(y− ŷ)2. The

parameters of all parts are jointly optimized by Adam [23]

with the given learning rate lr (lines 13-14).

V. MATERIALIZED VIEW SELECTION

We study the view selection problem. We first model it

as an ILP (Integer Linear Programming) problem. Since it

is prohibitively expensive to get actual optimal solutions

for a large number of queries and views, we propose an

iterative optimization method to get approximate solutions

in Section V-A. However, this method does not converge to

a global optimal solution. To address this issue, we model

ILP as an MDP (Markov Decision Process) and use the deep

reinforcement learning technique to solve it in Section V-B.

A. ILP Problem and Iterative Optimization

1) Rewriting Problem: Given a query workload Q, assume

its candidate subqueries are SQ. The MVS problem aims to (i)
select the optimal subqueries S ⊆ SQ to materialize and (ii)
select the optimal view set V q

S ⊆ VS for each query q under the

constraint of overlapping subqueries, which can be regarded

as an ILP problem. We propose a method to address the

two subproblems together. Let zj be a 0-1 variable indicating

whether the subquery sj ∈ SQ is selected to materialize or

not, xjk be a 0-1 variable indicating whether sj and sk are

overlapping or not, and yij be a 0-1 variable indicating whether

the query qi ∈ Q uses the materialized view vsj or not. The

ILP problem can be defined as follows.

argmax
Z,Y

∑
i∈[1,|Q|]

∑
j∈[1,|SQ|]

yijBqi,vsj
−

∑
j∈[1,|SQ|]

zjOvsj

s.t. yij +
∑
k �=j

xjkyik ≤ 1, ∀i ∈ [1, |Q|], j ∈ [1, |SQ|], (1)

yij ≤ zj , ∀i ∈ [1, |Q|], j ∈ [1, |SQ|] (2)

where Formula 1 guarantees the constraint of overlapping
subqueries and Formula 2 guarantees that V q

S is a subset of

VS . Notably, each xjk is constant and we aim to resolve Z
({zj}) for selecting view vi to materialize and Y ({yij}) for

using vj to rewrite qi.
2) Optimizing Iteratively: The above ILP problem becomes

intractable for very large workloads due to the large number

of integer variables. One possible method is to separately

optimize Z and Y . That is, we would set Y as a constant when

optimizing Z, and set Z as a constant when optimizing Y .

As shown in the function IterView, the above optimization

process would be iterated with the given number of iterations.

Initializing Z and Y. For each candidate subquery sj , we first

randomly initialize its associated variable zj with 0 or 1 and

record the overhead Ovsj
of its associated materialized view

(if zj = 1) (line 4), and then record the maximum benefit of

materializing sj (line 5). Later, we initialize yij for each query

qi with 0 or 1. Notably, yij would be set 0 if the constraints

Function IterView

Input: query workflow Q, overhead array {Ovsj
}, benefit array

{Bqi,vsj
}, overlapping array X = {xjk}, iterations n

Output: optimization results Z and Y
Z = {zj}, Y = {yij}, Bmax = ∅, Bcur = ∅, Ocur = 0 ;1
/*randomly initialize Z and Y */2
for j ∈ [1, |Z|] do3

zj = random(0, 1) , Ocur+ = zjOvsj
;4

Bmax[j] =
∑

qi∈Q Bqi,vsj
;5

for i ∈ [1, |Q|] do6
if zj = 1 ∧ Bqi,vsj

> 0 ∧∑
k �=j xjkyik = 0 then7

yij = random(0, 1) ;
else yij = 0;8

Bcur[j] =
∑

qi∈Q yij · Bqi,vsj
;9

for iter ∈ [1, n] do10
generate a random probability threshold τ ∈ [0, 1];11
Z,Ocur ← Z-Opt(Z,{Ovsj

},Ocur ,Bmax,Bcur ,τ );12
Y,Bcur ← Y-Opt(Y ,Bcur ,{Bqi,vsj

},X ,Z,Q);13

return Z, Y ;14

Function Z-Opt(Z,{Ovsj
},Ocur,Bmax,Bcur,τ)

Output: Z, Ocur

Bcur =
∑|Z|

k=1 B
cur[k], Bmax =

∑|Z|
k=1 B

max[k];1

Omax =
∑|Z|

j=1 Ovsj
;2

for j ∈ [1, |Z|] do3
Bmax

j = Bmax[j], Bcur
j = Bcur[j];4

computing pflipj according to Equation 3;5

if pflipj ≥ τ then6
zj = 1− zj ;7
if zj > 0 then Ocur+ = Ovsj

;else Ocur− = Ovsj
;8

return Z, Ocur;9

Function Y-Opt(Y ,Bcur,{Bqi,vsj
},X ,Z,Q)

Output: Y , Bcur

for i ∈ [1, |Q|] do1
Y [i] ← {yi1, · · · , yi|Z|}, O =

∑
zj∈Z yijBqi,vsj

, J = ∅;2
J ← {yij ≤ zj |zj ∈ Z};3

J ← {yij +∑|Z|
k=1,k �=j xjk · yik ≤ 1|zj ∈ Z};4

Y [i] ← ILPSolver(O,J , Y [i]});5

for k ∈ [1, |Z|] do Bcur[k] =
∑|Q|

i=1 yij · Bqi,vsj
;6

return Y,Bcur;7

in the ILP problem are not satisfied (lines 6-8). We record the

actual current benefit of materializing sj by considering yij
(line 9). At last, we iteratively optimize Z and Y with the

functions Z-Opt and Y-Opt (lines 10-13).

Optimizing Z. As shown in Z-Opt, for each variable zj ,

we compute its flipping probability and decide whether to

change zj based on the probability. In particular, we first

compute the current benefit summation Bcur, the current

overhead summation Ocur, the maximum benefit summation

Bmax, and the maximum overhead summation Omax of all

materialized views. Later, the flipping probability pflipj for zj
can be computed as follows:

pflipj = poverheadj · pbenefitj (3)

poverheadj =

{ Ovsj
/Ocur if zj = 1

1−Ocur/Omax otherwise

pbenefitj =

{
1−Bcur

j /Bcur if zj = 1
Bmax

j /Ovsj

Bmax/Omax otherwise
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Utility Change

<Policy>
Select zjzj from ZZ

<Agent>
RLView

<Action>
Flip zjzj 

<State>
e = 〈Z, Y 〉e = 〈Z, Y 〉

<Reward>

<Environment>
ILP Solver

Z = {zj} :zjzj is a 0/1 variable indicating whether to materialize the subquery sjsj
Y = {yij}:yijyij is a 0/1 variable indicating whether to use the view vsjvsj for the query qiqi

Fig. 8. The MDP Framework of the ILP Problem

where Bmax
j = Bmax[j] means the maximum potential benefit

by setting zj as 1, Bcur
j = Bcur[j] represents the current

benefit of using the materialized view vsj , and Ovsj
means

the overhead of vsj . Therefore, the variable of a 1-labeled

materialized view (zj = 1) would be flipped if the view causes

more overhead (the first case of poverheadj ) and provides less

benefit (the first case of pbenefitj ), and the variable of a 0-

labeled materialized view (zj = 0) would be flipped if the

view has less overhead (the second case of poverheadj ) and is

expected to bring more benefit (the second case of pbenefitj ).

Optimizing Y. In the function Y-Opt, we regard Z as a con-

stant, so the materialized view overhead is fixed. Specifically,

we optimize Y [i] = {yi1, · · · , yi|Z|} for each query qi, which

is a local ILP optimization problem as follows.

argmax
Y [i]

|Z|∑
j=1

yijBqi,vsj

s.t.yij +

|Z|∑
k=1,k �=j

xjk · yik ≤ 1 & yij ≤ zj , ∀j ∈ [1, |Z|].

where Bqi,vsj
, zj and xjk are constants, and Y [i] needs to be

optimized. Therefore, we can solve the problem efficiently by

existing ILP solvers, such as PulP3 and Gurobi4.

B. RL based Method

IterView has no memory ability and cannot converge to

a global optimal solution. The reason is that each iteration in

the function can only get a local optimization solution and

different iterations cannot share feedback from optimization

process, which leads to repeated oscillation of optimization

results. To solve the problem, we use the Reinforcement Learn-

ing (RL) technique[38], [27], [30] to design an algorithm,

which is called RLView. In particular, we first explain the

optimization process as an MDP (Markov Decision Process) in

Section V-B1, and then propose the algorithm in Section V-B2.

1) Markov Decision Process: The reinforcement learning

model is proposed to find the best policy for a system to get

the most cumulative reward from environment, and it is usually

used for decision-making in contexts where a system learns by

trial-and-error from rewards and punishment, which is called

Markov Decision Process (MDP). In particular, a Markov

3https://pythonhosted.org/PuLP/index.html
4http://www.gurobi.com/documentation/

Algorithm 2: RLView

Input: workload Q, overhead array {Ovsj
}, benefit array

{Bqi,vsj
}, overlapping array X = {xjk}, initial

iterations n1, the number of RL epochs n2, memory
size nm, reward decay rate γ

Output: Z, Y
/*get optimal results by function IterView */1
Z0, Y0 ←IterView(Q, {Ovsj

}, {Bqi,vsj
}, X, n1);2

/*update iteratively based on DQN*/3
experience replay memory M ← ∅;4
initializing parameters θ of the DQN μ(e|θ);5
for ep ∈ [1, n2] do6

t = 0, e0 = 〈Z0, Y0〉;7
do8

Rt =
∑

i

∑
j y

t
ijBqi,vsj

−∑
j z

t
jOvsj

;9
at = argmaxi{Q(et)[i]}, Zt+1[at] = 1− Zt[at];10
Yt+1, =Y-Opt(Yt, ,{Bqi,vsj

},X ,Zt+1,Q);11
et+1 = 〈Zt+1, Yt+1〉;12
Rt+1 =

∑
i

∑
j y

t+1
ij Bqi,vsj

−∑
j z

t+1
j Ovsj

;13
rt = Rt+1 −Rt, M ← 〈et, at, rt, et+1〉;14
et = et+1, t = t+ 1;15
/*fine-tuning the DQN model*/;16
if |M| ≥ m then θ ← DQN(M,θ,γ) ;17

while t < |Z| ∨ rt > 0 ;18

return Z, Y ;19

Function DQN-offline

Input: M,θ,γ
Output: θ
〈et, at, rt, et+1〉 ← sample data from M;1
calculate Q-value for state et: Q(et, at) = μ(et, at|θ);2
calculate Q-values for state et+1:3
Q(et+1) = [μ(et+1, a1|θ), · · · , μ(et+1, an|θ)];
apply Q-learning and obtain the estimated value:4
Q′(et, at) = γmaxi{Q(et+1)[i]}+ rt;
use the error ||Q(et, at)−Q′(et, at)||2 to update θ;5

Decision Process is composed of a 4-tuple (〈E,A, Pa, Ra〉),
where E is a finite set of states, A is a finite set of actions,

Pa(e, e
′) = Pr(et+1 = e′|et = e, at = a) is the probability

that action a in state e at time t will go to state e′ at time

t + 1, and Ra(e, e
′) is the immediate reward (or expected

immediate reward) received after transitioning from state e to

state e′ due to action a. Our iterative optimization process can

be modeled as a Markov Decision Process. Thus, we can use

the reinforcement learning technique to solve the optimization

problem. As shown in Figure 8, we map the optimization

process into MDP as follws. The state is defined as the tuple

of Z and Y , which is denoted as e = 〈Z, Y 〉, the policy is

to select a variable zj from Z and the action is to flip (select

or unselect) the label of the selected variable zj . In addition,

for each state e, we can compute its associated utility, which

is denoted as U(e). Once taking an action, we get new labels

for Z and then use an ILP solver to get new labels for Y , so

the ILP solver is the environment and we get the new state

e′. Finally, the immediate reward Ra(e, e
′) can be regarded as

the utility change by the formula Ra(e, e
′) = U(e′)− U(e).

Therefore, the ILP optimization problem becomes a rein-

forcement learning problem, whose goal is to learn an optimal

policy, which is defined as follows:
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π∗ = argmax
π

Eπ{
∞∑
k=0

γkrt+k|et = e}, ∀e ∈ E, ∀t ≥ 0.

where π : E × A → [0, 1] represents a policy function (given

a state, the function would select an action), Eπ denotes the

expected value in the policy π, γ ∈ [0, 1) represents the

discount rate, k is the time step and rt+k is the intermediate

reward in the time t+ k.
2) RL-Based Method: We apply Q-learning [43] to solve

the problem. Q-learning [43] is a value-based reinforcement

learning algorithm, In particular, it maintains a Q-table

to record all known state-action-value pair ((e, a), Q(e, a)),
where Q(e, a) is the corresponding Q-value of the state e with

the action a. Thus, the algorithm would update Q-values based

on interacting with the environment. Once we get the Q-table,

we can get the best policy based on the Q-table’s guide. Hence,

the key is to generate Q-values. At first, we randomly initialize

each state’s Q-values. Then for each state e, we enumerate all

possible actions A(e) = {a1, · · · , an} and then picks the best

one a∗ by the formula: a∗ = argmaxai
(Q(e, ai)), where ai

means flipping zi (zi = 1 − zi), n = |SQ| is the size of

candidate subqueries, and ei = 〈Zi, Yi〉 denotes the new state

that the current state e transfers to after taking action ai. Next,

through interacting with the environment, we update Q(e, a∗)
for each state e as follows.

Qnew(e, a∗) = (1− ε)Qold(e, a∗) + ε(r + γ max
ai∈A(e∗)

Q(e∗, ai))

where r is the intermediate reward from the current e to the

new state e∗ with the action a∗ and ε is the learning rate

(0 < ε ≤ 1). We repeatedly update Q-values according to

the above equation until we get convergent Q-values for each

state. At last, we get the final Q-table, and the best policy

function π∗(e) can be obtained as follows.

π∗(e) =

{
argmax
ai∈A(e)

(ri + γ max
aj∈A(ei)

Q(ei, aj)), ∃ri > 0

terminal, otherwise

DQN. However, the state space and action space are both large.

For example, the number of total states has an exponential

relationship with the number of candidate subqueries, which

could cause the problem of dimensional disaster. To solve the

issue, we utilize Deep Q-learning Network(DQN)[30], [42].

Specifically, we train a deep neural network to predict the

Q-value Q(e, a) for the state e taking the action a, which is

denoted as Q(e, a) = μ(e, a|θ). Hence, we can get the Q-value

vector Q(e) = [Q(e, a1), · · · , Q(e, an)] ∈ Rn for the state e.

We compare values of all dimensions in Q(e) and select the

dimension corresponding to the maximum value as the next

action for e. In particular, we implement the prediction model

with four fully connected layers, where the number of neurons

in these layers are 16, 64, 16 and 1, respectively. In addition,

we use ReLU as the activation function for each layer.

Algorithm 2 lists the detail of solving the reinforcement

learning problem. At first, to efficiently solve the problem,

we need to initialize the state with a descent solution, so we

get the initial state e0 = 〈Z0, Y0〉 by the function IterView

and randomly initialize the DQN model (line 2-5). Later, we

execute the reinforcement learning process with n2 epochs,

where n2 is given by users. In each epoch, we iteratively get

optimal states based on the initial state e0. In each iterative

step, we use the DQN model to update Z and use the function

Y-Opt to update Y respectively (lines 10-11). In addition, we

use a memory pool M to store experience replay, where each

experience is formed with a tuple 〈et, at, rt, et+1〉. The reward

rt between et and et+1 is defined as the difference between

their associated utilities, denoted as Rt+1−Rt (lines 12-14). It

terminates when rt is not increased and the number of flipping

labels is greater than the size of Z (line 17).

We can offline train and online fine-tune the DQN model

with the function DQN. For offline training, we store the

memory pool M into the metadata database, and then offline

train the network DQN by collecting training dataset from the

metadata database. For online fine-tuning, we set a threshold

nm. When the size of the memory pool M is greater than nm,

we also use DQN to online fine-tune parameters. In DQN, we

first sample experience replay data 〈et, at, rt, et+1〉 from M
(line 1). Then we use the network DQN to predict Q(et, at)
and Q(et+1) respectively (lines 2-3). Afterwards, we generate

estimated value Q′(et, at) based on Q(et+1) (line 4). Finally,

we use MSE (Mean Squared Error) metric to compute the

loss ||Q(et, at)−Q′(et, at)||2 and update parameters (line 5).

VI. EXPERIMENTS

A. Experimental Setup
Workloads. We use two kinds of workloads. The first is the

real dataset IMDB and the open-source workload JOB (Join

Order Benchmark), where the size of IMDB is 3.7GB and

JOB includes 113 multi-table join queries. For making more

redundant computation, we generate a new query for each

raw query by manually modifying the predicates, and thus

get the new workload with 226 queries. The second consists

of two real-world SQL workloads, denoted as WK1 and WK2,

respectively. In particular, they are both collected from data

analysis projects of Ant-Financial(https://www.antfin.com/),

and the database sizes of the two workloads are respectively

126GB and 185GB. Table I shows the information.

Firstly, we count the number of projects, the number of

tables, the number of queries and the number of extracted

subqueries, which are denoted as #project, #table, #query
and #subquery respectively. Secondly, we use the method EQ-

UITAS [45] to detect equivalent subqueries, and the number

of equivalent subquery pairs is denoted as #equivalent pairs.

After that, we partition subqueries into disjoint groups, and

select the subquery with the least overhead as the candidate

subquery for each group. We denote the number of candidate

subqueries as #candidate subqueries, denoted as |Z|. Thirdly,

we collect queries that can use at least one materialized view

built on candidate subqueries Z. We denote the number of

these queries as #associated queries, which is also represented

as |Q|. Finally, there are overlapping subqueries, and we

denote their number as #overlapping pairs.

Baselines. (1) Cost estimation. To evaluate the effectiveness

of W-D, we compare it with existing methods:

a) Traditional estimation: similar to [20], it uses scanning the
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TABLE I
WORKLOAD DATASETS

workloads JOB WK1 WK2
# project / # table 1/21 21/389 25/435

# query / # subquery 226/398 38.6k/79.6k 157.6k/302.5k
# equivalent pairs 1,312 27,445 98,532

# candidate subquery (|Z|) 28 2,252 6,871
# associated query (|Q|) 220 4,642 14,191

# overlapping pairs 74 4,286 5,521

materialized view to replace computing its associated sub-

query. Thus, we estimate Aβ,γ(q|vs) = Aβ,γ(q)−Aβ,γ(s) +
Aβ,γ(vs), where Aβ,γ(vs) is the cost of scanning vs. In

particular, we use two methods to estimate Aβ,γ(q), Aβ,γ(s)
and Aβ,γ(vs). The first is using query optimizers (Postgres–
9.1 for JOB and MaxCompute–3.2.3 for WK1, WK2) while the

second is using the start-of-the-art deep learning method [36].

We denote them as Optimizer and DeepLearn.

b) Linear Regressor (LR): a machine learning approach using a

linear function to model cost and computing the loss between

the estimated cost and the actual cost with Euclidean distance.

c) Gradient Boosted Machine (GBM): a gradient boosting

decision tree based regression method using XGBoost [5].

d) To evaluate the effectiveness of different parts of non-

numerical features encodings in W-D (see Figures 8, 7 and 5),

we modify W-D by three variations, namely N-Kw, N-Str and

N-Exp. In N-Kw, we use one-hot vectors to replace keyword

embeddings. In N-Str, we use one-hot vectors to replace char

embeddings and remove the CNN model in the string encoding

model. In N-Exp, we replace the sequence models (i.g., LSTM1

and LSTM2) with the average pooling of keyword embeddings

and string encodings.

(2) View selection. We compare RLView with an iterative

method BigSub [20] and four greedy methods: TopkFreq,

TopkOver, TopkBen and TopkNorm [10].

a) BigSub: building a bipartite graph for queries and sub-

queries, and then regarding the view selection problem as

the problem of iteratively labelling vertices and edges of

the bipartite graph. For getting a converged solution, BigSub

forbids turning selected subqueries to unselected.

b) Greedy methods: Sort candidate subqueries based on differ-

ent strategies, and then select top-k subqueries to materialize:

• TopkFreq: the frequency in the workload. The higher the

frequency, the higher the ranking.

• TopkOver: the overhead of materializing views. The

bigger the overhead, the lower the ranking.

• TopkBen: the benefit for the workload. The bigger the

benefit, the higher the ranking.

• TopkNorm: the ratio between the utility and the over-

head. The bigger the ratio, the higher the ranking.

Evaluation metrics for cost estimation methods. We eval-

uate cost estimation models based on two popular metrics:

MAE (Mean Absolute Error) and MAPE (Mean Absolute

Percent Error). Specifically, suppose the ground truth is rep-

resented as y = {yi} and the predicted result is denoted as

ŷ = {ŷi}, where 1 ≤ i ≤ N , these metrics are computed as

follows: MAE(y, ŷ) = 1
N

∑N
i=1 |yi − ŷi|, MAPE(y, ŷ) =

1
N

∑N
i=1 |y

i−ŷi

yi |. In addition, we split queries in each work-

TABLE II
DEFAULT PARAMETERS

α, β, γ I lr bs n1, n2, nm γ
JOB

1.67e-5,1e-1,1e-3
50 0.01 8 10, 90, 20 0.9

WK1/WK2 20 0.005 128 10, 990/490, 3k 0.9

TABLE III
EXPERIMENTAL RESULTS ON COST ESTIMATION

Metric Optimizer DeepLearn LR GBM N-Exp N-Str N-Kw W-D

MAE (JOB) 4.33 1.69 1.94 1.30 1.41 1.28 1.20 1.16
MAPE(%) (JOB) 39.58 26.63 37.32 25.05 26.87 24.40 23.12 22.77

MAE (WK1) 4.52 1.59 2.17 1.58 1.20 0.89 0.81 0.77
MAPE(%) (WK1) 41.32 27.24 37.04 27.02 17.65 14.39 13.24 12.96

MAE (WK2) 4.39 4.07 2.73 2.00 1.65 1.45 1.27 1.11
MAPE(%) (WK2) 76.44 63.99 39.45 28.92 22.54 20.11 17.89 16.98

load into training, validation and test datasets with the ratio

7:1:2. We use Adam [23] as the optimization method.

Parameter settings. The Parameters of our system can be

divided into two parts. The first part is manually set by users,

such as the cost parameter α, β, γ, the number of training

epochs I for the model W-D and the number of iterations

n1, n2 for the algorithm RLView. The second part is fine-

tuned by the validation dataset, such as the learning rate

lr and the batch size bs in W-D, and the memory size nm

and the reward decay rate γ in RLView. Default settings are

listed in Table II. For quantifying costs by pricing strategies,

we set the unit of α, β, γ as “$/GB”, “$/(Core·Minute)”

and “$/(GB·Minute)”. Therefore, we can represent Aα, Aβ

and Aγ with the same unit “$” by the following formulas:

Aα = α · usto, Aβ = β · ucpu and Aγ = γ · umem, where

usto, ucpu and umem correspond to storage usage (GB), CPU

usage (Core·Minute) and memory usage (GB·Minute).

Environment. We use a machine with Intel(R) CPU E5-2630,

128GB RAM and use PyTorch 1.0.

B. Comparison with Baselines

1) Cost Estimation: We compare our W-D model with

baselines on JOB, WK1 and WK2 respectively. In particular,

for JOB, we rewrite queries with all possible candidate views,

and thus get actual computation cost as ground truth by

executing rewritten queries. However, it is not realistic to

generate ground truth for WK1 and WK2 by rewriting and

executing queries with all candidates due to the large overhead.

To address this issue, we design a new method RealOpt to get

approximate results as ground truth. In RealOpt, for a query q
and a view vs, we first get the actual cost Aβ,γ(q) and Aβ,γ(s)
by executing the query q, and then use Aβ,γ(q)−Aβ,γ(s) to

represent the ground truth of Aβ,γ(q|vs). In summary, Table III

reports the MAE and MAPE losses of all methods, from which

we have the following observations.

(1) The performance of Optimizer is the worst. For example,

its MAPE losses on WK2 is nearly 80%. The main reason is

that the error can be accumulated when respectively estimating

Aβ,γ(q), Aβ,γ(s) and Aβ,γ(vs). However, DeepLearn is

better than Optimizer on estimating the cost, so DeepLearn

has better performance than Optimizer. In addition, the

performance of LR is not high. The reason is that computation

cost and extracted features are not linearly related.

(2) The neural network based methods outperform other

methods in most cases. As mentioned before, N-Exp, N-Str,
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Fig. 9. Top-k based methods comparisons
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Fig. 10. Convergence comparisons

N-Kw and W-D are implemented with neural networks. It is

well known that deep neural networks can approximately fit

any function, so it is reasonable to get better performance

using the deep learning technique. However, different deep

learning models focus on different features and thus influence

the estimation results. For example, W-D focuses on the plan

information using the plan sequence encoding model.

(3) The neural network based methods perform better on WK1
and WK2 than JOB. The main reason is that small scale data

could cause the overfitting problem for deep neural network

models. In contrast, learning on large scale data can improve

the generalization performance. However, all methods perform

better on WK1 than WK2. The reason is that WK2 includes more

complex queries, which causes it difficult to learn effective

representation of features.

(4) W-D outperforms other methods. The reason is two-fold. On

one hand, we consider more information for estimating cost.

On the other hand, we utilize different models to effectively

extract significant features from the information. Firstly, we

use embeddings to represent keywords and thus could learn the

dependency between different keywords. Secondly, we design

the string encoding model to capture the char-level and local

features of strings by using the char embeddings and the CNN

model respectively. Thirdly, we use the sequence model to

capture the sequence features of query/view plans.

(5) Comparing three variations of W-D, we can get two find-

ings as below. Firstly, the plan encoding model is the most

important (e.g., the performance of N-Exp is worse than both

N-Str and N-Kw). Secondly, the string encoding model is more

important than the keyword embedding model. The reason is

that the keyword embedding is just equivalent to adding a layer

of neural network, whose influence is not too big.

(6) We explore some cases where W-D has no good per-

formance. We find that in most cases W-D achieves good

performance, and it may not get good performance in some

cases. For example, the performance of W-D is not good for a

query with 10-table join and a view with 3-table join on JOB.

2) View Selection: In this section, we aim to evaluate the

effectiveness of our learning-based method. We compare it

with other methods on JOB, WK1 and WK2 respectively.

Finding k for greedy methods. As mentioned before, the four

greedy methods (i.g., TopkFreq, TopkOver, TopkBen, Topk-
Norm) compute the optimal solution by using top-k candidate

subqueries. To get the best result for each method, we set k
with different values. As shown in Figure 9, we illustrate the

utility curve with k for the four methods respectively. Because

the maximum value of k is equal to the number of candidate

subqueries, the range of k for JOB, WK1 and WK2 are [0, 28],

TABLE IV
THE OPTIMAL RESULTS FOR DIFFERENT VIEW SELECTION METHODS

TopkFreq TopkOver TopkBen TopkNorm BigSub RLView OPT
k (JOB) 22 24 6 13 67 44 -

utility($) 1.38 1.36 1.76 1.80 1.78 1.85 1.98

ratio(%) 8.97 8.83 11.44 11.70 11.57 12.02 12.86

k (WK1) 860 1.94K 1.9K 1.84K 446 285 -

utility($) 30.60 35.14 34.33 34.96 37.84 39.62 -

ratio(%) 4.44 5.11 4.99 5.08 5.50 5.76 -

k (WK2) 6.7K 6.05K 6.15K 6.15K 167 94 -

utility($) 311.52 346.86 346.61 346.34 365.36 379.25 -

ratio(%) 9.15 10.19 10.18 10.17 10.73 11.14 -

[0, 2252] and [0, 6871] respectively. According to Figure 9, we

can observe that almost all curves first rise up to the maximum

point and then fall down. The reason is two-fold. On one hand,

with the increasing of k, queries in the whole workload can

reuse more computation and get more benefit, so the utility

increases. On the other hand, the overhead for materializing

subqueries also increases with the increasing of k. When k is

greater than a certain threshold, the overhead would dominate

the utility, which results in the decrease of the utility.

Comparing optimal results. For each method, we collect

its associated maximum utility as its optimal result. Table IV

shows the results. All methods are split into two kinds: greedy

(e.g., TopkFreq and TopkOver) and iteration based (e.g.,

BigSub and RLView). For each greedy method, we record the

associated k values when getting its maximum utility. As for

each iteration based method, we record the number of iteration

(also denoted as k for simplicity) for getting its maximum

utility. In addition, given a workload Q and a materialized

view set VS , we compute the associated ratio
Umax

Q,VS∑
q∈Q Aβ,γ(q)

for each method, where Umax
Q,VS

represents the maximum utility

and
∑

q∈Q Aβ,γ(q) denotes the total cost of Q. The bigger the

associated ratio, the better the method. In addition, we try to

use ILP solvers to get actual optimal results for JOB, WK1
and WK2, but they can only give the solution for JOB and fail

for WK1 and WK2, because the datasets are too large. Thus,

we report the actual solution as OPT and demonstrate the

optimality gap for JOB. From the table, we have the following

observations: (1) Iteration based methods outperform greedy

methods on almost all workloads. The reason is two-fold.

Firstly, greedy methods cannot guarantee the optimal order of

candidate subqueries, and thus they cannot get the actual max-

imum utility. Secondly, iteration based methods can explore

more situations by iteratively selecting candidate subqueries

and thus have more possibilities to explore the actual optimal

situation. (2) RLView outperforms other methods. The reason

is two-fold. Firstly, we rewrite the view selection problem as

an ILP problem and propose an iterative optimization function

to solve the problem. Secondly, we regard the optimization
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TABLE V
END-TO-END RESULTS (O&B: Optimizer + BigSub, O&R: Optimizer +

RLView, W&B: W-D + BigSub, W&R:W-D + RLView)

Data JOB P1 P2
#q cq($) lq(s) #q cq($) lq(s) #q cq($) lq(s)

226 15.39 571.16 832 91.27 7.07k 5378 558.19 49.9K

#(q|v) #m om($) #(q|v) #m om($) #(q|v) #m om($)

O&B 182 24 1.04 231 24 1.04 1307 162 34.49

O&R 164 19 0.85 233 24 0.70 1361 156 30.25

W&B 140 17 0.46 224 21 0.79 1345 174 40.79

W&R 148 18 0.53 250 26 0.93 1300 144 22.96

bq|v($) l′q(s) rc(%) bq|v($) l′q(s) rc(%) bq|v($) l′q(s) rc(%)

O&B 2.48 479.12 9.36 8.75 6.04k 8.45 71.86 30.36k 6.69

O&R 2.44 480.61 11.70 8.90 6.02k 8.98 75.31 30.25k 8.07

W&B 2.04 495.47 10.27 8.76 6.02k 8.73 83.20 30.70k 7.60

W&R 2.38 482.86 12.02 9.32 5.98k 9.19 72.15 30.75k 8.81

process as an MDP and apply the deep reinforcement learning

technique, which is proven to be effective to get the optimal

solution of an MDP problem. (3) JOB and WK2 include more

redundant computation than WK1. For example, we can save

more than 10% cost by using materialized views for JOB and

WK2, but the ratio is only around 5% for WK1.

Evaluating the convergence. To verify the convergence of

RLView, we directly use the function IterView to solve

the optimization problem on WK1 and WK2. As shown in

Figure 10, we record the intermediate utility in each iteration

for RLView and IterView, respectively. To make fair com-

parison, we set the iteration number n in IterView as the

summation of n1 and n2 in RLView. In conclusion, we have

the following observations: (1) IterView cannot converge into

global optimal results on both WK1 and WK2. For example,

the utility of WK1 first rises to $33 and then sharply fluctuates

between $25 and $35. (2) RLView can keep the utility stable on

the two workloads. The reason is two-fold. Firstly, IterView

only considers local optimal results when selecting subqueries

to materialize based on probabilities. Therefore, the method

would sharply fluctuate between different local optimal results.

Secondly, the DQN technique in our RLView method has the

memory ability to store experiences, and thereby eliminates

invalid optimization process and avoids the sharp falling of

the utility. (3) The benefit or overhead of subqueries in WK1
is more skewed than in WK2. Thus, the intermediate utility of

both IterView and RLView for WK1 has wider fluctuation

range than WK2. In addition, there even exists a sharply

decrease of the utility near the iteration 300 in Figure 10(a),

which is caused by selecting some subqueries with heavy

overhead or unselecting some subqueries with heavy benefit.

C. End-to-end Experiment

We implement the end-to-end system based on the cost

estimation model and the view selection model. To evaluate

the effectiveness, we compare four combinations: Optimizer

+ BigSub, Optimizer + RLView, W-D + BigSub, W-D +

RLView, which are denoted as O&B, O&R, W&B and W&R,

respectively. In addition, we sample two projects, denoted

as P1 and P2, respectively from WK1 and WK2 for the

experiment that can materialize all high-quality views, because

it is expensive to execute the whole query set.

Table V shows the end-to-end results. At first, we report the

number (#q), the cost (cq) and the latency (lq) of raw queries.

Then, for each method, we report the number (#m) and the

overhead (om) of materialized views, the number (#(q|v))
and the benefit (bq|v) of rewriting queries, and the latency (l′q)

of the rewritten workload. At last, we report the associated

ratio (rc), which is computed as rc =
bq|v−om

cq
. In conclusion,

we can find some observations as follows: (1) Our system

outperforms other methods. For JOB, W&R can save 12.02%
cost while O&B only save 9.36% cost, so our system improves

the performance by 12.02−9.36
9.36 ×100% = 28.4%. Similarly, the

improvement for P1 and P2 are 9.19−8.45
8.45 × 100% = 8.8%

and 8.81−6.69
6.69 × 100% = 31.7%, respectively. (2) The more

accurate the cost model, the better the solution of the view

selection model. For example, W&B and W&R save more

cost than O&B and O&R, respectively. (3) RLView is more

robust than BigSub. Taking JOB for example, the ratio rc
of BigSub is decreased by 10.27% − 9.36% = 0.91% while

RLView is only decreased by 12.02%− 11.70% = 0.32%. (4)

Building more materialized views doesn’t mean saving more

cost. In the example of JOB, O&B gets the most benefit, but

it saves the least cost because of the heavy overhead of views.

VII. RELATED WORK

Cost estimation. Optimizers estimate query execution cost

using a mathematical model, which relies heavily on es-

timation of the cardinality, or the number of tuples [19],

[14], [18]. Traditionally, database systems [35], [32] estimate

selectivities through fairly detailed statistics on the distribu-

tion of values in each column, such as histograms. Benefit

from the development of deep learning (e.g. CNN [17], [39],

[13], RNN [16], [1], [15], [37]), neural networks have been

applied to estimate cost in many domains, such as traffic time

prediction [26], [21], [25] and query cost estimation [29],

[36], [24], [44]. In this paper, we focus on the benefit of

reusing a materialized view for a query. The key point is

to estimate the cost of a rewritten query, whose associated

subquery is replaced with a materialized view. However, we

cannot directly use the above methods to address our problem,

since it’s not realistic to rewrite all queries before generating

materialized views especially when the number of queries is

too large. Thus, we take into account useful features and

propose a new method, extended from the effective deep

learning model Wide&Deep [6], to solve it.

Subquery reusing. Given a set of queries, there are many

optimization methods on selecting subqueries to reuse [28],

where the target is to minimize a cost function (e.g. space

overhead and computation cost) under a set of constraints

(e.g. query deadline and space budget). One of the most

popular ways is to generate materialized views for selected

subqueries. Some studies focus on materialized views selection

in the context of data warehouse [11], [12], and several current

works aim to improve query latency in analytics clusters by

selecting views to materialize. However, these methods cannot

detect duplicate computation between different subqueries.

Therefore, some related works [20], [3], [31], [34] reuse
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common subqueries among different queries. In particular, the

authors in [31] study the history-aware query optimization

with materialized intermediate views. The authors in [3] use

an AND/OR graph representation and an ILP-based solution to

select common subqueries to reuse for Pig script. The authors

in [34], [20] consider computation reusing in cloud computing.

SQL equivalence. Relational query equivalence is a well

studied problem in database theory. The authors in [40] have

proven that the first-order logic on the class of all finite models

is undecidable. Thus, some works [4], [33] focus on decidable

SQL fragments. However, these works are not used in real

products. To address this problem, Cossete [9], [8] verifies

SQL equivalence by formalizing a substantial fragment of SQL

in the Coq Proof Assistant and the Rosette symbolic virtual
machine, but this toolkit is mainly based on syntax but not

semantics rewriting. Satisfiability Modulo Theories (SMT [2]

and Symbolic Execution [22]) are theory foundations to check

whether a first-order predicate is satisfiable. The authors

in [45] regard the problem of detecting equivalent subqueries

as the problem of detecting whether two first-order predicates

are equivalent based on SMT and Symbolic Execution.

VIII. CONCLUSIONS

We proposed an end-to-end view selection system by auto-

matically selecting the most beneficial subqueries to material-

ize. We proposed an effective deep learning model to estimate

the cost of a query with a materialized view. We extracted

significant features from different kinds of information, such

as query/view plans and query/view input tables. We modeled

the materialized view selection problem as an ILP problem.

We proposed an iterative optimization method to get the

approximate optimal solution. We transformed ILP as an MDP

and used the reinforcement learning technique DQN to solve it.

Extensive experiments showed that our methods outperformed

state-of-the-art by 28.4%, 8.8% and 31.7% on three datasets.
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