2020 IEEE 36th International Conference on Data Engineering (ICDE)

Automatic View Generation with Deep Learning
and Reinforcement Learning

Haitao Yuan, Guoliang Li*, Ling Feng, Ji Sun, Yue Han
Department of Computer Science, Tsinghua University, China
{yht16,sun-j16,han-y19} @mails.tsinghua.edu.cn, {liguoliang,fengling } @tsinghua.edu.cn

Abstract—Materializing views is an important method to re-
duce redundant computations in DBMS, especially for processing
large scale analytical queries. However, many existing methods
still need DBAs to manually generate materialized views, which
are not scalable to a large number of database instances,
especially on the cloud database. To address this problem, we
propose an automatic view generation method which judiciously
selects ‘“highly beneficial” subqueries to generate materialized
views. However, there are two challenges. (1) How to estimate the
benefit of using a materialized view for a query? (2) How to select
optimal subqueries to generate materialized views? To address
the first challenge, we propose a neural network based method
to estimate the benefit of using a materialized view to answer a
query. In particular, we extract significant features from different
perspectives and design effective encoding models to transform
these features into hidden representations. To address the second
challenge, we model this problem to an ILP (Integer Linear
Programming) problem, which aims to maximize the utility
by selecting optimal subqueries to materialize. We design an
iterative optimization method to select subqueries to materialize.
However, this method cannot guarantee the convergence of the
solution. To address this issue, we model the iterative optimization
process as an MDP (Markov Decision Process) and use the deep
reinforcement learning model to solve the problem. Extensive
experiments show that our method outperforms existing solutions
by 28.4%, 8.8% and 31.7% on three real-world datasets.

I. INTRODUCTION

In many OLAP systems, analytical SQL queries share com-
mon subqueries and building views on these subqueries can
avoid redundant computations and improve the performance.
For example, Figure 1 reports the redundant computations on
a real-world workload of Alibaba Cloud. Figure 1(a) reports
the number of total queries (denoted as total) and the number
of queries including redundant computation (denoted as re-
dundant) on six projects. Figure 1(b) illustrates the cumulative
percentage of queries including redundant computation among
total queries. To address this problem, many studies [20], [3],
[31], [34] propose to materialize views for the common sub-
queries for sharing computations. For instance, BigSub [20]
models the subquery selection problem as a bipartite labeling
problem and then designs an iterative optimization based
method to solve it. However, there are still two challenges.

First, it is challenging to evaluate the benefit of using a
materialized view to answer a query. Intuitively, the benefit
can be computed with the saved cost by using the materialized
view for the query. However, it’s not realistic to actually

!Guoliang Li is the corresponding author. This work was supported by NSF

of China (61925205, 61632016), Huawei, Alibaba, and TAL education.

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00133

1501

rewrite queries with all possible views and execute all rewritten
queries to get the actual cost. Therefore, we design a cost
estimation model using deep learning. Although there are some
deep learning techniques for cost estimation [36], [29], they
are designed for estimating the cost of a single query but
cannot estimate the cost of a query rewritten by a view. To
address this challenge, we first extract significant features from
two kinds of information: query/view plans and query/view
related tables. We then split these features into numerical
features and non-numerical features. In addition, we design
different encoding models to transform different features into
hidden representations. For example, we use the sequence
encoding model to encode query/view plans, because plans
can be regarded as sequences. Finally, to capture the linear and
non-linear correlations between the cost and these features, we
design an effective model to estimate the cost, which consists
of two parts: a linear wide part and a non-linear deep part.

Second, it is hard to automatically select a set of high-
quality subqueries to materialize based on their benefits. To
address this issue, we model the subquery selection problem
as an ILP (Integer Linear Programming) problem. To avoid
the heavy overhead for computing actual optimal solutions, we
propose an iterative optimization method to get approximate
optimal solutions. Inspired by BigSub [20], we iteratively
compute the probability of selecting a subquery to materialize.
However, this method cannot converge to a stable result,
because different iterations have no memory ability and cannot
share feedback from optimization process, which leads to
repeated oscillation of optimization results. To address this
problem, BigSub [20] forbids turning selected subqueries to
unselected when the number of iterations exceeds a certain
threshold. However, BigSub would degenerate into a greedy
method and thus leads to poor results. To address this problem,
we propose to a reinforcement learning method, which trans-
forms the optimization process to an MDP (Markov Decision
Process) and then applies the deep reinforcement learning
model DQN (Deep Q-Network) to get a stable result.

In summary, we make the following contributions.
(1) We formally define the problem of automatically selecting
subqueries to materialize for sharing computations (see Sec-
tion II). Meanwhile, we propose an end-to-end learning-based
system for solving the problem (see Section III).
(3) We extract useful features from different perspectives for
estimating the benefit of using a view for answering a query.
We use different encoding models to encode different features

IEEE
computer
pSOCIe

ty

25 ¥
20 [7

2 3000 T T t‘l T
2 otal =——
© 2500 " Redundant

& 2000

Cumulative Percentage(%)

S 1500 15 | |
2 1000 10
§ 500 51)
=z I I I I I
P1 P2 P3 P4 P5 P6 4 8 1216 20
Projects Projects Number

(a) total vs redundant (b) cumulative percentage

Fig. 1. Redundant computation on several projects

S3 count
I,. _______ bt = ,I
select t1.user_id,count(*) as cnt :S1 /N StN 32:
1> from (1 T 1~d\\ /7 Wuserﬁid)\)
i - select user_id,memo from user_memo 1,/ | — =] | action g1

i S i B B N \ 1] memo

H + 5 Where di='1010'and memo_type = 'pen') § \] ok 1]
S3! t1 inner join (O-dt:‘lql()’J N type=1 g1
3: I .) . memo_type=jpen’ y Idl— 1010° 4
' S -> select user_id,action from user_action |‘ | I} \ 710
1> Where type = 1 and dt='1010")] ‘k‘ml/ EerﬁactiogJ']
t2 on t1.user_id = t2.user_id [N - == !

> group by t1.user_id;
SQL Statement Abstract Syntax Tree
Aggregate(group=[{user_id_1}],cnt=[COUNT()])
Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])

H > Project(user_id_1=[user_id],memo=[memo])

E S1: Filter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')])
Ss3: e > TableScan(table=[[user_memo])

H ---» Project(user_id_2=[user_id],action=[action])

:SZ: Filter(condition=[AND(EQ(type, 1),EQ(dt, '1010")])
TableScan(table=[[user_action]])

Plan

Lt

Fig. 2. An example of a query and its subqueries

into hidden representations. We propose a neural network
model for cost estimation with views (see Section IV).

(4) We define the subquery selection problem as an ILP
problem and design a reinforcement learning method RLView
to obtain a converged solution (see Section V).

(5) Experimental results show that our methods outperform
existing approaches by 28.4%, 8.8% and 31.7% on three real-
world datasets (see Section VI).

II. PRELIMINARIES

A. Subquery and Cost

Subquery. A SQL query can be parsed into a syntax tree
as shown in Figure 2. We call each subtree a subquery. In
the example, we extract three subqueries (e.g., s1, s and
s3). Each query can be transformed to a logical plan, and
each subquery corresponds to a logical subplan. For simplicity,
we interchangeably use logical plan and query (subplan and
subquery) in the rest of this paper.

Cost. For a query (subquery), we consider its computation
cost to answer the query (subquery), such as CPU usage and
memory usage, and quantify them together by some pricing
strategies (e.g., pricing from cloud vendors). Therefore, the
cost of a query (subquery) is defined as follows.

Definition 1 (Cost): Given a query g (subquery s), we use
Ag(q) and A, (q) (As(s) and A,(s)) to denote the fees of
CPU usage and memory usage, respectively. For simplicity,
we regard the cost as the summation of these fees, denoted as
As(0) = As(a) + Ay (@) (A (5) = Ag(s) + A, (5)).

B. Materialized View

Overhead of a materialized view. If a subquery is shared
by many queries in a query workload, we can materialize a
view for this subquery to avoid redundant computations. The

overhead of materializing a view for a subquery includes space
overhead of the materialized results and the computation cost
for this subquery. Therefore, we first define the space overhead
and then define the total overhead.

Definition 2 (Space Overhead): Given a materialized view
vs built on subquery s, the byte size of the materialized view
is denoted as w4, (vs). If the fee of storing one byte is «, then
the overhead of storing v is A, (vs) = @« Usto(Vs).

Definition 3 (Total Overhead): The overhead of a material-
ized view v, built on the subquery s is the summation of the
space overhead of vy and the cost of s, which is denoted as

Ou, = Aa(vs) + Aﬁ,’y(s)~

Benefit of a materialized view. Using a materialized view
to answer a query has a significant benefit, because we can
directly get the results of this subquery from the view and
avoid re-executing the subquery. The benefit can be calcu-
lated by the difference of query cost with/without using the
materialized view, which is defined as below.

Definition 4 (Benefit): Given a query ¢ and a material-

ized view v, the cost of executing ¢ is Ag~(g), the cost
of executing ¢ using vy is Ag~(q|vs), and the benefit is
Byv. = Ap~(a) - Ap~(glvs).
Benefit of multiple materialized views. Given a set Vg of
candidate views and a query ¢, we want to use the view
set to answer query g. However, these views in Vg may not
be simultaneously used. For example, if two subqueries have
overlaps, we call them overlapping subqueries and they cannot
be used to answer a query together. For instance, s3 has
overlap with s; and s, in Figure 2, so we cannot use the
views of s; or sy if we use the view of s3. Formally, we
define overlapping subqueries as follows.

Definition 5 (Overlapping Subqueries): Given two sub-
queries s; and s;j, s; and s; are overlapping subqueries if
and only if their plan trees have common subtrees.

Given a set Vg of views, let Vg denote a subset of Vg and
there is no overlapping subquery in V. We can compute the
total benefit of Vi by B, vz = szevg By,v,. To fully utilize
Vs to answer query ¢, we want to find a maximal subset of
Vd with the largest benefit that has no overlapping subqueries.

Utility of multiple materialized views. Given a query work-
load @ and a set of materialized views Vg, we need to compute
the utility of using Vg for). The utility is computed by the
total benefit of using Vg for) minus the total overhead of
building Vs. Thus, we define Ug v, as follows.

Definition 6 (Utility): Suppose we build a set of materialized
views Vg for the query workload Q = {q1,q2, - ,qn}. We
denote the maximal view subset for the query ¢ as V& C V.
The utility is Ug,vs = >_,c szevsq By, =D 0. cvs Ovas
where > . O,, is the total overhead of building Vs and
> 4cQ szevg By, is the total benefit of using V.

Each materialized view is built on an associated subquery,
and thus we can estimate its overhead (e.g., query cost and
cardinality) with some existing methods [29], [36]. However,
it’s not realistic to obtain the benefit B, due to the cost

1502

results meta-
G— (UETY ENGINE data data

query rewritten materialized
workload workload views
rs >
re-process - -
preTP online-recommendation
subquery
extractor cost/utility) -
queries and estimator view selector
subqueries ‘
equivalence T model 3 model
detector L
(] 1
subquery
1 pairs cost estimation view selection
model training model training | |
cluster Loffline-training
\

Fig. 3. The overview of system framework

Ag.~(q|vs) cannot be estimated directly. Thus we propose a
deep learning mode to evaluate the cost Ag ~(gvs).

C. Materialized View Selection

Given a query workload (), we aim to automatically select
the optimal subqueries to materialize. That is, the Material-
ized View Selection (MVS) problem can be modeled as an
optimization problem of maximizing the utility. Specifically,
the problem contains two optimization objects: the first is
to select optimal subqueries to generate materialized views
and the second is to select optimal materialized views for
each query under the constraint of overlapping subqueries.
Formally, we define the MVS problem as follows.

Definition 7 (MVS problem): Given a query workload)
and a set of its possible subqueries Sg, we select subqueries
S C S to build materialized views Vs and then select views
V4§ C Vg for each query ¢ € Q as follows:

Z qus - Z O'Us

9€Qu.eVyd vs€Vs

arg max
SGSQ,VS?GVS

s.t. s;,s; are not overlapping, Vq e Q,i,j € [1,|VE]].

An intuitive method to solve the MVS problem is to
compute the utility for all possible subsets of Sg. However,
this method is not realistic when either S or @) are large.
Thus we propose a reinforcement learning model.

III. SYSTEM OVERVIEW

In this section, we present our system. As shown in Fig-
ure 3, our system contains three parts: pre-process, online-
recommendation and offline-training. First, given a query
workload, we extract candidate subqueries from the query
workload in the pre-process part. Next, we select some “highly
beneficial” subqueries to generate materialized views based on
two models in the online-recommendation part, where the two
models are trained in the offline-training part and the training
data is collected from the metadata database. Later, we rewrite
queries using the views. At last, we execute the rewritten
workload. Next, we discuss the details of the three parts.

Pre-process. This part contains three components: subquery
extractor, equivalence detector and subquery cluster. At first,
we use subquery extractor to parse query statements into log-
ical plans with the parsing tool in the query engine. For each

Aggregate(group=[{user_id_1}],cnt=[COUNT()])

:--> Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
;---> Project(user_id_1=[user_id],memo=[memo])

: S : Filter(condition=[AND(EQ(dt, '1010'"), EQ(memo_type, 'pen’)])

ai o

feeenees > TableScan(table=[[user_memo])
! o i---> Project(user_id_2=[user_id],action=[action])
Poisei Filter(condition=[AND(EQ(type, 1),EQ(dt, '1010)])
L L SL LR > TableScan(table=[[user_action]])
operator
nodes v

A. [Aggregate, user_id, cnt, COUNT] S1:[C. D, E]
B. [Join, EQ, user_id, user_id, inner]
C. [Project, user_id, memo] S2:[F, G, H]

D. [Filter, AND, EQ, dt, ‘1010’, EQ, memo_type, ‘pen’] iy
E. [Scan, user_memo]

F. [Project, user_id, action]

G. [Filter, AND, EQ, type, ‘1°, EQ, dt, ‘1010’]
H. [Scan, user_action]

S3:[B,C, D, E, F,G, H]

Q:[A,B,C.D,E.F,
G, H]

Fig. 4. Feature Extraction from Plans

query, we consider subplans, starting with Aggregate, Join
or Project, as subqueries. Later, we use equivalent detector
to infer whether two subqueries are equivalent and collect
equivalent subquery pairs. In particular, we use the method
EQUITAS [45] to detect equivalent subqueries. Then, we
cluster equivalent subqueries into a subquery cluster. For each
cluster, we select the subquery with the least overhead as the
candidate subquery. Thus, we build a materialized view based
on the selected candidate subquery and reuse the materialized
result for other queries. To check whether two queries are
overlapping queries, we maintain a list of cluster IDs for each
query ¢, which keeps all cluster IDs such that there exists a
query s in the cluster and s is a subquery of ¢. Then two
queries are overlapping queries if their lists have overlap.

Online-recommendation. This part contains two components:
cost/utility estimator and view selector.

(1) In cost/utility estimator, we aim to compute the utility
Ug,vs. The challenge is to evaluate the cost Ag (g|vs). To
solve the issue, we design a cost estimation model to estimate
Ag (q|vs). In particular, we implement the cost estimation
model based on the deep learning technology. After that, we
can compute the benefit 5, vz and the utility Ug,v;.

(2) In view selector, we aim to solve the MVS problem.
Specifically, we design a reinforcement learning based view
selection model to recommend optimal subqueries based on
the computed utility for generating materialized views.

Offline-training. We offline train the cost estimation model
and the view selection model. Training data are stored in the
metadata database. In particular, query plans, view plans, table
information (i.g., table size) and the actual cost of rewritten
queries can be collected from the query engine and then stored
in the metadata database. (1) Cost estimation. For a query
and a view, we collect the query plan, the view plan and the
associated table information as the features, and collect the
actual cost of the rewritten query as the target to train the
cost estimation model. (2) View selection. We first compute
the actual benefit for a query and a view by the actual cost of
the rewritten query, and then use the actual benefit to compute
intermediate rewards between different states for fine-tuning
the reinforcement learning model.

1503

IV. UTILITY ESTIMATION

In this section, we propose to estimate the cost Ag - (q|vs)
for a query ¢ and a materialized view vs. We first describe
different features associated with the cost (see Section IV-A)
and then introduce our model (see Section IV-B).

A. Feature Extraction

The useful features for evaluating the cost Ag ,(glvs)

contain two parts: query/view plans and associated tables.
Plans. Given a query ¢ and a materialized view vg, we first
extract features from the plans of the query ¢ and the view
vs. In particular, the plan of v, corresponds to the plan of the
subquery s. As shown in Figure 4, each plan is a sequence and
each element in the sequence corresponds to an operator (e.g.,
Scan, Project, Filter and Join). For each operator, we extract
its associated attributes. Thus, each operator can be regarded as
an attribute sequence. In particular, we use prefix notation ! to
represent condition attributes. For example, the Filter operator
of s1 is represented as the sequence [Filter, AND, EQ, dt,
'1010°, EQ, memo_type, ’'pen’], where Filter is the operator
type and the rest is the prefix notation of associated attributes.
Thus, the plan of ¢ or s can be represented as a two-
dimensional sequence. First, each operator contains multiple
predicates, and we model each operator as the first layer
sequence. Second, each query contains multiple operators,
and we model each plan as the second layer sequence. For
example, sy is the sequence [C,D,FE], and C, D and E
respectively correspond to three sequences.
Associated Tables. Different tables indicate different query
results and thus lead to different cost. Therefore, we consider
the metadata information of associated tables for ¢ and vs,
which is collected from metadata database. In particular,
the metadata includes two parts: the schema of input tables
(e.g., table names, column names and column types) and the
statistics of input tables (e.g., the number of tables, the number
of columns and the size of records).

In addition, the collected features can be split into nu-
merical features and non-numerical features. In particular,
numerical features indicate the statistics of input tables while
non-numerical features include two kinds of features: plan
sequence and table schema.

B. Wide-Deep Model

1) Model Architecture: We adopt a Wide-Deep model to
predict the cost Ag (g|vs). The model contains two parts:
a wide linear model and a deep model. The wide model
can capture the linear relation between input features and
results; while the deep model can better capture the non-linear
relation. As shown in Figure 5, we first collect tables, the
query and view plans as input features, which are divided into
numerical features and non-numerical features. We then use
the wide model and the deep model to estimate the cost.

In the wide part, we only need to consider numerical
features. The reason is that non-numerical features are discrete

Uhttps://en.wikipedia.org/wiki/Polish_notation

(Regressor }-—(loss Je—7 numerical
) D‘,? z: 4 .| T features
[]
il AffineTransformationl ResNetBlocks D 1
H D, i non-numerical
H D, : features
1]
; plan :
H esri:h:(;?nag sequence ||
{Wide * _ encoding Ji |
{77771 wide linear
associated tables plans
f f * o deep
meta data query view i } model

Fig. 5. Wide-Deep Model

and the change of their values are non-linear. Firstly, to
eliminate the difference in the magnitude of feature val-
ues, we normalize all numerical features f.,, fc,, -+, and
then concatenate them into a fixed-length vector D, =
concat(f“la_%, Le2 ..., where f, and o, are mean
value and standard deviation value of the feature feio At
last, we use an affine transformation?> model M, to linearly
transform D, into D,,, which is denoted as D,, = M,,(D.).
In the deep part, to make it possible to use non-numerical
features, we first design the schema encoding model (M,,)
and the plan sequence encoding model (M.) to convert
table schemas and query/view plans into fixed-length vectors
D,, and D., respectively. Later, for considering numerical
features, we concatenate the vector D. with D,, and D,
and denote the result as D, = concat(D., D,,, D.). At last,
we implement the deep model (M) with two deep residual
networks (ResNet [13]) blocks, which is efficient in many
real-world applications[17], [39]. In our settings, each ResNet
block contains two fully connected layers and two activation
layers. We successively calculate their outputs as follows.

Z1 = D, @ ReLU(FCy(ReLU(FCy(Dy))))
Zo =71D RGLU(FC4(R€LU(F03(Z1))))

fcg THey

where Z, and Z are output vectors of the first and second
ResNet block respectively, ReLU is the activation function,
FC; represents different fully connected layers, and & denotes
the element-wise plus.

Finally, we use a regressor (M,.), which is a two-layer fully
connected network and an activation layer, to merge outputs
of the wide and deep parts, and get the final predicted cost:

Y = FCs(ReLU(FC5(Dw, Z2)))

2) Encoding Features: We explain the details of the two en-
coding models M, and M,,,, which are respectively designed
to encode two kinds of non-numerical features: query/view
plans and input table schemas.

Keyword Embedding. All non-numerical features include
keywords (e.g., table names, column names and operator
types). To embed each keyword k;, we first use a one-hot
encoding to transform it into a fixed-length vector Oy, € R™*,
where the value of one particular dimension is 1 while the rest
are 0, and ny, is the number of keywords. However, the one-hot
code is too sparse if ny is too big. To address this issue, we

https://en.wikipedia.org/wiki/Affine_transformation

1504

]
stack -:

CNN model
Average pooling

| Surppaquig Iey) |

1
chars one hot dense vector T11m
Fig. 6. The overview of String Encoding
1 [Project, user_id, action] g . E user_action,
2 [Filter, AND, EQ, type, ‘1, EQ, dt, ‘10107} ~ ‘--3--- i user_id, type, dt,
3 [Scan, user_action] T String, Int, String
* LSTM2 Keyword
Keyword String I_‘__I Embedding
Embedding Encoding
....... N ¥
000 LSTM1 o !
!
(o0000000)] [LST™1} o ge pooling
H
el : X
[X LSTM1 O ".

(b) an example of associated

(a) an example of query/view plan sequence encoding table schema encoding

Fig. 7. Non-numerical feature encoding examples

use the Keyword Embedding model to embed Oy, into a dense
vector by the formula D = Of Wy, where Wy, € R™» "¢
is the matrix parameter of Keyword Embedding and ng < ny.
We share the Keyword Embedding matrix for the two kinds of
features as their keywords belong to the same database.
String Encoding. The query/view plans contain strings, whose
number is not fixed and thus cannot be encoded like keywords.
To address this issue, as shown in Figure 8, we design a
novel model String Encoding to encode each string into a
fixed-length vector. We first regard each string str as a char
array and each char str[i] can be represented as a 128-
dimensional one-hot code O, [; € R'*®. Then we use the
Char Embedding model to transform Og,.[; into a dense
vector DSTtT[i] = OsTtr[i]Wc € R™, where W, € RI128x7a
is the matrix parameter of Char Embedding. Therefore, we
get the dense vector sequence Dy = [Dgspp1), Dstrjg), - |-
Next, we stack Dy, into a matrix M, and then use a CNN
(Convolutional Neural Network) model to convert the matrix
into another matrix M, = C NN (Mg,). The reason of using
CNN is that CNN is able to capture local features and guaran-
tee translation invariance. The CNN model comprises two con-
nected convolution blocks, and each convolution block consists
of three layers: Conv2d — BatchNorm2d — ReLU,
where Conwv2d is the convolution layer, BatchNorm2d is
the BatchNorm layer and ReLU is the activation layer. In
our setting, the kernel size of Conv2d is 3 x 1. At last, we
use the average pooling technique to get the final fixed-length
vector Dy € R™, where D,[i] = Avg(M],.[:,4]) and Avg(-)
represents the average function.

Encoding Query/View Plan. As mentioned before, each
query/view plan is a two-dimensional sequence, so we utilize
the LSTM (Long Short-Term Memory [16]) model, which
is popularly applied in natural language processing[7], [41],
to capture the sequence structure of plans. Formmaly, each

— [l 2

plan can ‘ble d¢1210ted as a sequence f. = [f,,, fops], where
i i i, . 1,7

op = ks> fra s+ -] is also a sequence and [,/ is a keyword

Algorithm 1: Wide-Deep Model Training

Input: training features (X = {(q1,v1,t1), -+ }), training
targets (Y = {Ap~(q1]v1),---}), table schema
encoding part M,,, query/view plan encoding part M.,
wide part M,,, deep part Mg, regressor part M.,
learning rate [r, training epochs I, batch size bs.

Output: parameters 0, 0c, 0., 04, 0, for M., Me, My,

Mg and M,
1 extract numerical features X™ from {¢1,%2,--- };
2 extract non-numerical features X™ from {(q1,v1,t1), - };
3forj«1---1do
ining i i X
4 training iterations I’ = L?J,

shuf fle(X™, X")Y);
fori< 1---1' do

5

6

7 X" XY, < sample bs data from X™, X" Y
8 Normalize and concatenate X" into D.;

9 D,, = M, (input table schema in X;');

10 D. = M.(query/view plans in X;');

11 D, = concat(Dec, Dy, De);

12 Y; <*-/\/17“(-/\/111)(DC)7-/\/ld(DT));

13 loss; + MSE(Y:,Y:);

14 Om, Oc, 0w, 04, 0, < AdamOpt(loss;,lr);

15 return O, Oc, 0w, 04, 0,

or string. Thus, as shown in the example of Figure 7 (a), we
first use Keyword Embedding or String Encoding to transform
f7 into a code D}’ and thus get the sequence [Dj}!, - -] for
each operator fgp. Then, we use an LSTM model LST M, to
transform each sequence [Dzksl ,---] into a fixed-length vector
D;, = LSTM, ([D;csl, -+ -]). After that, we use another LSTM
model LSTM; to transform the sequence [D},, D2, - -]
into the final vector D, = LSTM;([D],,---]). Intuitively,
LSTM; can capture the local sequence structure for each
element of the plan sequence while LST M, can capture the
sequence structure for the global plan sequence.

Encoding Table Schema. We regard the input table schema
feature as a set of keywords and formally denote it as
{k1, ko, - }. Figure 7 (b) shows an example of encoding the
set. We use Keyword Embedding to transform each keyword
k; into a dense vector Dy, and thus get a dense vector array
[Dk,,--+]. We then use the average pooling technique to
transform the vector array into a vector D,, € R"?, where
Dip[i] = Avg([Dr, [i], D, [i], - --).

3) Model Training: The model training process is shown
in Algorithm 1. The model contains five parts: the table
schema encoding part M,,, the query/view plan encoding
part M., the wide part M,,, the deep part M, and the
regressor part M,. We aim to learn parameters of the five
parts by training data, which is composed of input features
and output targets. In particular, each input feature includes
a query ¢, a view v and the associated table information ¢
while its corresponding output target is the cost Ag (g|v).
At first, we respectively extract numerical and non-numerical
features from input features (lines 1-2). Next, we iteratively
train the model with the given epochs I. For each epoch, we
first compute the training iterations I’ based on given batch
size b, then shuffle all training data X, Y (lines 4-5). In each
iteration, we sample b, data (line 7) for batch training. After
that, we normalize and concatenate numerical features (line
8). As for non-numerical features, we use M,, and M, to

1505

encode them into vectors (lines 9-11). Later, we use M,,, My
and M, to compute the estimated cost Y; (line 12). Finally,
we use MSE (Mean Squared Error) metric as the loss function,
which is defined as M SE(Y;,Y;) = B 2y, (v —)% The
parameters of all parts are jointly optimized by Adam [23]
with the given learning rate 7 (lines 13-14).

V. MATERIALIZED VIEW SELECTION

We study the view selection problem. We first model it
as an ILP (Integer Linear Programming) problem. Since it
is prohibitively expensive to get actual optimal solutions
for a large number of queries and views, we propose an
iterative optimization method to get approximate solutions
in Section V-A. However, this method does not converge to
a global optimal solution. To address this issue, we model
ILP as an MDP (Markov Decision Process) and use the deep
reinforcement learning technique to solve it in Section V-B.

A. ILP Problem and Iterative Optimization

1) Rewriting Problem: Given a query workload @), assume
its candidate subqueries are Sg. The MVS problem aims to ()
select the optimal subqueries S C Sg to materialize and (47)
select the optimal view set V& C Vg for each query ¢ under the
constraint of overlapping subqueries, which can be regarded
as an ILP problem. We propose a method to address the
two subproblems together. Let z; be a 0-1 variable indicating
whether the subquery s; € Sq is selected to materialize or
not, x;, be a 0-1 variable indicating whether s; and s;, are
overlapping or not, and y;; be a 0-1 variable indicating whether
the query ¢; €) uses the materialized view v,; or not. The
ILP problem can be defined as follows.

Z Zj Ovsj

argmax Z Z yi; B @i Vs,
JE[LISeql]

2Y i€[1,|Ql] €[1,]Sql]

sty + Y oy <1, Vi€ [L]QIlLj € [1,1Soll, (1)
k£
vij < zj, Vi€ [L|Q.j € [1,|Sq]] 2)

where Formula 1 guarantees the constraint of overlapping
subqueries and Formula 2 guarantees that VJ is a subset of
Vs. Notably, each x;; is constant and we aim to resolve Z
({z;}) for selecting view v; to materialize and Y ({y;;}) for
using v; to rewrite g;.

2) Optimizing Iteratively: The above ILP problem becomes
intractable for very large workloads due to the large number
of integer variables. One possible method is to separately
optimize Z and Y. That is, we would set Y as a constant when
optimizing Z, and set Z as a constant when optimizing Y.
As shown in the function IterView, the above optimization
process would be iterated with the given number of iterations.

Initializing Z and Y. For each candidate subquery s;, we first
randomly initialize its associated variable z; with O or 1 and
record the overhead O, : of its associated materialized view
(if z; = 1) (line 4), and ‘then record the maximum benefit of
materializing s; (line 5). Later, we initialize y;; for each query
g; with 0 or 1. Notably, ¥;; would be set O if the constraints

Function IterView
Input: query workflow (), overhead array {OUS] }, benefit array
{l’:a’q“vs7 }. overlapping array X = {x;}, iterations n
Output: optimization results Z and Y’
2= {2} Y = {yy}, B = 0, B
2 /*randomly initialize Z and Y */
3 for j € [1,]Z]] do

=00 =0

4 z; = random(0, 1) , O““"+ = z; Oua] H

5 B™e[j] = ZQ1EQ qu~vsj >

6 for i € [1,|Q|] do

7 if z; :1/\qu,vsj >O/\Zk#jxjkyik:0then
y;; = random(0, 1) ;

8 else yi; = 0;

9 | B =20 eq ¥ B,

10 for iter € [1,n] do

11 generate a random probability threshold 7 € [0, 1];

12 Z O(ll‘l <_ Z Opt(Z {OU-’ } O(ur B"l()l]B{ ur 7_)

13 Y, B «+— Y-Opt (Y . B°" {qu v 1LX.Z,Q);

14 return Z,Y;

Function Z-0Opt (Z, {(’)vsj },0cur Bmaz Beur)
Output: Z, 0"

cur z cur max z max
LB = 3 BUTK) BT = 32, Bk
2 0 =517, 0,
3 for j € [1,]|Z]] do
4 Bma:L‘ B’VTIG.CE[:| BC’M’V‘ BE’M’V‘ [‘]];
5 computing pf bip accordlng to Equation 3;
6 if pf“p > 7 then
7 zj =1—zj;
Py if z; > 0 then O““"+ = (’)Usj selse O — = OUS];
9 return Z, O,
Function Y-Opt (Y,BC'W,{B%U% 1L X, Z,Q)

Output: Y, B
1 for i € [1,|Q]] do
Vil < {yins - wizh O =32, ez ¥iBaiw.,» T =1

T {yij < zjlz; € Z};

1Z)
T < {yij +Ek 1 kg ik Yie < 1z € Z};
Y[i] + ILPSolver(O, 7, Y[i]});
6 for k € [1,]Z]] do B""[k] = Z‘LQ; Yij + Ba,, s
7 return Y, B"";

wm oA W N

in the ILP problem are not satisfied (lines 6-8). We record the
actual current benefit of materializing s; by considering ;;
(line 9). At last, we iteratively optimize Z and Y with the
functions Z-Opt and Y-Opt (lines 10-13).

Optimizing Z. As shown in Z-Opt, for each variable z;,
we compute its flipping probability and decide whether to
change z; based on the probability. In particular, we first
compute the current benefit summation B°"", the current
overhead summation Q°*", the maximum benefit summation
B™% and the maximum overhead summation Om":"" of all
materialized views. Later, the flipping probability pjf P for Zj
can be computed as follows:

p;“lzp p;wev head p?enefzt 3)
cur . _
p(?UET'}L(jull _ O?J‘gj /O Zf Zj = 1
J 1 -0 /O™ otherwise
benefit 1= B]C;UT/BCuT Zf Zj = 1
p] = B;n,am/ovs.v th .
Bmaz JQmaz otnerwise

1506

<Agent>

<Policy>
Select z; from

<Reward>

Utility Change <Action>

<Environment>

<State>

Z = {z} :zjis a 0/1 variable indicating whether to materialize the subquery s;

Y = {yij }:yi;is a 0/1 variable indicating whether to use the view vs, for the query ¢;
Fig. 8. The MDP Framework of the ILP Problem

where B}** = B™**[j] means the maximum potential benefit
by setting z; as 1, Bj*" = B“"[j] represents the current
benefit of using the materialized view Vs, and O,, means
the overhead of Vs Therefore, the variable of a [-labeled
materialized view (z; = 1) would be flipped if the view causes
more overhead (the first case of p;?”e’“head) and provides less

benefit (the first case of pl* /%

g), and the variable of a 0-
labeled materialized view (z; = 0) would be flipped if the
view has less overhead (the second case of p;’””he“d) and is
expected to bring more benefit (the second case of ps.enef)
Optimizing Y. In the function Y-Opt, we regard Z as a con-
stant, so the materialized view overhead is fixed. Specifically,
we optimize Y'[i] = {1, - ,¥iz|} for each query ¢;, which
is a local ILP optimization problem as follows.

1Z]
argmax Z yiquqz,Us]»
1Z]
s.t.yij + Z i -y < 1 & yiy < 25,¥] € [1,|Z]].
k=1,k#j

where By, v, » z; and x;; are constants, and Y'[i] needs to be
optimized. Therefore, we can solve the problem efficiently by
existing ILP solvers, such as PulP? and Gurobi®.

B. RL based Method

IterView has no memory ability and cannot converge to
a global optimal solution. The reason is that each iteration in
the function can only get a local optimization solution and
different iterations cannot share feedback from optimization
process, which leads to repeated oscillation of optimization
results. To solve the problem, we use the Reinforcement Learn-
ing (RL) technique[38], [27], [30] to design an algorithm,
which is called RLView. In particular, we first explain the
optimization process as an MDP (Markov Decision Process) in
Section V-B1, and then propose the algorithm in Section V-B2.

1) Markov Decision Process: The reinforcement learning
model is proposed to find the best policy for a system to get
the most cumulative reward from environment, and it is usually
used for decision-making in contexts where a system learns by
trial-and-error from rewards and punishment, which is called
Markov Decision Process (MDP). In particular, a Markov

3https:/pythonhosted.org/PuLP/index.html
“http://www.gurobi.com/documentation/

Algorithm 2: RLView

Input: workload @, overhead array {Ovs], }, benefit array
{Ba,,v., }. overlapping array X = {z;}, initial
iterations n1, the number of RL epochs n2, memory

size n,, reward decay rate y
Output: 7, Y

1 /*get optimal results by function IterView */

2 Zo, Yy <IterView(Q, {Ovsj 1 {qu,vsj 1, X, n1);

3 /*update iteratively based on DQN*/

4 experience replay memory M <« (;

5 initializing parameters 6 of the DQN p(e|6);

6 for ep € [1,n2] do

7 t=0,e = <Z(),Y0>;

8 do

9 Ry = Zz Zj yijunsj - Zj Z§OU53- 5

10 ar = argmax;{Q(e:)[?]}, Zivila] =1 — Zi[a];
11 Y'H»lv_ :Yiopt(YVt’—’{qu,Usj }’X7Zi+1’Q);
12 €t+1 = <Zt+17Yt+1>;

13 Rit1 = ZZ Zj y'fi’;lBinUSj T L Z;+1OUSJ >
14 Ty = Rt+1 — Rt, M (et,at,n,et_,_l);

15 et:et+1,t:t+1;

16 /*fine-tuning the DQN model*/;

17 if |M| > m then 0 <+ DQN(M,0,7) ;

18 while t < |Z| V7, >0

19 return Z,Y;

Function DON-offline

Input: M.,0,y
Output: 0
1 (et,a, e, e141) < sample data from M;
2 calculate Q-value for state eq: Q (e, ar) = p(e, a|);
3 calculate Q-values for state e¢y1:
Q(et+1) = [plett1,a1]0), -, plert1, anl0)];
4 apply Q-learning and obtain the estimated value:
Q'(er, ar) = ymazi{Q(ess1)[i]} + re;
5 use the error ||Q(er,at) — Q' (et, ar)||? to update 6;

Decision Process is composed of a 4-tuple ((E, A, P,, R,)),
where E is a finite set of states, A is a finite set of actions,
P,(e,e’) = Pr(esy1 = €'les = e,a; = a) is the probability
that action a in state e at time ¢ will go to state ¢’ at time
t + 1, and R,(e,e’) is the immediate reward (or expected
immediate reward) received after transitioning from state e to
state ¢’ due to action a. Our iterative optimization process can
be modeled as a Markov Decision Process. Thus, we can use
the reinforcement learning technique to solve the optimization
problem. As shown in Figure 8, we map the optimization
process into MDP as follws. The state is defined as the tuple
of Z and Y, which is denoted as e = (Z,Y), the policy is
to select a variable z; from Z and the action is to flip (select
or unselect) the label of the selected variable z;. In addition,
for each state e, we can compute its associated utility, which
is denoted as U (e). Once taking an action, we get new labels
for Z and then use an ILP solver to get new labels for Y, so
the ILP solver is the environment and we get the new state
¢’. Finally, the immediate reward R, (e, ¢’) can be regarded as
the utility change by the formula R,(e,e¢’) = U(e’) — U(e).

Therefore, the ILP optimization problem becomes a rein-
forcement learning problem, whose goal is to learn an optimal
policy, which is defined as follows:

1507

T = arg mngﬂ{Z fykrt+k|et =e},Ve € E,Vt > 0.
k=0
where 7 : E' X A — [0, 1] represents a policy function (given
a state, the function would select an action), [E,; denotes the
expected value in the policy m, v € [0,1) represents the
discount rate, k is the time step and ;4 is the intermediate
reward in the time ¢ + k.

2) RL-Based Method: We apply Q-learning [43] to solve
the problem. Q-learning [43] is a value-based reinforcement
learning algorithm, In particular, it maintains a Q-table
to record all known state-action-value pair ((e,a),Q(e,a)),
where)(e, a) is the corresponding Q-value of the state e with
the action a. Thus, the algorithm would update Q-values based
on interacting with the environment. Once we get the Q-table,
we can get the best policy based on the Q-table’s guide. Hence,
the key is to generate Q-values. At first, we randomly initialize
each state’s Q-values. Then for each state e, we enumerate all
possible actions A(e) = {ay,- - ,a,} and then picks the best
one a* by the formula: a* = argmaz,,(Q(e,a;)), where a;
means flipping z; (z; = 1 — z), n = |Sg| is the size of
candidate subqueries, and e, = (Z;,Y;) denotes the new state
that the current state e transfers to after taking action a;. Next,
through interacting with the environment, we update Q(e, a™*)
for each state e as follows.

Q" (e,a*) = (1 — €)Q%(e,a*) + e(r + v max

a; EA(e*
where 7 is the intermediate reward from the current e to the
new state e* with the action a* and ¢ is the learning rate
(0 < e < 1). We repeatedly update Q-values according to
the above equation until we get convergent Q-values for each
state. At last, we get the final Q-table, and the best policy
function 77*(e) can be obtained as follows.

argmax(r; +v max Q(e;,a;)), Ir; >0
a; €A(e) aj €A(e;)
terminal, otherwise

DQN. However, the state space and action space are both large.

T (e) =

For example, the number of total states has an exponential
relationship with the number of candidate subqueries, which
could cause the problem of dimensional disaster. To solve the
issue, we utilize Deep Q-learning Network(DQN)[30], [42].
Specifically, we train a deep neural network to predict the
Q-value Q(e, a) for the state e taking the action a, which is
denoted as Q(e, a) = u(e, ald). Hence, we can get the Q-value
vector Q(e) = [Q(e,a1), - ,Q(e,a,)] € R™ for the state e.
We compare values of all dimensions in Q(e) and select the
dimension corresponding to the maximum value as the next
action for e. In particular, we implement the prediction model
with four fully connected layers, where the number of neurons
in these layers are 16, 64, 16 and 1, respectively. In addition,
we use ReLU as the activation function for each layer.
Algorithm 2 lists the detail of solving the reinforcement
learning problem. At first, to efficiently solve the problem,
we need to initialize the state with a descent solution, so we
get the initial state eg = (Zp, Yy) by the function IterView
and randomly initialize the DQN model (line 2-5). Later, we
execute the reinforcement learning process with no epochs,

where ny is given by users. In each epoch, we iteratively get
optimal states based on the initial state eg. In each iterative
step, we use the DQN model to update Z and use the function
Y-Opt to update Y respectively (lines 10-11). In addition, we
use a memory pool M to store experience replay, where each
experience is formed with a tuple (e, as, ¢, €;41). The reward
r¢ between e; and e;4; is defined as the difference between
their associated utilities, denoted as R, — R; (lines 12-14). It
terminates when r; is not increased and the number of flipping
labels is greater than the size of Z (line 17).

We can offline train and online fine-tune the DQN model
with the function DQN. For offline training, we store the
memory pool M into the metadata database, and then offline
train the network DQN by collecting training dataset from the
metadata database. For online fine-tuning, we set a threshold
ny,. When the size of the memory pool M is greater than n,,,
we also use DON to online fine-tune parameters. In DON, we
first sample experience replay data (e;, as, ¢, er41) from M
(line 1). Then we use the network DQN to predict Q(ez, at)
and Q(ery1) respectively (lines 2-3). Afterwards, we generate
estimated value Q' (e, a;) based on Q(e;+1) (line 4). Finally,
we use MSE (Mean Squared Error) metric to compute the
loss ||Q(es, ar) — Q' (e, ar)||* and update parameters (line 5).

VI. EXPERIMENTS

)Q(€*>ai)) A. Experimental Setup

Workloads. We use two kinds of workloads. The first is the
real dataset IMDB and the open-source workload JOB (Join
Order Benchmark), where the size of IMDB is 3.7GB and
JOB includes 113 multi-table join queries. For making more
redundant computation, we generate a new query for each
raw query by manually modifying the predicates, and thus
get the new workload with 226 queries. The second consists
of two real-world SQL workloads, denoted as WK1 and WK2,
respectively. In particular, they are both collected from data
analysis projects of Ant-Financial(https://www.antfin.com/),
and the database sizes of the two workloads are respectively
126GB and 185GB. Table I shows the information.

Firstly, we count the number of projects, the number of
tables, the number of queries and the number of extracted
subqueries, which are denoted as #project, #table, #query
and #subquery respectively. Secondly, we use the method EQ-
UITAS [45] to detect equivalent subqueries, and the number
of equivalent subquery pairs is denoted as #equivalent pairs.
After that, we partition subqueries into disjoint groups, and
select the subquery with the least overhead as the candidate
subquery for each group. We denote the number of candidate
subqueries as #candidate subqueries, denoted as | Z|. Thirdly,
we collect queries that can use at least one materialized view
built on candidate subqueries Z. We denote the number of
these queries as #associated queries, which is also represented
as |@|. Finally, there are overlapping subqueries, and we
denote their number as #overlapping pairs.

Baselines. (1) Cost estimation. To evaluate the effectiveness
of W-D, we compare it with existing methods:
a) Traditional estimation: similar to [20], it uses scanning the

1508

TABLE I

WORKLOAD DATASETS TABLE II
DEFAULT PARAMETERS
workloads JOB WK1 WK2 o B 7 I 5 P 5
project / # table 1721 217389 25/435 5 | T eres 1o 50 00T 8 0902009
query / # subquery 226/398 | 38.6k/79.6k 157.6k/302.5k WK1/WK2 b/e-o,1e-1,1e 20 0.005 128 10, 990/490, 3k 0.9
F:quivalent pairs 1,312 27,445 98,532 TABLE III
candidate subquery 12D 28 2,252 6.871 EXPERIMENTAL RESULTS ON COST ESTIMATION
associated query (|Q]) 220 4,642 14,191 _
overlapping pairs 74 4286 5521 Metric Optimizer DeepLearn| LR GBM |N-Exp N-Str N-Kw W-D
- - MAE (J0B) 433 1.69 [1.94 130]1.41 128 120 1.16
materialized view to replace computing its associated sub- MAPE(%) (J0B)| 39.58 26.63 |37.32 25.05/26.87 24.40 23.12 22.77
Th timate A (|) —A () | () + MAE (WK1) 4.52 1.59 2.17 1.58|1.20 0.89 0.81 0.77
query. 1hus, we es B4\Q1Vs) = ApA\G) = Ap (S MAPE(%) (WK1)| 4132 2724 |37.0427.02/17.65 14.39 13.24 12.96
Ag .~ (vs), where Ag . (vs) is the cost of scanning vs. In —MAE (wx2) 439 407 273 200|165 145 127 LI1
particular, we use two methods to estimate Ag ~(q), Ag(s) MAPE(%) (Wk2)| 76.44 63.99 |39.45 28.92|22.54 20.11 17.89 16.98

and Apg - (vs). The first is using query optimizers (Postgres—
9.1 for JOB and MaxCompute—3.2.3 for WK1, WK2) while the
second is using the start-of-the-art deep learning method [36].
We denote them as Optimizer and DeepLearn.

b) Linear Regressor (LR): a machine learning approach using a
linear function to model cost and computing the loss between
the estimated cost and the actual cost with Euclidean distance.
¢) Gradient Boosted Machine (GBM): a gradient boosting
decision tree based regression method using XGBoost [5].

d) To evaluate the effectiveness of different parts of non-
numerical features encodings in W-D (see Figures 8, 7 and 5),
we modify W-D by three variations, namely N-Kw, N-Str and
N-Exp. In N-Kw, we use one-hot vectors to replace keyword
embeddings. In N-Str, we use one-hot vectors to replace char
embeddings and remove the CNN model in the string encoding
model. In N-Exp, we replace the sequence models (i.g., LSTM1
and LSTM2) with the average pooling of keyword embeddings
and string encodings.

(2) View selection. We compare RLView with an iterative
method BigSub [20] and four greedy methods: TopkFreq,
TopkOver, TopkBen and TopkNorm [10].

a) BigSub: building a bipartite graph for queries and sub-
queries, and then regarding the view selection problem as
the problem of iteratively labelling vertices and edges of
the bipartite graph. For getting a converged solution, BigSub
forbids turning selected subqueries to unselected.

b) Greedy methods: Sort candidate subqueries based on differ-
ent strategies, and then select top-k subqueries to materialize:

o TopkFreq: the frequency in the workload. The higher the
frequency, the higher the ranking.

o TopkOver: the overhead of materializing views. The
bigger the overhead, the lower the ranking.

o TopkBen: the benefit for the workload. The bigger the
benefit, the higher the ranking.

o TopkNorm: the ratio between the utility and the over-
head. The bigger the ratio, the higher the ranking.

Evaluation metrics for cost estimation methods. We eval-
uate cost estimation models based on two popular metrics:
MAE (Mean Absolute Error) and MAPE (Mean Absolute
Percent Error). Specifically, suppose the ground truth is rep-
resented as y = {4} and the predicted result is denoted as
¥ = {9'}, where 1 < i < N, these metrics are computed as
follows: MAE(y,9) = % >iey ly' — §'|, MAPE(y,§) =
+ Zf\il \yy;y| In addition, we split queries in each work-

load into training, validation and test datasets with the ratio
7:1:2. We use Adam [23] as the optimization method.

Parameter settings. The Parameters of our system can be
divided into two parts. The first part is manually set by users,
such as the cost parameter «, (3,7, the number of training
epochs [for the model W-D and the number of iterations
ni,ny for the algorithm RLView. The second part is fine-
tuned by the validation dataset, such as the learning rate
Ir and the batch size b; in W-D, and the memory size n,,
and the reward decay rate v in RLView. Default settings are
listed in Table II. For quantifying costs by pricing strategies,
we set the unit of «a,(3,v as “$/GB”, “$/(Core-Minute)”
and “$/(GB-Minute)”. Therefore, we can represent A,, Ag
and A, with the same unit “$” by the following formulas:
Ao = o Ugpo, Ag = B+ Uepy and Ay = ¥ - Upem, Where
Usto, Uepy aNd Umem correspond to storage usage (GB), CPU
usage (Core-Minute) and memory usage (GB-Minute).

Environment. We use a machine with Intel(R) CPU E5-2630,

128GB RAM and use PyTorch 1.0.
B. Comparison with Baselines

1) Cost Estimation: We compare our W-D model with
baselines on JOB, WK1 and WK2 respectively. In particular,
for JOB, we rewrite queries with all possible candidate views,
and thus get actual computation cost as ground truth by
executing rewritten queries. However, it is not realistic to
generate ground truth for WK1 and WK2 by rewriting and
executing queries with all candidates due to the large overhead.
To address this issue, we design a new method RealOpt to get
approximate results as ground truth. In RealOpt, for a query ¢
and a view v, we first get the actual cost Ag ,(¢) and Ag (s)
by executing the query ¢, and then use Ag . (q) — Ag,,(s) to
represent the ground truth of Az - (g|vs). In summary, Table III
reports the MAE and MAPE losses of all methods, from which
we have the following observations.

(1) The performance of Optimizer is the worst. For example,
its MAPE losses on WK2 is nearly 80%. The main reason is
that the error can be accumulated when respectively estimating
Ap~(q), Ag(s) and Ag.(vs). However, DeepLearn is
better than Optimizer on estimating the cost, so DeepLearn
has better performance than Optimizer. In addition, the
performance of LR is not high. The reason is that computation
cost and extracted features are not linearly related.

(2) The neural network based methods outperform other
methods in most cases. As mentioned before, N-Exp, N-Str,

1509

2125

=075
=
=050

£
>.1.00
2

175 33 350
1.50 0 300
2> 5250
20 <0
Z2 >
= =150
—— TopkFreq = TopkFreq =
—— Topkover | — 10 —— TopkOver | 5 100
025 TopkBen s TopkBen s
— TopkNomm o TopkNorm
0.00 0

—— TopkOver 10

350

300
~
#1250
20200

TopkFreq

—o— lterView —o— IterView

0 5 10 15 20 25 0 500 1000 1500 2000

(a) JOB (b) WK1 (c) WK2

Fig. 9. Top-k based methods comparisons

N-Kw and W-D are implemented with neural networks. It is
well known that deep neural networks can approximately fit
any function, so it is reasonable to get better performance
using the deep learning technique. However, different deep
learning models focus on different features and thus influence
the estimation results. For example, W-D focuses on the plan
information using the plan sequence encoding model.
(3) The neural network based methods perform better on WK1
and WK2 than JOB. The main reason is that small scale data
could cause the overfitting problem for deep neural network
models. In contrast, learning on large scale data can improve
the generalization performance. However, all methods perform
better on WK1 than WK2. The reason is that WK2 includes more
complex queries, which causes it difficult to learn effective
representation of features.
(4) W-D outperforms other methods. The reason is two-fold. On
one hand, we consider more information for estimating cost.
On the other hand, we utilize different models to effectively
extract significant features from the information. Firstly, we
use embeddings to represent keywords and thus could learn the
dependency between different keywords. Secondly, we design
the string encoding model to capture the char-level and local
features of strings by using the char embeddings and the CNN
model respectively. Thirdly, we use the sequence model to
capture the sequence features of query/view plans.
(5) Comparing three variations of W-D, we can get two find-
ings as below. Firstly, the plan encoding model is the most
important (e.g., the performance of N-Exp is worse than both
N-Str and N-Kw). Secondly, the string encoding model is more
important than the keyword embedding model. The reason is
that the keyword embedding is just equivalent to adding a layer
of neural network, whose influence is not too big.
(6) We explore some cases where W-D has no good per-
formance. We find that in most cases W-D achieves good
performance, and it may not get good performance in some
cases. For example, the performance of W-D is not good for a
query with 10-table join and a view with 3-table join on JOB.

2) View Selection: In this section, we aim to evaluate the
effectiveness of our learning-based method. We compare it
with other methods on JOB, WK1 and WK2 respectively.

Finding % for greedy methods. As mentioned before, the four
greedy methods (i.g., TopkFreq, TopkOver, TopkBen, Topk-
Norm) compute the optimal solution by using top-k candidate
subqueries. To get the best result for each method, we set k
with different values. As shown in Figure 9, we illustrate the
utility curve with k for the four methods respectively. Because
the maximum value of k is equal to the number of candidate
subqueries, the range of k for JOB, WK1 and WK2 are [0, 28],

01000 2000 3000 4000 5000 6000 7000 0

—— TopkBen 5 —— RLView 50 —— RLView
TopkNorm 0 0
200 400 600 800 1000 0 100 200 300 400 500
iteration # iteration
(a) WK1 (b) WK2
Fig. 10. Convergence comparisons
TABLE IV

THE OPTIMAL RESULTS FOR DIFFERENT VIEW SELECTION METHODS

TopkFreq TopkOver TopkBen TopkNorm|BigSub RLView| OPT
k (JOB) 22 24 6 13 67 44 -
utility($)| 1.38 1.36 1.76 1.80 1.78 1.85 |1.98
ratio(%)| 8.97 8.83 11.44 11.70 11.57 12.02 |12.86
k (Wwk1l)| 860 1.94K 1.9K 1.84K 446 285 -
utility($)| 30.60 35.14 3433 34.96 37.84 39.62 | -
ratio(%)| 4.44 5.11 4.99 5.08 550 5.76 -
k (Wk2)| 6.7K 6.05K 6.15K 6.15K 167 94 -
utility($)| 311.52 346.86 346.61 346.34 | 36536 379.25| -
ratio(%)| 9.15 10.19 10.18 10.17 1073 11.14 | -

[0,2252] and [0, 6871] respectively. According to Figure 9, we
can observe that almost all curves first rise up to the maximum
point and then fall down. The reason is two-fold. On one hand,
with the increasing of k, queries in the whole workload can
reuse more computation and get more benefit, so the utility
increases. On the other hand, the overhead for materializing
subqueries also increases with the increasing of k. When £ is
greater than a certain threshold, the overhead would dominate
the utility, which results in the decrease of the utility.

Comparing optimal results. For each method, we collect
its associated maximum utility as its optimal result. Table IV
shows the results. All methods are split into two kinds: greedy
(e.g., TopkFreq and TopkOver) and iteration based (e.g.,
BigSub and RLView). For each greedy method, we record the
associated k£ values when getting its maximum utility. As for
each iteration based method, we record the number of iteration
(also denoted as k for simplicity) for getting its maximum
utility. In addition, given a workload @) and a materialized

view set Vg, we compute the associated ratio %
qe@ 8.7 \4
for each method, where Uy'{7 represents the maximum utility
and 3 5 Ap,(q) denotes the total cost of Q. The bigger the
associated ratio, the better the method. In addition, we try to
use ILP solvers to get actual optimal results for JOB, WK1
and WK2, but they can only give the solution for JOB and fail
for WK1 and WK2, because the datasets are too large. Thus,
we report the actual solution as OPT and demonstrate the
optimality gap for JOB. From the table, we have the following
observations: (1) Iteration based methods outperform greedy
methods on almost all workloads. The reason is two-fold.
Firstly, greedy methods cannot guarantee the optimal order of
candidate subqueries, and thus they cannot get the actual max-
imum utility. Secondly, iteration based methods can explore
more situations by iteratively selecting candidate subqueries
and thus have more possibilities to explore the actual optimal
situation. (2) RLView outperforms other methods. The reason
is two-fold. Firstly, we rewrite the view selection problem as
an ILP problem and propose an iterative optimization function
to solve the problem. Secondly, we regard the optimization

1510

TABLE V
END-TO-END RESULTS (O&B: Optimizer + BigSub, O&R: Optimizer +
RLView, W&B: W-D + BigSub, W&R:W-D + RLView)

Data JOB Pl P2

#q cq®) 1) | #q cg®) 1) | #Ha c($) y(s)
226 15.39 571.16] 832 91.27 7.07k| 5378 558.1949.9K
#(qlv) #m 0,(8) |#(qlv) #m om)|F#(qlv) #m o0m($)
O&B| 182 24 1.04 | 231 24 1.04] 1307 162 34.49
O&R| 164 19 085] 233 24 0.70| 1361 156 30.25
W&B| 140 17 046 | 224 21 0.79 | 1345 174 40.79
W&R| 148 18 0.53 | 250 26 0.93| 1300 144 22.96
bgv($) l;(s) (%) |byj($) l;(s) 7c(%) | bgo(8) 1(s) 7e(%)
2.48 479.12 9.36 | 8.75 6.04k 8.45 | 71.86 30.36k 6.69
2.44 480.61 11.70| 8.90 6.02k 8.98 | 75.31 30.25k 8.07
2.04 49547 10.27| 8.76 6.02k 8.73 | 83.20 30.70k 7.60
2.38 482.86 12.02 | 9.32 598k 9.19 | 72.15 30.75k 8.81

O&B
O&R
W&B
W&R

process as an MDP and apply the deep reinforcement learning
technique, which is proven to be effective to get the optimal
solution of an MDP problem. (3) JOB and WK2 include more
redundant computation than WK1. For example, we can save
more than 10% cost by using materialized views for JOB and
WK2, but the ratio is only around 5% for WK1.

Evaluating the convergence. To verify the convergence of
RLView, we directly use the function IterView to solve
the optimization problem on WK1 and WK2. As shown in
Figure 10, we record the intermediate utility in each iteration
for RLView and IterView, respectively. To make fair com-
parison, we set the iteration number n in IterView as the
summation of n; and ny in RLView. In conclusion, we have
the following observations: (1) IterView cannot converge into
global optimal results on both WK1 and WK2. For example,
the utility of WK1 first rises to $33 and then sharply fluctuates
between $25 and $35. (2) RLView can keep the utility stable on
the two workloads. The reason is two-fold. Firstly, IterView
only considers local optimal results when selecting subqueries
to materialize based on probabilities. Therefore, the method
would sharply fluctuate between different local optimal results.
Secondly, the DQN technique in our RLView method has the
memory ability to store experiences, and thereby eliminates
invalid optimization process and avoids the sharp falling of
the utility. (3) The benefit or overhead of subqueries in WK1
is more skewed than in WK2. Thus, the intermediate utility of
both IterView and RLView for WK1 has wider fluctuation
range than WK2. In addition, there even exists a sharply
decrease of the utility near the iteration 300 in Figure 10(a),
which is caused by selecting some subqueries with heavy
overhead or unselecting some subqueries with heavy benefit.

C. End-to-end Experiment

We implement the end-to-end system based on the cost
estimation model and the view selection model. To evaluate
the effectiveness, we compare four combinations: Optimizer
+ BigSub, Optimizer + RLView, W-D + BigSub, W-D +
RLView, which are denoted as O&B, O&R, W&B and W&R,
respectively. In addition, we sample two projects, denoted
as P1 and P2, respectively from WK1 and WK2 for the
experiment that can materialize all high-quality views, because
it is expensive to execute the whole query set.

Table V shows the end-to-end results. At first, we report the
number (#¢q), the cost (¢,) and the latency (I,) of raw queries.
Then, for each method, we report the number (#m) and the
overhead (o,,) of materialized views, the number (#(q|v))
and the benefit (b,,) of rewriting queries, and the latency (l;)
of the rewritten workload. At last, we report the associated
ratio (r.), which is computed as r. = b‘“cizom In conclusion,
we can find some observations as follows: (1) Our system
outperforms other methods. For JOB, W&R can save 12.02%
cost while O&B only save 9.36% cost, so our system improves
the performance by 12022936 5 100% = 28.4%. Similarly, the
improvement for P1 and P2 are 2152845 x 100% = 8.8%
and W x 100% = 31.7%, respectively. (2) The more
accurate the cost model, the better the solution of the view
selection model. For example, W&B and W&R save more
cost than O&B and O&R, respectively. (3) RLView is more
robust than BigSub. Taking JOB for example, the ratio 7.
of BigSub is decreased by 10.27% — 9.36% = 0.91% while
RLView is only decreased by 12.02% — 11.70% = 0.32%. (4)
Building more materialized views doesn’t mean saving more
cost. In the example of JOB, O&B gets the most benefit, but
it saves the least cost because of the heavy overhead of views.

VII. RELATED WORK

Cost estimation. Optimizers estimate query execution cost
using a mathematical model, which relies heavily on es-
timation of the cardinality, or the number of tuples [19],
[14], [18]. Traditionally, database systems [35], [32] estimate
selectivities through fairly detailed statistics on the distribu-
tion of values in each column, such as histograms. Benefit
from the development of deep learning (e.g. CNN [17], [39],
[13], RNN [16], [1], [15], [37]), neural networks have been
applied to estimate cost in many domains, such as traffic time
prediction [26], [21], [25] and query cost estimation [29],
[36], [24], [44]. In this paper, we focus on the benefit of
reusing a materialized view for a query. The key point is
to estimate the cost of a rewritten query, whose associated
subquery is replaced with a materialized view. However, we
cannot directly use the above methods to address our problem,
since it’s not realistic to rewrite all queries before generating
materialized views especially when the number of queries is
too large. Thus, we take into account useful features and
propose a new method, extended from the effective deep
learning model Wide&Deep [6], to solve it.

Subquery reusing. Given a set of queries, there are many
optimization methods on selecting subqueries to reuse [28],
where the target is to minimize a cost function (e.g. space
overhead and computation cost) under a set of constraints
(e.g. query deadline and space budget). One of the most
popular ways is to generate materialized views for selected
subqueries. Some studies focus on materialized views selection
in the context of data warehouse [11], [12], and several current
works aim to improve query latency in analytics clusters by
selecting views to materialize. However, these methods cannot
detect duplicate computation between different subqueries.
Therefore, some related works [20], [3], [31], [34] reuse

1511

common subqueries among different queries. In particular, the
authors in [31] study the history-aware query optimization
with materialized intermediate views. The authors in [3] use
an AND/OR graph representation and an ILP-based solution to
select common subqueries to reuse for Pig script. The authors
in [34], [20] consider computation reusing in cloud computing.

SQL equivalence. Relational query equivalence is a well
studied problem in database theory. The authors in [40] have
proven that the first-order logic on the class of all finite models
is undecidable. Thus, some works [4], [33] focus on decidable
SQL fragments. However, these works are not used in real
products. To address this problem, Cossete [9], [8] verifies
SQL equivalence by formalizing a substantial fragment of SQL
in the Coq Proof Assistant and the Rosette symbolic virtual
machine, but this toolkit is mainly based on syntax but not
semantics rewriting. Satisfiability Modulo Theories (SMT [2]
and Symbolic Execution [22]) are theory foundations to check
whether a first-order predicate is satisfiable. The authors
in [45] regard the problem of detecting equivalent subqueries
as the problem of detecting whether two first-order predicates
are equivalent based on SMT and Symbolic Execution.

VIII. CONCLUSIONS

We proposed an end-to-end view selection system by auto-
matically selecting the most beneficial subqueries to material-
ize. We proposed an effective deep learning model to estimate
the cost of a query with a materialized view. We extracted
significant features from different kinds of information, such
as query/view plans and query/view input tables. We modeled
the materialized view selection problem as an ILP problem.
We proposed an iterative optimization method to get the
approximate optimal solution. We transformed ILP as an MDP
and used the reinforcement learning technique DQN to solve it.
Extensive experiments showed that our methods outperformed
state-of-the-art by 28.4%, 8.8% and 31.7% on three datasets.

REFERENCES

[1] Y. Bengio and P. Frasconi. Credit assignment through time: Alternatives
to backpropagation. In NeurIPS, pages 75-82, 1993.

[2] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook
of Satisfiability, volume 185, 2009.

[3] J. Camacho-Rodriguez, D. Colazzo, M. Herschel, I. Manolescu, and
S. R. Chowdhury. Reuse-based optimization for pig latin. In CIKM,
pages 2215-2220, 2016.

[4] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, pages 77-90, 1977.

[5] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In
SIGKDD, pages 785-794, 2016.

[6] H. Cheng et al. Wide & deep learning for recommender systems. In
DLRS, pages 7-10, 2016.

[7]1 K. Cho et al. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In EMNLP, pages 1724—
1734, 2014.

[8] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu. Axiomatic
foundations and algorithms for deciding semantic equivalences of SQL
queries. PVLDB, 11(11):1482-1495, 2018.

[9] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An automated

prover for SQL. In CIDR, 2017.

P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang.

Nectar: Automatic management of data and computation in datacenters.

In OSDI, pages 75-88, 2010.

H. Gupta. Selection of views to materialize in a data warehouse. In

ICDT, pages 98-112, 1997.

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]
[44]

[45]

1512

H. Gupta and I. S. Mumick. Selection of views to materialize in a data
warehouse. TKDE, 17(1):24-43, 2005.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In ECCV, pages 630-645, 2016.

H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. PVLDB, 4(11):1111-1122, 2011.
G. E. Hinton and J. L. McClelland. Learning representations by
recirculation. In NeurlPS, pages 358-366, 1987.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 1997.

F. Huang, J. T. Ash, J. Langford, and R. E. Schapire. Learning deep
resnet blocks sequentially using boosting theory. In ICML, 2018.

Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query
optimization. VLDB J., 6(2):132-151, 1997.

R. Jin, D. Fuhry, and A. Alali. Cost-based query optimization for
complex pattern mining on multiple databases. In EDBT, pages 380-
391, 2008.

A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting subexpressions
to materialize at datacenter scale. PVLDB, 11(7):800-812, 2018.

I. Jindal, X. Chen, et al. A unified neural network approach for
estimating travel time and distance for a taxi trip. CoRR, 2017.

J. C. King. Symbolic execution and program testing. Commun,
19(7):385-394, 1976.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database
tuning system with deep reinforcement learning. PVLDB, 2019.

X. Li, G. Cong, A. Sun, and Y. Cheng. Learning travel time distributions
with deep generative model. In WWW, pages 1017-1027, 2019.

Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu. Multi-task
representation learning for travel time estimation. In SIGKDD, pages
1695-1704, 2018.

T. P. Lillicrap et al. Continuous control with deep reinforcement learning.
CoRR, 2015.

I. Mami and Z. Bellahsene. A survey of view selection methods.
SIGMOD Record, 41(1):20-29, 2012.

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network
models for query performance prediction. CoRR, abs/1902.00132, 2019.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller. Playing atari with deep reinforcement
learning. CoRR, 2013.

L. L. Perez and C. M. Jermaine. History-aware query optimization with
materialized intermediate views. In ICDE, pages 520-531, 2014.

L. A. Rowe and M. Stonebraker. The POSTGRES data model. In
VLDB’, pages 83-96, 1987.

Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27(4):633-655, 1980.
Y. N. Silva, P. Larson, and J. Zhou. Exploiting common subexpressions
for cloud query processing. In ICDE, pages 1337-1348, 2012.

M. Stonebraker, E. N. Hanson, and C. Hong. The design of the postgres
rules system. In /ICDE, pages 365-374, 1987.

J. Sun and G. Li. An end-to-end learning-based cost estimator. VLDB,
2019.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In NeurIPS, pages 3104-3112, 2014.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
TNN, 9(5):1054-1054, 1998.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In
AAAI pages 4278-4284, 2017.

B. A. Trakhtenbrot. Impossibility of an algorithm for the decision
problem in finite classes. DAN SSSR, 70:569-572, 1950.

O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton.
Grammar as a foreign language. In NeurIPS, pages 2773-2781, 2015.
Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas. Dueling network architectures for deep reinforcement
learning. In ICML, pages 1995-2003, 2016.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279—
292, 1992.

X. Yu, G. Li, and C. Chai. Reinforcement learning with tree-Istm for
join order selection. /CDE, 2020.

Q. Zhou, J. Arulra, S. B. Navathe, W. R. Harris, and D. Xu. Automated
verification of query equivalence using satisfiability modulo theories. In
VLDB, pages 75-88, 2019.

