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Abstract—Spark has extensively used in many applications of
Tencent, due to its easy deployment, pipeline capability, and close
integration with the Hadoop ecosystem. As the graph computing
engine of Spark, GraphX is also widely deployed to process
large-scale graph data in Tencent. However, when the size of
the graph data is up to billion-scale, GraphX encounters serious
performance degradation. Worse, Graphx cannot support the
rising advancement of graph embedding (GE) and graph neural
network (GNN) algorithms. To address these challenges, we
develop a new graph processing system, called PSGraph, which
uses Spark executor and PyTorch to perform calculation, and de-
velops a distributed parameter server to store frequently accessed
models. PSGraph can train extremely large-scale graph data in
Tencent with the parameter server architecture, and enable the
training of GE and GNN algorithms. Moreover, PSGraph still
benefits from the advantages of Spark via staying inside the Spark
ecosystem, and can directly replace GraphX without modification
to the existing application framework. Our experiments show that
PSGraph outperforms GraphX significantly.

Index Terms—graph algorithm, Spark, parameter server

I. INTRODUCTION

Spark is a unified analytics engine for big data processing

and is widely used in the industry, including Tencent, owing

to its easy-to-use programming abstraction, deep integration

with big data ecosystem, and useful pipeline infrastructure.

GraphX, the graph processing module of Spark, is developed

to process graph data, which are common in the real-word

scenarios, e.g., social graph in social networks, citation graph

in academia community, user interest graph in the e-commerce

market, and knowledge graph. GraphX is certainly extensively

used in many graph datasets of Tencent, for instance, a

social network graph composed of more than one billion

people and hundreds of billions of friendship connections.

GraphX is chosen rather than other graph processing systems,

such as Pregel [1], GraphLab [2] and Gemini [3], owing to

several reasons. First, GraphX is compatible with the widely

used MapReduce/Hadoop infrastructure since the underlying

computation engine is Spark. As the de-facto infrastructure

for big data processing, Hadoop has achieved great success in

the past decade. GraphX is fundamentally compatible with the

components in the Hadoop ecosystem, such as HDFS, Yarn,

Hive, HBase, and Flume, because the underlying engine Spark

is originally developed to replace the computation engine of

Hadoop. Consequently, it is easy to deploy GraphX in real

industrial Hadoop/MapReduce environments. Second, many

applications in Tencent are developed with Spark and running

for years. These applications usually use the pipeline capability

of Spark to embrace different processing phases (including

data ingest, data preprocessing, feature engineering, model

training, and model evaluation) in a dataflow task, without

moving data in and out of file systems. GraphX can be

easily integrated into the existing application by putting it

into the Spark pipeline, without interfering or reconstruction

of the existing framework. In contrast, other graph processing

systems, such as GraphLab and Giraph, either (1) entail users

to exhaustively deploy them to the Hadoop ecosystem, leading

to brittle interfaces and extra maintenance costs, or (2) incur

expensive data movement through the file systems between dif-

ferent systems when embedding them into a dataflow pipeline.

Although GraphX has been successfully used in Tencent for

years because it is suitable for the industrial environment, it

reveals drawbacks when facing exponential growing of graph

data and the rapid evolution of graph algorithms. One the

one hand, when processing graph data with up to billions of

vertices and hundreds of billions of edges, GraphX encounters

severe performance degradation. The reason is that GraphX

stores graph data in a table abstraction, in which every

executor (worker) stores an edge table and a vertex table,

as well as the features of edges and vertices. With a shared-

nothing architecture, GraphX uses the table-join operation of

Spark to implement message passing and calculation in graph

algorithms. The join operation of Spark causes a large memory

cost to store massive temporary data, and yields costly shuffle

operation between the map task and the reduce task, which
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needs to write and read temporary data via the disk. Facing

billion-scale graph data, GraphX is swamped by memory

explosion and slow disk IO. One the other hand, GraphX

cannot support many recently emerging graph algorithms since

it is specialized designed for traditional graph algorithms that

analyze graph structure and graph topology. Nevertheless, the

recent several years have witnessed a booming progress of

graph embedding (GE) and graph neural networks (GNN)

algorithms. GraphX cannot handle these newly developed

algorithms. Motivated by these challenges, we ask “can we
implement a graph system to replace GraphX that can support
different kinds of graph algorithms for extremely large-scale
graph data while staying inside the Spark ecosystem?”

The first problem is how to resolve the poor performance of

GraphX on large-scale graph data. As above analyzed, GraphX

performs poorly owing to slow shuffle operation during table

join. To address this problem, an alternative is to store the

frequently accessed models in a shared in-memory storage

system, and let workers read and update the models through

the network. Motivated as such, we empower Spark with a

parameter server (PS) [4] that partitions models over several

machines and stores each partition in memory. The second

problem is how to support various kinds of graph algorithms

in a unified system. For traditional graph and graph embedding

algorithms, the calculation patterns are generally simple so

that we leverage Spark executor to perform the calculation.

However, graph neural networks involve complex calculations

such as matrix multiplication, gradient computation, and back-

ward propagation. To ensure usability for the existing deep

learning users, we embed PyTorch, a prevailing deep learning

system, into Spark. In this way, the users can benefit from the

easy-to-use programming interface of PyTorch, and obtain the

distributed training capability meanwhile. The contributions of

this paper are summarized as follows:

• We develop a unified graph processing system, called

PSGraph, to replace GraphX in industrial applications of

Tencent. 1 PSGraph can concurrently train traditional graph

algorithms, graph embedding algorithms and graph neural

networks. PSGraph can be easily integrated into the indus-

trial environment and Spark pipeline.

• PSGraph empowers Spark with a parameter server to effi-

ciently train billion-scale graph data and integrates PyTorch

into Spark to implement graph neural networks.

• We describe the use cases of PSGraph in Tencent. Exper-

iments show that PSGraph is significantly faster than the

baselines.

II. PRELIMINARIES

A. Graph Data

The input of a graph algorithm is denoted by (V,E) where

V is the vertex set and E is the edge set. Each vertex in

1https://github.com/Angel-ML/sona, https://github.com/Angel-ML/PyTorch-On-Angel
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Fig. 1. Graph algorithms.

V represents an entity such as user; and each edge in E
represents relations between entities, such as friendship.

Each vertex can be given some latent properties, for in-

stance, the PageRank value indicates the importance of vertex

in the graph while the coreness value can help identify small

interlinked core areas in a graph. Typically, graph algorithms,

ranging from PageRank to Graph Neural Network, iteratively

update the property of a vertex based on the properties of its

adjacent vertexes and edges.

B. Graph Algorithms

According to different purposes and computation patterns,

the existing graph algorithms can be roughly classified into

three categories, as shown in Fig. 1.

• Traditional Graph (TG) Algorithms aim at analyzing the

topological structure of the graph. For example, PageR-

ank [5] measures the importance of graph vertices, K-

core [6] [7] measures the connecting density of subgraphs,

common neighbor measures the similarity of two vertices,

and label propagation [8] detects densely connected com-

munity.

• Graph Embedding (GE) Algorithms provide an effective, yet

efficient, way to deal with graph analytics problems, e.g.,

vertex classification and graph classification [9] [10]. GE

generates low-dimensional vectors to represent the vertices

or the entire graph to reduce computation and communi-

cation costs. With these representations, directly processing

the original graph, bringing high computation, communi-

cation and space cost, can be avoided. Specifically, vertex

embedding [11] [12] [13] encodes each vertex with a vector

representation to perform predictions on the vertex level.

e.g., prediction of new edges based on vertex similarities,

while graph embedding [14] represents the whole graph

1550



Vertex partition
(Edge cut)

Edge partition
(Vertex cut)

Fig. 2. Partitioning strategies.

with a single vector to make predictions on the graph level,

e.g. comparison of chemical structures.

• Graph Neural Network (GNN) Algorithms learn representa-

tions using deep learning methods. GNN can be categorized

into recurrent GNN [15], convolutional GNN [16], graph au-

toencoders [17], and spatial-temporal GNN [18]. Typically,

GraphSage samples k-hop neighbors of the target vertex,

collects their representation vectors, calculates the output

with some aggregating function, and updates the current

representation vector.

C. Programming Models

An important problem in graph algorithms is how to pro-

gram calculation given the complexity of graph structure.

There are three popular graph programming models according

to different views of the graph.

• Vertex-centric. The vertex program running on each vertex

gets the properties of adjacent vertices and edges, with

which its own vertex property is updated. This process

iterates until reaching some stopping criteria.

• Partition-centric. Partition-centric computation is to operate

on a partition (subgraph). And the purpose is to reduce

communication cost among partitions using effective graph

partition approaches.

• Edge-centric. Using an edge-centric perspective, the scatter

and gather phases process on edges rather than on ver-

tices [19]. This is suitable for cases where sequentially

reading edges from storage media is much faster than

random accessing.

D. Distributed Graph Algorithms

When the size of graph data overwhelms the computation

and storage capabilities of a single machine, it is inevitable

to deploy graph algorithms in the distributed environments,

bringing the arise of partition approaches and synchronization

techniques.

• Partitioning. Previous studies on parallel graph algorithms

have focused on a vertex partitioning (edge cut) or an edge

partitioning (vertex cut), as Figure II-D shows. With vertex

partitioning, the graph is cut by edges, and each worker

is assigned a vertex subset with their adjacent edges, i.e.,

neighbor tables. While with edge partitioning, each worker

is assigned an edge set [20].

• Synchronization. 1) Bulk synchronous parallel (BSP). At

each iteration, each worker performs computation with its

graph partition and pushes the results to other workers

at a synchronization barrier [1]. 2) Asynchronous parallel

(ASP). An alternative to BSP is asynchronous execution

without any synchronization barrier [4]. 3) Gather-apply-

scatter (GAS). GAS is a pull-based counterpart of BSP [21].

Each worker pulls states from other workers (gather), per-

forms computation (apply), and updates states (scatter).

III. SYSTEM OVERVIEW

Fig.3 shows the framework of PSGraph, including the

parameter server, the computation engine, and the master.

A. Parameter Server

PSGraph leverages a parameter server (PS) to store high-

dimensional data or models in graph algorithms. The following

shows the basics of the parameter server.

• Data structure. PS supports different data structures, e.g.,

sparse/dense vector, sparse/dense matrix, CSR, vertex (with

property), and neighbor table. PS also provides interfaces

for users to implement a new data structure.

• Data partitioning. The graph data frequently accessed are

partitioned over several machines. For vectors and matrices,

PS partitions them by row index and column index. For

graph vertex and neighbor table, PS partitions them by

vertex index. We implement hash partition, range partition,

and hash-range partition [22].

• Synchronization. PS has different synchronization protocols

(BSP/ASP) to control the synchronization across workers.

• Data Operators. Many common operators are implemented

to manipulate the data on PS, such as pull, push, addition,

division, etc. Also, users can customize their operators via

a user-defined function, called psFunc.

• Checkpoint. Each parameter server periodically stores the

local data partition to HDFS. As we will explain later, we

address failure by this checkpoint mechanism.

Specifically, for graph algorithms, we can store different

kinds of data on PS, according to the patterns of data access

and model update. If the algorithm is to calculate some latent

properties for vertices, the vertex properties are stored on the

PS as they are accessed and updated at every iteration. If

the algorithm needs to get the adjacent vertices of a vertex

frequently, the neighbor tables are stored on the PS.

B. Master

The master node of PS is responsible for resource allo-

cation, task monitoring and failure recovery. When a task

is submitted to the resource management platform such as
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Fig. 3. System overview of PSGraph.

Yarn and Kubernetes, the master is first initialized. It then

requests resources from the resource management platform to

launch the parameter servers. During the execution, the master

monitors the status of servers by periodical sending health

checking signal. Once one server encounters failure, the master

asks the resource management platform to restart the server. If

the algorithm can bear inconsistency between model partitions,

such as GE and GNN, the newly launched server pulls the

checkpoint partition from HDFS (refer to Section III-A) and

continues training. Otherwise, the master asks all the servers to

restore the checkpoint partitions from HDFS, such that model

consistency is ensured for algorithms such as PageRank.

C. Computation Engine

The computation engine of PSGraph is implemented with

Spark. Below, we show how the computation engine stores

data, calculates and communicates with PS.

• Context. Spark has a context shared by all the executors,

called SparkContext. PSGraph uses it to get Spark settings

and runtime statistics. Besides, PSGraph creates a context

called PSContext to store the configurations of PS, such as

the locations of parameter servers and the partition layout

(mapping of data partitions to servers).

• PS agent. PSGraph establishes a PS agent in every Spark

executor to manage the data communication between Spark

and PS. When the PS agent needs to get a data item from

the PS, it first uses the data index to get the partition

location from PSContext, including the partition index and

the location of the corresponding server. Then, the PS agent

gets the required data from PS via RPC (remote process

call). Similarly, when the executor needs to update the data,

the PS agent first locates the corresponding partition and

server, and then sends the data update to PS.

• Data abstraction. The graph data are constructed as RDD,

Dataframe or Dataset in executors [23]. Resilient distributed

dataset (RDD), the core programming abstraction of Spark,

is a fault-tolerant collection of elements that can be op-

erated in parallel. Dataframe and Dataset extend RDD

with relational schema, enabling SQL query and pipeline

execution. PSGraph supports both edge partitioning and

vertex partitioning, meaning that the element in RDD can

be edge or neighbor table.

• JVM runtime. Spark runs in JVM (Java virtual machine).

Since we implement TG and GE algorithms with Scala and

Java, they naturally run in JVM runtime.

• C++ runtime. To run GNN algorithms, PSGraph embeds

PyTorch inside Spark. However, there is a language gap

between the JVM runtime of Spark and the C++ runtime of

PyTorch. We transfer data between JVM runtime and C++

runtime using JNI (Java native interface) — 1) graph data is

fed into PyTorch, 2) PyTorch performs forward calculation

and backward propagation with Autograd mechanism, and
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3) send gradients to JVM runtime.

• Failure recovery. Since Spark has a failure recovery mech-

anism, PSGraph utilizes it to address the failure of com-

putation engine. Once an executor fails, it will be restarted

by Spark. Afterward, it reloads graph data from HDFS and

continues training. During the period, the other executors

are blocked by the synchronization controller of PS.

D. Programming Interface

1 class GraphRunner {
2

3 def main(args: Array[String]): Unit = {
4 val params = ArgsUtil.parse(args)
5 SparkContext.getOrCreate()
6 PSContext.getOrCreate()
7 val algo = new GraphAlgo(params)
8 val graph = GraphIO.load(params)
9 val output = algo.transform(graph)

10 GraphIO.save(output)
11 }
12

13 }
14

15 class GraphAlgo(args: Array[String]) {
16

17 def transform(dataset: Dataset[_]): DataFrame = {
18 val edges = GraphOps.loadEdges(dataset)
19 val neighborTable = GraphOps.toNeighborTable(edges)
20 val model = PSContext.matrix(row, col, DataType)
21 val delta = ... // do calculation
22 model.update(delta)
23 SparkContext.createDataFrame(model)
24 }
25

26 }

Listing 1. Example Code

The above code showcases the programming of PSGraph. In

GraphRunner, we create an instance of GraphAlgo, load data

from the data source, run the algorithm and save the generated

model. In GraphAlgo, we transform the original graph data to

edges or neighbor tables, use PSContext to create a model on

PS (given the number of rows, number of columns and data

type), generate updates, and sends the updates to PS.

IV. IMPLEMENTATION OF GRAPH ALGORITHMS

In this section, we describe how to implement graph al-

gorithms with PSGraph, e.g., PageRank, common neighbor,

fast unfolding, Line, and GraphSage. These algorithms are

widely used in many applications of Tencent, such as WeChat,

WeChat Pay, and QQ. We assume the original dataset is stored

on HDFS, and each data item is a pair (src, dst) where src is

the index of source vertex and dst is the index of destination

vertex. The vertex indices are encoded as long int.

A. PageRank

PageRank measures the importance of vertices. The update

rule is PRi =
∑

j∈N(i)
PRj

L(j) , where PRi denotes the rank of

vertex i, N(i) are the neighbor vertices of vertex i, and L(j) is

the out-degree of vertex j. An optimization of this update rule

is to use the increments of ranks instead of the ranks. Since the

ranks of many vertices barely change after several iterations,

we leverage this sparsity to reduce the communication cost

by transferring the increments of ranks. The optimized update

rule is ΔPRi =
∑

j∈N(i)
ΔPRj

L(j) .

…

Fig. 4. Implementation of PageRank, Common Neighbor and Line.

Fig. 4 shows the implementation of PageRank. The PS

stores two vectors: 1) the rank �ranks and 2) the increment

of rank �Δranks. The size of both vectors is equal to the

maximal index of vertex. We use Spark to load the original

dataset from HDFS, and store the dataset as an RDD in which

each item is an edge. In a distributed cluster, edge partitioning

(vertex cut) yields a high communication overhead as many

executors need to get the ranks of one vertex concurrently. We

then use the groupBy operator to transform the original edge-

partitioned graph data to the format of vertex partitioning, that

is, each item in RDD is a neighbor table — (src,Array[dst]).
After this operation, the edge RDD is transformed into a RDD

consisting of neighbor tables. The calculation procedure is as

follows:

1) The executors run the groupBy operator to transform the

edge-partitioned graph data to vertex partitioning.

2) The executor gets the rank increments, Δranks, of all the

local source vertices from PS.

3) The executor uses Δranks to calculate the updates of the

destination vertices.

4) PS adds Δranks to ranks and resets Δranks to zero.

5) The executor pushes the local updates of destination vertices

to PS. PS adds them to Δranks.

B. Common Neighbor

Common neighbor helps measure the closeness of two

vertices and is used for link prediction. This algorithm requires

frequent access to the adjacent vertices (neighbors) of a vertex.

We hence store the neighbor tables on PS. This is achieved by

first transforming the original graph data to neighbor tables by

groupBy operator of Spark and then pushing the neighbor

tables to PS. Afterward, the executor iteratively processes a

batch of edges, gets the neighbor tables of the vertices from

PS, and calculates the number of overlapping neighbors of

each vertex pair.
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C. Fast Unfolding

Fast unfolding can extract the community structure of large

networks based on a metric called modularity [8]. Note that

the input is a weighted graph, that is, each edge is a triplet

(src, dst, weight). Each pass of fast unfolding is made of

two phases: 1) modularity optimization: assign a community

for each vertex to maximize the modularity; 2) community

aggregation: build a new network whose vertices are the

communities found during the first phase. The passes are

iterated until no increase of modularity.

The following formula is the change of modularity when

adding vertex i to community C:

ΔQ = [

∑
in +ki,in
2m

−(
∑

tot +ki
2m

)2]−[
∑

in

2m
−(

∑
tot

2m
)2−( ki

2m
)2

]

where
∑

in is the sum of weights of edges inside the com-

munity,
∑

tot is the sum of weights of edges ected to vertices

in the community, ki is the sum of the weights of the links

associated with node i, ki,in is the sum of the weights of the

links from i to nodes in C, and m is the sum of the weights

of all the links in the network.

In fast unfolding, two models are frequently accessed,

i.e., the community of each vertex and the sum of edge

weights in each community. To implement fast unfolding

in PSGraph, we store these two models as vertex2com and

com2weight on the PS. The calculation consists of the fol-

lowing steps: 1) Spark loads the dataset from HDFS; 2)

Spark transforms the original edge-partitioned RDD to vertex

partitioning. Then, each item in the transformed RDD is a

triplet (src, arr[dst], arr[weight]); 3) Each vertex is given

an initial community index, identical to the vertex index.

Afterward, each executor calculates the local vertex2com and

com2weight, and pushes them to PS; 4) At each iteration,

the executor pulls the current vertex2com and com2weight
from PS, performs the modularity optimization and community

aggregation, and pushes the new communities of vertices and

the new sum of edge weights of communities to PS.

D. Line

Line is a GE algorithm that uses both first-order proximity

and second-order proximity to measure the similarity of two

vertices. The first-order proximity refers to the local prox-

imity between the vertices in the network. The second-order

proximity assumes that vertices sharing many connections to

other vertices are similar to each other. Each vertex has two

latent vectors — an embedding vector itself and a context

vector when the vertex is a “context” of other vertices. These

vectors can be extremely huge for a large-scale graph. For

example, when the number of vertices is up to one billion and

the embedding size is ten, the size of latent vectors is larger

than 80GB. Using one machine to store the latent vectors could

cause serious network congestion because all the executors

need to get and update these vectors. Therefore, we store

these vectors on PS to address this problem. These vectors

are formatted as a PS vector, where the size is the number of

vertices and the data type is a user-defined type containing the

embedding vector and the context vector of one vertex.

During one training iteration, the executor gets a batch

of edges, pulls the necessary embedding vectors and context

vectors from PS, uses stochastic gradient descent to update

these vectors and pushes back the updates to PS.

However, letting every executor directly pull embedding

vectors from PS is still communication-intensive. We try to

leverage the psFunc of PS to perform some computation

on PS. The training of Line involves a lot of dot product

operations between vectors — the first-order proximity calcu-

lates the dot product of two embedding vectors: p1(vi, vj) =
1

1+exp(− �ui
T · �uj)

, the second-order proximity calculates the dot

product of embedding vector and context vector: p2(vj |vi) =
exp(�cj

T �ui)/
∑|V |

k=1 exp(�ck
T �ui). To enable the doc product

operation on PS, we partition the embedding vectors and

context vectors by column, as shown in Figure 4. In this way,

the same dimensions of �u and �c are co-located on the same

server, so that we can calculate partial dot products on PS and

merge them on the executor.

During one iteration of training, the executor gets a batch

of edges, pulls the necessary dot products from PS, uses

stochastic gradient descent to update the embedding vectors

and context vectors, and pushes the updates to the PS.

E. GraphSage

GraphSage is a GNN algorithm that learns the representa-

tions for vertices. Instead of training individual embeddings

for each vertex, GraphSage learns a function that generates

embeddings by sampling and aggregating features from a ver-

tex’s neighborhoods. The following describes the generation of

embeddings where the entire graph G = (V,E) and features

for all nodes X = {xv, ∀v ∈ V } are provided as inputs.

1) Sample a fixed-size of K-hop neighbors of a vertex v ∈ V .

2) The representations of the vertices when k = 0 (base case)

are defined as the input features. The following k-th step

uses representations generated at the previous k−1-th step.

3) At iteration k, each vertex v aggregates the representations

of its neighborhood vertices {hk−1
u , ∀u ∈ N(v)} into a

single vector hk−1
N(v) ← Aggregate({hk−1

u , ∀u ∈ N(v)}).
The aggregation function can be done by a variety of

aggregator architectures, such as mean aggregator, LSTM

aggregator, and pooling aggregator.

4) After aggregating the neighboring representations, Graph-

Sage concatenates the vertex’s current representation hk−1
v

with the aggregated neighborhood vector hk−1
N(v). This con-

catenated vector is fed to a fully connected layer with

nonlinear activation function σ, which outputs the new

representation hk
v ← σ(W k · Concat(hk−1

v , hk
N(v))).

5) The final output representations at iteration K as zu = hK
v

are the embedding of vertices.

As the training procedure shows, the executors need to

frequently get three models — the vertex features X , the
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neighbor table A, and the weight matrix W k. We store these

models on PS — X and A are partitioned by the index of

vertices, and W k is partitioned by column. Fig. 5 shows

the training steps of GraphSage: 1) The user writes PyTorch

script and generates PyTorch model. 2) Spark driver loads

PyTorch model and pushes the initialized model to PS. 3)

Every executor loads PyTorch model, reads the dataset from

HDFS, uses groupBy to generate neighbor tables, and pushes

graph features and neighbor tables to PS. 4) At each iteration,

the executor pulls the current weight matrix W k from PS,

reads a batch of edges, samples 2-hop neighboring vertices,

gets the features of these vertices from PS, performs back-

propagation using PyTorch, and pushes the gradients to PS.

5) After training, the system outputs the embedding of all the

vertices. Note that, PSGraph uses JNI to let Spark executor

feed graph data into the native C++ runtime of PyTorch and

let PyTorch send back gradients to JVM runtime. Further, we

implement more advanced gradient descent optimizers on PS,

such as AdaGrad and Adam, using the user-defined function

psFunc provided by PS. With our implementation, the user

can directly write python scripts of PyTorch and do not need

to care about the details of distributed training.

V. EVALUATION

To assess the performance of PSGraph, we conduct exten-

sive experiments on large-scale graph datasets.

A. Experimental Setup

a) Datasets: Three real datasets in Tencent are used for

the experiments. The first dataset DS1 contains 0.8 billion

vertices and 11 billion edges. The second dataset DS2 contains

2 billion vertices and 140 billion edges. The third dataset DS3
contains 30 million vertices and 100 million edges.

b) Algorithms: We evaluate seven algorithms — PageR-

ank, common neighbor, fast unfolding, K-core [24], triangle

count2, Line, and GraphSage.

c) Cluster: The experiments are run on a productive

cluster in Tencent. The cluster contains more than 1000

machines, connected by 10GB Ethernet.

d) BaseLine: We compare PSGraph with GraphX on TG

algorithms, and Euler3 on GNN algorithms.

B. Performance Comparison
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Fig. 6. Performance comparison on traditional graph algorithms.

1) Traditional Graph Algorithms: PageRank, common

neighbor, fast unfolding, K-core and triangle count are eval-

uated on the DS1 dataset. For PSGraph, we allocate 100

executors (20GB) and 20 parameter servers (15GB) for all the

algorithms. For GraphX, we allocate 100 executors (55GB).

GraphX needs 4 hours to converge on PageRank, while

PSGraph only needs 0.5 hours, yielding an 8× improvement.

PSGraph benefits from the PS which accelerates the access

2The implementation of K-core is similar to PageRank, and that of triangle
count is similar to common neighbor.

3A graph system developed by Alibaba. (https://github.com/alibaba/euler)
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TABLE I
PERFORMANCE ON GRAPHSAGE.

System Preprocessing time Training time Accuracy
Euler 8 hours 200 seconds/epoch 91.5%

PSGraph 12 minutes 7 seconds/epoch 91.6%

and update of models, while GraphX suffers serious memory

explosion and slow data shuffling. Moreover, PSGraph only

needs half of the resources consumed by GraphX. For common

neighbor and fast unfolding, PSGraph is 3× and 2.9× faster

than GraphX. For K-core and triangle count, GraphX fails due

to an OOM (out of memory) error even giving 55 GB for each

executor, while PSGraph needs 2 and 0.7 hours respectively.

PageRank and common neighbor are evaluated on the DS2

dataset, which is much larger than DS1. We allocate 300

executors (30GB) and 200 parameter servers (30GB) for

PSGraph, and allocate 500 executors (55GB) for GraphX.

GraphX encounters an OOM error even if we give 55 GB for

each executor, while PSGraph runs the algorithms in 7 and

3.5 hours with only half of the resources. This result verifies

that PSGraph can scale to an extremely large-scale graph and

is more resource-efficient.
2) Graph Embedding Algorithms: Although there exist

systems that can run Line4 on a single node, there is rare

open-source distributed graph embedding system than can run

Line in a productive environment. Therefore, we report the

performance of PSGraph for reference. On the DS1 dataset

using an embedding size of 128 and the same resources as

TG, PSGraph takes 40 minutes per epoch and 4 hours in total.
3) Graph Neural Network Algorithms: We compare

PSGraph and Euler on the DS3 dataset and GraphSage. Euler

is allocated with 90 executors (16 cores, 50GB), and PSGraph

is allocated with 30 executors and 30 parameter servers, each

of which is equipped with 10 cores and 10GB.

Note that, Euler has a strict constraint on the graph data

so that the original graph data needs complex preprocessing.

These operations are executed sequentially and individually,

meaning that every operation needs to read data from disk

and write output to disk. Unsurprisingly, as Table I illustrates,

Euler takes about 8 hours to transform the graph data to

the required data format — 4 hours for index mapping, 4

hours for data-to-JSON transformation, and several minutes

for JSON partitioning. During the training, Euler takes 200

seconds every epoch if using two-hop neighbors (k = 2).

In contrast, PSGraph only takes 12 minutes to preprocess

the graph data with the help of the efficient Spark pipeline

mechanism and consumes 7 seconds every epoch when k = 2
— almost 30× faster than Euler. For this real application in

WeChat Pay, Euler and PSGraph achieve comparable accuracy.
4) Failure recovery: To assess the effectiveness of failure

recovery, we conduct an experiment on common neighbor and

DS1 using the same setting in Section V-B1. We manually

kill an executor and a parameter server. The killed server

will restart and pull the checkpoint of model, i.e., neighbor

4https://github.com/tangjianpku/LINE, https://github.com/snowkylin/line

TABLE II
EVALUATION ON FAILURE RECOVERY.

Algorithm Without failure Executor failure PS failure
Common neighbor 30 minutes 35 minutes 36 minutes

tables, from HDFS; and the killed executor will restart and pull

the checkpoint of edges from HDFS. As shown in Table II,

PSGraph can recover quickly (5 minutes for executor failure

and 6 minutes for PS failure), and ensure the correctness of

the algorithm output meanwhile.

VI. RELATED WORK

In Section II, we have discussed the preliminaries of graph

systems. Here we present a summary of prior works.

Single-node graph processing system. Some works tried

to process graph algorithms in a multi-core machine, such

as GraphChi [25], X-Stream [19] and GridGraph [26]. They

designed efficient data access and data partitioning methods on

disk to accelerate the processing of graph data. However, when

the graph data grow to billion-scale, using only one machine

becomes inefficient. Besides, these systems are not suitable

for industrial applications that generate and store distributed

graph data.

Distributed graph processing system. The exponential

increase of graph data aroused the emerging of a series of

distributed graph systems. Pregel [1] proposed a push-based

vertex-centric approach in which a vertex can receive messages

from other vertices and modify its own state and that of its

outgoing edges. GraphLab [2] abstracted asynchronous and

dynamic computation, and developed pipelined locking and

data versioning to reduce network congestion. Gemini [3]

extended the hybrid push-pull computation model from shared-

memory to distributed scenarios. GraphX [27], built on top of

Apache Spark, represented graphs as horizontally-partitioned

collections and graph computation as dataflow operators on

those collections. PowerGraph [21] introduced a new approach

to distributed graph placement and representation that exploits

the structure of power-law graphs.

VII. CONCLUSION

We develop a graph processing system for Tencent’s

dataflow applications. PSGraph can scale to billion-scale graph

data by implementing a parameter server to manage graph

models. Further, PSGraph supports different kinds of graph

algorithms together by integrating Spark and PyTorch. We

describe the implementations of graph algorithms and evaluate

the performance of PSGraph via extensive experiments.
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