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Abstract—With the prevalence of positioning techniques, a
prodigious number of spatio-temporal data is generated con-
stantly. To effectively support sophisticated urban applications,
e.g., location-based services, based on spatio-temporal data, it is
desirable for an efficient, scalable, update-enabled, and easy-to-
use spatio-temporal data management system.

This paper presents JUST, i.e., JD Urban Spatio-Temporal
data engine, which can efficiently manage big spatio-temporal
data in a convenient way. JUST incorporates the distributed
NoSQL data store, i.e., Apache HBase, as the underlying storage,
GeoMesa as the spatio-temporal data indexing tool, and Apache
Spark as the execution engine. We creatively design two index-
ing techniques, i.e., Z2T and XZ2T, which accelerates spatio-
temporal queries tremendously. Furthermore, we introduce a
compression mechanism, which not only greatly reduces the
storage cost, but also improves the query efficiency. To make
JUST easy-to-use, we design and implement a complete SQL
engine, with which all operations can be performed through
a SQL-like query language, i.e., JustQL. JUST also supports
inherently new data insertions and historical data updates
without index reconstruction. JUST is deployed as a PaaS in JD
with multi-users support. Many applications have been developed
based on the SDKs provided by JUST. Extensive experiments are
carried out with six state-of-the-art distributed spatio-temporal
data management systems based on two real datasets and one
synthetic dataset. The results show that JUST has a competitive
query performance and is much more scalable than them.

I. INTRODUCTION

With the ubiquity of positioning techniques, a myriad of

spatio-temporal data is generated constantly. For example,

there are about 1T GPS logs generated by over 60,000 couriers

each day in JD1. Besides, there are more than 30 million orders

per day in JD online mall, where each order is associated with

a delivery address. These spatio-temporal data is very useful

for many urban applications. For example, the GPS logs of

couriers can help recovering digital maps in living areas [1],

which is essential for path planning and package dispatching.

The purchase orders give us insight into the economy or

functions of an urban area, which is important for location

selection and urban planning.

However, it is non-trivial to manage spatio-temporal data.

One reason is that, the spatio-temporal data is generated

continuously and can have huge size. Another reason is that,

the spatio-temporal data is inherently complex with at least

three dimensions, i.e., the latitude, the longitude, and the time

information. Traditional relational databases, such as Oracle

Spatial, MySQL Spatial and PostGIS, support spatio-temporal

Yu Zheng and Jie bao are the corresponding authors of this paper.
1https://en.wikipedia.org/wiki/JD.com

data management, but they usually fail when the data gets

large. In the last decade, distributed frameworks such as

Apache Hadoop [2] and Apache Spark [3] have been proved

to be scalable for big data storage and processing. The spatio-

temporal data management systems based on Hadoop, e.g.,

[4–8], could face the efficiency problem, as Hadoop stores its

intermediate result on the disk, resulting in multiple disk I/Os

even for a single job. Spark caches data in memory with an

abstraction of RDD (Resilient Distributed Dataset), therefore

it is more efficient for big data computing. Most of the Spark-

based spatio-temporal data management systems, e.g., [9–

15], build huge R-tree, KD-tree, or grid indexes in memory,

thus can achieve efficient spatio-temporal data management.

However, these systems load all data into memory, which

requires high-performance clusters with much memory. Hence,

their scalability is limited. Besides, when a spatio-temporal

request comes, they need to scan huge indexes, which is time-

consuming. Most of the Hadoop-based or Spark-based systems

do not support data updates, as the indexes they build contain

the correlations among different records. If there comes new

data, they will reconstruct indexes from scratch.

Distributed NoSQL (Not Only SQL) data stores, such as

HBase [16], achieve millions of updates per second. However,

due to lack of secondary indexes, these NoSQL data stores do

not natively support spatio-temporal data management. There

are many spatio-temporal data management systems [17–22]

based on NoSQL data stores. For example, GeoMesa [17], an

open-source indexing tool, transforms multi-dimensional data

into one-dimensional keys. As a result, it can manage large-

scale spatio-temporal data on the top of distributed NoSQL

data stores. However, these systems are mainly for data

storage. They do not provide data processing methods or SQL

language. As a result, it is hard to use these systems, since we

need to dive into their development manuals, and implement

our own spatio-temporal analysis methods and predicates.

This paper presents JUST [23], i.e., JD Urban Spatio-

Temporal data engine, which can efficiently manage big

spatio-temporal data in a convenient way based on GeoMesa.

JUST has several notable characteristics: 1) Efficiency. We

find that the indexes built by the native GeoMesa are not

suitable for spatio-temporal range queries. To this end, we

design two novel indexing strategies, i.e., Z2T and XZ2T,

which expedites the query efficiency tremendously. We also

introduce a compression mechanism, which greatly reduces

the storage cost and improves the query efficiency by reducing

disk IOs; 2) Scalability. JUST is based on the distributed
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TABLE I
COMPARING JUST AGAINST OTHER SYSTEMS

Features JUST Simba STARK ST-Hadoop SparkGIS Hadoop-GIS SpatiolHadoop GeoSpark LocationSpark SpatialSpark MD-HBase BBoxDB
Category NoSQL Spark Spark Hadoop Spark MR/Hive Hadoop Spark Spark Spark NoSQL NoSQL

Scalabilitya Yes Limited Limited Yes Limited Yes Yes Limited Limited Limited Yes Yes
SQL Yes Yes Yes Yes No Yes Yes No No No No No

Data Update Yes No No Limitedb No No No No Yes No Yes Yes
Data Processing Yes No No No No Yes No Yes Yes No No No

S or STc S/ST S S/ST S/ST S S S S S S S S
Non-point data Yes Not Present No No No No No Yes Yes No No Yes
aWe test most of these systems in Section VIII. bST-Hadoop only supports data updates in future time. For historical data insertions, it fails.
cS and ST mean spatial and spatio-temporal data support, respectively.

NoSQL data store HBase, and uses Spark as execution engine.

Consequently, JUST can manage massive spatio-temporal

data with limited resources; 3) Update-enabled. The spatio-

temporal information is encoded in the keys of HBase, where

the key of a record has nothing to do with that of others.

As a result, JUST supports new data insertions or historical

data updates; 4) Easy to use. We design and implement a

complete SQL engine, and preset plenty of out-of-the-box

spatio-temporal analysis functions. All operations of JUST can

be done with a SQL-like query language, i.e., JustQL.

The contributions of this paper are summarized as follows:

(1) We design and implement a holistic distributed system,

i.e., JUST, with which users can efficiently manage big spatio-

temporal data in a convenient way.

(2) We propose two novel indexing techniques, i.e., Z2T

and XZ2T, in NoSQL environments, which accelerates spatio-

temporal queries tremendously. A compression mechanism is

introduced, which not only greatly reduces the storage cost,

but also improves the query efficiency.

(3) We implement a complete SQL engine with many out-

of-the-box operations preset, based on which all operations

can be performed through a SQL-like query language, i.e.,

JustQL. The SQL engine makes JUST extremely easy to use.

(4) JUST is deployed as a PaaS in JD with multi-users

support. Many urban applications have been developed based

on the SDKs provided by JUST. Extensive experiments using

two real datasets and one synthetic dataset show that JUST

outperforms six state-of-the-art systems in terms both of effi-

ciency and scalability. Readers can experience JUST in [23].

JUST is under active development now, and significant new

features are added frequently. This paper presents JUST of

version 1.1.0, which is released in Oct, 2019. The remainder

of this paper is organized as follows. We first review the related

spatio-temporal data management systems in Section II. The

architecture and data flow of JUST are presented in Section III.

Section IV to Section VII describe each layer of JUST,

respectively. We present the evaluation results in Section VIII,

and conclude this paper with future works in Section IX.

II. RELATED WORKS

In this section, we review related works from four aspects:

1) Relational Databases, 2) Hadoop-based Systems; 3) Spark-

based Systems; and 4) NoSQL-based Systems.

Relational Databases. Traditional relational databases, e.g.,

Oracle Spatial, MySQL Spatial, and PostGIS, integrate spatial

data types and operations to manage spatial data. These sys-

tems build spatial indexes, such as R-tree, K-D tree, or Quad-

tree for fast spatio-temporal queries. However, they always

encounter bottlenecks in big data scenarios. For example, they

usually lack effective spatial partition mechanisms to achieve

load balance. As a result, they suffer from a scalability issue,

especially for the complex spatial data types.

Hadoop-based Systems. Hadoop is a disk-based distributed

framework, providing high scalability, high availability and

fault tolerance for big data storage and processing. There

are many spatial or spatio-temporal systems built upon

Hadoop [4–8]. For example, SpatialHadoop [5, 6] extends

Hadoop to support spatial data types and functions. It pro-

poses spatial partitioning and indexing methods, and supports

spatial range queries, k-NN queries, and spatial joins. Hadoop-

GIS [7] extends Apache Hive with a unified grid index to

support spatial data queries. It proposes a spatial query engine

with an optimizer, i.e., RESQUE, and a multi-layer index

to optimize spatial partitioning and parallel processing over

MapReduce. Neither SpatialHadoop nor Hadoop-GIS supports

spatio-temporal queries. ST-Hadoop [7] is an extension of

SpatialHadoop that integrates spatio-temporal concepts in each

layer of SpatialHadoop, thus it can support spatio-temporal

range queries and joins. Although these systems exhibit

high scalability for spatial/spatio-temporal data management,

Hadoop will read and write the disks many times even for a

single job, which cuts down the system efficiency.

Spark-based Systems. Apache Spark is a distributed in-

memory computing system, which is built on the top of

RDD [3]. Comparing Hadoop, Spark is more efficient as it

caches data in memory as much as possible. However, Spark

itself does not support spatial/spatio-temporal data manage-

ment inherently. GeoSpark [9, 10] extends Spark by providing

Spatial RDDs (SRDDs) to support spatial range queries, k-

NN queries, and spatial joins. Nevertheless, SRDDs can only

retain one certain geometric type. Besides, GeoSpark lacks of

a global index, which limits its performance. SpatialSpark [11]

adopts fixed grid partitioning, binary space partitioning, and

tile partitioning on spatial data, and supports spatial range

queries. LocationSpark [12] provides a set of spatial query

operators, including spatial range queries, k-NN queries, and

spatial joins. It employs various spatial indexes, e.g., grid,

R-tree, Quad-tree, and IR-tree. It also designs a dynamic

memory caching framework, which flushes less frequently

accessed data into disk. To avoid out of memory excep-

tions, SparkGIS [13] employs dynamic query rewriting to
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manage large spatial query workflows that exceed available

resources. STARK [14] adds spatio-temporal support to Spark.

It includes spatial partitioners, various indexes, and multiple

operations. Simba [15] is built on SparkSQL that supports

SQL and DataFrame to manipulate spatial data. These Spark-

based systems load all data into memory, which requires

high-performance clusters with much memory. As a result,

their scalability is limited. Besides, for each spatio-temporal

request, they need to scan huge indexes, which is costly.

NoSQL-based Systems. NoSQL data stores, such as Cas-

sandra [24] and HBase [16], achieve millions of updates

per second, and provide high scalability, and random-access

data management. Many works [17–22] provide spatial or

spatio-temporal data access based on NoSQL. MD-HBase [18]

extends HBase to support spatial queries. It provides two index

structures, i.e., KD-tree and Quad-tree, to support spatial range

and k-NN queries. BBoxDB [19] designs a two-level index

on the top of NoSQL data stores, in which the global index

applies a KD-tree to map which node stores data, and the

local index uses an R-tree to locate the partition of each

data item in each node. However, these frameworks do not

support spatio-temporal data. GeoMesa [17] manages massive

spatio-temporal data over distributed NoSQL data stores. The

main idea behind GeoMesa is to transform multi-dimensional

data into one-dimensional linear keys using space filling

curves [25]. As a result, records closed in spatio-temporal

dimensions are converted into keys closed in lexicographical

order, thus these data can be stored and loaded efficiently in

a batch. Most of these NoSQL-based systems is hard to use.

Users need to delve into the handbooks and implement their

own spatio-temporal query predicates and operations.

Most existing spatio-temporal systems mentioned above do

not support data updates. They need to rebuild the indexes

from scratch with new data coming. JUST supports data up-

dates, and encapsulates various out-of-the-box data processing

methods. Table I compares the key features of JUST with

existing spatio-temporal systems.

III. ARCHITECTURE OF JUST SYSTEM

JUST adopts HBase as the underlying storage, GeoMesa as

the indexing tool, and Spark as the execution engine. Figure 1

presents the overall architecture of JUST, where the new

proposed modules are highlighted by orange boxes. As shown

in Figure 1, JUST comes with six layers:

Data Source Layer. JUST can load spatio-temporal data

from multiple data sources. Currently, JUST can load data

directly from 1) disk files of CSV/GPX/KML/GeoJson format

in a single machine or HDFS; 2) tables in a Apache Hive [26];

and 3) tables in Apache HBase [16].

Indexing & Storing Layer. In this layer, JUST builds

spatial or spatio-temporal indexes over the loaded data. We

propose various novel indexing strategies to accelerate spatio-

temporal range queries. Besides, we innovatively identify three

types of data tables and one type of meta table. Moreover,

we devise a novel compression mechanism, which not only

reduces the underlying storage size, but also expedites the

Fig. 1. Architecture of JUST.

query efficiency by reducing disk IOs (detailed in Section IV).

Operation Layer. This layer presets four types of opera-

tions: 1) Definition Operation, which creates/drops tables or

views in JUST; 2) Manipulation Operation, which inserts data

into JUST tables; 3) Query Operation, which retrieves data

from tables or views; and 4) Analysis Operation, which en-

capsulates various spatio-temporal data mining and processing

functions, such as trajectory preprocessing, trajectory map-

matching, and spatial clustering (detailed in Section V).

SQL Layer. This layer seamlessly integrates with Spark

SQL. In other words, all functions of Spark SQL are supported

by JUST. It first parses a query statement into a parse tree,

then generates a logical plan. We propose a logical optimizer

to convert the logical plan into a better one. Finally, JUST

intelligently transforms the logical plan into Spark SQL oper-

ations or JUST operations (detailed in Section VI).

Service Layer. To support multiple users, while eliminating

the cost of Spark context construction for each user, JUST

maintains a Spark context shared by all users, which speeds

up the query processing tremendously. Besides, JUST provides

multiple programming language SDKs, including Java SDK

and Python SDK (detailed in Section VII).

Application Layer. Users can use JUST to manage spatio-

temporal data through either JUST web portal or JUST jupyter

notebook [23]. In addition, developers can build their own ur-

Fig. 2. Data Flow of JUST.
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Fig. 3. Indexing Strategies of Native GeoMesa.

ban spatio-temporal applications based on the SDKs provided

by JUST (detailed in Section VII).

Figure 2 illustrates the complete data flow of JUST. The

spatio-temporal data is loaded from external data sources into

GeoMesa using Spark (in the rest of this paper, we call

GeoMesa along with its underlying storage as GeoMesa).

GeoMesa would build spatio-temporal indexes for these data

according to the configuration of users. These two processes

need to be done only once. To answer a spatio-temporal

query, JUST first performs spatio-temporal operations over

GeoMesa using Spark, then transforms the result into Spark

DataFrame. Thus we can leverage the complex aggregate

operations, e.g., GROUP BY, and other powerful functions of

Spark SQL. If the final result is smaller than a configurable

parameter, it would be directly returned to users. Otherwise,

to avoid an out-of-memory exception of the driver program,

the result will be returned to users in multiple transmissions.

Specifically, JUST would split the result to a set of small parts,

and store them into HDFS. Driver program would read these

HDFS files one by one. This process is handled by the JUST

SDKs, and transparent to end users. Users can traverse the

result in a way like the database cursor.

IV. INDEXING & STORING LAYER

In this section, we first briefly introduce some existing in-

dexing strategies provided by GeoMesa. However, as existing

indexing strategies are not fit for spatio-temporal range queries

in most cases, we propose various novel indexing strategies to

accelerate spatio-temporal queries tremendously. Finally, we

elaborate the underlying storage data models of JUST.

A. Existing Indexing Strategies of GeoMesa

GeoMesa provides various indexing strategies, some of

which that are related to this paper including:

Z2 and Z3 Indexing Strategies. Z2 and Z3 indexing

strategies are used to index point-based data. Z2 is based on Z-

ordering [27] function to project two-dimensional geographical

coordinates onto one-dimensional keys, which support spatial

range query efficiently. As shown in Figure 3a, it first respec-

tively encodes the latitude lat and longitude lng of a record

into a binary vector B, which is in a way like a binary search.

If the value is located in the left half of the search space, it

appends “0” to B, otherwise, it appends “1”. This process is

repeated until the length of B is reached to a specified value

α. After that, it crosswise combines the two binary codes into

a single one, as shown in Figure 3b.

Z3 is proposed to support spatio-temporal range query. It

regards the time as the third dimension. As the time dimension

is unbounded, Z3 breaks it into disjoint time periods (e.g., a

day, a week, a month, or a year), as shown in Figure 3c. The

time period number is calculated by Equ (1):

Num(t) = �(t−RefT ime)÷ T imePeriodLen� (1)

where RefT ime is the reference time (e.g., 1970-01-

01T00:00:00Z), and T imePeriodLen is the time span of

a time period. For each time period, Z3 encodes the time

using the same technique. Figure 3d gives an example of time

encoding with the time period of a day. Finally, Z3 crosses

spatio-temporal codes into a single one, as shown in Figure 3e.

XZ2 and XZ3 Indexing Strategies. XZ2 and XZ3 are

for non-point data (e.g. polygons or lines) based on XZ-

ordering [28], an extension of Z-ordering. The main idea of

XZ2 is to find a square that just contains the spatial MBR

(Minimum Bounding Rectangle) of a record. For example, in

Figure 3f, XZ2 finds the orange square to represent the line l.
Likewise, by taking the similar technique of Z3, XZ3 wants

to find a cube to stand for a spatio-temporal range.

For each indexing strategy, GeoMesa adds a random prefix

to the generated keys, which distributes records across region

servers and achieves load balance. For more details about the

indexing strategies of GeoMesa, please refer to [17, 28, 29].

B. Z2T Indexing Strategy

Motivation. We find that in most cases, the spatio-temporal

range query efficiency is much slow with Z3 indexing strategy.

For example, if we want to retrieve the data records in a 1km×
1km spatial area from 01:00 to 13:00 in one day (this is a very

generic query in many urban applications), we might get a key

range shown as Figure 4a. It covers most part of a time period,

where most of them are beyond the interested spatial area. As

a result, we need to scan most of the data records, regardless

of the fact that we are only interested in a small spatial region.

After taking a closer look at it, we find the primary reason

is that, the scale of spatial dimension is different from that

of temporal dimension. The ratio of interested time range

with respect to the time period (e.g., (13 − 1)/24) is much

greater than the ratio of interested spatial range with respect

Fig. 4. Motivation for Z2T.
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to the Earth area (e.g., (1 × 1)/510, 100, 000). Combining

the spatio-temporal codes together from scratch may result

in the invalidation of spatial filtering. To mitigate this issue,

one may select a longer time period (e.g., a month or a

year provided by GeoMesa). However, even if we select the

longest time period provided by GeoMesa, i.e., a year, the time

dimension still plays the major role (i.e., (13−1)/(365×24) vs

(1×1)/510, 100, 000), thus makes the spatial filtering useless.

One may add even longer time periods, e.g., a decade or a

century, to GeoMesa. It does not work because: 1) the temporal

range of a query varies from several minutes to several months,

a fixed time period cannot cope with all of these situations;

and 2) if the time period is set too long, we cannot make full

use of the time period number to perform temporal filtering,

as all data records fall into the same time period.

Z2T Indexing Strategy. Borrowing the idea from [30], we

propose Z2T indexing strategy, which first divides the time

dimension into multiple disjoint time periods, then builds

an individual Z2 index for the data records falling in each

time period, as shown in Figure 4b. Specifically, to index a

point-based spatio-temporal record r = (lng, lat, t), we first

calculate the time period number according to Equ (1), then

calculate its spatial code using the Z2 function Z2(lng, lat).
In short, the key combination of Z2T indexing strategy for a

record r = (lng, lat, t) is shown as Equ (2):

Num(t) :: Z2(lng, lat) (2)

where “::” means a concatenation operation.

To answer a spatio-temporal range query (lngmin, latmin,
tmin, lngmax, latmax, tmax) using Z2T indexing strategy,

there are three steps. 1) We find all time periods that in-

tersect with [tmin, tmax]. Suppose m = Num(tmin), n =
Num(tmax), then all of the time periods T imePeriodi,
m ≤ i ≤ n, are qualified. 2) For each qualified time

period TimePeriodi with a time period number i, we gen-

erate a key range [keymin, keymax], where keymin = i ::
Z2(lngmin, latmin), and keymax = i :: Z2(lngmax, latmax).
3) We trigger SCAN operations over the underlying key-value

data store in parallel using the key ranges.

Discussion. The difference between Z2T and Z3 is that, Z2T

builds a Z2 index instead of Z3 index in each time period. We

can select a relatively small time period, e.g., a day or a week,

in Z2T, thus we can use the time period to perform temporal

filtering, meanwhile keep the spatial filtering ability with Z2.

C. XZ2T Indexing Strategy

Motivation. XZ3 is designed for non-point-based spatio-

temporal data (e.g., lines or polygons). However, like Z3, as

the different scales between spatial dimension and temporal

dimension, XZ3 would cause the spatial filtering ability to be

lost, too. For example, as shown in Figure 5a, XZ3 aims to

find a cube (marked in green) in the search space (marked

in black) to represent the spatio-temporal data (whose MBR

are marked in red). In most cases, the time dimension of the

data is much larger than the spatial dimension, i.e., the spatial

information does not take effect. As a result, it makes the

Fig. 5. Motivation for XZ2T.

spatial filtering invalid, which further results in scanning all

data in each qualified time period.

XZ2T Indexing Strategy. To address above issue, this paper

proposes a new indexing strategy, i.e., XZ2T. Similar to Z2T,

XZ2T first splits the time dimension into multiple disjoint

time periods, then constructs an individual XZ2 index in

each time period, as presented in Figure 5b. To index a non-

point-based spatio-temporal record r, we first get its MBR

r.mbr = (lngmin, latmin, tmin, lngmax, latmax, tmax), then

calculate the time period that r falls in according to Equ (1).

Note here we use tmin to calculate the time period number

Num(tmin). Finally, we compute the spatial code using XZ2

function XZ2(lngmin, latmin, lngmax, latmax).
In summary, the key combination of XZ2T indexing strategy

for the record r with the MBR r.mbr = (lngmin, latmin,
tmin, lngmax, latmax, tmax) is shown as Equ (3):

Num(tmin) :: XZ2(lngmin, latmin, lngmax, latmax) (3)

The process to answer a spatio-temporal range query using

XZ2T is similar to that of Z2T.

D. Storage Data Models
The spatio-temporal data is stored in the underlying key-

value NoSQL data store of GeoMesa, with the keys generated

using one of the indexing strategies introduced above. We

categorize the tables in JUST into three types of data tables

and one type of meta table: Common Table, Plugin Table, View
Table, and Meta Table.

Common Table. We call the table supported by GeoMesa

itself as common table. Common table is the most flexible.

Users can store most primitive types, geometric types, and our

new proposed data types, e.g., st_series and t_series,

in a common table. For example, users can create a common

table using the following JustQL statement in JUST:
CREATE TABLE <tableName> (
fid integer:primary key,
name string,
time date,
geom point:srid=4326,
gpsList st_series:compress=gzip|zip

) [USERDATA {’geomesa.indices.enabled’:’z3’}]
where the contents in “[∗]” are optional. USERDATA, followed

by a JSON string, is the hint to configure GeoMesa, e.g., to

tell GeoMesa to build only Z3 index. We creatively propose

a compression mechanism for the field with huge bytes. For

example, we compress the field of gpsList with the gzip or

zip method. The compression of fields not only reduces the

storage cost, but also accelerates the query efficiency through

reducing the disk IOs.

Plugin Table. For easy of use, JUST introduces a new concept,

i.e., plugin table, which predefines the underlying storage
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schema and the default adopted indexes of a data structure. In

this way, users can reuse the codes to the maximum extent, and

focus their minds on the application logic. Another necessity

of plugin tables is that, some operations regard each row

of a plugin table as a complete entity. The projection of

partial fields of a plugin table could be meaningless. We add

an implicit field item for the plugin table, representing the

complete entity. For example, JUST presets a plugin table of

“trajectory” [31], whose fields are predefined as Figure 6. If

we want to perform a map-matching operation [32, 33] over

trajectories, we only need to retrieve the item field, and feed

it into a map-matching function.

Fig. 6. Partial Fields of Trajectory Plugin Table.

To create a plugin table of trajectory, one can simply input

the following JustQL statement.
CREATE TABLE <tableName>

AS trajectory [USERDATA {...}]
View Table. Recall that in Figure 2, to answer a spatio-

temporal query, we should first retrieve data from the disk

in GeoMesa. The query results might be used for further

processing and analysis. To avoid retrieving data from the disk

for every data analysis, we can cache the intermediate results

in memory as Spark DataFrame, called view tables, using

the following JustQL statement.

CREATE VIEW <viewName> AS SELECT ...

Once the user sessions are time out, their view tables

would be cleared up from the memory. Users can store their

view tables into common tables or plugin tables, using the

following statement. If the common tables or plugin tables do

not exist, JUST will create them automatically. View tables

greatly expedite the analysis efficiency of JUST, achieving an

objective of “one query, multiple usages”.

STORE VIEW <viewName> TO TABLE <tableName>

Meta Table. Meta tables record the meta information of data

tables in JUST, which is very useful in data exploration and

query optimization. For example, meta tables indicate whether

a data table is a common table or a plugin table, record the

fields of a data table, and so on. Meta tables are transparent

to normal users, thus normal users cannot manipulate meta

tables directly. Meta tables are stored in a MySQL database,

as Apache Hive [26] does, because the sizes of meta tables

would not be too large, and we can benefit from the remarkable

advantages of the relational database, such as full transaction

support, powerful integrity constraint, and so on.

In the following, we call common tables and plugin tables

as tables, but view tables as views.

V. OPERATION LAYER

JUST provides a set of operations, which can be divided

into four categories: Definition Operations, Manipulation Op-
erations, Query Operations, and Analysis Operations.

A. Definition Operations
This type of operations changes the structure of tables or

views in JUST. There are three types of definition operations:

(1) Create or drop tables or views in JUST. Examples of

creating tables and views are given in Section IV-D. Here gives

an example of dropping tables or views.

DROP TABLE|VIEW <tableName|viewName>

JUST will delete corresponding records in the meta table, and

drop the given table in disk, or the given view in memory.

(2) List the authorized tables or views. It is efficient as we

need only to visit the meta table in MySQL.

SHOW TABLES|VIEWS
(3) Describe the fields of a given table or view. As the

field information of a table is stored in the relational MySQL

database, we can get the results efficiently.

DESC TABLE|VIEW <tableName|viewName>

B. Manipulation Operations
This type of operations stores data into JUST tables. We

have described the method to store data into tables from views

in Section IV-D. We can also load data from external data

sources. For example, to load data from Hive data warehouse,

we can use the following statement:
LOAD hive:<hiveDatabaseName.hiveTableName>
TO geomesa:<tableName>
CONFIG {
’fid’: ’trajId’,
’time’: ’long_to_date_ms(timestamp)’,
’geom’: ’lng_lat_to_point(lng, lat)’,
...

}
[FILTER ’trajId="1068" limit 10’]

where the JSON string following CONFIG is the field mapping

relationship between the hive table and the JUST table. We

preset a bunch of functions to transform the data types of Hive

to that of JUST. The SQL filtering string, following FILTER,

allows users to select partial data in Hive tables to be loaded.

C. Query Operations
Query operations select data from tables or views. Currently,

JUST supports spatial or spatio-temporal filtering and field

value filtering operations over tables. Other complex queries

like aggregate operations and JOIN operations, are also sup-

ported on views by leveraging Spark SQL. In this paper, we

mainly focus on the most widely used three types of spatial

or spatio-temporal query operations: Spatial Range Query,

Spatio-Temporal Range Query, and k-NN Query.

Spatial Range Query. Given a spatial dataset D and a rect-

angular spatial range S = (lngmin, latmin, lngmax, latmax),
a spatial range query aims to find all records r ∈ D, where

r locates in the spatial range S. Spatial range query is very

useful in many location-based services. For example, we can

use a spatial range query to answer the questions like: “what

are the restaurants within three kilometres of me?”

By default, JUST builds a Z2 index for point-based spatial

data, and XZ2 index for non-point-based spatial data. Users

can use the following statement to perform a spatial range

query. JUST would first generate key ranges according to the
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given MBR, using the Z2 or XZ2 function, then trigger SCAN
operations over the underlying NoSQL data store.
SELECT fid, name, time, geom
FROM <tableName>
WHERE geom WITHIN st_makeMBR(lngmin, latmin,

lngmax, latmax)

where geom is the name of geometry field (the same below).

Spatio-Temporal Range Query. Given a spatio-temporal

dataset D, a rectangular spatial range S = (lngmin, latmin,
lngmax, latmax), and a temporal range T = (tmin, tmax),
a spatio-temporal range query returns all records r ∈ D,

where r is generated during T and locates in the spatial range

S. Spatio-temporal range query can be used in many urban

applications, e.g., traffic flow prediction [34], where we use

spatio-temporal range query to get the trajectories passing a

specified spatial area during a certain time interval.

JUST builds a Z2T index (for point-based data) or ZX2T

index (for non-point-based data) for the data with spatio-

temporal fields by default. To perform a spatio-temporal range

query in JUST, users need only to input the following JustQL

statement. JUST would first calculate key ranges by the given

spatio-temporal parameters, then perform SCAN operations on

the underlying NoSQL data store.
SELECT fid, name, time, geom
FROM <tableName>
WHERE geom WITHIN st_makeMBR(lngmin, latmin,

lngmax, latmax) AND time BETWEEN tmin AND tmax

k-NN (Nearest Neighbor) Query. Given a spatial dataset D,

a query point q = (lng, lat), and a positive integer number k,

k-NN query finds a set of records D′ ⊆ D, where |D′| = k,

and for each ri ∈ D′, rj ∈ D \ D′, d(q, ri) < d(q, rj).
Here d(∗, ∗) is a distance function between two geometries.

This paper focuses on the point-based records for k-NN query.

Other non-point-based records, such as lines or polygons are

also supported by JUST. We adopt Euclidean distance for

simplicity in this paper. k-NN query is widely used in dispatch

systems. For example, taxi companies use this function to find

the nearest taxi cab to pick up a passenger.
SELECT fid, name, time, geom
FROM <tableName>

WHERE geom IN st_KNN(st_makePoint(lng, lat),k)

Users can use above statement to trigger a k-NN query.

JUST regards spatial range query as a building block, whose

main idea is to iteratively expand the query spatial range, until

the most k nearest records are found. Algorithm 1 gives the

pseudo-code of k-NN query, which contains two steps:

(1) Initialization (Line 1-3). This step initializes some

variables. Here, cq is a priority queue that stores candidate

records; aq is a priority queue to record the areas that need

to be queried; and dmax is the currently maximum distance

between q and the records in cq. We define the distance

between a point q and an area a as the minimum distance

between q and any point p ∈ a, shown as Equ (4).

dA(q, a) = min
p∈a

d(q, p) (4)

(2) Expansion (Line 4-11). This step pops an area a from

aq. If there are k records in cq and the distance between q

Algorithm 1: k-NN query

Input: Dateset D, query point q, positive integer k.
Output: k-NN query result D′.

1 Initial a priority queue cq with a max size k, whose elements
r are ordered by d(q, r);

2 Initial a priority queue aq with the whole spatial area, whose
elements a are ordered by dA(q, a);

3 dmax = 0; // Maximum distance currently
4 while aq is not empty do
5 a = aq.pop();
6 if cq.size() = k ∧ dA(q, a) > dmax then
7 break; // Area Pruning

// g = 1km× 1km is a system parameter,
defining the minimum size of a

8 if the size of a > g then
9 Add the four children of a to aq; continue;

10 DSR = Spatial range query by a;
11 Add all p ∈ DSR to cq; dmax = d(q, cq.last());

12 return cq as Tknn;

and a is greater than dmax, the query process is terminated

(Lemma 1, denoted as Area Pruning), and the records in cq
are returned (Line 12). If the size of a is greater than a certain

one, we partition a into four equal size areas and add them

to aq, then continue to check the next area. Otherwise, we

trigger a spatial range query by a. Finally, we add all records

p ∈ DSR to dq, and update dmax.

Lemma 1. If dA(q, a) > dmax and |cq| = k, then we can
safely stop the expansion process for k-NN query.

Proof. For any record r that locates in a, we have d(q, r) ≥
dA(q, a) = min

p∈a
d(q, p) > dmax. That is to say, r would not

be in the k-NN result. Moreover, a is the nearest area in

aq to q, hence for all records r′ ∈ a′, a′ ∈ aq, we have

d(q, r′) > dmax. Thus, we can safely stop the expansion

process if dA(q, a) > dmax and |cq| = k.

Example. Figure 7 gives an example of k-NN point query

with k = 3, where the critical steps are shown in Figure 7b.

Fig. 7. Example of k-NN Query (k = 3).

D. Analysis Operations
JUST encapsulates various spatio-temporal analysis opera-

tions, which consist of three types:

1-1 Analysis Operations. This type of operations trans-

forms each row of a view into another one record, which

is implemented through Spark SQL UDF. For example, we

provide a series of coordinate transformation functions among

different standards. To transform a point from WGS84 to

GCJ02, we can use the following statement:
SELECT st_WGS84ToGCJ02(lng, lat)
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FROM <tableName|viewName>

1-N Analysis Operations. This type of operations converts

each row of a view to multiple records. The UDF mechanism

of Spark SQL is not supported for this case. We implement

our own executors for 1-N analysis operations. For example,

we provide variety of trajectory processing operations [33],

e.g., st_trajNoiseFilter, st_trajSegmentation,

st_trajStayPoint, and st_trajMapMatching. An

example of trajectory noise filtering is shown as follows.
SELECT st_trajNoiseFilter(item)

FROM <tableName|viewName>

where item is the implicit field of a trajectory plugin table.

N-M Analysis Operations. This type of operations converts

multiple rows of a view to one or more records. We implement

our new executors for this type of operations, as Spark SQL

does not support it. For example, JUST provides a spatial

clustering method DBSCAN [35] for users:
SELECT st_DBSCAN(geom, minPts, radius)

FROM <tableName|viewName>

where minPts and radius are the parameters of DBSCAN.

VI. SQL LAYER

One of the main goals of JUST is to make the system easy to

use. We realize a complete SQL engine based on ANTLR [36],

a powerful parser generator for structured text or binary files.

All operations in JUST can be done using a standard SQL-

like query language, i.e, JustQL, which greatly reduces the

learning curves of users. For example, if a user issues the

following statement, our SQL engine mainly performs three

tasks: 1) SQL Parse, 2) SQL Optimize, and 3) SQL Execute.
SELECT name, geom
FROM (
SELECT * FROM <tableName>

) t
WHERE fid=52*9 AND geom WITHIN
st_makeMBR(lngmin, latmin, lngmax, latmax)

ORDER BY time

SQL Parse. JUST first converts the SQL statement into a

syntax tree using an ANTLR-based parser. After that, JUST

retrieves schema information of the input tables from the

meta table. Using this information, JUST verifies field names,

expands select * and checks data types of the syntax tree.

Finally, we can get an analyzed logical plan. The analyzed

logical plan of the above SQL statement is shown as Figure 8a,

where each node represents a logical operation, and the

children of a node are its inputs.

SQL Optimize. The SQL optimizer transforms the logical

plan into a better one, by leveraging the following rules:

Fig. 8. Optimization of Logical Plan.

(1) Calculate constant expressions. For constant

expressions, JUST will calculate them first, and replace

them with their values, which avoids calculating expressions

for many times. For example, we can replace fid = 52

* 9 && geom within st_makeMBR(lngmin, latmin,
lngmax, latmax) with fid = 468 && geo within
mbr, where mbr is calculated by the user-given parameters.

(2) Push down selections. JUST pushes filtering predicates,

e.g., spatio-temporal range predicates or equality predicate,

closer to the table scan operators, which improves filtering

efficiency greatly. For example, JUST pushes fid = 468
&& geo within mbr to the scan of <tableName>.

(3) Push down projections. JUST pushes field selections

to the table scan operators as closer as possible. Besides,

JUST intelligently identifies the necessary fields for filtering,

ordering, grouping, and projection, and prunes the unnecessary

fields to minimize the amount of data transferred between

operators. In the given example, JUST only retrieves the fields

of name, geo, time, and fid from the underlying table.

After optimized through multiple algebra rules, the logical

plan of Figure 8a is transformed into Figure 8b.

SQL Execute. In this step, JUST translates the optimized

logical plan into GeoMesa operations or Spark SQL opera-

tions. Specifically, the predicates of spatial or spatio-temporal

filtering and field value filtering, as well as projections, are

performed by the underlying GeoMesa. The intermediate result

forms a Spark DataFrame, with which complex query pred-

icates, like aggregate operations, JOIN operations, or analysis

operations, are performed by Spark SQL. Integrating Spark

SQL into our SQL layer allows us realize complex operations

and analysis with less efforts.

VII. SERVICE LAYER AND APPLICATION LAYER

In this section, we first briefly review the implementation of

context & user management in the service layer, then exhibit

two applications that are developed based on JUST in JD.

A. Context & User Management

GeoMesa and Spark themselves do not support multiple

thread-level users. To run a spatio-temporal operation, Spark

will create a single Spark session, which is time-consuming.

Besides, GeoMesa does not distinguish tables of different

users. In service layer, JUST maintains a Spark context shared

by all users based on Spark Job Server [37], thus can eliminate

the cost of Spark session construction. Moreover, we build

a namespace for each user, i.e., for the tables or views of

a user, we add a unique prefix to their names, which is

transparent to users. As a result, JUST supports multiple users

simultaneously, while these users do not affect each other.

B. SDKs & Applications

JUST provides multiple programming language SDKs, i.e.,

Java SDK and Python SDK. These SDKs communicate with

JUST through HTTP protocol, where JUST acts as a PaaS

(Platform as a Service). Many urban applications have been

developed based on the JUST SDKs in JD.
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Fig. 9. Two Applications of JUST in JD.

Urban Block Indicator System. This system is built to give

a general overview of any urban area (a.k.a. address portrait).

It first partitions the spatial space into about 150m × 150m
grids (where the GeoHash code2 has a length of 7), then

calculates multiple indicators of each grid, e.g., purchasing

power, air quality, traffic flow, etc. The indicators of fine-

grained urban areas are very helpful for billboard placement,

location selection, and urban planning. However, there are

about 2, 400, 000km2 urban areas in China3. If there are

only ten records in each grid each day, there are over ten

million records per day, which can be hardly supported by

traditional spatial database. To this end, Urban block indicator

system adopts JUST as the underlying storage, using the XZ2T

indexing strategy. Users can search the indicators of any area

using a spatio-temporal range query, as shown in Figure 9a.

Map Recovery System. This system [1] utilizes the trajecto-

ries of couriers in JD Logistics to recover the road networks

of living areas, which could be missing in commercial maps.

A complete map is essential for path planning and package

dispatching. The GPS logs of over 60,000 couriers are loaded

into JUST in batches each day. With the help of JUST to

manage and process trajectories, the map recovery system can

repair the road networks in living areas, and infer the speed

and traffic mode (e.g., riding or walking) of each road segment

with much fewer efforts, as shown in Figure 9b.

VIII. EVALUATIONS

In this section, we first depict the datasets and experimental

settings, then present the evaluation results.

A. Datasets & Settings

Datasets. To evaluate the performance of JUST, we use

two real spatio-temporal datasets and one synthetic dataset:

1) Traj, which contains the trajectories of 48,813 lorries in

JD Logistics; 2) Order, which includes the purchase orders

from JD Mall. Each order is associated with an order time t,
and a biased delivery address point for the purpose of privacy

protection; and 3) Synthetic, which is generated by copying

& sampling the Traj dataset up to 1T to test the scalability of

JUST. The statistics of the datasets are shown in Table II.

Settings. We test the efficiency of spatial range query, spatio-

temporal range query, and k-NN query of JUST. Table III

2https://en.wikipedia.org/wiki/Geohash
3https://dwz.cn/zowUkwDy

TABLE II
STATISTICS OF DATASETS

Attributes Traj Order Synthetic
# Points 886,593,200 71,007,530 8,865,932,000

# Records 314,086 71,007,530 3,140,860
Raw Size 136GB 10GB 1360GB

Time Span
2014/03/01 - 2018/10/01 - 2014/03/01 -
2014/03/31 2018/11/30 2014/12/31

TABLE III
STORAGE SETTINGS

Datasets Indexes Data Model
Traj XZ2 on MBR, XZ2T on MBR and T imestart Plugin Table

Order Z2 on point, Z2T on point and t Common Table
Synthetic XZ2 on MBR, XZ2T on MBR and T imestart Plugin Table

shows the storage settings. We set the time period of Z2T and

XZ2T as a day, and compress the GPSList field of the Traj

dataset with GZip, as it could have hundreds of GPS points in

a trajectory. Table IV summarizes the query parameters, where

the default values are in bold. Table V gives the softwares and

their versions used in our experiments. To eliminate the HBase

cache4, we randomly select 100 different query parameters,

perform each query only once, and take the median response

time of all queries as the final results. All experiments are

conducted on a cluster of 5 nodes, with each node equipped

with CentOS 7.4, 8-core CPU, 32GB RAM, and 1T disk.

TABLE IV
QUERY SETTINGS

Parameters Settings
Data Size (%) 20, 40, 60, 80, 100
Time Window 1h, 6h, 1d, 1w, 1m

Spatial Window (km2) 1× 1, 2× 2, 3 × 3, 4× 4, 5× 5
k 50, 100, 150, 200, 250

TABLE V
SOFTWARES IN THE EXPERIMENTS

Software Version Software Version Software Version
Hadoop 2.7.6 GeoMesa 2.3.0 JDK 1.8
Spark 2.3.3 HBase 1.4.9 Scala 2.11

Baselines. We compare JUST with six state-of-the-art

spatial/spatio-temporal systems5, where their supported

queries are shown as Table VI. To verify the effectiveness of

compression mechanism and Z2T/XZ2T indexing strategies

proposed by this paper, we compare two variants:

• JUSTnc, which does not use the compression method for

the field of GPSList in the Traj dataset;

• JUSTd/JUSTy/JUSTc, which use Z3/XZ3 indexing

strategies with the time period as a day, a year, or a century,

respectively (we extend a century of time period as GeoMesa

does not support it).

B. Performance of Storage & Indexing

Storage Performance. Figure 10a and Figure 10b show the

storage costs of JUST with different raw data sizes. Note here

that the storage costs include both of the index structures

4HBase will cache results in memory to expedite the same queries.
5We test most available systems. [19] runs failed in our experiments, though

we have resorted to its authors. [14] runs out of memory even for 20% of the
Order dataset. [18] and [7] are out of date.
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Fig. 10. Performance of Storage & Indexing.
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Fig. 11. Performance of Spatial Range Query (for SpatialSpark, the Data Size of Traj is 80%).

TABLE VI
COMPARING SYSTEMS AND THEIR SUPPORTED QUERIES

Systems S ST k-NN Systems S ST k-NN
ST-Hadoop [4]

√ √ √
SpatialHadoop [5, 6]

√ × √
Simba [15]

√ × √
GeoSpark [9, 10]

√ × √
SpatialSpark [11]

√ × × LocationSpark [12]
√ × √

(i.e., the keys) and the data (i.e., the values) itself. As we

can see, with more raw data, it needs more storage space

for both datasets. For the Traj dataset, JUST takes much less

space than JUSTnc, which verifies the effectiveness of our

proposed compression mechanism. It is interesting to see that

storing 136GB trajectories only needs about 30GB storage

space. However, for the Order dataset, if we compress its fields

(i.e., the JUSTcompress line in Figure 10a), it surprisingly

takes a little more space than that we do not. Because for

small data with only several bytes, its compressed version is

usually bigger than itself. The lesson we can learn is that,

our compression mechanism is only suitable for big fields

(e.g., the GPSList field of the Traj dataset). To this end, in

the following experiments, we do not adopt the compression

techniques for the Order dataset.

Indexing Performance. Figure 10c and Figure 10d illustrate

the indexing performance of different systems. Note that for

JUST and its variants, the indexing time includes both the

cost of indexing and storing. As a result, for the Order dataset,

JUST takes more time than the Spark-based systems. However,

for the Traj data, JUST takes much less time than SpatialSpark

and Simba. The reason could be that SpatialSpark and Simba

build huge indexes in memory. When the memory is about to

run out, they incur disk thrashing. Indeed, Simba throws an

out of memory exception when the data size of Traj is 40%,

and SpatialSpark fails when the data size of Traj is 100%. The

results of Hadoop-based systems, i.e., SpatialHadoop and ST-

Hadoop, are not presented, because they takes more than three

hours even for 40% of Order data (we find that they spend

too much time to serialize and store the indexes). Moreover,

JUST takes less time than JUSTnc, because the compressed

Traj dataset has a smaller size, which incurs less disk IOs.

C. Performance of Spatial Range Query

Different Data Sizes. As shown in Figure 11a and Figure 11b,

with a bigger dataset, all systems need more time to answer a

spatial range query, as more data is scanned and returned.

We do not present ST-Hadoop here because ST-Hadoop is

based on SpatialHadoop, thus shows the same results with

SpatialHadoop. JUST is much faster than SpatialHadoop, and

can achieve similar query performance to the Spark-based

systems, as JUST encodes the spatial information into the

keys of the NoSQL data store, which allows us to locate

the qualified records directly. However, JUST is much more

scalable than the Spark-based systems. For example, Simba

runs out of memory when the data size of Traj is over 20%,

and LocationSpark has the same problem even for 20% of

Traj data. JUST is faster than JUSTnc, although JUST would

decompress the Traj data, which indicates that the disk IOs

play major role when answering a spatial range query.

Different Spatial Windows. Figure 11c and Figure 11d show

that, with a bigger spatial window, most systems spend more

time for spatial range query. Because with a bigger spatial

window, more data will be returned, which triggers more disk

IOs. Simba and SpatialSpark seem faster than JUST for the

Order data, as they store all data in memory. However, for

the Traj data, JUST runs faster than SpatialSpark, although

SpatialSpark stores only 80% of the data. The reason could be

SpatialSpark builds huge indexes in memory. For each spatial

range query, it needs to scan the huge indexes, which is costly.

D. Performance of Spatio-Temporal Query

Different Data Sizes. Figure 12a shows the query efficiency

varies with different data sizes of the Order dataset. The

results of the Traj dataset are not presented as it shows similar
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Fig. 12. Performance of Spatio-Temporal Range Query (for ST-Hadoop, the Data Size of Order is 20%).
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Fig. 13. Performance of k-NN Query.

results with that of Order data, as well as the page limitation.

The results of ST-Hadoop are not shown here, because ST-

Hadoop runs too slowly even for 20% of the Order data

(the querying time is as high as 11,330ms). There are three

observations: 1) with more data, the time of spatio-temporal

query gets larger for all methods, because it scans and returns

more data; 2) JUST is faster than other methods, because

the Z2T indexing strategy proposed by this paper avoids the

invalidation of spatial filtering caused by the different scales

between spatial dimension and time dimension; 3) the spatio-

temporal query performance with a bigger time period is

better than that with a smaller one, which demonstrates the

correctness of our analysis.

Different Spatial Windows. Figure 12b and Figure 12c

present the query time with different spatial windows for

the two real datasets. It is observed that: 1) with a bigger

spatial window, all methods need more time to answer a

spatio-temporal range query, as we retrieve and return more

data; 2) although JUST and its variants are based on the

100% of Order dataset, they achieve an order of magnitude

improvement with regard to ST-Hadoop (with only 20% of

Order data), because it is expensive for ST-Hadoop to start

a MapReduce job; 3) for the Traj dataset, JUST is faster

than JUSTnc, as its storage size is much smaller than that

of JUSTnc, which reduces the disk IOs; 4) JUST is faster

than JUSTd, JUSTy , and JUSTc, which is due to the proposed

XZ2T indexing strategy; 5) the cost of querying the Traj

dataset is a little more than that of Order dataset, because

the size of Traj is bigger than that of Order. It would scan and

return more data for Traj dataset.

Different Time Windows. Figure 12d compares the spatio-

temporal range query time with different time windows for

Order data. The result for Traj dataset is not presented, as it

is similar with that of Order data. With a bigger time window,

all methods need more time, because a bigger time window

means more qualified records. ST-Hadoop is much slower than

JUST and its variants, for the bottleneck of disk IOs.

E. Performance of k-NN Query

Different Data Sizes. As shown in Figure 13a and Figure 13b,

with a bigger data size, it takes more time to answer a k-NN

query, because in each expansion process of k-NN query, we

trigger a spatial range query, which scans more records. For

the smaller Order data, JUST shows a competitive performance

comparing Simba, but for the bigger Traj data, Simba runs an

out of memory exception when the data size is 40%.

Different k Values. Figure 13c and Figure 13d depict the

performance of k-NN query varies with different k values. As

we can see, with a bigger k, all systems need slightly more

time, because we should expand more times and trigger more

spatial range queries to get the most k nearest records. JUST

is much more efficient than GeoSpark and LocationSpark, as

JUST locates the qualified records directly, and triggers SCAN
operations in parallel. JUST is a little better than JUSTnc,

owing to the proposed compression mechanism.

F. Scalability of JUST
To test the scalability of JUST, we conduct a set of ex-

periments using the Synthetic dataset, whose size is over 1T.

As shown in Figure 14a, both indexing time and storage size

increase linearly with an increasing data size from 20% to

100%, as we need to process more data. JUST only takes

about 1.5 hours and 313GB disk space to index over 1T data,

which is owed to the proposed compression mechanism.
Figure 14b shows that, both k-NN query and spatial range

query take more time with a bigger dataset, because there is

more data scanned and returned. However, the efficiency of

spatio-temporal query has nothing to do with the data size, as

it scans and returns the same results no matter how big the

dataset is. For a spatio-temporal query, JUST can locate the

qualified time periods directly. In each qualified time period,

the amount of records is not affected by new added data.
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Fig. 14. Scalability of JUST.

IX. CONCLUSION AND FUTURE WORKS

This paper presents JUST, a distributed spatio-temporal

data management system which is efficient, scalable, update-

enabled and easy to use. JUST employs two novel indexes, i.e.,

Z2T and XZ2T, and introduces a compression mechanism to

improve spatio-temporal query performance. Besides, a SQL-

like query language, i.e, JustQL, is designed and various

spatio-temporal operations are preset to improve the usage

convenience. Experiments based on two real datasets and one

synthetic dataset verify the powerful scalability and efficiency

of JUST. Currently, JUST is deployed as a PaaS in JD,

supporting various urban spatio-temporal applications.

There are many important avenues to perfect JUST: 1) We

are working towards supporting more data sources, especially

the streaming data sources such as Kafka. 2) We will add

more spatio-temporal data types as plugin tables, and more

analysis operations to JUST, which can make JUST more

convenient to manage spatio-temporal data. 3) JUST currently

has a naive rule-based optimizer with a small number of simple

rules. We plan to build a cost-based optimizer to make JUST

more efficient. 4) At present, JUST is more suitable for OLAP.

For each query request, JUST sets up a Spark job, which is

costly for scheduling cluster resources. If JUST intelligently

selects a single-machine version for a small data request, we

can achieve a goal of combining OLAP and OLTP together.
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[19] J. K. Nidzwetzki and R. H. Güting, “Bboxdb-a scalable data store for
multi-dimensional big data,” in CIKM. ACM, 2018, pp. 1867–1870.

[20] N. Du, J. Zhan, M. Zhao, D. Xiao, and Y. Xie, “Spatio-temporal data
index model of moving objects on fixed networks using hbase,” in CICT.
IEEE, 2015, pp. 247–251.

[21] Y.-T. Hsu, Y.-C. Pan, L.-Y. Wei, W.-C. Peng, and W.-C. Lee, “Key
formulation schemes for spatial index in cloud data managements,” in
MDM. IEEE, 2012, pp. 21–26.

[22] X. Tang, B. Han, and H. Chen, “A hybrid index for multi-dimensional
query in hbase,” in CCIS. IEEE, 2016, pp. 332–336.

[23] “Academic homepage of just,” http://just.urban-computing.com/, 2019.
[24] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[25] H. S, Space-filling curves. Springer Science & Business Media, 2012.
[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” VLDB, vol. 2, no. 2, pp. 1626–1629, 2009.

[27] J. A. Orenstein and T. H. Merrett, “A class of data structures for
associative searching,” in SIGMOD. ACM, 1984, pp. 181–190.

[28] C. B, G. K, and H.-P. K, “Xz-ordering: A space-filling curve for objects
with spatial extension,” in SSD. Springer, 1999, pp. 75–90.

[29] J. N. Hughes, A. Annex, and et al., “Geomesa: a distributed architecture
for spatio-temporal fusion,” in Geospatial Informatics, Fusion, and
Motion Video Analytics V, vol. 9473. SPIE, 2015, p. 94730F.

[30] Y. Zheng, “Trajectory data mining: an overview,” TIST, vol. 6, no. 3,
p. 29, 2015.

[31] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng, “Trajmesa:
A distributed nosql storage engine for big trajectory data,” in ICDE.
IEEE, 2020.

[32] R. Li, S. Ruan, J. Bao, and Y. Zheng, “A cloud-based trajectory data
management system,” in SIGSPATIAL. ACM, 2017, p. 96.

[33] S. Ruan, R. Li, J. Bao, T. He, and Y. Zheng, “Cloudtp: A cloud-based
flexible trajectory preprocessing framework,” in ICDE. IEEE, 2018,
pp. 1601–1604.

[34] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting citywide
crowd flows using deep spatio-temporal residual networks,” Artificial
Intelligence, vol. 259, pp. 147–166, 2018.

[35] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in KDD, vol. 96, no. 34, 1996, pp. 226–231.

[36] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[37] “Spark job server,” https://github.com/spark-jobserver/spark-jobserver,

2019.

1569


