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Abstract— Oracle Database In-Memory (DBIM) provides
orders of magnitude speedup for analytic queries with its highly
compressed, transactionally consistent, memory-optimized
Column Store. Customers can use Oracle DBIM for making real-
time decisions by analyzing vast amounts of data at blazingly fast
speeds. Active Data Guard (ADG) is Oracle’s comprehensive
solution for high-availability and disaster recovery for the Oracle
Database. Oracle ADG eliminates the high cost of idle redundancy
by allowing reporting applications, ad-hoc queries and data
extracts to be offloaded to the synchronized, physical Standby
database replicated using Oracle ADG. In Oracle 12.2, we
extended the DBIM advantage to Oracle ADG architecture.
DBIM-on-ADG significantly boosts the performance of analytic,
read-only workloads running on the physical Standby database,
while the Primary database continues to process high-speed OLTP
workloads. Customers can partition their data across the In-
Memory Column Stores on the Primary and Standby databases
based on access patterns, and reap the benefits of fault-tolerance
as well as workload isolation without compromising on critical
performance SLAs. In this paper, we explore and address the key
challenges involved in building the DBIM-on-ADG infrastructure,
including synchronized maintenance of the In-Memory Column
Store on the Standby database, with high-speed OLTP activity
continuously modifying data on the Primary database.

Keywords—OLAP, Standby database, In-Memory Analytics

I. INTRODUCTION

Oracle Active Data Guard (ADG) [6] provides active-
standby replication for the Oracle Database. The Standby
database is a synchronized, physical copy of the Primary
database, typically hosted at a remote site. The Primary
communicates with the Standby database over a network
protocol like TCP/IP. Since the Standby database constitutes an
important part of disaster recovery, it typically lags the Primary
database by sub-second delays, thereby providing almost real-
time, read-only access to the database objects. Sub-second
delays are tolerable for a number of reporting applications
processing large datasets, like Big Data analytics. Offloading
such read-only workloads to the Standby database not only frees

up CPU on the Primary (Production) database for OLTP, but
also isolates batched reporting overheads from online processing
[3]. Figure 1 shows the high-level architecture of Oracle
Database deployed with Oracle ADG.
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This paper describes how we extended the DBIM
functionality [12] to the Oracle ADG architecture so that
analytic workloads that are offloaded to the Standby database
can run significantly faster. DBIM-on-ADG architecture is
designed to allow for independent scale-out of the Primary as
well as Standby databases using Oracle Real Application
Clusters (RAC) [9], providing enterprise-scale customers full
autonomy in scaling up their OLTP or read-only workloads.

Capacity Expansion Capability: When the In-Memory
Column Store (IMCS) is configured for both Primary and
Standby databases, the data populated in the IMCS on the two
databases could be a completely different set of objects. This
technique effectively increases the size of the IMCS. In a typical
configuration, customers can create three services: Standby-
only, Primary-only, and Primary-and-Standby using Oracle’s
Services Infrastructure [7]. As shown in Figure 2, the latest
month of the SALES fact table data is populated in the Primary
instance’s IMCS, but the entire year’s SALES data is populated
on the Standby instance for running analytics. The dimension
tables can be populated on both instances for efficient join
processing. For each partition of SALES data, the customer
therefore specifies either the standby or primary service, and for
each dimension table, the customer specifies a service that
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includes both Primary and Standby database instances.
Customers can thus achieve workload isolation using the IMCS
capacity expansion capability provided by the DBIM-on-ADG
infrastructure, and reap the benefits of faster analytics for
workloads run on both instances.
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Fig. 2. Example Deployment of DBIM on Primary and Standby instances

Distinction from DBIM infrastructure on the Primary
database: The unique replication architecture of Oracle ADG
necessitated a redesign of key components of the Oracle DBIM
infrastructure, specially the components that populate data in the
IMCS and maintain its transactional consistency. A major
challenge while designing the DBIM-on-ADG architecture was
to avoid compromising the key benefit of ADG — its disaster
recoverability. Disaster recoverability is a function of how
quickly the Standby database can sync up with the redo logs
being pushed by the Primary database. Thus, the DBIM-on-
ADG infrastructure is designed to add extremely thin layers of
overhead on the ADG architecture. The design performs
minimal processing in critical paths and piggybacks on the
massive parallelism employed by the Oracle ADG architecture.

The rest of this paper is organized as follows — Section II
provides an overview of Oracle ADG and Database In-Memory,
Section III describes the DBIM-on-ADG infrastructure and the
design of its various components, Section IV provides
performance results and Section V concludes with future work.

II. OVERVIEW OF ORACLE ADG AND DBIM ARCHITECTURES

A. Overview of Oracle ADG architecture

Oracle ADG provides active-standby replication for the
Oracle Database. The replica, known as the Standby database, is
a synchronized, physical copy of the Primary database,
maintained via Redo Apply (also called Media Recovery) [6].

Redo logs shipped from the Primary database contain redo
records, potentially generated by multiple Oracle database
instances (with Oracle RAC [9]). A redo record can contain
multiple Redo Change Vectors (CVs), with each CV being
applicable to a single database block that is identified using the
Database Block Address (DBA). All CVs in a redo record are
considered to have been generated at the same SCN (System
Change Number), which indicates the database time at which
the changes were made to the database blocks. Each CV is
tagged with a transaction identifier. It is key to note here that the
SCN associated with a redo record may not represent the
database time at which the transaction commits (commitSCN).
The commitSCN is, in fact, the SCN associated with a ‘commit
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CV’ which is applied to a special block. On the Standby
instance, a Log Merger process orders the redo records based on
their SCN. The SCN-ordered logs can be applied to
corresponding database blocks to create a physical copy of the
underlying datafiles on the Standby database. Once all CVs up
to an SCN value have been applied, the Standby database is
considered to have caught up with the Primary database up to
that SCN. This is the simplest version of redo apply.

Logs on the Primary database could be generated by multiple
concurrent transactions. Serializing the application of the logs to
the Standby database can heavily slowdown redo apply which,
in turn, increases the lag between the Primary and the Standby
databases. This is detrimental to the Standby Database’s main
purpose — disaster recovery. Hence, redo apply is massively
parallelized for Oracle ADG by distributing the SCN-ordered set
of CVs amongst recovery worker processes based on a hashing
scheme. Figure 3 shows the high-level architecture of
Parallelized Redo Apply. Each DBA is hashed to a particular
recovery worker identifier, so a recovery worker process can
independently process the CVs it has been assigned, and apply
the CVs to database blocks in the SCN order.

Although parallelization speeds up redo apply, it introduces
a potential transactional inconsistency problem. Since recovery
workers could be applying the CVs at different rates, it is
possible to break the transactional order of changes on the
Standby database. In Figure 3, for instance, recovery worker 1
is still applying the CV from SCN 100, while recovery worker
N has raced ahead and is applying the CV from SCN 110, which
contains a change to the database at a later point in time. In a
case where the changes to DBA 7 and DBA 150 are part of the
same transaction, the change to DBA 150 should not be visible
to queries before the change to DBA 7 is also visible (due to
atomicity property of transactions). A centralized coordinator,
therefore, needs to establish visibility of the applied changes on
the Standby database, which brings us to the concept of
QuerySCN on ADG.
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Fig. 3. Parallel Redo Apply/Media Recovery on Oracle ADG

A recovery coordinator process tracks the progress of all the
recovery worker processes and establishes a consistency point
up to which all workers have completed redo apply. This
consistency point is exposed as the ‘QuerySCN’ on ADG. The
QuerySCN serves as the Consistent Read (CR) [13] snapshot for
queries executed against the Standby database, until a newer
consistency point (i.e. a higher QuerySCN) is established by the



recovery coordinator. Since the recovery worker processes
apply redo at different rates, the QuerySCN on ADG typically
leapfrogs, instead of being a stream of consecutive SCNs.

Specific components of the DBIM-on-ADG architecture are
positioned strategically in an endeavor to establish the same
consistency point for the IMCS. This enables queries run at the
QuerySCN to take advantage of the IMCS on the Standby
Database. Section III explores these components and their
placement in detail.

B. Overview of Oracle Database In-Memory

Row-stores are ideal for OLTP workloads, wherein
transactions access a small number of rows but several columns
in each row, while column stores [4] are suited for analytic
workloads that typically access a large number of rows, but only
a few columns in each row. Oracle DBIM [12] introduced a
dual-format architecture that maintains two copies of the same
data — the traditional row-format on-disk and a columnar format
in the IMCS. The DBIM Transaction Manager keeps the data in
the column store consistent with ongoing transactional activity
on the row-store. Oracle DBIM is, thus, equipped to speed up
mixed-OLTP workloads that run transaction processing as well
as analytic queries.

The data in the IMCS comprises of read-only In-Memory
Columnar Units (IMCUs). IMCUs employ techniques like data
compression and encoding to efficiently pack the IMCS. The In-
Memory Scan Engine [8] takes advantage of techniques like
SIMD vector processing, in-memory storage indexes, optimized
predicate evaluation and aggregation [11] to speed up analytic
queries. Data loading in the IMCS, also known as Population, is
typically performed as a background activity, and does not affect
ongoing transactions and queries. Population establishes a
snapshot SCN for each IMCU, and the IMCU is loaded with data
consistent as of the snapshot SCN based on Oracle’s Consistent
Read (CR) model.

Once loaded, data in the IMCUs is synchronized with
ongoing transaction processing using specialized techniques. A
Snapshot Metadata Unit (SMU) accompanies each IMCU and
tracks the validity of the data populated in its corresponding
IMCU at various levels of granularity — block level, row level
and column level. The In-Memory Scan Engine reconciles the
IMCU data with the SMU to ensure that invalid or stale data is
not delivered from the IMCS, but delivered from the database
buffer cache (i.e. the row-store). As transactions keep modifying
the underlying row-store, higher and higher percentage of the
data in an IMCU becomes invalid over time. To offer the best
performance for queries scanning the IMCS, the technique of
repopulation is employed to refresh the data in an IMCU as of a
newer snapshot SCN. Like population, repopulation is
completely online, transparent to queries and transactions
accessing the IMCU and is accomplished as a background
activity. A set of heuristics are used to trigger repopulation and
tune the repopulation frequency of each IMCU.

In addition to providing consistency guarantees for the data
loaded in IMCUs, SMUs provide concurrency control and
synchronize operations like repopulation, scans and drop of
IMCUs. Figure 4 illustrates a high-level picture of the DBIM
architecture with access patterns for different components.
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Fig. 4. Oracle DBIM architecture on the Primary database

III. DBIM-ON-ADG INFRASTRUCTURE

The Standby database performs continuous redo apply and
establishes consistency points at which queries are guaranteed
to yield consistent results. DBIM-on-ADG infrastructure
employs specialized components to populate the IMCS and
maintain its transactional consistency at these exact consistency
points. The major components of the DBIM-on-ADG
infrastructure are shown in Figure 5.

DBIM-on-ADG infrastructure interacts with the QuerySCN
advancement on the Standby database to capture a consistent
snapshot SCN to populate the IMCS. Once populated,
transactional consistency of the IMCS is maintained by
strategically positioned components:

e The Mining Component piggybacks on the recovery
workers to identify modifications to objects in the
IMCS

e The metadata mined by the Mining Component is
buffered in the In-Memory ADG (IM-ADG) Journal

e The [Invalidation Flush Component flushes this
metadata to SMUs during QuerySCN advancement,
thus marking modified data in the IMCUs invalid
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Fig. 5. Components of the DBIM-on-ADG infrastructure
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Subtle enhancements to the aforementioned components
allow DBIM-on-ADG infrastructure to scale seamlessly across
ADG-RAC as well as handle schema changes. In addition,
specialized redo generation can be employed on the Primary
database to ensure consistency of IMCS across ADG instance
restart. The following subsections describe the role and design
of these components in detail.

A. Population of the IMCS on ADG

Population of the IMCS on the Standby database, just like
on the Primary database, is designed to be completely online and
does not block ongoing queries on the IMCS. A segment loader
process chunks up an object into ranges of data blocks and
background population worker processes construct IMCUs for
the DBA ranges. Queries and redo apply on the Standby do not
stop while population of the IMCS is in progress.

Unlike the Primary database, the Standby database publishes
discrete consistency points corresponding to the QuerySCNs.
Hence, the snapshot SCN of an IMCU is always the QuerySCN
established at the time. This is essential because the population
infrastructure may observe an in-flux state of the database, if it
picks a snapshot that is not a consistency point. Synchronization
is therefore needed between the recovery coordinator publishing
anew QuerySCN and the population infrastructure capturing the
snapshot SCN. This is achieved through the ‘Quiesce Period’ on
the Standby Database. When the recovery coordinator is about
to publish a new QuerySCN, it obtains the ‘Quiesce lock’ to
indicate that Quiesce Period has started on the instance.
Population infrastructure is not allowed to capture the snapshot
SCN for IMCUs during the Quiesce Period. Once the new
QuerySCN has been published, the Quiesce Period ends and the
population infrastructure can proceed to obtain the snapshot
SCN for IMCUs. Background processes in the population
infrastructure check whether the Quiesce Period has ended and
continue holding the Quiesce lock while capturing the snapshot
SCN for an IMCU.

Once the IMCUs are populated on the Standby database
instance, the query engine running on the Standby database,
which is the same as that on the Primary database, can take
advantage of all the optimizations and techniques developed by
the In-Memory Scan Engine to scan the IMCS and provide
extremely fast query response. The next major task, therefore, is
to keep the IMCS on the Standby database consistent as of the
consistency point or QuerySCN being published, so that queries
see the most up-to-date, consistent results.

B. Mining Component

Recovery workers on the Standby database (ADG) apply
Redo Change Vectors (CVs) to the underlying data blocks. The
DBIM-on-ADG Mining Component piggybacks on the
recovery workers to ‘sniff’ each CV. If the CV modifies an
object that is specified to be loaded in the IMCS on the Standby
database, a tuple consisting of the Object Identifier, Data Block
Identifier (DBA) and the list of changed rows in the data block
is noted down in the IM-ADG Journal. Since DBIM-on-ADG
works with Oracle Database supporting multi-tenant
applications, the tuple also includes tenant information. Each
tuple mined by sniffing a CV is termed an ‘Invalidation Record’
(see Figure 6). Since changes made to the data blocks are

guaranteed to be atomic at transaction boundaries, this tuple is
tagged with its transaction identifier that is used to fulfil this
guarantee.

Invalidation Record Control Information

Tenant Identifier Tenant Identifier
Transaction Identifier Transaction Identifier
Object Identifier
Datablock address (DBA)

List of changes: Row Identifiers

Transaction Control Operation:
Begin, Prepare, Commit, Abort

commitSCN

Fig. 6. Information mined by the Mining Component

In addition to mining changes to the data in the IMCS,
DBIM-on-ADG protocols need to mine certain control
information. Each transaction has a unique commit point, or
commitSCN, at which the changes of a transaction are
considered atomic, durable and visible to queries per Oracle’s
Consistent Read model. IMCS on the Standby database needs to
adhere to these guarantees as well. Hence, the DBIM-on-ADG
Mining Component mines control information about
transactions — viz. transaction state changes like Transaction
Begin, Prepare, Commit and Abort and the commitSCN
associated with each transaction. Invalidation records are
associated with this control information using the Transaction
Identifier.

It is natural to now ask the question — ‘Why can’t an
invalidation record be flushed to the SMU immediately after it
has been constructed?’ After all, the SMU needs to record this
information for transactional consistency of the IMCUs. The
reason for delaying the flush is two-fold. Firstly, since the
population of an IMCU is performed as a background activity,
separate from the redo apply, it is possible that the relevant SMU
has not been created yet. Secondly, even if the SMU is present,
prematurely flushing the invalidation records means exposing a
transaction’s changes earlier than its commitSCN. While that
may seem like erring on the side of caution, special protocols are
required to guarantee that the SMU continues to exist and holds
on to this invalidation information till the time the QuerySCN
on Standby reaches the transaction’s commitSCN. Since
population and repopulation happens in the background in a
completely online manner, it is very difficult to provide such
guarantees.

To prevent these cases, DBIM-on-ADG protocols buffer
invalidation records in an ‘IM-ADG Journal’, and only flush
them to the SMUs at an optimal point.

C. IM-ADG Journal to buffer the invalidation records

The IM-ADG Journal facilitates journaling and buffering of
the invalidation records mined by the DBIM-on-ADG Mining
Component. The IM-ADG Journal is designed to work in
synergy with the massively parallel redo apply, while
maintaining the invariant that changes need to be atomic at
transaction boundaries.

The core structure of the IM-ADG Journal contains an in-
memory hash table mapping a transaction identifier to its
invalidation records. The hash table is sized based on the degree
of parallelism employed by the ADG architecture, to ensure
minimal contention between the recovery worker processes.
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However, with very high throughput of transactions on the
Primary database, it is possible to see some chaining in the
hashbuckets. The resulting hash-chains are protected using a
‘bucket latch’, to synchronize between multiple recovery worker
processes operating on the same hashbucket. Figure 7 shows the
high-level design of the IM-ADG Journal.

Bucket-1
Hashchain
1
2 TenantID
TenantID TxnID i
L TxnID Op: Begin
3 Invalidation ObjectiD
Records for T1
4
5
6
7 Private area to
TenantiD store invalidation
I)X;ID 5 records for each
Hashtable DBfCﬂ recovery worker
Buckets RowIDs[

Invalidation
Records for T2

Fig. 7. High-level design of the IM-ADG Journal

Each hashbucket contains hashtable nodes which serve as
the anchor for invalidation records from a transaction. This is
essential to maintain transaction atomicity guarantees — either all
changes of a transaction should be visible to a query, or none
should. Once an anchor node is created for a transaction, each
recovery worker is provided its own area in the anchor node to
buffer the invalidation records it mines. This gets rid of all
synchronization needed between multiple recovery workers
mining invalidation records for a transaction — which is a
common case. Figure 7 shows how mined invalidation records
for transactions T1 and T2 are stored in the IM-ADG Journal.
T3 currently has no invalidation records, but the anchor node
would have been created when the corresponding ‘transaction
begin’ (control operation) was mined by some recovery worker.

D. QuerySCN advancement and Invalidation flush to SMU

When the Standby database is ready to advance the
QuerySCN in order to establish a newer consistency point, the
invalidation records gathered in the IM-ADG Journal need to be
flushed to the SMUs — if and only if — the transaction that made
those changes has commitSCN less than or equal to the new
QuerySCN. Since the IM-ADG Journal stores the invalidation
records for each transaction separately, this is a simple
operation. However, a transaction could have made changes that
modify data in different IMCUs, making it essential to map
invalidation records to the corresponding SMUs for ensuring a
relatively cheap flush operation. The Invalidation Flush
Component achieves this by organizing the invalidation records
into ‘Invalidation groups’. The recovery coordinator advancing
the QuerySCN flushes the invalidation groups to relevant SMUs

before publishing the new QuerySCN. Any queries running at
the new QuerySCN, thus, find the corresponding data in the
IMCU invalid.

While this seems like a straightforward operation, it can
introduce significant latency in publishing the new QuerySCN
if the recovery coordinator performs this operation alone, in a
serial manner. As mentioned in Section IIA, since the Primary
database generates logs in a multi-threaded manner, committing
thousands of transactions per second, the SCN on the Primary
database advances very fast. Hence, the Standby database needs
to be able to quickly advance the consistency point to higher and
higher QuerySCNs. Any latency in establishing the QuerySCN
runs the risk of making the Standby database lag, putting its
failover capabilities at risk. Invalidation Flush is, thus, on the
critical path and optimizing this operation is of paramount
importance.

DBIM-on-ADG infrastructure employs two key techniques
to reduce the latency of Invalidation Flush during QuerySCN
advancement. First, a helper structure called the ‘IM-ADG
Commit Table’ is created to provide quick lookups into the IM-
ADG Journal. Second, the recovery workers are repurposed to
perform a highly parallelized, cooperative flush operation.

1) IM-ADG Commit Table:

DBIM-on-ADG Mining Component maintains an in-
memory, sorted linked list of transaction identifiers and their
commitSCN in the IM-ADG Commit Table. When certain
control information about a transaction is mined — viz.
transaction commit or transaction prepare, a ‘Commit Table
node’ is created. The Commit Table node contains the
transaction identifier and its commitSCN, and is inserted in the
linked list, which is sorted on the commitSCN. In addition, the
Commit Table node contains a direct reference to the anchor
node in the IM-ADG Journal which hosts the transaction’s
invalidation records.

When a new consistency point needs to be established,
DBIM-on-ADG Invalidation Flush Component rides on the
recovery coordinator process to chop off the Commit Table and
create a Worklink (see Figure 8). All nodes in the worklink carry
transaction identifiers of transactions whose changes need to be
‘flushed’ to the SMUs before the new consistency point can be
published. The Invalidation Flush Component achieves this by
obtaining one-step access to the IM-ADG Journal anchor node
through the worklink. It gathers all invalidation records for each
transaction, chunks them up into invalidation groups based on
the DBA ranges for IMCUs and flushes them to the respective
SMUs.

To address the bottleneck of insertion into a single, sorted
linked list by the Mining Component, the IM-ADG Commit
Table can be partitioned to create multiple sorted linked lists. A
worklink is created for each such sorted list during QuerySCN
advancement.

2) Cooperative Flush:

It is easy to see that once the worklink has been created, the
flush of invalidation records for different transactions in the
worklink can be parallelized. DBIM-on-ADG Invalidation
Flush Component uses the recovery workers to aid this process,
performing ‘Cooperative Flush’. Recovery workers, in addition
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to performing the task of redo apply, periodically check if a
worklink has been created. If there is a worklink, the recovery
workers help the recovery coordinator flush a batch of nodes
from the worklink before continuing redo apply.

The recovery coordinator creates the worklink, tracks its
progress and publishes the target QuerySCN as the new
consistency point once the worklink has been emptied.

IM-ADG COMMIT TABLE

Head of the
Commit Table

Current QuerySCN: 100

Target QuerySCN: 125

Txn=T3
cmtSCN = 145
Anchor Pointer,

NULL
(New Tail)

Txn=T1
cmtSCN = 120
Anchor Pointer,

Worklink

Txn=T2
cmtSCN = 110
Anchor Pointer,

Fig. 8. High-level design of the IM-ADG Commit Table

E. Specialized Redo Generation on the Primary Database

The Primary database is mostly agnostic to the fact that the
IMCS even exists on the Standby database and therefore, no
overheads are introduced when a transaction generates CVs to
modify data on the Primary database. However, there is an
exception to this. Special redo generation may be performed on
the Primary database in the form of annotating the Commit
Record of a transaction with a flag indicating whether the
transaction modified any object enabled for population into the
IMCS. This subsection describes how DBIM-on-ADG
infrastructure utilizes this flag.

Redo apply on ADG is completely decoupled from the
Primary database. The database administrator can turn on or turn
off redo apply on ADG, shut down and restart the Standby
database instances at will. ADG protocols maintain enough state
to resume recovery in such cases. However, since the IMCS has
no persistent footprint other than the underlying row-store
objects, DBIM-on-ADG components lose all their state in case
of instance restart. It is therefore possible for a transaction to be
partially mined in a recovery session, the Standby database
instance then shut down and restarted, and the transaction
commit information being mined in a later session. If the
transaction’s commitSCN is beyond the snapshot SCN of an
IMCU, the transaction’s invalidation records need to be flushed
to the respective SMU. The Commit Record of the transaction,
therefore, carries a flag to indicate whether any invalidation
records are expected for this transaction. If they are, and the IM-
ADG Journal has none or only a partial set of invalidation
records (which is discovered by a missing ‘transaction begin’
control information record), the Invalidation Flush Component
uses a coarse invalidation procedure to mark all IMCUs for the

particular tenant as ‘invalid’. Marking an IMCU invalid stops
queries from accessing it, till it is repopulated.

While coarse invalidation introduces significant latency, it
only occurs when the Standby database instance restarts. Hence,
if population of the IMCS is postponed for a short duration after
instance restart, we do not expect coarse invalidation at all. It is
worth noting that special redo generation is not absolutely
essential. DBIM-on-ADG can pessimistically assume that each
transaction modified some object in the IMCS and trigger coarse
invalidation, if a missing ‘transaction begin’ is discovered.
However, it is in the interest of optimum query performance to
not trigger coarse invalidation.

F. DBIM-on-ADG with Real Application Cluster (RAC)

Primary and Standby databases can be scaled independently
using Oracle Real Application Clusters (RAC). Oracle Database
In-Memory scales seamlessly across RAC, with IMCUs
distributed across the IMCS on multiple Oracle RAC instances
based on a hashing scheme. The mapping of IMCUs to instances
is stored in a home-location map [5].

Redo apply on the Standby database is typically limited to a
single master instance, known as Single Instance Redo Apply or
SIRA. A non-master instance does not perform Redo apply, but
hosts a local recovery coordinator process which receives the
QuerySCN from the master recovery coordinator and exposes it
to queries served by that instance. Hence, the IM-ADG Journal
and IM-ADG Commit Table are created only on the master
instance. During QuerySCN advancement, DBIM-on-ADG
Invalidation Flush Component queries the home-location map
and transmits the ‘invalidation groups’ to the desired instance.
The local recovery coordinator on the receiving instance flushes
the invalidation groups to SMUs on that instance and
acknowledges the same to the master. Since messaging over the
network can become a Dbottleneck, DBIM-on-ADG
infrastructure employs batching and pipelined transmission of
invalidation groups to reduce the impact of network latency on
QuerySCN advancement.

G. Interaction of IMCS with Schema Changes

Oracle Database supports several DDLs at the table,
partition, sub-partition and column levels. DDL operations
typically modify underlying schema objects. Certain DDL
operations in Oracle are only applied at the data dictionary-level
and hence, perform no changes to the underlying data blocks for
the object. Database In-Memory on Primary database is tightly
integrated with these DDL operations. For instance, dropping a
column in a table that is populated in the IMCS drops the
corresponding column from all IMCUs for the table so that the
column cannot be accessed by queries.

DBIM-on-ADG does not enjoy this privilege. DDLs are
replayed via redo apply on ADG. DBIM-on-ADG infrastructure
therefore introduces redo markers in the redo logs in response
to DDL operations. Redo markers are similar to redo records but
are used to indicate changes to non-persistent objects (which the
IMCUs in the IMCS are). Redo markers are mined by the
DBIM-on-ADG Mining Component and the information therein
buffered in a separate DDL Information Table, similar to the IM-
ADG Commit Table. At the time of advancing the QuerySCN,
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IMCU s for the particular object are dropped, if the definition of
the object has changed.

IV. PERFORMANCE EVALUATION

In this section, we will present the key benefits of enabling
DBIM on Oracle ADG. The performance benefits of DBIM for
OLAP have been extensively evaluated in real-world enterprise
workloads. Our performance evaluation experiments focus on
demonstrating the advantages of having Database In-Memory
with Oracle ADG, while satisfying the important goal of not
degrading the redo apply and catch-up capabilities of Oracle
ADG which are key for disaster recovery. We will, therefore,
look at two aspects of performance — 1) Speeding up analytic
workloads on Oracle ADG in the presence of OLTP on the
Primary database and 2) Performance of Redo Apply on a
DBIM-enabled Standby database with high throughput OLTP
running on the Primary database (running in multi-tenant mode
on 2-node Oracle RAC).

A. Analytics workloads on Standby with and without DBIM-
on-ADG infrastructure

This section evaluates the speed-up of analytic workloads on
Oracle ADG with OLTP on the Primary Database. In modern
business organizations, the ability to combine transactional
processing with super-fast on-demand analytics on real time
operational data is the key to making the right business
decisions. Oracle DBIM is an industry-first dual format database
that provides fast in-memory analytic performance, while
improving transactional processing. DBIM-on-ADG takes it to
the next level by providing isolation and workload partitioning,
while speeding up reporting workloads.

We present a synthetic workload running in different modes
and the resulting gain in scan response times for ad-hoc queries
running full table scans. All the experiments were carried out on
Oracle Exadata Database Machine [10] which is a state-of-the-
art SMP server and storage cluster system.

The setup includes a synthetic OLTAP workload that
simulates an insert/update workload interspersed with queries.
The test consists of a wide table with 6M rows, and 101 columns
(1 identity column, 50 number columns and 50 varchar2
columns) with an index on the identity column. The hardware
setup was a 2x Intel Xeon E5-2690 @ 2.90GHz, 8-core
processor with 256GB of DRAM, of which only 60GB was used
for the in-memory pool. The test was run for 1 hour with a target
throughput of 4000 ops/sec. The percentage of DMLs and
analytic queries in the workload was tunable. We demonstrate
performance improvements for ad-hoc queries using full-table
scans run on the Standby database while the Primary continues
to process a workload with different mixes of DML operations.
We use metrics such as query response time and CPU usage to
show the capabilities of the DBIM-on-ADG infrastructure. An
important part of the setup is ensuring that the Oracle database
buffer cache is sized appropriately to avoid any physical I/O.

Table 1 shows two example queries being executed on the
Standby database. These queries are forced to go to the IMCS
by not constructing analytic indexes on any column. The queries
thus showcase raw performance of IMCS and the In-Memory
Scan Engine with optimized predicate evaluation and without
any added aggregation benefits. In all these workloads, DBIM-

on-ADG infrastructure ensures that the IMCS is maintained
transactionally consistent as the QuerySCN advances.

TABLE 1. SAMPLE QUERIES IN THE ANALYTICS WORKLOAD

ID | Description SQL
Q1 | Scan, filter a numeric column | SELECT * FROM
that may have been updated C101_6PIM_HASH
WHERE nl =:1
Q2 | Scan, filter a varchar column | SELECT * FROM
that may have been updated C101_6PIM_HASH
WHERE cl =:2

It is key to note that the desired throughput of 4000 ops/s
cannot be sustained without DBIM. There is significant
backpressure since the setup uses the same set of threads for
issuing DMLs on the Primary and queries on the Standby
database. This causes the throughput to fall. Dedicated threads
can instead be used to maintain the throughput for DMLs.

1) Update-only workload

Update-only workload in the synthetic OLTAP
configuration introduces 4000 ops/s with 1% scan ops/s (40
scans/sec) running on the Standby database while 70% updates
(2800 updates/sec) and 29% fetch operations via the index are
being executed on the Primary Database instance. We compare
the response time of the queries Q1, Q2 on the Standby Database
with and without DBIM-on-ADG. Figure 9 shows that the
response time has improved by almost 100x for the sample
queries.

With faster scans, the Standby not only becomes a viable
alternative to isolate the workload, but also reduces CPU usage
on the Primary. With Update-only workloads, the CPU usage on
the Primary Database reduces from 11.7% if all operations are
run on the Primary to 4.7% when scans are offloaded to the
Standby Database. The Standby Database CPU increases from
2% to 17% and the asymmetric increase is due to its architectural
difference from the Primary Database.
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Fig. 9. Speedup in median, average and 95"%ile of query response times
of Q1, Q2 with Update-only workload

2) Update+Insert workload
Update + Insert workload maintains table-scans at 1% on the
Standby Database and the throughput at 4000 ops/s. It executes
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25% inserts, 40% updates against the Primary database, with the
remaining operations being index-based fetch. Figure 10
compares the response times for Q1, Q2 on the Standby database
without and with DBIM-on-ADG.
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Fig. 10. Speedup in median, average and 95"%ile of query response times
of Q1, Q2 with Update+Insert workload

With the introduction of DBIM-on-ADG, the Standby
database performs significantly better, as expected, and the
response time goes down by almost 10x. With inserts, the size
of the table increases, but the query response times are only for
the initial table data. Note that with inserts, population
infrastructure has to utilize much more CPU in order to populate
the newly inserted data into the IMCS. Highly concurrent
invalidation and population activity on the edge IMCU
corresponding to the new inserts leads to a limited performance
benefit of the IMCS.

B. Comparison of Read-only Analytic Workload on Primary
and Standby Databases

This experiment highlights that the Primary and the Standby
databases perform equally well when a scan-only workload —
i.e. a workload with no DMLs, is run separately on the Primary
and the Standby database. This implies that scans for a subset
of data (e.g. a partition) that has no DML activity can be
seamlessly offloaded to the Standby, completely transparent to
the end-user.

The scan-only workload uses the same synthetic OLTAP
setup as subsection IVA, but performs 4000 ops/sec with 25%
ad-hoc queries running full-table scans (1000 scans/sec) and
75% fetch queries that access the index. Table 2 compares the
response time for Q1 on the Primary and Standby database with
DBIM enabled on both.

TABLE 2. RESPONSE TIME FOR Q1 WITH SCAN-ONLY WORKLOAD ON
PRIMARY AND STANDBY DATABASES WITH DBIM

Median Average 95th
o) ) pe;;ﬁ;;tile
Primary 4.25 4.31 4.55
Standby 4.30 4.36 4.6

Furthermore, there is a direct transfer of CPU usage from
the Primary to the Standby database instance — while Primary’s
CPU usage reduces from 8% to 0.5%, the Standby CPU
increases from 0.3% to 7.9% when the scans are executed
against the Standby database.

C. Performance of Redo Apply on the Standby Database

In this experiment, we show that the DBIM-on-ADG
feature does not significantly affect Redo Apply on the Standby
database. The rate of QuerySCN advancement is only slightly
affected due to the Invalidation Flush as discussed in Section
III. The workload used is a high-throughput transactions
workload containing short, medium and long-running
transaction mix run on the Primary database running with
Oracle multi-tenant. The Primary and Standby databases are
configured with DRAM of size 120 GB.

The plots in Figure 11 show the progress of the redo log
being archived on the Primary database running with two
Oracle RAC Instances (pri_log, pri_log2 in the figure) over a
period of two hours. The archived redo is shipped to the
Standby database and the progress of the redo log apply on the
Standby database RAC instances 1 and 2 with the DBIM-on-
ADG feature enabled is shown in the figure (std logl,
std_log2). It is clear that the log catchup is almost instantaneous
and the Standby database has minimal lag, even in the presence

of the overheads introduced by the DBIM-on-ADG
infrastructure.
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Fig. 11. Log advancement on Primary and Standby instances with Oracle
ADG RAC

V. CONCLUSIONS AND FUTURE WORK

Oracle Active Data Guard has a unique architecture that
provides for query execution on a Standby database, while
serving as a disaster recovery solution. DBIM-on-ADG
infrastructure enables the queries executed on the Standby
Database to avail the benefits of DBIM, thus improving the
response time of certain queries by orders of magnitude. DBIM-
on-ADG leverages the highly parallelized infrastructure of ADG
Recovery to synchronize the In-Memory Column Store on the
Standby database with ongoing transactional activity on the
Primary database, while ensuring that the Standby database
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remains committed to its goal of disaster recoverability. With
Database In-Memory functionality extended to the Standby
database, customers can get the best of both worlds by isolating
their read-write and read-only workloads on the Primary and
Standby Databases while continuing to perform faster analytics
on both workloads.

Enabling DBIM on the Standby database has opened it up to
a plethora of features introduced by DBIM. In-Memory
Expressions [1] are now supported on the Standby database and
provide even faster performance for complex, analytical
expressions used in reporting queries, including JSON
processing. In-Memory Join Groups can also be created for the
Standby database to make join processing faster. Data from
external sources like Hadoop can be enabled for population in
the IMCS using the In-Memory External Tables feature [7].
Novel formats and techniques used by DBIM like in-memory
storage indexes, aggregation push-down are extended
seamlessly to ADG, thus, truly empowering the Standby
database for real-time analytics processing.

DBIM, introduced in 2014, has grown into a large ecosystem
of its own. Supporting the key features introduced by Database
In-Memory with the DBIM-on-ADG infrastructure continues to
be an active area of investigation for our team. With Multi
Instance Redo Apply (MIRA) [2], ADG can scale-out redo
apply to multiple instances with Oracle RAC, providing faster
log advancement on the Standby Database. Enhancing the
DBIM-on-ADG infrastructure to support MIRA is very
important in order to avail the performance benefits for reporting
queries on the Standby Database without compromising on the
goals of MIRA.
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