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Abstract— Oracle Database In-Memory (DBIM) provides 

orders of magnitude speedup for analytic queries with its highly 
compressed, transactionally consistent, memory-optimized 
Column Store. Customers can use Oracle DBIM for making real-
time decisions by analyzing vast amounts of data at blazingly fast 
speeds. Active Data Guard (ADG) is Oracle’s comprehensive 
solution for high-availability and disaster recovery for the Oracle 
Database. Oracle ADG eliminates the high cost of idle redundancy 
by allowing reporting applications, ad-hoc queries and data 
extracts to be offloaded to the synchronized, physical Standby 
database replicated using Oracle ADG. In Oracle 12.2, we 
extended the DBIM advantage to Oracle ADG architecture. 
DBIM-on-ADG significantly boosts the performance of analytic, 
read-only workloads running on the physical Standby database, 
while the Primary database continues to process high-speed OLTP 
workloads. Customers can partition their data across the In-
Memory Column Stores on the Primary and Standby databases 
based on access patterns, and reap the benefits of fault-tolerance 
as well as workload isolation without compromising on critical 
performance SLAs. In this paper, we explore and address the key 
challenges involved in building the DBIM-on-ADG infrastructure, 
including synchronized maintenance of the In-Memory Column 
Store on the Standby database, with high-speed OLTP activity 
continuously modifying data on the Primary database. 

Keywords—OLAP, Standby database, In-Memory Analytics 

I. INTRODUCTION 

Oracle Active Data Guard (ADG) [6] provides active-
standby replication for the Oracle Database. The Standby 
database is a synchronized, physical copy of the Primary 
database, typically hosted at a remote site. The Primary 
communicates with the Standby database over a network 
protocol like TCP/IP. Since the Standby database constitutes an 
important part of disaster recovery, it typically lags the Primary 
database by sub-second delays, thereby providing almost real-
time, read-only access to the database objects. Sub-second 
delays are tolerable for a number of reporting applications 
processing large datasets, like Big Data analytics. Offloading 
such read-only workloads to the Standby database not only frees 

up CPU on the Primary (Production) database for OLTP, but 
also isolates batched reporting overheads from online processing 
[3]. Figure 1 shows the high-level architecture of Oracle 
Database deployed with Oracle ADG.  

 
Fig. 1. Oracle Database deployed with Oracle ADG Standby 

This paper describes how we extended the DBIM 
functionality [12] to the Oracle ADG architecture so that 
analytic workloads that are offloaded to the Standby database 
can run significantly faster. DBIM-on-ADG architecture is 
designed to allow for independent scale-out of the Primary as 
well as Standby databases using Oracle Real Application 
Clusters (RAC) [9], providing enterprise-scale customers full 
autonomy in scaling up their OLTP or read-only workloads. 

Capacity Expansion Capability: When the In-Memory 
Column Store (IMCS) is configured for both Primary and 
Standby databases, the data populated in the IMCS on the two 
databases could be a completely different set of objects. This 
technique effectively increases the size of the IMCS. In a typical 
configuration, customers can create three services: Standby-
only, Primary-only, and Primary-and-Standby using Oracle’s 
Services Infrastructure [7]. As shown in Figure 2, the latest 
month of the SALES fact table data is populated in the Primary 
instance’s IMCS, but the entire year’s SALES data is populated 
on the Standby instance for running analytics. The dimension 
tables can be populated on both instances for efficient join 
processing. For each partition of SALES data, the customer 
therefore specifies either the standby or primary service, and for 
each dimension table, the customer specifies a service that 
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includes both Primary and Standby database instances. 
Customers can thus achieve workload isolation using the IMCS 
capacity expansion capability provided by the DBIM-on-ADG 
infrastructure, and reap the benefits of faster analytics for 
workloads run on both instances. 

 
Fig. 2. Example Deployment of DBIM on Primary and Standby instances 

Distinction from DBIM infrastructure on the Primary 
database: The unique replication architecture of Oracle ADG 
necessitated a redesign of key components of the Oracle DBIM 
infrastructure, specially the components that populate data in the 
IMCS and maintain its transactional consistency. A major 
challenge while designing the DBIM-on-ADG architecture was 
to avoid compromising the key benefit of ADG – its disaster 
recoverability. Disaster recoverability is a function of how 
quickly the Standby database can sync up with the redo logs 
being pushed by the Primary database. Thus, the DBIM-on-
ADG infrastructure is designed to add extremely thin layers of 
overhead on the ADG architecture. The design performs 
minimal processing in critical paths and piggybacks on the 
massive parallelism employed by the Oracle ADG architecture.  

The rest of this paper is organized as follows – Section II 
provides an overview of Oracle ADG and Database In-Memory, 
Section III describes the DBIM-on-ADG infrastructure and the 
design of its various components, Section IV provides 
performance results and Section V concludes with future work. 

II. OVERVIEW OF ORACLE ADG AND DBIM ARCHITECTURES 

A. Overview of Oracle ADG architecture 

Oracle ADG provides active-standby replication for the 
Oracle Database. The replica, known as the Standby database, is 
a synchronized, physical copy of the Primary database, 
maintained via Redo Apply (also called Media Recovery) [6]. 

Redo logs shipped from the Primary database contain redo 
records, potentially generated by multiple Oracle database 
instances (with Oracle RAC [9]). A redo record can contain 
multiple Redo Change Vectors (CVs), with each CV being 
applicable to a single database block that is identified using the 
Database Block Address (DBA). All CVs in a redo record are 
considered to have been generated at the same SCN (System 
Change Number), which indicates the database time at which 
the changes were made to the database blocks. Each CV is 
tagged with a transaction identifier. It is key to note here that the 
SCN associated with a redo record may not represent the 
database time at which the transaction commits (commitSCN). 
The commitSCN is, in fact, the SCN associated with a ‘commit 

CV’ which is applied to a special block. On the Standby 
instance, a Log Merger process orders the redo records based on 
their SCN. The SCN-ordered logs can be applied to 
corresponding database blocks to create a physical copy of the 
underlying datafiles on the Standby database. Once all CVs up 
to an SCN value have been applied, the Standby database is 
considered to have caught up with the Primary database up to 
that SCN. This is the simplest version of redo apply. 

Logs on the Primary database could be generated by multiple 
concurrent transactions. Serializing the application of the logs to 
the Standby database can heavily slowdown redo apply which, 
in turn, increases the lag between the Primary and the Standby 
databases. This is detrimental to the Standby Database’s main 
purpose – disaster recovery. Hence, redo apply is massively 
parallelized for Oracle ADG by distributing the SCN-ordered set 
of CVs amongst recovery worker processes based on a hashing 
scheme. Figure 3 shows the high-level architecture of 
Parallelized Redo Apply. Each DBA is hashed to a particular 
recovery worker identifier, so a recovery worker process can 
independently process the CVs it has been assigned, and apply 
the CVs to database blocks in the SCN order. 

Although parallelization speeds up redo apply, it introduces 
a potential transactional inconsistency problem. Since recovery 
workers could be applying the CVs at different rates, it is 
possible to break the transactional order of changes on the 
Standby database. In Figure 3, for instance, recovery worker 1 
is still applying the CV from SCN 100, while recovery worker 
N has raced ahead and is applying the CV from SCN 110, which 
contains a change to the database at a later point in time. In a 
case where the changes to DBA 7 and DBA 150 are part of the 
same transaction, the change to DBA 150 should not be visible 
to queries before the change to DBA 7 is also visible (due to 
atomicity property of transactions). A centralized coordinator, 
therefore, needs to establish visibility of the applied changes on 
the Standby database, which brings us to the concept of 
QuerySCN on ADG. 

 
Fig. 3. Parallel Redo Apply/Media Recovery on Oracle ADG 

A recovery coordinator process tracks the progress of all the 
recovery worker processes and establishes a consistency point 
up to which all workers have completed redo apply. This 
consistency point is exposed as the ‘QuerySCN’ on ADG. The 
QuerySCN serves as the Consistent Read (CR) [13] snapshot for 
queries executed against the Standby database, until a newer 
consistency point (i.e. a higher QuerySCN) is established by the 

1571



recovery coordinator. Since the recovery worker processes 
apply redo at different rates, the QuerySCN on ADG typically 
leapfrogs, instead of being a stream of consecutive SCNs. 

Specific components of the DBIM-on-ADG architecture are 
positioned strategically in an endeavor to establish the same 
consistency point for the IMCS. This enables queries run at the 
QuerySCN to take advantage of the IMCS on the Standby 
Database. Section III explores these components and their 
placement in detail. 

B. Overview of Oracle Database In-Memory 

Row-stores are ideal for OLTP workloads, wherein 
transactions access a small number of rows but several columns 
in each row, while column stores [4] are suited for analytic 
workloads that typically access a large number of rows, but only 
a few columns in each row. Oracle DBIM [12] introduced a 
dual-format architecture that maintains two copies of the same 
data – the traditional row-format on-disk and a columnar format 
in the IMCS. The DBIM Transaction Manager keeps the data in 
the column store consistent with ongoing transactional activity 
on the row-store. Oracle DBIM is, thus, equipped to speed up 
mixed-OLTP workloads that run transaction processing as well 
as analytic queries. 

The data in the IMCS comprises of read-only In-Memory 
Columnar Units (IMCUs). IMCUs employ techniques like data 
compression and encoding to efficiently pack the IMCS. The In-
Memory Scan Engine [8] takes advantage of techniques like 
SIMD vector processing, in-memory storage indexes, optimized 
predicate evaluation and aggregation [11] to speed up analytic 
queries. Data loading in the IMCS, also known as Population, is 
typically performed as a background activity, and does not affect 
ongoing transactions and queries. Population establishes a 
snapshot SCN for each IMCU, and the IMCU is loaded with data 
consistent as of the snapshot SCN based on Oracle’s Consistent 
Read (CR) model. 

Once loaded, data in the IMCUs is synchronized with 
ongoing transaction processing using specialized techniques. A 
Snapshot Metadata Unit (SMU) accompanies each IMCU and 
tracks the validity of the data populated in its corresponding 
IMCU at various levels of granularity – block level, row level 
and column level. The In-Memory Scan Engine reconciles the 
IMCU data with the SMU to ensure that invalid or stale data is 
not delivered from the IMCS, but delivered from the database 
buffer cache (i.e. the row-store). As transactions keep modifying 
the underlying row-store, higher and higher percentage of the 
data in an IMCU becomes invalid over time. To offer the best 
performance for queries scanning the IMCS, the technique of 
repopulation is employed to refresh the data in an IMCU as of a 
newer snapshot SCN. Like population, repopulation is 
completely online, transparent to queries and transactions 
accessing the IMCU and is accomplished as a background 
activity. A set of heuristics are used to trigger repopulation and 
tune the repopulation frequency of each IMCU.  

In addition to providing consistency guarantees for the data 
loaded in IMCUs, SMUs provide concurrency control and 
synchronize operations like repopulation, scans and drop of 
IMCUs. Figure 4 illustrates a high-level picture of the DBIM 
architecture with access patterns for different components. 
 

 
Fig. 4. Oracle DBIM architecture on the Primary database 

III. DBIM-ON-ADG INFRASTRUCTURE 

The Standby database performs continuous redo apply and 
establishes consistency points at which queries are guaranteed 
to yield consistent results. DBIM-on-ADG infrastructure 
employs specialized components to populate the IMCS and 
maintain its transactional consistency at these exact consistency 
points. The major components of the DBIM-on-ADG 
infrastructure are shown in Figure 5.  

DBIM-on-ADG infrastructure interacts with the QuerySCN 
advancement on the Standby database to capture a consistent 
snapshot SCN to populate the IMCS. Once populated, 
transactional consistency of the IMCS is maintained by 
strategically positioned components: 

• The Mining Component piggybacks on the recovery 
workers to identify modifications to objects in the 
IMCS 

• The metadata mined by the Mining Component is 
buffered in the In-Memory ADG (IM-ADG) Journal 

• The Invalidation Flush Component flushes this 
metadata to SMUs during QuerySCN advancement, 
thus marking modified data in the IMCUs invalid 

 
Fig. 5. Components of the DBIM-on-ADG infrastructure 
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Subtle enhancements to the aforementioned components 
allow DBIM-on-ADG infrastructure to scale seamlessly across 
ADG-RAC as well as handle schema changes. In addition, 
specialized redo generation can be employed on the Primary 
database to ensure consistency of IMCS across ADG instance 
restart. The following subsections describe the role and design 
of these components in detail. 

A. Population of the IMCS on ADG 

Population of the IMCS on the Standby database, just like 
on the Primary database, is designed to be completely online and 
does not block ongoing queries on the IMCS. A segment loader 
process chunks up an object into ranges of data blocks and 
background population worker processes construct IMCUs for 
the DBA ranges. Queries and redo apply on the Standby do not 
stop while population of the IMCS is in progress. 

Unlike the Primary database, the Standby database publishes 
discrete consistency points corresponding to the QuerySCNs. 
Hence, the snapshot SCN of an IMCU is always the QuerySCN 
established at the time. This is essential because the population 
infrastructure may observe an in-flux state of the database, if it 
picks a snapshot that is not a consistency point. Synchronization 
is therefore needed between the recovery coordinator publishing 
a new QuerySCN and the population infrastructure capturing the 
snapshot SCN. This is achieved through the ‘Quiesce Period’ on 
the Standby Database. When the recovery coordinator is about 
to publish a new QuerySCN, it obtains the ‘Quiesce lock’ to 
indicate that Quiesce Period has started on the instance. 
Population infrastructure is not allowed to capture the snapshot 
SCN for IMCUs during the Quiesce Period. Once the new 
QuerySCN has been published, the Quiesce Period ends and the 
population infrastructure can proceed to obtain the snapshot 
SCN for IMCUs. Background processes in the population 
infrastructure check whether the Quiesce Period has ended and 
continue holding the Quiesce lock while capturing the snapshot 
SCN for an IMCU. 

Once the IMCUs are populated on the Standby database 
instance, the query engine running on the Standby database, 
which is the same as that on the Primary database, can take 
advantage of all the optimizations and techniques developed by 
the In-Memory Scan Engine to scan the IMCS and provide 
extremely fast query response. The next major task, therefore, is 
to keep the IMCS on the Standby database consistent as of the 
consistency point or QuerySCN being published, so that queries 
see the most up-to-date, consistent results. 

B. Mining Component 

Recovery workers on the Standby database (ADG) apply 
Redo Change Vectors (CVs) to the underlying data blocks. The 
DBIM-on-ADG Mining Component piggybacks on the 
recovery workers to ‘sniff’ each CV. If the CV modifies an 
object that is specified to be loaded in the IMCS on the Standby 
database, a tuple consisting of the Object Identifier, Data Block 
Identifier (DBA) and the list of changed rows in the data block 
is noted down in the IM-ADG Journal. Since DBIM-on-ADG 
works with Oracle Database supporting multi-tenant 
applications, the tuple also includes tenant information. Each 
tuple mined by sniffing a CV is termed an ‘Invalidation Record’ 
(see Figure 6). Since changes made to the data blocks are 

guaranteed to be atomic at transaction boundaries, this tuple is 
tagged with its transaction identifier that is used to fulfil this 
guarantee.  

 
Fig. 6. Information mined by the Mining Component 

In addition to mining changes to the data in the IMCS, 
DBIM-on-ADG protocols need to mine certain control 
information. Each transaction has a unique commit point, or 
commitSCN, at which the changes of a transaction are 
considered atomic, durable and visible to queries per Oracle’s 
Consistent Read model. IMCS on the Standby database needs to 
adhere to these guarantees as well. Hence, the DBIM-on-ADG 
Mining Component mines control information about 
transactions – viz. transaction state changes like Transaction 
Begin, Prepare, Commit and Abort and the commitSCN 
associated with each transaction. Invalidation records are 
associated with this control information using the Transaction 
Identifier.  

It is natural to now ask the question – ‘Why can’t an 
invalidation record be flushed to the SMU immediately after it 
has been constructed?’ After all, the SMU needs to record this 
information for transactional consistency of the IMCUs. The 
reason for delaying the flush is two-fold. Firstly, since the 
population of an IMCU is performed as a background activity, 
separate from the redo apply, it is possible that the relevant SMU 
has not been created yet. Secondly, even if the SMU is present, 
prematurely flushing the invalidation records means exposing a 
transaction’s changes earlier than its commitSCN. While that 
may seem like erring on the side of caution, special protocols are 
required to guarantee that the SMU continues to exist and holds 
on to this invalidation information till the time the QuerySCN 
on Standby reaches the transaction’s commitSCN. Since 
population and repopulation happens in the background in a 
completely online manner, it is very difficult to provide such 
guarantees. 

To prevent these cases, DBIM-on-ADG protocols buffer 
invalidation records in an ‘IM-ADG Journal’, and only flush 
them to the SMUs at an optimal point. 

C. IM-ADG Journal to buffer the invalidation records 

The IM-ADG Journal facilitates journaling and buffering of 
the invalidation records mined by the DBIM-on-ADG Mining 
Component. The IM-ADG Journal is designed to work in 
synergy with the massively parallel redo apply, while 
maintaining the invariant that changes need to be atomic at 
transaction boundaries.  

The core structure of the IM-ADG Journal contains an in-
memory hash table mapping a transaction identifier to its 
invalidation records. The hash table is sized based on the degree 
of parallelism employed by the ADG architecture, to ensure 
minimal contention between the recovery worker processes. 
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However, with very high throughput of transactions on the 
Primary database, it is possible to see some chaining in the 
hashbuckets. The resulting hash-chains are protected using a 
‘bucket latch’, to synchronize between multiple recovery worker 
processes operating on the same hashbucket. Figure 7 shows the 
high-level design of the IM-ADG Journal. 

 
Fig. 7. High-level design of the IM-ADG Journal 

Each hashbucket contains hashtable nodes which serve as 
the anchor for invalidation records from a transaction. This is 
essential to maintain transaction atomicity guarantees – either all 
changes of a transaction should be visible to a query, or none 
should. Once an anchor node is created for a transaction, each 
recovery worker is provided its own area in the anchor node to 
buffer the invalidation records it mines. This gets rid of all 
synchronization needed between multiple recovery workers 
mining invalidation records for a transaction – which is a 
common case. Figure 7 shows how mined invalidation records 
for transactions T1 and T2 are stored in the IM-ADG Journal. 
T3 currently has no invalidation records, but the anchor node 
would have been created when the corresponding ‘transaction 
begin’ (control operation) was mined by some recovery worker. 

D. QuerySCN advancement and Invalidation flush to SMU 

When the Standby database is ready to advance the 
QuerySCN in order to establish a newer consistency point, the 
invalidation records gathered in the IM-ADG Journal need to be 
flushed to the SMUs – if and only if – the transaction that made 
those changes has commitSCN less than or equal to the new 
QuerySCN. Since the IM-ADG Journal stores the invalidation 
records for each transaction separately, this is a simple 
operation. However, a transaction could have made changes that 
modify data in different IMCUs, making it essential to map 
invalidation records to the corresponding SMUs for ensuring a 
relatively cheap flush operation. The Invalidation Flush 
Component achieves this by organizing the invalidation records 
into ‘Invalidation groups’. The recovery coordinator advancing 
the QuerySCN flushes the invalidation groups to relevant SMUs 

before publishing the new QuerySCN. Any queries running at 
the new QuerySCN, thus, find the corresponding data in the 
IMCU invalid. 

While this seems like a straightforward operation, it can 
introduce significant latency in publishing the new QuerySCN 
if the recovery coordinator performs this operation alone, in a 
serial manner. As mentioned in Section IIA, since the Primary 
database generates logs in a multi-threaded manner, committing 
thousands of transactions per second, the SCN on the Primary 
database advances very fast. Hence, the Standby database needs 
to be able to quickly advance the consistency point to higher and 
higher QuerySCNs. Any latency in establishing the QuerySCN 
runs the risk of making the Standby database lag, putting its 
failover capabilities at risk. Invalidation Flush is, thus, on the 
critical path and optimizing this operation is of paramount 
importance. 

DBIM-on-ADG infrastructure employs two key techniques 
to reduce the latency of Invalidation Flush during QuerySCN 
advancement. First, a helper structure called the ‘IM-ADG 
Commit Table’ is created to provide quick lookups into the IM-
ADG Journal. Second, the recovery workers are repurposed to 
perform a highly parallelized, cooperative flush operation. 

1) IM-ADG Commit Table: 
DBIM-on-ADG Mining Component maintains an in-

memory, sorted linked list of transaction identifiers and their 
commitSCN in the IM-ADG Commit Table. When certain 
control information about a transaction is mined – viz. 
transaction commit or transaction prepare, a ‘Commit Table 
node’ is created. The Commit Table node contains the 
transaction identifier and its commitSCN, and is inserted in the 
linked list, which is sorted on the commitSCN. In addition, the 
Commit Table node contains a direct reference to the anchor 
node in the IM-ADG Journal which hosts the transaction’s 
invalidation records. 

When a new consistency point needs to be established, 
DBIM-on-ADG Invalidation Flush Component rides on the 
recovery coordinator process to chop off the Commit Table and 
create a Worklink (see Figure 8). All nodes in the worklink carry 
transaction identifiers of transactions whose changes need to be 
‘flushed’ to the SMUs before the new consistency point can be 
published. The Invalidation Flush Component achieves this by 
obtaining one-step access to the IM-ADG Journal anchor node 
through the worklink. It gathers all invalidation records for each 
transaction, chunks them up into invalidation groups based on 
the DBA ranges for IMCUs and flushes them to the respective 
SMUs. 

To address the bottleneck of insertion into a single, sorted 
linked list by the Mining Component, the IM-ADG Commit 
Table can be partitioned to create multiple sorted linked lists. A 
worklink is created for each such sorted list during QuerySCN 
advancement. 

2) Cooperative Flush: 
It is easy to see that once the worklink has been created, the 

flush of invalidation records for different transactions in the 
worklink can be parallelized. DBIM-on-ADG Invalidation 
Flush Component uses the recovery workers to aid this process, 
performing ‘Cooperative Flush’. Recovery workers, in addition 
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to performing the task of redo apply, periodically check if a 
worklink has been created. If there is a worklink, the recovery 
workers help the recovery coordinator flush a batch of nodes 
from the worklink before continuing redo apply. 

The recovery coordinator creates the worklink, tracks its 
progress and publishes the target QuerySCN as the new 
consistency point once the worklink has been emptied. 

 
Fig. 8. High-level design of the IM-ADG Commit Table 

E. Specialized Redo Generation on the Primary Database 

The Primary database is mostly agnostic to the fact that the 
IMCS even exists on the Standby database and therefore, no 
overheads are introduced when a transaction generates CVs to 
modify data on the Primary database. However, there is an 
exception to this. Special redo generation may be performed on 
the Primary database in the form of annotating the Commit 
Record of a transaction with a flag indicating whether the 
transaction modified any object enabled for population into the 
IMCS. This subsection describes how DBIM-on-ADG 
infrastructure utilizes this flag. 

Redo apply on ADG is completely decoupled from the 
Primary database. The database administrator can turn on or turn 
off redo apply on ADG, shut down and restart the Standby 
database instances at will. ADG protocols maintain enough state 
to resume recovery in such cases. However, since the IMCS has 
no persistent footprint other than the underlying row-store 
objects, DBIM-on-ADG components lose all their state in case 
of instance restart. It is therefore possible for a transaction to be 
partially mined in a recovery session, the Standby database 
instance then shut down and restarted, and the transaction 
commit information being mined in a later session. If the 
transaction’s commitSCN is beyond the snapshot SCN of an 
IMCU, the transaction’s invalidation records need to be flushed 
to the respective SMU. The Commit Record of the transaction, 
therefore, carries a flag to indicate whether any invalidation 
records are expected for this transaction. If they are, and the IM-
ADG Journal has none or only a partial set of invalidation 
records (which is discovered by a missing ‘transaction begin’ 
control information record), the Invalidation Flush Component 
uses a coarse invalidation procedure to mark all IMCUs for the 

particular tenant as ‘invalid’. Marking an IMCU invalid stops 
queries from accessing it, till it is repopulated. 

While coarse invalidation introduces significant latency, it 
only occurs when the Standby database instance restarts. Hence, 
if population of the IMCS is postponed for a short duration after 
instance restart, we do not expect coarse invalidation at all. It is 
worth noting that special redo generation is not absolutely 
essential. DBIM-on-ADG can pessimistically assume that each 
transaction modified some object in the IMCS and trigger coarse 
invalidation, if a missing ‘transaction begin’ is discovered. 
However, it is in the interest of optimum query performance to 
not trigger coarse invalidation. 

F. DBIM-on-ADG with Real Application Cluster (RAC) 

Primary and Standby databases can be scaled independently 
using Oracle Real Application Clusters (RAC). Oracle Database 
In-Memory scales seamlessly across RAC, with IMCUs 
distributed across the IMCS on multiple Oracle RAC instances 
based on a hashing scheme. The mapping of IMCUs to instances 
is stored in a home-location map [5]. 

Redo apply on the Standby database is typically limited to a 
single master instance, known as Single Instance Redo Apply or 
SIRA. A non-master instance does not perform Redo apply, but 
hosts a local recovery coordinator process which receives the 
QuerySCN from the master recovery coordinator and exposes it 
to queries served by that instance. Hence, the IM-ADG Journal 
and IM-ADG Commit Table are created only on the master 
instance. During QuerySCN advancement, DBIM-on-ADG 
Invalidation Flush Component queries the home-location map 
and transmits the ‘invalidation groups’ to the desired instance. 
The local recovery coordinator on the receiving instance flushes 
the invalidation groups to SMUs on that instance and 
acknowledges the same to the master. Since messaging over the 
network can become a bottleneck, DBIM-on-ADG 
infrastructure employs batching and pipelined transmission of 
invalidation groups to reduce the impact of network latency on 
QuerySCN advancement. 

G. Interaction of IMCS with Schema Changes 

Oracle Database supports several DDLs at the table, 
partition, sub-partition and column levels. DDL operations 
typically modify underlying schema objects. Certain DDL 
operations in Oracle are only applied at the data dictionary-level 
and hence, perform no changes to the underlying data blocks for 
the object. Database In-Memory on Primary database is tightly 
integrated with these DDL operations. For instance, dropping a 
column in a table that is populated in the IMCS drops the 
corresponding column from all IMCUs for the table so that the 
column cannot be accessed by queries. 

DBIM-on-ADG does not enjoy this privilege. DDLs are 
replayed via redo apply on ADG. DBIM-on-ADG infrastructure 
therefore introduces redo markers in the redo logs in response 
to DDL operations. Redo markers are similar to redo records but 
are used to indicate changes to non-persistent objects (which the 
IMCUs in the IMCS are). Redo markers are mined by the 
DBIM-on-ADG Mining Component and the information therein 
buffered in a separate DDL Information Table, similar to the IM-
ADG Commit Table. At the time of advancing the QuerySCN, 
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IMCUs for the particular object are dropped, if the definition of 
the object has changed. 

IV. PERFORMANCE EVALUATION 

In this section, we will present the key benefits of enabling 
DBIM on Oracle ADG. The performance benefits of DBIM for 
OLAP have been extensively evaluated in real-world enterprise 
workloads. Our performance evaluation experiments focus on 
demonstrating the advantages of having Database In-Memory 
with Oracle ADG, while satisfying the important goal of not 
degrading the redo apply and catch-up capabilities of Oracle 
ADG which are key for disaster recovery. We will, therefore, 
look at two aspects of performance – 1) Speeding up analytic 
workloads on Oracle ADG in the presence of OLTP on the 
Primary database and 2) Performance of Redo Apply on a 
DBIM-enabled Standby database with high throughput OLTP 
running on the Primary database (running in multi-tenant mode 
on 2-node Oracle RAC). 

A. Analytics workloads on Standby with and without DBIM-
on-ADG infrastructure 

This section evaluates the speed-up of analytic workloads on 
Oracle ADG with OLTP on the Primary Database. In modern 
business organizations, the ability to combine transactional 
processing with super-fast on-demand analytics on real time 
operational data is the key to making the right business 
decisions. Oracle DBIM is an industry-first dual format database 
that provides fast in-memory analytic performance, while 
improving transactional processing. DBIM-on-ADG takes it to 
the next level by providing isolation and workload partitioning, 
while speeding up reporting workloads. 

We present a synthetic workload running in different modes 
and the resulting gain in scan response times for ad-hoc queries 
running full table scans. All the experiments were carried out on 
Oracle Exadata Database Machine [10] which is a state-of-the-
art SMP server and storage cluster system. 

The setup includes a synthetic OLTAP workload that 
simulates an insert/update workload interspersed with queries. 
The test consists of a wide table with 6M rows, and 101 columns 
(1 identity column, 50 number columns and 50 varchar2 
columns) with an index on the identity column. The hardware 
setup was a 2x Intel Xeon E5-2690 @ 2.90GHz, 8-core 
processor with 256GB of DRAM, of which only 60GB was used 
for the in-memory pool. The test was run for 1 hour with a target 
throughput of 4000 ops/sec. The percentage of DMLs and 
analytic queries in the workload was tunable. We demonstrate 
performance improvements for ad-hoc queries using full-table 
scans run on the Standby database while the Primary continues 
to process a workload with different mixes of DML operations. 
We use metrics such as query response time and CPU usage to 
show the capabilities of the DBIM-on-ADG infrastructure. An 
important part of the setup is ensuring that the Oracle database 
buffer cache is sized appropriately to avoid any physical I/O. 

Table 1 shows two example queries being executed on the 
Standby database. These queries are forced to go to the IMCS 
by not constructing analytic indexes on any column. The queries 
thus showcase raw performance of IMCS and the In-Memory 
Scan Engine with optimized predicate evaluation and without 
any added aggregation benefits. In all these workloads, DBIM-

on-ADG infrastructure ensures that the IMCS is maintained 
transactionally consistent as the QuerySCN advances. 

TABLE 1. SAMPLE QUERIES IN THE ANALYTICS WORKLOAD 

ID Description SQL 

Q1 Scan, filter a numeric column 
that may have been updated 

SELECT * FROM 
C101_6P1M_HASH 
WHERE n1 = :1 

Q2 Scan, filter a varchar column 
that may have been updated 

SELECT * FROM 
C101_6P1M_HASH 
WHERE c1 = :2 

 

 It is key to note that the desired throughput of 4000 ops/s 
cannot be sustained without DBIM. There is significant 
backpressure since the setup uses the same set of threads for 
issuing DMLs on the Primary and queries on the Standby 
database. This causes the throughput to fall. Dedicated threads 
can instead be used to maintain the throughput for DMLs. 

1) Update-only workload 
Update-only workload in the synthetic OLTAP 

configuration introduces 4000 ops/s with 1% scan ops/s (40 
scans/sec) running on the Standby database while 70% updates 
(2800 updates/sec) and 29% fetch operations via the index are 
being executed on the Primary Database instance. We compare 
the response time of the queries Q1, Q2 on the Standby Database 
with and without DBIM-on-ADG. Figure 9 shows that the 
response time has improved by almost 100x for the sample 
queries. 

With faster scans, the Standby not only becomes a viable 
alternative to isolate the workload, but also reduces CPU usage 
on the Primary. With Update-only workloads, the CPU usage on 
the Primary Database reduces from 11.7% if all operations are 
run on the Primary to 4.7% when scans are offloaded to the 
Standby Database. The Standby Database CPU increases from 
2% to 17% and the asymmetric increase is due to its architectural 
difference from the Primary Database. 

 
Fig. 9. Speedup in median, average and 95th%ile of query response times 

of Q1, Q2 with Update-only workload 

2) Update+Insert workload 
Update + Insert workload maintains table-scans at 1% on the 

Standby Database and the throughput at 4000 ops/s. It executes 
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25% inserts, 40% updates against the Primary database, with the 
remaining operations being index-based fetch. Figure 10 
compares the response times for Q1, Q2 on the Standby database 
without and with DBIM-on-ADG. 

 
Fig. 10. Speedup in median, average and 95th%ile of query response times 

of Q1, Q2 with Update+Insert workload 

With the introduction of DBIM-on-ADG, the Standby 
database performs significantly better, as expected, and the 
response time goes down by almost 10x. With inserts, the size 
of the table increases, but the query response times are only for 
the initial table data. Note that with inserts, population 
infrastructure has to utilize much more CPU in order to populate 
the newly inserted data into the IMCS. Highly concurrent 
invalidation and population activity on the edge IMCU 
corresponding to the new inserts leads to a limited performance 
benefit of the IMCS. 

B. Comparison of Read-only Analytic Workload on Primary 
and Standby Databases 

This experiment highlights that the Primary and the Standby 
databases perform equally well when a scan-only workload – 
i.e. a workload with no DMLs, is run separately on the Primary 
and the Standby database. This implies that scans for a subset 
of data (e.g. a partition) that has no DML activity can be 
seamlessly offloaded to the Standby, completely transparent to 
the end-user. 

The scan-only workload uses the same synthetic OLTAP 
setup as subsection IVA, but performs 4000 ops/sec with 25% 
ad-hoc queries running full-table scans (1000 scans/sec) and 
75% fetch queries that access the index. Table 2 compares the 
response time for Q1 on the Primary and Standby database with 
DBIM enabled on both. 

 
TABLE 2. RESPONSE TIME FOR Q1 WITH SCAN-ONLY WORKLOAD ON 

PRIMARY AND STANDBY DATABASES WITH DBIM 
 

  Median  

(ms) 

Average  

(ms) 

95th 
percentile 

(ms) 

Primary 4.25 4.31 4.55 

Standby 4.30 4.36 4.6 

Furthermore, there is a direct transfer of CPU usage from 
the Primary to the Standby database instance – while Primary’s 
CPU usage reduces from 8% to 0.5%, the Standby CPU 
increases from 0.3% to 7.9% when the scans are executed 
against the Standby database. 

C. Performance of Redo Apply on the Standby Database 

In this experiment, we show that the DBIM-on-ADG 
feature does not significantly affect Redo Apply on the Standby 
database. The rate of QuerySCN advancement is only slightly 
affected due to the Invalidation Flush as discussed in Section 
III. The workload used is a high-throughput transactions 
workload containing short, medium and long-running 
transaction mix run on the Primary database running with 
Oracle multi-tenant. The Primary and Standby databases are 
configured with DRAM of size 120 GB. 

The plots in Figure 11 show the progress of the redo log 
being archived on the Primary database running with two 
Oracle RAC Instances (pri_log, pri_log2 in the figure) over a 
period of two hours. The archived redo is shipped to the 
Standby database and the progress of the redo log apply on the 
Standby database RAC instances 1 and 2 with the DBIM-on-
ADG feature enabled is shown in the figure (std_log1, 
std_log2). It is clear that the log catchup is almost instantaneous 
and the Standby database has minimal lag, even in the presence 
of the overheads introduced by the DBIM-on-ADG 
infrastructure. 

 

 
Fig. 11. Log advancement on Primary and Standby instances with Oracle 

ADG RAC 

V. CONCLUSIONS AND FUTURE WORK 

Oracle Active Data Guard has a unique architecture that 
provides for query execution on a Standby database, while 
serving as a disaster recovery solution. DBIM-on-ADG 
infrastructure enables the queries executed on the Standby 
Database to avail the benefits of DBIM, thus improving the 
response time of certain queries by orders of magnitude. DBIM-
on-ADG leverages the highly parallelized infrastructure of ADG 
Recovery to synchronize the In-Memory Column Store on the 
Standby database with ongoing transactional activity on the 
Primary database, while ensuring that the Standby database 
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remains committed to its goal of disaster recoverability. With 
Database In-Memory functionality extended to the Standby 
database, customers can get the best of both worlds by isolating 
their read-write and read-only workloads on the Primary and 
Standby Databases while continuing to perform faster analytics 
on both workloads. 

Enabling DBIM on the Standby database has opened it up to 
a plethora of features introduced by DBIM. In-Memory 
Expressions [1] are now supported on the Standby database and 
provide even faster performance for complex, analytical 
expressions used in reporting queries, including JSON 
processing. In-Memory Join Groups can also be created for the 
Standby database to make join processing faster. Data from 
external sources like Hadoop can be enabled for population in 
the IMCS using the In-Memory External Tables feature [7]. 
Novel formats and techniques used by DBIM like in-memory 
storage indexes, aggregation push-down are extended 
seamlessly to ADG, thus, truly empowering the Standby 
database for real-time analytics processing. 

DBIM, introduced in 2014, has grown into a large ecosystem 
of its own. Supporting the key features introduced by Database 
In-Memory with the DBIM-on-ADG infrastructure continues to 
be an active area of investigation for our team. With Multi 
Instance Redo Apply (MIRA) [2], ADG can scale-out redo 
apply to multiple instances with Oracle RAC, providing faster 
log advancement on the Standby Database. Enhancing the 
DBIM-on-ADG infrastructure to support MIRA is very 
important in order to avail the performance benefits for reporting 
queries on the Standby Database without compromising on the 
goals of MIRA. 
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