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Abstract—The demand for stream processing at Facebook
has grown as services increasingly rely on real-time signals to
speed up decisions and actions. Emerging real-time applications
require strict Service Level Objectives (SLOs) with low downtime
and processing lag—even in the presence of failures and load
variability. Addressing this challenge at Facebook scale led to
the development of Turbine, a management platform designed to
bridge the gap between the capabilities of the existing general-
purpose cluster management frameworks and Facebook’s stream
processing requirements. Specifically, Turbine features a fast and
scalable task scheduler; an efficient predictive auto scaler; and
an application update mechanism that provides fault-tolerance,
atomicity, consistency, isolation and durability.

Turbine has been in production for over three years, and
one of the core technologies that enabled a booming growth
of stream processing at Facebook. It is currently deployed on
clusters spanning tens of thousands of machines, managing
several thousands of streaming pipelines processing terabytes
of data per second in real time. Our production experience
has validated Turbine’s effectiveness: its task scheduler evenly
balances workload fluctuation across clusters; its auto scaler
effectively and predictively handles unplanned load spikes; and
the application update mechanism consistently and efficiently
completes high scale updates within minutes. This paper de-
scribes the Turbine architecture, discusses the design choices
behind it, and shares several case studies demonstrating Turbine
capabilities in production.

Index Terms—Stream Processing, Cluster Management

I. INTRODUCTION

The past decade has seen rapid growth of large-scale dis-
tributed stream processing in the industry. Several mature pro-
duction systems have emerged including Millwheel [7], IBM
Streams [16], Storm [29], Spark Streaming [35], Heron [21],
StreamScope [23], Samza [26], Dataflow [8], and Flink [11].
These systems focus on a variety of challenges such as fault
tolerance [29], low latency [11], [29], operability [21], [29],
expressive programming model [7], processing semantics [8],
[11], [26], scalability [7], effective resource provisioning [21],
and state management [11], [23], [26], [35]. Similar trends
are occurring at Facebook with many use cases adopting dis-
tributed stream processing for low latency analysis of site con-
tent interaction, search effectiveness signals, recommendation-
related activities, and other uses. To satisfy these needs, we
have built a framework which enables Facebook engineers
to develop stream processing applications using declarative
(SQL-like) and imperative (C++/Python/PHP) APIs [12]. A
large number of stateless and stateful stream processing ap-
plications have been built [12], [18] using this framework. A

requirement for the success of these applications is a scalable
management platform to deploy, schedule, and re-configure
these applications while maintaining their strict Service Level
Objectives (SLOs) with low downtime and processing lag—
even in the presence of failures and load variability. For
example, many stream processing applications at Facebook
require a 90-second end-to-end latency guarantee.

Existing general-purpose cluster management systems such
as Aurora [1], Mesos [15], Borg [33], Tupperware [25] and
Kubernetes [10] satisfy common management requirements
across a variety of workloads but are not necessarily tuned
for stream processing needs since they are designed based on
different assumptions and use cases. Borg’s [33] ecosystem
consists of a heterogeneous collection of systems, and its users
have to understand several different configuration languages
and processes to configure and interact with the system.
Kubernetes [10] builds upon Borg lessons by improving the
experience of deploying and managing distributed services.
YARN ([30] is a resource manager adopted by many stream
processing systems including Flink [11], Samza [26], Spark
Streaming [35] and StreamScope [23]. They mostly provide
resource isolation and enforcement framework which works
best if resource requirements can be determined in advance.
This is rarely the case for streaming workloads. Besides, they
do not support auto scaling as a first-class citizen, which is
the key to keep stream processing jobs real-time.

To bridge the gap between the capabilities of existing
general-purpose cluster management systems and Facebook
stream processing requirements, we have built Turbine, a
service management platform that can be layered on top
of the general-purpose frameworks listed above to provide
specialized capabilities for stream processing applications. The
current implementation of Turbine is integrated with Tup-
perware [25], Facebook’s cluster management system similar
to Google’s Borg [33]. Tupperware is responsible for low-
level host management while Turbine handles higher level job
and task management to ensure that stream processing jobs
continue to run with minimum downtime and meet their SLOs.

Turbine defines a proactive and preactive mechanism for
automatically adjusting resource allocation in multiple di-
mensions (CPU, memory, disk and others). Elastic resource
management plays an important role in maintaining streaming
applications’ SLOs in the presence of workload variations.
To our knowledge, this is the first paper discussing details—
including auto scaling results—of elastic resource manage-
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Fig. 1: The growth of Scuba Tailer service in a one-year
interval, in terms of task count and input traffic volume.

ment in production involving large-scale clusters with several
thousands of stream processing applications.

Another important component of Turbine is a fast schedul-
ing mechanism for provisioning and managing stream pro-
cessing tasks. Fast scheduling is a must in stream processing
clusters since tasks are frequently moved, created, and deleted
as a result of rebalancing and auto scaling (Turbine typically
performs cluster-wide rebalancing every 15-30 minutes). Fast
scheduling also benefits cluster-wide maintenance operations.
Turbine, for instance, is capable of pushing a global stream-
processing engine upgrade—an operation requiring a restart
of tens of thousands of tasks—within 5 minutes.

Additionally, Turbine provides an atomic, consistent, iso-
lated, durable, and fault-tolerant (ACIDF) application update
mechanism. This capability is essential since multiple actors
(provisioner service, auto scaler, human operator) may concur-
rently update the same job, and the system must ensure these
updates are isolated and consistent. For example, changing the
degree of parallelism and changing the input partition to task
mapping for the same job must be serialized. To achieve that,
Turbine automatically cleans up, rolls back, and retries failed
job updates. Once an update is committed, it is guaranteed to
be reflected in the cluster.

One of the main goals of Turbine is to provide high task
availability. To help achieve this goal, Turbine architecture
decouples what to run (Job Management), where to run (Task
Management), and how to run (Resource Management). In
case of individual Turbine component failures, this design
allows the system to enter a degraded state in which stream
processing tasks continue to run and process data.

Turbine has been running in production for over three years
and is managing tens of thousands of diverse stream processing
jobs on tens of thousands of machines. Turbine has been
one of the core technologies that enabled a booming growth
of stream processing at Facebook. As an example, Figure 1
shows the growth of one stream processing service powered by
Turbine—Scuba Tailer (more details are in Section VI)—with
doubled traffic volume during a one year period.

This paper makes the following contributions:

« An efficient predictive auto scaler that adjusts resource

allocation in multiple dimensions;

¢ A scheduling and lifecycle management framework fea-

turing fast task scheduling and failure recovery;

+ An ACIDF application update mechanism;

o An architecture that decouples what to run (Job Man-
agement), where to run (Task Management), and how to
run (Resource Management) to minimize the impact of
individual component failures.

The rest of the paper is organized as follows. Section II
provides an overview of Turbine and its components. Sec-
tion III discusses Turbine’s job management. Subsequently,
Sections IV and V dive deeper into Turbine’s task manage-
ment and its elastic resource management capabilities. We
share our production experience in Section VI and present
lessons learned in Section VII. Section VIII discusses related
work, and Section IX concludes.

II. SYSTEM OVERVIEW

Figure 2 shows Turbine architecture. Application developers
construct a data processing pipeline using Facebook’s stream
processing application framework, which supports APIs at
both declarative level and imperative level. The complexity
of the queries can vary from simple filtering and projection to
a complex graph with multiple join operators or aggregations.
After a query passes all validation checks (e.g., schema
validation), it will be compiled to an internal representation
(IR), optimized, then sent to the Provision Service. A query
can be executed in batch mode and/or in streaming mode. The
Provision Service is responsible for generating runtime config-
uration files and executables according to the selected mode.
The batch mode is useful when processing historical data, and
it uses systems and data from our Data Warehouse [28]. In
this paper, we mainly focus on the stream processing part,
represented in blue boxes in Figure 2.

Turbine contains components responsible for three major
roles: job management, task management, and resource man-
agement. The Job Management layer stores job configurations
and manages job updates. The Task Management layer con-
verts job configurations to individual tasks, and then schedules
and load-balances the tasks across clusters. The Resource
Management layer is responsible for automatically adjusting
resource allocation to a job, a task, and a cluster in real
time. Turbine decouples the components that make decisions
regarding what to run (decided in the Job Management layer),
where to run (decided in the Task Management layer), and
how to run (decided in the Resource Management layer). By
doing so, Turbine can continue operating in a degraded mode
even if any of these components fail, e.g., keep jobs running
but not admitting new jobs.

A stream pipeline may contain multiple jobs, for example
aggregation after data shuffling. A Job in turbine can have
multiple fasks that run the same binary in parallel, with each
task processing a disjoint subset of the input data. The binary
implements a sequence of built-in and/or user-defined trans-
formations, such as filtering, projection, aggregation, joins,
data shuffling, and others. Turbine assumes a streaming data
model as described in [12]. The communication between jobs
is performed through Facebook’s persistent message bus called
Scribe instead of via direct network communication. Each
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Fig. 2: Turbine’s system architecture to manage stream processing services.

task of a job reads one or several disjoint data partitions
from Scribe, maintains its own state and checkpoint, and
writes to another set of Scribe partitions. Hence, a failed
task can recover independently of other tasks by restoring
its own state and resuming reading Scribe partitions from its
own checkpoint. Turbine’s data model eliminates dependencies
between tasks. This reduces the complexity of recovering
a failed task and makes task update/restart/move relatively
lightweight. As a result, the logic of task scheduling, load
balancing and auto scaling designed upon this data model is
simplified, as it does not need to take task dependencies into
consideration.

III. JOB MANAGEMENT

A streaming application is compiled and optimized into
a set of jobs, as aforementioned. After being provisioned,
Turbine’s Job Management layer is responsible for keeping
all jobs up to date with respect to the configuration changes
initiated by the user or by internal Turbine services. Turbine
guarantees the changes to be performed in an ACIDF fashion.
To this end, Turbine maintains 1) the Job Store—a repository
containing the current and desired configuration parameters
for each job, 2) the Job Service—a service to guarantee job
changes are committed to the Job Store atomically, and 3)
the State Syncer—a service that executes job update actions
that drive jobs from the current state to the desired state.
Configuration parameters cover all the information required
for starting the tasks of a given job. Examples include names
and versions of the binary, the number of tasks required for
the job, and the resources allocated to the tasks.

ACIDF job updates play an important role to keep this
complex system manageable and highly decoupled. In an
environment with tens of thousands of jobs, job update failures
and conflicts occur often as updates may come from many
services. As a result, they must be resolved automatically and
its results must be easy to reason about. Furthermore, job
management should be flexible and extensible, as to accept
new services if needed. Examples of new services include the
auto scaler, which was added after Turbine was already in
production, and an auto root-causer.

Given the considerations above, Turbine organizes job
configurations in a hierarchical structure and separates what
is expected to update from the actual action execution. As
shown in Figure 2, the update is stored in the Expected Job
Configuration table. The State Syncer executes and commits
actions to the Running Job Configuration table only after
actions are successfully performed.

A. Hierarchical Expected Job Configuration

In Turbine, a job can be updated by different internal
services or users at the same time. Consider, for example,
a job that is running with 10 tasks. The Auto Scaler decides
to bump the number of tasks to 15. Meanwhile, Oncalll and
Oncall2 decide to bump the number of tasks to 20 and 30
respectively. Two problems need to be addressed here:

« Isolation: task count changes from the Auto Scaler,
Oncalll and Oncall2 cannot be performed at the same
time, as changing job parallelism involves checkpoint re-
distribution amongst tasks. If these actions are performed
without isolation, checkpoints may end corrupted.
Consistency: how to decide the final task count for the
above job? A natural way is to serialize the task count
changes by the time each action is issued, and to use the
change from the last action. However, oncall interventions
occurs when an automation service breaks, and we do
not want oncall operations to be overwritten by a broken
automation service.

Turbine addresses these problems using a hierarchical job
configuration structure. The configuration management utilizes
Thrift [24] to enforce compile-time type checking. This is
then converted to a JSON representation using Thrift’s JSON
serialization protocol. Multiple configurations can be layered
over each other, by merging the JSON configuration. We then
employ a general JSON merging algorithm, that recursively
traverses nested JSON structure while overriding values of the
bottom layer with the top layer of configuration. This allows us
to evolve the configuration specification, and layer an arbitrary
number of configurations without changing the merging logic.
The details are described in Algorithm 1.
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Algorithm 1 Merge JSON Configs

1: procedure LAYERCONFIGS(bottomConfig, topConfig)

2: layeredConfig <— bottomConfig.copy()

3: for each (key, topValue) € topConfig do

4: if isInstance(topValue, JsonMap) && (key in bottomConfig) then
5: layeredValue < layerConfigs(bottomConfig.get(key), topValue)
6: layeredConfig.update(key, layeredValue)

7: else

8: layerConfig.update(key, topValue)

9: end if
10: end for
11: return layeredConfig

12: end procedure

As illustrated in Table I, the Expected Job Configuration
table contains four configuration levels. Each subsequent level
takes precedence over all the preceding levels. The Base
Configuration defines a collection of common settings—e.g.,
package name, version number, and checkpoint directory.
The Provisioner Configuration is modified when users update
applications. The Scaler Configuration is updated by the
Auto Scaler whenever it decides to adjust a job’s resource
allocations based on the workload and current resource usage.
The Oncall Configuration has the highest precedence and is
used only in exceptional cases when human intervention is
required to mitigate an ongoing service degradation.

The hierarchical design isolates job updates between differ-
ent components: the Provision Service and the Auto Scaler
modify respective configurations through the Job Service
without needing to know anything about each other. The
expected configurations are merged according to precedence,
and provides a consistent view of expected job states. The
Job Service also guarantees read-modify-write consistency
when updating the same expected configuration, e.g., when
different oncalls update oncall configurations for the same
job simultaneously. Before a job update is written back to
the expected job configuration, the write operation compares
the version of the expected job configuration to make sure
the configuration is the same version based on which the
update decision is made. In addition, this hierarchical design is
flexible since a new component can be added to the system by
introducing a new configuration at the right level of precedence
without affecting the existing components.

B. State Syncer

Turbine provides atomic, durable and fault-tolerant job
updates by separating planned updates from actual updates.
The planned updates are expressed in the Expected Job Con-
figurations as discussed above, while the actual settings of the
currently running jobs are stored in the Running Job Con-
figuration table. The State Syncer performs synchronization
between the expected and running job configurations every
30 seconds. In each round for every job, it merges all levels
of the expected configurations according to their precedence,
compares the result with the running job configurations, gen-
erates an Execution Plan if any difference is detected, and
carries out the plan. An Execution Plan is an optimal sequence
of idempotent actions whose goal is to transition the running

TABLE I: Job store schema

Expected Job Table
Base Configuration
Provisioner Configuration
Scaler Configuration
Oncall Configuration

Running Job Table
Running Configuration

job configuration to the expected job configuration. The State
Syncer ensures:

« Atomicity by committing to the running job configuration
only after the plan is successfully executed.

« Fault-tolerance by aborting the failed plan and automat-
ically re-scheduling the execution in the next round since
differences between expected and running configurations
are still detected.

o Durability by making sure the running job configura-
tions are eventually synchronized with the expected job
configurations, even when the State Syncer itself fails.

Performing synchronization operations in a cluster running

tens of thousands of tasks, with tasks continuously moving
hosts because of load balancing (see Section 1V), is a highly
choreographed and complex undertaking. To accelerate the
synchronization, the State Syncer batches the simple synchro-
nizations and parallelize the complex ones.

o Simple synchronization involves updates in which the
Running Job Configuration is a direct copy of the merged
Expected Job Configurations without further action re-
quired. Package release falls into this category: once
the corresponding package setting is copied from the
expected to the running job configurations, the package
setting will eventually propagate to the impacted tasks
(more details in Section IV). We can perform simple
synchronizations of tens of thousands of jobs within
seconds through batching.

o Complex synchronization is more than a single copy from
expected to running job configurations. It usually involves
multiple phases that must be coordinated and performed
in a particular order (e.g., changing job parallelism)
and may take a fairly long time to accomplish (e.g.,
initializing a new sink). Changing job parallelism, for
instance, requires multi-step synchronizations: the State
Syncer stops the old tasks first; once all the old tasks
are completely stopped, it redistributes the checkpoints
of the old tasks among the future new tasks, and only
then starts the new tasks. If a complex synchronization
fails in the middle, the State Syncer reschedules it in the
next synchronization round within 30 seconds. If it fails
for multiple times, the State Syncer quarantines the job
and creates an alert for the oncall to investigate.

IV. TASK PLACEMENT AND LOAD BALANCING

The goal of Turbine Task Management is to:

1) Schedule tasks without duplication, as at no point should
the system have two active instances of the same task,
even when other components of the Turbine system
fail. There should also be no task loss. Only in scenar-
ios where other components of the system fail, newly
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created tasks in the system might not be immediately
scheduled.

2) Fail-over tasks to healthy hosts during host failures.

3) Restart tasks upon crashes.

4) Load balance tasks across the cluster for even CPU,
Memory and IO usage.

Turbine integrates with Facebook’s container manager (Tup-
perware) [25] and obtains an allocation of Linux containers.
We call these the Turbine Containers. Each Turbine Container
runs a local Task Manager that spawns a subset of stream
processing tasks within that container. The mapping of tasks
to Turbine Containers takes place in a distributed manner. Each
local Task Manager periodically fetches the latest full snapshot
of Task Specs using interfaces provided by the Task Service. It
then updates the tasks that it is responsible for. A Task Spec
includes all configurations necessary to run a task, such as
package version, arguments, and number of threads. Internally,
the Task Service retrieves the list of jobs from the Job Store and
dynamically generates these task specs considering the job’s
parallelism level and by applying other template substitutions.

A. Scheduling

Turbine uses Facebook’s Shard Manager service (similar to
Google’s Slicer [6]) which offers a general mechanism for
balanced assignment of shards to containers. We discuss how
tasks are physically scheduled to run in Turbine containers in
this section, while the logic to decide task movement (load
balancing) is discussed in the next section. Figure 3 shows
an example of how this two-level placement works. A total
of four shards are assigned to three Turbine containers. Each
Task Manager gets a full snapshot of task specs from the
Task Service and schedules the tasks belonging to the shards
assigned to it. We explain some key aspects of this two-layer
placement below.

1) Task to Shard Mapping: Each of the local Task Man-
agers is responsible for determining which tasks are associ-
ated with the shards it hosts. Each of these Task Managers
periodically (every 60 seconds) fetches the list of all Turbine
tasks from the Task Service and computes an MD5 hash for

each task. The result defines the shard ID associated with
this task. This task to shard mapping is then cached in local
Task Manager data structures. With every periodic fetch, this
mapping is updated with any new tasks added to Turbine or for
removing deleted tasks. Note also that by keeping the full list
of tasks, we are able to perform load balancing and failover
even if the Task Service is unavailable.

2) Shard Movement: When the Shard Manager decides to
reshuffle assignments and move a shard from one Turbine
container to another, it issues a DROP_SHARD request to
the Task Manager running on the source container. The Task
Manager stops the tasks associated with the dropped shard,
removes the shard from its local bookkeeping structures,
and returns SUCCESS. The Shard Manager then updates its
mapping of shards to containers and sends an ADD_SHARD
request to the Task Manager on the destination container. This
Task Manager adds the new shard to its bookkeeping data
structures, retrieves the list of tasks associated with the new
shard, and starts them. To avoid excessive task downtime,
if a DROP_SHARD or ADD_SHARD requests take too long,
Turbine forcefully kills the corresponding tasks or initiates a
Turbine container fail-over process respectively. The fail-over
protocol is discussed in Section I'V-C.

B. Load Balancing

Once the initial assignment of shards to Turbine containers
is complete, Task Managers are responsible for starting the
tasks corresponding to the shards assigned to their Turbine
containers. As tasks run, Turbine periodically computes new
shard load values which are then used by the Shard Manager
to reshuffle the assignment of shards to Turbine containers.

Each Turbine container is associated with a capacity (spec-
ified in multiple dimensions (e.g., 26GB of memory). Each
shard is associated with a load (i.e., resources it consumes in
terms of CPU, memory, etc.). The algorithm to generate the
shard to Task container mapping does a bin-packing of shards
to Turbine containers such that the capacity constraint of each
Turbine container is satisfied while also a global resource
balance is maintained across the cluster. The resource balance
is defined in terms of a utilization band per resource type. The
algorithm does the mapping such that the total load of each
Turbine container (calculated as the sum of the shard loads of
the container) is within a band (e.g +/-10%) of the average of
the Turbine container loads across the tier. In other words, the
load difference between Turbine containers does not exceed
an expected threshold. The algorithm also ensures additional
constraints are satisfied, e.g., maintaining a head room per
host, or satisfying regional constraints.

One important aspect to perform good load balancing is
how to define shard load. Turbine provides different levels of
resource guarantee by reporting different metrics. For example,
for small C/C++ tasks, we report the dynamic resource usage
of the tasks (e.g., average memory over the last 10 minutes).
This helps Turbine to offset resource usage across tasks and
improve cluster resource efficiency. On the other hand, for
tasks using Java JVM or those that need cgroup enforcement,
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we report the peak resource required (xmx, cgroup limits) to
improve task stability.

A background load aggregator thread in each Task Manager
collects the task resource usage metrics and aggregates them
to calculate the latest shard load. This refreshed shard load is
reported to the Shard Manager every ten minutes. The Shard
Manager periodically (30 minutes for most of our tiers) re-
generates the shard to Turbine container mapping using the
latest shard load values. If this results in a new mapping, the
Shard Manager moves shards according to the description in
Section IV-A2.

C. Failure Handling

The main goal of the Turbine Failure Handling mecha-
nism is to reduce the impact of system failures, ensure task
availability, and guarantee that task management failures do
not cause data corruption, loss, or duplication. Turbine uses
a bi-directional heartbeat-based fail-over protocol with the
Shard Manager. When the Shard Manager does not receive
a heartbeat from a Task Manager for a full fail-over interval
(default is 60 seconds), it assumes the corresponding Turbine
container is dead, generates a new mapping for the shards
in that container, and invokes the shard movement protocol
described in Section IV-B and IV-A2.

However, sometimes, stopped heartbeats can be caused
by other reasons such as connection failures. In this case,
simply moving the lost shards to new containers may result
in duplicate shards and eventually duplicated data processing.
Turbine addresses this challenge by proactively timing out
connections to the Shard Manager before the Shard Manager’s
fail-over interval period (in practice, timeout is configured
to 40 seconds, fail-over is 60 seconds). If the connection
times out, the Turbine container will reboot itself. After
rebooting, if the container is able to re-connect to the Shard
Manager before its fail-over, the shards would remain with the
original container. Otherwise, Shard Manager would fail-over
the shards from that container to new containers. The rebooted
container will be treated as a newly added, empty container in
that case. Shards will be gradually added to such containers
as described in Section IV-A2.

D. Summary

To summarize, Turbine achieves fast scheduling and high
task availability as follows:

o The two-level scheduling architecture decouples what and
where to run; specifically, the Shard Manager does not
need to interact with the Job Management layer. Such
modular design simplifies debugging and maintenance
of different system components and enables potential
reuse of the (relatively general) load balancing and failure
handling parts in other services.

o Each Task Manager has the full list of tasks, enabling
Turbine to perform load balancing and fail-over even
when the Task Service or Job Management layer are
unavailable or degraded. If the Shard Manager becomes
unavailable too, Turbine provides a further degraded

mode where each Task Manager can fetch stored shard-
container mapping.

o Each task manager has a local refresh thread to period-
ically (every 60 seconds) fetch from the Task Service.
This guarantees task updates can be reflected in runtime
after the Task Service caching expires (90 seconds) plus
synchronization time in the State Syncer (refreshed every
30 seconds) mentioned in Section III. The overall end
to end scheduling is 1-2 minutes on average, even for
cluster-wide updates.

« If system failures occur, fail-overs start after 60 seconds.
The downtime for a task on average is less than 2 min-
utes. This mechanism of handling failures also enables
automatic handling of addition or removal of hosts in
Turbine clusters, making Turbine elastic to use up all
available resources.

V. ELASTIC RESOURCE MANAGEMENT

Resource management is responsible for reacting to load
changes at task level, job level and cluster level. It has
two goals: (i) ensure that all jobs have sufficient resources
needed for processing their input on time, and (ii) maintain
efficient cluster-wide resource utilization. To achieve these
goals, the resource management system must carefully weigh
when and how resource allocation changes are made. Many
systems [3], [8], [13], [19], [35] shed light on when to adjust
the resource allocation. Turbine’s Auto Scaler is built upon
these approaches but meanwhile introduces a mechanism that
not only adjusts resource effectively but also minimizes the
amount of unnecessary churn in the system (e.g., restarting
tasks that do not need to be restarted).

A. Reactive Auto Scaler

The first generation of the auto scaler was similar to
Dhalion [13]. It consisted of a collection of Symptom Detectors
and Diagnosis Resolvers and was purely reactive. This version
focused on addressing the detection problem. It monitored pre-
configured symptoms of misbehavior such as lag or backlog,
imbalanced input, and tasks running out of memory (OOM).
To measure lag, we define time_lagged for a job as:

time_lagged = total_bytes_lagged/processing_rate (1)

where total_bytes_lagged is the number of bytes available for
reading that have not been ingested into the processing engine
yet, and processing_rate is the number of bytes the streaming
job can process per second. Intuitively, time_lagged corre-
sponds to the amount of time the current processing is delayed
from real time. Imbalanced input is measured by the standard
deviation of processing rate across all the tasks belonging to
the same job.

How to detect and measure OOMs depends on the per-
task memory enforcement configuration. For tasks running
in containers with configured cgroup limits, cgroup stats are
preserved after OOM tasks are killed. Upon restarting such
tasks, Turbine task managers read the preserved OOM stats
and post them via the metric collection system to the Auto
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Algorithm 2 Reactive Auto Scaler
1: for each job € Jobs do

2 if time lagged > SLO threshold then

3 if imbalanced && job can be rebalanced then
4: rebalance input traffic amongst tasks € job
5: else

6: increase the number of task counts

7 end if

8 else if OOM then

9: increase reserved memory

10: else > No OOM, no lag is detected in a day
11: try to decrease resource assignment

12: end if

13: end for

Scaler Symptom Detector. For Java tasks, JVM is configured
to post OOM metrics right before it kills the offending tasks.
For tasks without memory enforcement, Turbine task managers
post ongoing memory usage metrics which are then compared
by the Auto Scaler with the pre-configured soft memory
limit to decide whether any memory adjustment is warranted.
Algorithm 2 shows how the Reactive Auto Scaler works.

We encountered several problems with this reactive design:
(i) it sometimes took too long for a single job to converge to
a stable state due to lack of accurate estimation on required
resources, as also observed in DS2 [19]; (ii) without knowing
the lower bounds on the resource requirements for a given
job, the Auto Scaler can make incorrect downscaling decisions
causing a backlog in a previously healthy job; (iii) making
scaling decisions without understanding the root cause of a
particular symptom may amplify the original problem. For
example, if a backlog is caused by excessive inter-service
connection failures, increasing task parallelism may generate
even more traffic for the dependent service, prolonging its
unavailability even further. From our experience of running
production stream processing applications, we have observed
that the amount of resources needed for a given job is often
predictable. Task footprints like maximal parsing rate are
often stable as long as application logic and settings (e.g.,
checkpoint flush frequency) are unchanged. To incorporate this
insight, we have built the second generation of the Auto Scaler
by extending the original design with the ability to predict
resource requirements proactively.

B. Proactive Auto Scaler

Resource Estimators and Plan Generator are introduced in
this version (Figure 4). The purpose of a Resource Estimator
is to estimate the usage of a given resource (e.g., CPU,
memory, network bandwidth, and disk I/O) in a given job. The
Plan Generator uses these estimates to construct a resource
adjustment plan. Job resource estimation depends on the
characteristic of the job. In typical Facebook workloads, jobs
fall into two categories: stateless and stateful. Stateless jobs—
filtering, projection, transformation—do not need to maintain
state except for the checkpoints recording where to resume
reading the input streams in case of task restarts. Stateful
jobs—aggregation, join—maintain application-specific state in
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Fig. 4: The architecture of Turbine’s Auto Scaler.

memory and persistent storage and must restore relevant parts
of the state on restarts.

Stateless jobs are often CPU intensive and they perform
input deserialization, data processing, and output serialization.
Regardless which of these is dominant, CPU consumption is
approximately proportional to the size of input and output
data. For such jobs, input/output rate metrics are leveraged to
estimate the maximum stable processing rate a single thread
task can handle. The processing rate increases linearly with
the number of tasks and threads in most cases, and the CPU
resource unit needed for input rate X can be estimated as:

X/(Pxkx*n) 2)

where P is the maximum stable processing rate for a single
thread. Initially, P can be bootstrapped during the staging
period (a pre-production phase for application correctness ver-
ification and performance profiling), and adjusted at runtime.
Section V-C describes how to adjust P. Additionally, % is the
number of threads per task, and n is the number of parallel
tasks. If the backlogged data B needs to be recovered within
time ¢, the CPU resource estimate is:

(X + B/t)/(P*k=xn) 3)

For stateful jobs, in addition to the CPU resource, memory
and disk usage also needs to be estimated. For an aggregation
job, the memory size is proportional to the key cardinality of
the input data kept in memory. For a join operator, the memo-
ry/disk size is proportional to the join window size, the degree
of input matching, and the degree of input disorder [18].

The Resource Estimator can be configured to estimate dif-
ferent dimensions of resource consumption and report them to
the Plan Generator for further evaluation. The Plan Generator
makes a synthesized decision based on symptoms and resource
estimates collected. As an extension to Algorithm 2, the Plan
Generator makes sure the final plan has enough resources to
run a job based on the resource estimates from three aspects:

1) It prevents downscaling decisions from causing a healthy
job to become unhealthy.

2) It ensures that untriaged problems (e.g., application
bugs, network issues, dependency services) do not trig-
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ger unnecessary and potentially harmful scaling deci-
sions (see Section V-A).

3) It executes necessary adjustments for multiple resources
in a correlated manner. For example, if a stateful job
is bottlenecked on CPU, and the number of tasks is
increased, the memory allocated to each task can be
reduced.

C. Preactive Auto Scaler

When a scaling action is performed, it results in one or more
tasks being added, removed, or restarted. This often involves
CPU- and I/O-heavy initialization of the added and restarted
tasks, which may adversely impact other tasks running on the
same hosts. One main challenge in developing Auto Scaler
is to ensure that it is sufficiently conservative not to cause
unintended cluster instability—a state with a large portion of
tasks being degraded.

To address this challenge, Turbine introduces the Pattern
Analyzer whose goal is to infer patterns based on data seen
and to apply this knowledge for pruning out potentially
destabilizing scaling decisions. Turbine records and analyzes
two sets of data:

1) Resource Adjustment Data. This information is used
to adjust the footprint of a given job. For example,
assuming that the current input rate is X, the current
task count is n, and the max throughput per task is
P, Turbine scaler plans to downscale the task count to
n' = ceiling(X/P) if no lag is detected for a long
period of time. If this yields n’ that is greater than n,
our estimate of P must have been smaller than the actual
max throughput. In this situation, Turbine adjusts P to
the average task throughput and skips performing an
action in this round. If n’ < n, the scaler reduces the
number of tasks in the job and observes the outcome. If
an SLO violation is detected subsequently, the estimated
value of P must have been greater than the actual
max throughput and P needs to be adjusted to a value
between X /n and P.

2) Historical Workload Patterns. Most stream processing
jobs at Facebook exhibit diurnal load patterns: while
the workload varies during a given day, it is nor-
mally similar—within 1% variation on aggregate—to the
workload at the same time in prior days. These repeated
patterns are leveraged to ensure that the scaler does
not keep changing resource allocations too frequently.
More specifically, Turbine records per minute workload
metrics during the last 14 days, such as input rate or
key set size for a job. When the scaler decides to change
resource allocation, it verifies that this reduction will not
cause another round of updates in the next = hours, for
some configurable z, by checking historical workload
metrics to validate that the reduced number of tasks
was able to sustain traffic in the next x hours in the
past. If the average input rate in the last 30 minutes
is significantly different from the average of the same
metric in the same time periods during the last 14 days,

historical pattern-based decision making is disabled. We
plan to address these outlier cases in our future work.

D. Untriaged Problems

Untriaged Problems are inevitable in reality. They are iden-
tified by misbehavior symptoms even when no imbalanced
input is detected, and the job has enough resources according
to the Auto Scaler estimates. These problems can be caused
by many reasons including temporary hardware issues, bad
user updates of the job logic, dependency failures, and system
bugs. Hardware issues typically impact a single task of a
misbehaving job; moving the task to another host usually
resolves this class of problems. If a lag is caused by a recent
user update, allocating more resources helps most of the
time, and the job can converge to a stable state quickly after
updated metrics are collected. Conversely, allocating more
resources does not help in the case of dependency failures or
system bugs. When Turbine cannot determine the cause of an
untriaged problem, it fires operator alerts that require manual
investigation.

E. Vertical vs. Horizontal

The Turbine Auto Scaler supports vertical and horizontal
scaling. Vertical scaling applies resource allocation changes
within the task level without changing the number of tasks.
Horizontal scaling involves changing the number of tasks
to increase or decrease job parallelism. Horizontal scaling
is challenging since changing the number of tasks requires
redistributing input checkpoints between tasks for stateless
jobs, and, additionally, redistributing state for stateful jobs.
As discussed in Section III-B, such redistribution requires
coordination between tasks and, as a result, takes more time.
Conversely, vertical scaling may not always be desirable: large
tasks make task movement and load balancing more difficult
and they may cause resource fragmentation, making it difficult
for the system to collocate other tasks in the same container.
In Turbine, the upper limit of vertical scaling is set to a portion
of resources available in a single container (typically 1/5)
to keep each task fine-grained enough to move. With this
constraint, the Auto Scaler favors vertical scaling until this
limit is reached, and only then applies horizontal scaling.

F. Capacity Management

The Capacity Manager monitors resource usage of jobs in
a cluster and makes sure each resource type has sufficient
allocation cluster-wide. It is authorized to temporarily transfer
resources between different clusters for better global resource
utilization. This is particularly useful during datacenter-wide
events such as datacenter outages or disaster simulation drills.
As described in Section IV-C, Turbine relies on automated
fail-over to place tasks onto available healthy hosts. Hence,
the procedure to add or remove hosts is fully automated.

When cluster-level resource usage spikes up—e.g., during
disaster recovery—the Capacity Manager communicates with
the Auto Scaler by sending it the amount of remaining
resources in the cluster and instructing it to prioritize scaling
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up privileged jobs. In the extreme case of the cluster running
out of resources and becoming unstable, the Capacity Manager
is authorized to stop lower priority jobs and redistribute their
resources towards unblocking higher priority jobs faster.

VI. PRODUCTION EXPERIENCE

This section reports measurements from production Turbine
clusters, evaluating resource utilization and response to work-
load change. We primarily focus on Scuba Tailer—the largest
stream processing service managed by Turbine. Scuba [5]
provides real-time, ad-hoc interactive analysis over arbitrary
time-indexed datasets. It is often used in troubleshooting
scenarios such as diagnosing performance regressions and
analyzing the impact of infrastructure changes in near real time
(within 90 seconds of the event occurrence). Ingestion of data
into the Scuba backend is performed by Scuba tailers—stream
processing jobs that read input data from Scribe, process it as
needed, and send the result to the Scuba backend. Scribe is
a persistent distributed messaging system offering high read
and write throughput and low message delivery latency. At
a logical level, Scribe data is partitioned into categories (c.f.
Kafka topics [20]). Data for different Scuba tables is logged
into different Scribe categories. For each Scuba table, there is
a dedicated Scuba tailer job consisting of one or more tasks.
Low latency and reliability are the main requirements.

The Scuba Tailer service uses a dedicated cluster of more
than two thousand machines in three replicated regions. Each
machine is equipped with 256GB memory, with a mix of
48 or 56 CPU cores. For each task, CPU overhead has a
near-linear relationship with the traffic volume, while memory
consumption is proportional to the average message size, since
a tailer holds a few seconds worth of data in memory before
processing and flushing it to the Scuba backend. Figure 5
shows the workload characteristics of over 120K tasks. Fig-
ure 5(a) reveals that over 80% of the tasks consume less
than one CPU thread—an indication of low traffic. A small
percentage of tasks need over four CPU threads to keep up
with the incoming traffic. Memory consumption (Figure 5(b))
has a different distribution: every task consumes at least
~400MB, regardless of the input traffic volume. The reason
for this is that each task runs the Scribe Tailer binary as a
subprocess and has an additional metric collection service.
Overall, over 99% of the tasks consume less than 2GB.

A. Load Balancing

Turbine observes the resource consumption of all running
tasks and spreads them to all available machines. Figure 6(a)
and Figure 6(b) show the CPU and memory utilization in one
cluster measured over one week. Figure 6(c) demonstrates that
Turbine does a good job of distributing tasks across hosts—
the number of tasks vary within a small range (from ~150
to ~230 per host). Note that to balance the load, Turbine
only considers resource consumption, and not the number of
tasks directly. The distribution shown in Figure 6 suggests
that we could further increase resource utilization per host.
We choose not to go this route and prefer to keep a certain
headroom for absorbing workload spikes caused by changes
in individual jobs, machine failures, and large-scale dependent
services outages.

Before Turbine, each Scuba Tailer task ran in a separate
Tupperware container. The migration to Turbine resulted in a
~33% footprint reduction thanks to Turbine’s better use of the
fragmented resources within each container.

To demonstrate the effectiveness of Turbine’s load balancing
component, we conducted an experiment in a test cluster which
shadows a fraction of production traffic. We first disabled the
load balancer (hour 6), resulting in occasional spiky CPU
utilization on some hosts. This was caused by traffic spikes
in the input of some jobs and would have been mitigated
by the load balancer moving other tasks off the busy hosts.
To mimic maintenance events, we then manually triggered
the failover on a few machines (hour 14), which resulted in
imbalanced CPU and memory utilization across the cluster.
For the jobs that were running on the machines with very high
CPU utilization, we observed both lag due to lack of CPU, and
crashes due to lack of memory. After we re-enabled the load
balancer (hour 20), host resource consumption came back to
normal levels very quickly. Figure 7 shows the changes in
CPU utilization; memory utilization exhibits similar patterns
(figures are omitted for brevity).

Proactive re-scheduling is instrumental in keeping the load
balanced. Turbine is configured to periodically re-evaluate load
metrics and redistribute tasks accordingly. Our measurement
shows that each execution of the placement algorithm comput-
ing the mapping of 100K shards onto thousands of Turbine
containers takes less than two seconds. We believe this is
unlikely to become a scalability bottleneck even with 100x
growth in the future. After the scheduling decision is made,
the shard re-assignments are propagated to Task Managers.

B. Responding to Workload Change

Turbine automatically performs scaling actions to ensure
that all jobs have sufficient resources and to maintain efficient
cluster-wide resource utilization. This section describes several
cases of the Auto Scaler in action as observed in production
Turbine environments.

1) Scaling at Job Level: Figure 8 shows a Scuba tailer job
that was disabled for five days due to application problems—
resulting in a large backlog of data. When the application
was fixed and re-enabled, it needed to process the backlog as

1599



100 100

p50 —  p5

1
0.8 [

CDF

0.6 /
0.4

2|/

g p95 — p50 — | p5 ;\'o\ p95 —
o ~
< 80 | - 80
c S
2 60 | A 1 g 60
© N
N =
I LAWY 5
>
Z 20 g 20
(@) [
0 )
01 2 3 4 5 6 7 0 1

Time (day)
(a)

2

Time (day)

0
3 4 5 6 7 100 150 200 250

Number of tasks per host

(©)

300

Fig. 6: In one Turbine cluster with > 600 hosts, CPU and memory utilization numbers are very close across hosts. With each
host running hundreds of tasks, the reserved per-host headroom can tolerate simultaneous input traffic spike from many tasks.

100

p95 ——
80 {

p30 —— 5

60 i I

disable LB
40 X |

nable LB.

CPU Utilization (%)

¥

20 e

trigger (awlqver
12
Time (hour)
Fig. 7: Turbine’s load balancer (LB) helps stabilize per-host
resource utilization in situations like input traffic change and
machines going offline.

0 .
0 6 18 24

15
cluster1 (w/ auto scaler) ——
cluster2 (w/o auto scaler)
12 T, task count change: 32 to 128§
AN
9 task count gfange: 16 to[3.

Lag (Terabytes)

6 /
3

0 1 2 3 4 5 6 7 8 9
Time (day)

Fig. 8: Turbine’s Auto Scaler helped a backlogged Scuba tailer
job recover much faster.

quickly as possible. At the time, the Auto Scaler was available
in clusterl, but it was not yet launched in cluster2.
Figure 8 shows how the Auto Scaler helped with the recovery
after the fixed application began processing the backlog. The
purple line indicates that the Auto Scaler first scaled the job
in clusterl to 32 tasks. 32 is the default upper limit for
a job’s task count for unprivileged Scuba tailers. It is used
to prevent out of control jobs from grabbing too many cluster
resources. After the operator temporally removed the limit, the
Auto Scaler quickly scaled up to 128 tasks and redistributed
the traffic to fully utilize the processing capability of each task.
In comparison, the job in cluster2 took more than two days
(~8x slower) to process the same amount of backlog. We
manually increased the task count of the job in cluster?2
to 128 as well, but the recovery speed was still suboptimal
because of uneven traffic distribution among tasks.

2) Scaling at Cluster Level: Facebook periodically prac-
tices disaster recovery drills, known as storms, that involve
disconnecting an entire data center from the rest of the
world [31]. During a storm, the traffic from the affected data
center is redirected to other available data centers. The Turbine
Auto Scaler plays an important role during a storm: it is
responsible for scaling up jobs in the healthy data centers so
they can handle additional redirected traffic. Figure 9 captures
the aggregated task count change in a Turbine cluster (around
1000 jobs) as Turbine Auto Scaler was reacting to the storm
traffic. The storm started on the morning of Day 2; the purple
line shows that the cluster-wide traffic increased by ~16%
at peak time compared to the previous non-storm day. At
the same time, the total task count was increased by ~8%
to handle the extra traffic. Recall that Turbine Auto Scaler
performs vertical scaling first before attempting any horizontal
scaling (Section V). This is why the task count change was
relatively smaller compared to the traffic change. Before,
during, and after the storm, ~99.9% of jobs in that cluster
stayed within their SLOs. After the storm ended, the total task
count dropped to a normal level.

Figure 9 also subtly shows the effect of the predictive
aspect of the Auto Scaler. Notice that the difference between
the peak and low traffic during Day 1 is much larger than
that between the peaks of Day 1 and Day 2. At the same
time, the corresponding differences in task counts are not as
pronounced. This is because the normal (Day 1) fluctuation
is accounted for by the Auto Scaler’s historical analysis as it
tries to reduce task movements in anticipation of daily ebbs
and flows (see Section V-C). Conversely, the relatively higher
traffic during Day 2 peak is unexpected, and, so, the Auto
Scaler is forced to add a relatively high number of tasks.

3) Scaling for Resource Efficiency: Turbine Auto scaler
improves resource efficiency as well as helps keeping jobs
within their SLOs. Without auto scaling, jobs have to be over-
provisioned to handle peak traffic and reserve some headroom
for unexpected traffic spikes. Figure 10 records the CPU
and memory footprints when auto scaling was launched in
one Scuba Tailer cluster. The overall task count dropped
from ~120K to ~43K, saving ~22% of CPU and ~51%
of memory. After the rollout, the Capacity Manager was
authorized to reclaim the saved capacity.
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VII. LESSONS LEARNED

Facebook’s streaming workload is highly variable. This is
due to diurnal peak, quick experimentations, or even applica-
tion bugs from upstream. Unlike batch pipelines that process
offline on hourly or daily partitions and can tolerate a certain
degree of delay by letting the processing wait for resources,
stream processing must maintain low latency. Successful sys-
tems quickly grow too large for a human to be involved in
handling workload changes. The importance of this lesson only
increases with growth: any feature that involves manual effort
to scale eventually becomes an operational bottleneck.

A significant part of large-scale distributed systems is about
operations at scale: scalable monitoring, alerting, and diag-
nosis. Aside from job level monitoring and alert dashboards,
Turbine has several tools to report the percentage of tasks not
running, lagging, or unhealthy. For each of these higher level
metrics, we have a comprehensive runbook, dashboards, and
tools that drill down into the root cause of the problem. Our
comprehensive monitoring, diagnosis, self-adjusting services,
and the Facebook ecosystem of monitoring tools helps to keep
the clusters healthy.

VIII. RELATED WORK

Cluster management systems like Tupperware [25],
Borg [33], Omega [27], Kubernetes [10], and Mesos [15] are
all examples that enable co-location of latency-sensitive and
batch jobs in shared clusters. Turbine is a nested container in-
frastructure built on top of Tupperware: the Turbine Container
serves as the parent container managing a pool of resources on
each physical host. Stream processing tasks are run as children
containers below the Turbine Container. Building Turbine on
top of a cluster management system rather than simply using
it directly allowed us to be more focused on streaming-specific
needs: fast scheduling, load balancing, and auto scaling.

YARN [30] and Corona [4] are resource managers for big
data analytics workloads initially built for batch applications.
They provide resource isolation and enforcement frameworks
which work best if resource requirements can be determined
in advance. This is rarely the case for streaming workloads.
Though Turbine has been tailored for supporting stream pro-
cessing jobs at Facebook scale, we have been investigating the
integration of Turbine with the YARN-like resource manager

used in Facebook’s Data Warehouse so we can co-locate batch
and streaming jobs in the future. We believe that the end result
will retain the essential characteristics of Turbine enabling fast
scheduling and resource reconfiguration.

Job scheduling has been studied extensively. This topic
covers centralized [14], [32], [34] and distributed [9], [27]
scheduling frameworks. An important characteristic of a dis-
tributed scheduler is how it deals with scheduling conflicts.
Omega [27] adopts optimistic concurrency control [22]: if a
scheduling request fails, it will be rolled back and retried
later. Apollo [9] postpones any corrective action until tasks
are dispatched and the on-node task queue can be inspected
for resource availability. Both of these approaches introduce a
potential scheduling delay. In stream processing, we prefer to
schedule jobs as quickly as possible. Turbine focuses less on
initial scheduling but relies on subsequent load balancing to
mitigate poor scheduling choices. In practice, this works well
because load balancing is quick and can be further optimized
by packing more tasks into one shard without increasing the
total number of shards.

Declaration-based resource management approaches [2],
[14], [17], [34] work by allocating resources according to each
job’s specified amount or relative shares. In these systems,
fairness is often one optimization goal, with the assumption
that some jobs can be throttled when resources are low.
Turbine takes a different approach: it allocates resources based
on each job’s observed consumption and proactively balances
the load to avoid hot hosts. As a result, Turbine is able to
adopt a simpler resource allocation algorithm and meanwhile
achieve good resource utilization. Turbine throttles resource
consumption by stopping tasks only as a last resort, and does
so by prioritizing the availability of tasks belonging to high
business value applications.

IX. CONCLUSION AND FUTURE WORK

We have described Turbine, a large-scale management
framework for stream processing applications. Turbine lever-
ages a mature cluster management system and enhances it with
loosely coupled microservices responsible for answering what
to run (Job Management), where to run (Task Management),
and how to run (Resource Management)—yielding a high
scale and high resiliency management infrastructure capable
of supporting a large number of pipelines processing a large
amount of data with little human oversight.

Going forward, we plan to investigate machine learning
techniques for automatic root cause analysis and mitigation
of incidents that previously required human intervention. Ad-
ditional avenues of exploration include maximizing resource
utilization by reducing the reserved capacity headroom and
optimizing task placement with the help of a continuous
resource estimation algorithm.
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