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Abstract—The demand for stream processing at Facebook
has grown as services increasingly rely on real-time signals to
speed up decisions and actions. Emerging real-time applications
require strict Service Level Objectives (SLOs) with low downtime
and processing lag—even in the presence of failures and load
variability. Addressing this challenge at Facebook scale led to
the development of Turbine, a management platform designed to
bridge the gap between the capabilities of the existing general-
purpose cluster management frameworks and Facebook’s stream
processing requirements. Specifically, Turbine features a fast and
scalable task scheduler; an efficient predictive auto scaler; and
an application update mechanism that provides fault-tolerance,
atomicity, consistency, isolation and durability.

Turbine has been in production for over three years, and
one of the core technologies that enabled a booming growth
of stream processing at Facebook. It is currently deployed on
clusters spanning tens of thousands of machines, managing
several thousands of streaming pipelines processing terabytes
of data per second in real time. Our production experience
has validated Turbine’s effectiveness: its task scheduler evenly
balances workload fluctuation across clusters; its auto scaler
effectively and predictively handles unplanned load spikes; and
the application update mechanism consistently and efficiently
completes high scale updates within minutes. This paper de-
scribes the Turbine architecture, discusses the design choices
behind it, and shares several case studies demonstrating Turbine
capabilities in production.

Index Terms—Stream Processing, Cluster Management

I. INTRODUCTION

The past decade has seen rapid growth of large-scale dis-

tributed stream processing in the industry. Several mature pro-

duction systems have emerged including Millwheel [7], IBM

Streams [16], Storm [29], Spark Streaming [35], Heron [21],

StreamScope [23], Samza [26], Dataflow [8], and Flink [11].

These systems focus on a variety of challenges such as fault

tolerance [29], low latency [11], [29], operability [21], [29],

expressive programming model [7], processing semantics [8],

[11], [26], scalability [7], effective resource provisioning [21],

and state management [11], [23], [26], [35]. Similar trends

are occurring at Facebook with many use cases adopting dis-

tributed stream processing for low latency analysis of site con-

tent interaction, search effectiveness signals, recommendation-

related activities, and other uses. To satisfy these needs, we

have built a framework which enables Facebook engineers

to develop stream processing applications using declarative

(SQL-like) and imperative (C++/Python/PHP) APIs [12]. A

large number of stateless and stateful stream processing ap-

plications have been built [12], [18] using this framework. A

requirement for the success of these applications is a scalable

management platform to deploy, schedule, and re-configure

these applications while maintaining their strict Service Level

Objectives (SLOs) with low downtime and processing lag—

even in the presence of failures and load variability. For

example, many stream processing applications at Facebook

require a 90-second end-to-end latency guarantee.

Existing general-purpose cluster management systems such

as Aurora [1], Mesos [15], Borg [33], Tupperware [25] and

Kubernetes [10] satisfy common management requirements

across a variety of workloads but are not necessarily tuned

for stream processing needs since they are designed based on

different assumptions and use cases. Borg’s [33] ecosystem

consists of a heterogeneous collection of systems, and its users

have to understand several different configuration languages

and processes to configure and interact with the system.

Kubernetes [10] builds upon Borg lessons by improving the

experience of deploying and managing distributed services.

YARN [30] is a resource manager adopted by many stream

processing systems including Flink [11], Samza [26], Spark

Streaming [35] and StreamScope [23]. They mostly provide

resource isolation and enforcement framework which works

best if resource requirements can be determined in advance.

This is rarely the case for streaming workloads. Besides, they

do not support auto scaling as a first-class citizen, which is

the key to keep stream processing jobs real-time.

To bridge the gap between the capabilities of existing

general-purpose cluster management systems and Facebook

stream processing requirements, we have built Turbine, a

service management platform that can be layered on top

of the general-purpose frameworks listed above to provide

specialized capabilities for stream processing applications. The

current implementation of Turbine is integrated with Tup-

perware [25], Facebook’s cluster management system similar

to Google’s Borg [33]. Tupperware is responsible for low-

level host management while Turbine handles higher level job

and task management to ensure that stream processing jobs

continue to run with minimum downtime and meet their SLOs.

Turbine defines a proactive and preactive mechanism for

automatically adjusting resource allocation in multiple di-

mensions (CPU, memory, disk and others). Elastic resource

management plays an important role in maintaining streaming

applications’ SLOs in the presence of workload variations.

To our knowledge, this is the first paper discussing details—

including auto scaling results—of elastic resource manage-
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Fig. 1: The growth of Scuba Tailer service in a one-year

interval, in terms of task count and input traffic volume.

ment in production involving large-scale clusters with several

thousands of stream processing applications.

Another important component of Turbine is a fast schedul-

ing mechanism for provisioning and managing stream pro-

cessing tasks. Fast scheduling is a must in stream processing

clusters since tasks are frequently moved, created, and deleted

as a result of rebalancing and auto scaling (Turbine typically

performs cluster-wide rebalancing every 15-30 minutes). Fast

scheduling also benefits cluster-wide maintenance operations.

Turbine, for instance, is capable of pushing a global stream-

processing engine upgrade—an operation requiring a restart

of tens of thousands of tasks—within 5 minutes.

Additionally, Turbine provides an atomic, consistent, iso-
lated, durable, and fault-tolerant (ACIDF) application update

mechanism. This capability is essential since multiple actors

(provisioner service, auto scaler, human operator) may concur-

rently update the same job, and the system must ensure these

updates are isolated and consistent. For example, changing the

degree of parallelism and changing the input partition to task

mapping for the same job must be serialized. To achieve that,

Turbine automatically cleans up, rolls back, and retries failed

job updates. Once an update is committed, it is guaranteed to

be reflected in the cluster.

One of the main goals of Turbine is to provide high task

availability. To help achieve this goal, Turbine architecture

decouples what to run (Job Management), where to run (Task

Management), and how to run (Resource Management). In

case of individual Turbine component failures, this design

allows the system to enter a degraded state in which stream

processing tasks continue to run and process data.

Turbine has been running in production for over three years

and is managing tens of thousands of diverse stream processing

jobs on tens of thousands of machines. Turbine has been

one of the core technologies that enabled a booming growth

of stream processing at Facebook. As an example, Figure 1

shows the growth of one stream processing service powered by

Turbine—Scuba Tailer (more details are in Section VI)—with

doubled traffic volume during a one year period.

This paper makes the following contributions:

• An efficient predictive auto scaler that adjusts resource

allocation in multiple dimensions;

• A scheduling and lifecycle management framework fea-

turing fast task scheduling and failure recovery;

• An ACIDF application update mechanism;

• An architecture that decouples what to run (Job Man-

agement), where to run (Task Management), and how to
run (Resource Management) to minimize the impact of

individual component failures.

The rest of the paper is organized as follows. Section II

provides an overview of Turbine and its components. Sec-

tion III discusses Turbine’s job management. Subsequently,

Sections IV and V dive deeper into Turbine’s task manage-

ment and its elastic resource management capabilities. We

share our production experience in Section VI and present

lessons learned in Section VII. Section VIII discusses related

work, and Section IX concludes.

II. SYSTEM OVERVIEW

Figure 2 shows Turbine architecture. Application developers

construct a data processing pipeline using Facebook’s stream

processing application framework, which supports APIs at

both declarative level and imperative level. The complexity

of the queries can vary from simple filtering and projection to

a complex graph with multiple join operators or aggregations.

After a query passes all validation checks (e.g., schema

validation), it will be compiled to an internal representation

(IR), optimized, then sent to the Provision Service. A query

can be executed in batch mode and/or in streaming mode. The

Provision Service is responsible for generating runtime config-

uration files and executables according to the selected mode.

The batch mode is useful when processing historical data, and

it uses systems and data from our Data Warehouse [28]. In

this paper, we mainly focus on the stream processing part,

represented in blue boxes in Figure 2.

Turbine contains components responsible for three major

roles: job management, task management, and resource man-

agement. The Job Management layer stores job configurations

and manages job updates. The Task Management layer con-

verts job configurations to individual tasks, and then schedules

and load-balances the tasks across clusters. The Resource

Management layer is responsible for automatically adjusting

resource allocation to a job, a task, and a cluster in real

time. Turbine decouples the components that make decisions

regarding what to run (decided in the Job Management layer),

where to run (decided in the Task Management layer), and

how to run (decided in the Resource Management layer). By

doing so, Turbine can continue operating in a degraded mode

even if any of these components fail, e.g., keep jobs running

but not admitting new jobs.

A stream pipeline may contain multiple jobs, for example

aggregation after data shuffling. A Job in turbine can have

multiple tasks that run the same binary in parallel, with each

task processing a disjoint subset of the input data. The binary

implements a sequence of built-in and/or user-defined trans-

formations, such as filtering, projection, aggregation, joins,

data shuffling, and others. Turbine assumes a streaming data

model as described in [12]. The communication between jobs

is performed through Facebook’s persistent message bus called

Scribe instead of via direct network communication. Each
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Fig. 2: Turbine’s system architecture to manage stream processing services.

task of a job reads one or several disjoint data partitions

from Scribe, maintains its own state and checkpoint, and

writes to another set of Scribe partitions. Hence, a failed

task can recover independently of other tasks by restoring

its own state and resuming reading Scribe partitions from its

own checkpoint. Turbine’s data model eliminates dependencies

between tasks. This reduces the complexity of recovering

a failed task and makes task update/restart/move relatively

lightweight. As a result, the logic of task scheduling, load

balancing and auto scaling designed upon this data model is

simplified, as it does not need to take task dependencies into

consideration.

III. JOB MANAGEMENT

A streaming application is compiled and optimized into

a set of jobs, as aforementioned. After being provisioned,

Turbine’s Job Management layer is responsible for keeping

all jobs up to date with respect to the configuration changes

initiated by the user or by internal Turbine services. Turbine

guarantees the changes to be performed in an ACIDF fashion.

To this end, Turbine maintains 1) the Job Store—a repository

containing the current and desired configuration parameters

for each job, 2) the Job Service—a service to guarantee job

changes are committed to the Job Store atomically, and 3)

the State Syncer—a service that executes job update actions

that drive jobs from the current state to the desired state.

Configuration parameters cover all the information required

for starting the tasks of a given job. Examples include names

and versions of the binary, the number of tasks required for

the job, and the resources allocated to the tasks.

ACIDF job updates play an important role to keep this

complex system manageable and highly decoupled. In an

environment with tens of thousands of jobs, job update failures

and conflicts occur often as updates may come from many

services. As a result, they must be resolved automatically and

its results must be easy to reason about. Furthermore, job

management should be flexible and extensible, as to accept

new services if needed. Examples of new services include the

auto scaler, which was added after Turbine was already in

production, and an auto root-causer.

Given the considerations above, Turbine organizes job

configurations in a hierarchical structure and separates what

is expected to update from the actual action execution. As

shown in Figure 2, the update is stored in the Expected Job
Configuration table. The State Syncer executes and commits

actions to the Running Job Configuration table only after

actions are successfully performed.

A. Hierarchical Expected Job Configuration

In Turbine, a job can be updated by different internal

services or users at the same time. Consider, for example,

a job that is running with 10 tasks. The Auto Scaler decides

to bump the number of tasks to 15. Meanwhile, Oncall1 and

Oncall2 decide to bump the number of tasks to 20 and 30
respectively. Two problems need to be addressed here:

• Isolation: task count changes from the Auto Scaler,

Oncall1 and Oncall2 cannot be performed at the same

time, as changing job parallelism involves checkpoint re-

distribution amongst tasks. If these actions are performed

without isolation, checkpoints may end corrupted.

• Consistency: how to decide the final task count for the

above job? A natural way is to serialize the task count

changes by the time each action is issued, and to use the

change from the last action. However, oncall interventions

occurs when an automation service breaks, and we do

not want oncall operations to be overwritten by a broken

automation service.

Turbine addresses these problems using a hierarchical job

configuration structure. The configuration management utilizes

Thrift [24] to enforce compile-time type checking. This is

then converted to a JSON representation using Thrift’s JSON

serialization protocol. Multiple configurations can be layered

over each other, by merging the JSON configuration. We then

employ a general JSON merging algorithm, that recursively

traverses nested JSON structure while overriding values of the

bottom layer with the top layer of configuration. This allows us

to evolve the configuration specification, and layer an arbitrary

number of configurations without changing the merging logic.

The details are described in Algorithm 1.
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Algorithm 1 Merge JSON Configs

1: procedure LAYERCONFIGS(bottomConfig, topConfig)
2: layeredConfig ← bottomConfig.copy()
3: for each (key, topValue) ∈ topConfig do
4: if isInstance(topValue, JsonMap) && (key in bottomConfig) then
5: layeredValue ← layerConfigs(bottomConfig.get(key), topValue)
6: layeredConfig.update(key, layeredValue)
7: else
8: layerConfig.update(key, topValue)
9: end if

10: end for
11: return layeredConfig
12: end procedure

As illustrated in Table I, the Expected Job Configuration
table contains four configuration levels. Each subsequent level

takes precedence over all the preceding levels. The Base
Configuration defines a collection of common settings—e.g.,

package name, version number, and checkpoint directory.

The Provisioner Configuration is modified when users update

applications. The Scaler Configuration is updated by the

Auto Scaler whenever it decides to adjust a job’s resource

allocations based on the workload and current resource usage.

The Oncall Configuration has the highest precedence and is

used only in exceptional cases when human intervention is

required to mitigate an ongoing service degradation.

The hierarchical design isolates job updates between differ-

ent components: the Provision Service and the Auto Scaler

modify respective configurations through the Job Service

without needing to know anything about each other. The

expected configurations are merged according to precedence,

and provides a consistent view of expected job states. The

Job Service also guarantees read-modify-write consistency

when updating the same expected configuration, e.g., when

different oncalls update oncall configurations for the same

job simultaneously. Before a job update is written back to

the expected job configuration, the write operation compares

the version of the expected job configuration to make sure

the configuration is the same version based on which the

update decision is made. In addition, this hierarchical design is

flexible since a new component can be added to the system by

introducing a new configuration at the right level of precedence

without affecting the existing components.

B. State Syncer

Turbine provides atomic, durable and fault-tolerant job

updates by separating planned updates from actual updates.

The planned updates are expressed in the Expected Job Con-
figurations as discussed above, while the actual settings of the

currently running jobs are stored in the Running Job Con-
figuration table. The State Syncer performs synchronization

between the expected and running job configurations every

30 seconds. In each round for every job, it merges all levels

of the expected configurations according to their precedence,

compares the result with the running job configurations, gen-

erates an Execution Plan if any difference is detected, and

carries out the plan. An Execution Plan is an optimal sequence

of idempotent actions whose goal is to transition the running

TABLE I: Job store schema

Expected Job Table
Base Configuration

Provisioner Configuration
Scaler Configuration
Oncall Configuration

Running Job Table
Running Configuration

job configuration to the expected job configuration. The State

Syncer ensures:

• Atomicity by committing to the running job configuration

only after the plan is successfully executed.

• Fault-tolerance by aborting the failed plan and automat-

ically re-scheduling the execution in the next round since

differences between expected and running configurations

are still detected.

• Durability by making sure the running job configura-

tions are eventually synchronized with the expected job

configurations, even when the State Syncer itself fails.

Performing synchronization operations in a cluster running

tens of thousands of tasks, with tasks continuously moving

hosts because of load balancing (see Section IV), is a highly

choreographed and complex undertaking. To accelerate the

synchronization, the State Syncer batches the simple synchro-

nizations and parallelize the complex ones.

• Simple synchronization involves updates in which the

Running Job Configuration is a direct copy of the merged

Expected Job Configurations without further action re-

quired. Package release falls into this category: once

the corresponding package setting is copied from the

expected to the running job configurations, the package

setting will eventually propagate to the impacted tasks

(more details in Section IV). We can perform simple

synchronizations of tens of thousands of jobs within

seconds through batching.

• Complex synchronization is more than a single copy from

expected to running job configurations. It usually involves

multiple phases that must be coordinated and performed

in a particular order (e.g., changing job parallelism)

and may take a fairly long time to accomplish (e.g.,

initializing a new sink). Changing job parallelism, for

instance, requires multi-step synchronizations: the State

Syncer stops the old tasks first; once all the old tasks

are completely stopped, it redistributes the checkpoints

of the old tasks among the future new tasks, and only

then starts the new tasks. If a complex synchronization

fails in the middle, the State Syncer reschedules it in the

next synchronization round within 30 seconds. If it fails

for multiple times, the State Syncer quarantines the job

and creates an alert for the oncall to investigate.

IV. TASK PLACEMENT AND LOAD BALANCING

The goal of Turbine Task Management is to:

1) Schedule tasks without duplication, as at no point should

the system have two active instances of the same task,

even when other components of the Turbine system

fail. There should also be no task loss. Only in scenar-

ios where other components of the system fail, newly
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Fig. 3: Turbine’s Task Management with a two-level dis-

tributed task scheduling and load balancing.

created tasks in the system might not be immediately

scheduled.

2) Fail-over tasks to healthy hosts during host failures.

3) Restart tasks upon crashes.

4) Load balance tasks across the cluster for even CPU,

Memory and IO usage.

Turbine integrates with Facebook’s container manager (Tup-

perware) [25] and obtains an allocation of Linux containers.

We call these the Turbine Containers. Each Turbine Container

runs a local Task Manager that spawns a subset of stream

processing tasks within that container. The mapping of tasks

to Turbine Containers takes place in a distributed manner. Each

local Task Manager periodically fetches the latest full snapshot

of Task Specs using interfaces provided by the Task Service. It

then updates the tasks that it is responsible for. A Task Spec

includes all configurations necessary to run a task, such as

package version, arguments, and number of threads. Internally,

the Task Service retrieves the list of jobs from the Job Store and

dynamically generates these task specs considering the job’s

parallelism level and by applying other template substitutions.

A. Scheduling

Turbine uses Facebook’s Shard Manager service (similar to

Google’s Slicer [6]) which offers a general mechanism for

balanced assignment of shards to containers. We discuss how

tasks are physically scheduled to run in Turbine containers in

this section, while the logic to decide task movement (load

balancing) is discussed in the next section. Figure 3 shows

an example of how this two-level placement works. A total

of four shards are assigned to three Turbine containers. Each

Task Manager gets a full snapshot of task specs from the

Task Service and schedules the tasks belonging to the shards

assigned to it. We explain some key aspects of this two-layer

placement below.

1) Task to Shard Mapping: Each of the local Task Man-

agers is responsible for determining which tasks are associ-

ated with the shards it hosts. Each of these Task Managers

periodically (every 60 seconds) fetches the list of all Turbine

tasks from the Task Service and computes an MD5 hash for

each task. The result defines the shard ID associated with

this task. This task to shard mapping is then cached in local

Task Manager data structures. With every periodic fetch, this

mapping is updated with any new tasks added to Turbine or for

removing deleted tasks. Note also that by keeping the full list

of tasks, we are able to perform load balancing and failover

even if the Task Service is unavailable.

2) Shard Movement: When the Shard Manager decides to

reshuffle assignments and move a shard from one Turbine

container to another, it issues a DROP_SHARD request to

the Task Manager running on the source container. The Task

Manager stops the tasks associated with the dropped shard,

removes the shard from its local bookkeeping structures,

and returns SUCCESS. The Shard Manager then updates its

mapping of shards to containers and sends an ADD_SHARD
request to the Task Manager on the destination container. This

Task Manager adds the new shard to its bookkeeping data

structures, retrieves the list of tasks associated with the new

shard, and starts them. To avoid excessive task downtime,

if a DROP_SHARD or ADD_SHARD requests take too long,

Turbine forcefully kills the corresponding tasks or initiates a

Turbine container fail-over process respectively. The fail-over

protocol is discussed in Section IV-C.

B. Load Balancing

Once the initial assignment of shards to Turbine containers

is complete, Task Managers are responsible for starting the

tasks corresponding to the shards assigned to their Turbine

containers. As tasks run, Turbine periodically computes new

shard load values which are then used by the Shard Manager

to reshuffle the assignment of shards to Turbine containers.

Each Turbine container is associated with a capacity (spec-

ified in multiple dimensions (e.g., 26GB of memory). Each

shard is associated with a load (i.e., resources it consumes in

terms of CPU, memory, etc.). The algorithm to generate the

shard to Task container mapping does a bin-packing of shards

to Turbine containers such that the capacity constraint of each

Turbine container is satisfied while also a global resource

balance is maintained across the cluster. The resource balance

is defined in terms of a utilization band per resource type. The

algorithm does the mapping such that the total load of each

Turbine container (calculated as the sum of the shard loads of

the container) is within a band (e.g +/-10%) of the average of

the Turbine container loads across the tier. In other words, the

load difference between Turbine containers does not exceed

an expected threshold. The algorithm also ensures additional

constraints are satisfied, e.g., maintaining a head room per

host, or satisfying regional constraints.

One important aspect to perform good load balancing is

how to define shard load. Turbine provides different levels of

resource guarantee by reporting different metrics. For example,

for small C/C++ tasks, we report the dynamic resource usage

of the tasks (e.g., average memory over the last 10 minutes).

This helps Turbine to offset resource usage across tasks and

improve cluster resource efficiency. On the other hand, for

tasks using Java JVM or those that need cgroup enforcement,
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we report the peak resource required (xmx, cgroup limits) to

improve task stability.

A background load aggregator thread in each Task Manager

collects the task resource usage metrics and aggregates them

to calculate the latest shard load. This refreshed shard load is

reported to the Shard Manager every ten minutes. The Shard

Manager periodically (30 minutes for most of our tiers) re-

generates the shard to Turbine container mapping using the

latest shard load values. If this results in a new mapping, the

Shard Manager moves shards according to the description in

Section IV-A2.

C. Failure Handling

The main goal of the Turbine Failure Handling mecha-

nism is to reduce the impact of system failures, ensure task

availability, and guarantee that task management failures do

not cause data corruption, loss, or duplication. Turbine uses

a bi-directional heartbeat-based fail-over protocol with the

Shard Manager. When the Shard Manager does not receive

a heartbeat from a Task Manager for a full fail-over interval

(default is 60 seconds), it assumes the corresponding Turbine

container is dead, generates a new mapping for the shards

in that container, and invokes the shard movement protocol

described in Section IV-B and IV-A2.

However, sometimes, stopped heartbeats can be caused

by other reasons such as connection failures. In this case,

simply moving the lost shards to new containers may result

in duplicate shards and eventually duplicated data processing.

Turbine addresses this challenge by proactively timing out

connections to the Shard Manager before the Shard Manager’s

fail-over interval period (in practice, timeout is configured

to 40 seconds, fail-over is 60 seconds). If the connection

times out, the Turbine container will reboot itself. After

rebooting, if the container is able to re-connect to the Shard

Manager before its fail-over, the shards would remain with the

original container. Otherwise, Shard Manager would fail-over

the shards from that container to new containers. The rebooted

container will be treated as a newly added, empty container in

that case. Shards will be gradually added to such containers

as described in Section IV-A2.

D. Summary

To summarize, Turbine achieves fast scheduling and high

task availability as follows:

• The two-level scheduling architecture decouples what and

where to run; specifically, the Shard Manager does not

need to interact with the Job Management layer. Such

modular design simplifies debugging and maintenance

of different system components and enables potential

reuse of the (relatively general) load balancing and failure

handling parts in other services.

• Each Task Manager has the full list of tasks, enabling

Turbine to perform load balancing and fail-over even

when the Task Service or Job Management layer are

unavailable or degraded. If the Shard Manager becomes

unavailable too, Turbine provides a further degraded

mode where each Task Manager can fetch stored shard-

container mapping.

• Each task manager has a local refresh thread to period-

ically (every 60 seconds) fetch from the Task Service.

This guarantees task updates can be reflected in runtime

after the Task Service caching expires (90 seconds) plus

synchronization time in the State Syncer (refreshed every

30 seconds) mentioned in Section III. The overall end

to end scheduling is 1-2 minutes on average, even for

cluster-wide updates.

• If system failures occur, fail-overs start after 60 seconds.

The downtime for a task on average is less than 2 min-

utes. This mechanism of handling failures also enables

automatic handling of addition or removal of hosts in

Turbine clusters, making Turbine elastic to use up all

available resources.

V. ELASTIC RESOURCE MANAGEMENT

Resource management is responsible for reacting to load

changes at task level, job level and cluster level. It has

two goals: (i) ensure that all jobs have sufficient resources

needed for processing their input on time, and (ii) maintain

efficient cluster-wide resource utilization. To achieve these

goals, the resource management system must carefully weigh

when and how resource allocation changes are made. Many

systems [3], [8], [13], [19], [35] shed light on when to adjust

the resource allocation. Turbine’s Auto Scaler is built upon

these approaches but meanwhile introduces a mechanism that

not only adjusts resource effectively but also minimizes the

amount of unnecessary churn in the system (e.g., restarting

tasks that do not need to be restarted).

A. Reactive Auto Scaler

The first generation of the auto scaler was similar to

Dhalion [13]. It consisted of a collection of Symptom Detectors
and Diagnosis Resolvers and was purely reactive. This version

focused on addressing the detection problem. It monitored pre-

configured symptoms of misbehavior such as lag or backlog,

imbalanced input, and tasks running out of memory (OOM).

To measure lag, we define time_lagged for a job as:

time_lagged = total_bytes_lagged/processing_rate (1)

where total_bytes_lagged is the number of bytes available for

reading that have not been ingested into the processing engine

yet, and processing_rate is the number of bytes the streaming

job can process per second. Intuitively, time_lagged corre-

sponds to the amount of time the current processing is delayed

from real time. Imbalanced input is measured by the standard

deviation of processing rate across all the tasks belonging to

the same job.

How to detect and measure OOMs depends on the per-

task memory enforcement configuration. For tasks running

in containers with configured cgroup limits, cgroup stats are

preserved after OOM tasks are killed. Upon restarting such

tasks, Turbine task managers read the preserved OOM stats

and post them via the metric collection system to the Auto
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Algorithm 2 Reactive Auto Scaler

1: for each job ∈ J obs do
2: if time lagged > SLO threshold then
3: if imbalanced && job can be rebalanced then
4: rebalance input traffic amongst tasks ∈ job
5: else
6: increase the number of task counts
7: end if
8: else if OOM then
9: increase reserved memory

10: else � No OOM, no lag is detected in a day
11: try to decrease resource assignment
12: end if
13: end for

Scaler Symptom Detector. For Java tasks, JVM is configured

to post OOM metrics right before it kills the offending tasks.

For tasks without memory enforcement, Turbine task managers

post ongoing memory usage metrics which are then compared

by the Auto Scaler with the pre-configured soft memory

limit to decide whether any memory adjustment is warranted.

Algorithm 2 shows how the Reactive Auto Scaler works.

We encountered several problems with this reactive design:

(i) it sometimes took too long for a single job to converge to

a stable state due to lack of accurate estimation on required

resources, as also observed in DS2 [19]; (ii) without knowing

the lower bounds on the resource requirements for a given

job, the Auto Scaler can make incorrect downscaling decisions

causing a backlog in a previously healthy job; (iii) making

scaling decisions without understanding the root cause of a

particular symptom may amplify the original problem. For

example, if a backlog is caused by excessive inter-service

connection failures, increasing task parallelism may generate

even more traffic for the dependent service, prolonging its

unavailability even further. From our experience of running

production stream processing applications, we have observed

that the amount of resources needed for a given job is often

predictable. Task footprints like maximal parsing rate are

often stable as long as application logic and settings (e.g.,

checkpoint flush frequency) are unchanged. To incorporate this

insight, we have built the second generation of the Auto Scaler

by extending the original design with the ability to predict

resource requirements proactively.

B. Proactive Auto Scaler

Resource Estimators and Plan Generator are introduced in

this version (Figure 4). The purpose of a Resource Estimator

is to estimate the usage of a given resource (e.g., CPU,

memory, network bandwidth, and disk I/O) in a given job. The

Plan Generator uses these estimates to construct a resource

adjustment plan. Job resource estimation depends on the

characteristic of the job. In typical Facebook workloads, jobs

fall into two categories: stateless and stateful. Stateless jobs—

filtering, projection, transformation—do not need to maintain

state except for the checkpoints recording where to resume

reading the input streams in case of task restarts. Stateful

jobs—aggregation, join—maintain application-specific state in

Fig. 4: The architecture of Turbine’s Auto Scaler.

memory and persistent storage and must restore relevant parts

of the state on restarts.

Stateless jobs are often CPU intensive and they perform

input deserialization, data processing, and output serialization.

Regardless which of these is dominant, CPU consumption is

approximately proportional to the size of input and output

data. For such jobs, input/output rate metrics are leveraged to

estimate the maximum stable processing rate a single thread

task can handle. The processing rate increases linearly with

the number of tasks and threads in most cases, and the CPU

resource unit needed for input rate X can be estimated as:

X/(P ∗ k ∗ n) (2)

where P is the maximum stable processing rate for a single

thread. Initially, P can be bootstrapped during the staging

period (a pre-production phase for application correctness ver-

ification and performance profiling), and adjusted at runtime.

Section V-C describes how to adjust P . Additionally, k is the

number of threads per task, and n is the number of parallel

tasks. If the backlogged data B needs to be recovered within

time t, the CPU resource estimate is:

(X +B/t)/(P ∗ k ∗ n) (3)

For stateful jobs, in addition to the CPU resource, memory

and disk usage also needs to be estimated. For an aggregation

job, the memory size is proportional to the key cardinality of

the input data kept in memory. For a join operator, the memo-

ry/disk size is proportional to the join window size, the degree

of input matching, and the degree of input disorder [18].

The Resource Estimator can be configured to estimate dif-

ferent dimensions of resource consumption and report them to

the Plan Generator for further evaluation. The Plan Generator
makes a synthesized decision based on symptoms and resource

estimates collected. As an extension to Algorithm 2, the Plan

Generator makes sure the final plan has enough resources to

run a job based on the resource estimates from three aspects:

1) It prevents downscaling decisions from causing a healthy

job to become unhealthy.

2) It ensures that untriaged problems (e.g., application

bugs, network issues, dependency services) do not trig-
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ger unnecessary and potentially harmful scaling deci-

sions (see Section V-A).

3) It executes necessary adjustments for multiple resources

in a correlated manner. For example, if a stateful job

is bottlenecked on CPU, and the number of tasks is

increased, the memory allocated to each task can be

reduced.

C. Preactive Auto Scaler

When a scaling action is performed, it results in one or more

tasks being added, removed, or restarted. This often involves

CPU- and I/O-heavy initialization of the added and restarted

tasks, which may adversely impact other tasks running on the

same hosts. One main challenge in developing Auto Scaler

is to ensure that it is sufficiently conservative not to cause

unintended cluster instability—a state with a large portion of

tasks being degraded.

To address this challenge, Turbine introduces the Pattern
Analyzer whose goal is to infer patterns based on data seen

and to apply this knowledge for pruning out potentially

destabilizing scaling decisions. Turbine records and analyzes

two sets of data:

1) Resource Adjustment Data. This information is used

to adjust the footprint of a given job. For example,

assuming that the current input rate is X , the current

task count is n, and the max throughput per task is

P , Turbine scaler plans to downscale the task count to

n′ = ceiling(X/P ) if no lag is detected for a long

period of time. If this yields n′ that is greater than n,

our estimate of P must have been smaller than the actual

max throughput. In this situation, Turbine adjusts P to

the average task throughput and skips performing an

action in this round. If n′ < n, the scaler reduces the

number of tasks in the job and observes the outcome. If

an SLO violation is detected subsequently, the estimated

value of P must have been greater than the actual

max throughput and P needs to be adjusted to a value

between X/n and P .

2) Historical Workload Patterns. Most stream processing

jobs at Facebook exhibit diurnal load patterns: while

the workload varies during a given day, it is nor-

mally similar—within 1% variation on aggregate—to the

workload at the same time in prior days. These repeated

patterns are leveraged to ensure that the scaler does

not keep changing resource allocations too frequently.

More specifically, Turbine records per minute workload

metrics during the last 14 days, such as input rate or

key set size for a job. When the scaler decides to change

resource allocation, it verifies that this reduction will not

cause another round of updates in the next x hours, for

some configurable x, by checking historical workload

metrics to validate that the reduced number of tasks

was able to sustain traffic in the next x hours in the

past. If the average input rate in the last 30 minutes

is significantly different from the average of the same

metric in the same time periods during the last 14 days,

historical pattern-based decision making is disabled. We

plan to address these outlier cases in our future work.

D. Untriaged Problems

Untriaged Problems are inevitable in reality. They are iden-

tified by misbehavior symptoms even when no imbalanced

input is detected, and the job has enough resources according

to the Auto Scaler estimates. These problems can be caused

by many reasons including temporary hardware issues, bad

user updates of the job logic, dependency failures, and system

bugs. Hardware issues typically impact a single task of a

misbehaving job; moving the task to another host usually

resolves this class of problems. If a lag is caused by a recent

user update, allocating more resources helps most of the

time, and the job can converge to a stable state quickly after

updated metrics are collected. Conversely, allocating more

resources does not help in the case of dependency failures or

system bugs. When Turbine cannot determine the cause of an

untriaged problem, it fires operator alerts that require manual

investigation.

E. Vertical vs. Horizontal

The Turbine Auto Scaler supports vertical and horizontal
scaling. Vertical scaling applies resource allocation changes

within the task level without changing the number of tasks.

Horizontal scaling involves changing the number of tasks

to increase or decrease job parallelism. Horizontal scaling

is challenging since changing the number of tasks requires

redistributing input checkpoints between tasks for stateless

jobs, and, additionally, redistributing state for stateful jobs.

As discussed in Section III-B, such redistribution requires

coordination between tasks and, as a result, takes more time.

Conversely, vertical scaling may not always be desirable: large

tasks make task movement and load balancing more difficult

and they may cause resource fragmentation, making it difficult

for the system to collocate other tasks in the same container.

In Turbine, the upper limit of vertical scaling is set to a portion

of resources available in a single container (typically 1/5)

to keep each task fine-grained enough to move. With this

constraint, the Auto Scaler favors vertical scaling until this

limit is reached, and only then applies horizontal scaling.

F. Capacity Management

The Capacity Manager monitors resource usage of jobs in

a cluster and makes sure each resource type has sufficient

allocation cluster-wide. It is authorized to temporarily transfer

resources between different clusters for better global resource

utilization. This is particularly useful during datacenter-wide

events such as datacenter outages or disaster simulation drills.

As described in Section IV-C, Turbine relies on automated

fail-over to place tasks onto available healthy hosts. Hence,

the procedure to add or remove hosts is fully automated.

When cluster-level resource usage spikes up—e.g., during

disaster recovery—the Capacity Manager communicates with

the Auto Scaler by sending it the amount of remaining

resources in the cluster and instructing it to prioritize scaling
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Fig. 5: CPU and memory usage of Scuba Tailer tasks.

up privileged jobs. In the extreme case of the cluster running

out of resources and becoming unstable, the Capacity Manager

is authorized to stop lower priority jobs and redistribute their

resources towards unblocking higher priority jobs faster.

VI. PRODUCTION EXPERIENCE

This section reports measurements from production Turbine

clusters, evaluating resource utilization and response to work-

load change. We primarily focus on Scuba Tailer—the largest

stream processing service managed by Turbine. Scuba [5]

provides real-time, ad-hoc interactive analysis over arbitrary

time-indexed datasets. It is often used in troubleshooting

scenarios such as diagnosing performance regressions and

analyzing the impact of infrastructure changes in near real time

(within 90 seconds of the event occurrence). Ingestion of data

into the Scuba backend is performed by Scuba tailers—stream

processing jobs that read input data from Scribe, process it as

needed, and send the result to the Scuba backend. Scribe is

a persistent distributed messaging system offering high read

and write throughput and low message delivery latency. At

a logical level, Scribe data is partitioned into categories (c.f.

Kafka topics [20]). Data for different Scuba tables is logged

into different Scribe categories. For each Scuba table, there is

a dedicated Scuba tailer job consisting of one or more tasks.

Low latency and reliability are the main requirements.

The Scuba Tailer service uses a dedicated cluster of more

than two thousand machines in three replicated regions. Each

machine is equipped with 256GB memory, with a mix of

48 or 56 CPU cores. For each task, CPU overhead has a

near-linear relationship with the traffic volume, while memory

consumption is proportional to the average message size, since

a tailer holds a few seconds worth of data in memory before

processing and flushing it to the Scuba backend. Figure 5

shows the workload characteristics of over 120K tasks. Fig-

ure 5(a) reveals that over 80% of the tasks consume less

than one CPU thread—an indication of low traffic. A small

percentage of tasks need over four CPU threads to keep up

with the incoming traffic. Memory consumption (Figure 5(b))

has a different distribution: every task consumes at least

∼400MB, regardless of the input traffic volume. The reason

for this is that each task runs the Scribe Tailer binary as a

subprocess and has an additional metric collection service.

Overall, over 99% of the tasks consume less than 2GB.

A. Load Balancing

Turbine observes the resource consumption of all running

tasks and spreads them to all available machines. Figure 6(a)

and Figure 6(b) show the CPU and memory utilization in one

cluster measured over one week. Figure 6(c) demonstrates that

Turbine does a good job of distributing tasks across hosts—

the number of tasks vary within a small range (from ∼150

to ∼230 per host). Note that to balance the load, Turbine

only considers resource consumption, and not the number of

tasks directly. The distribution shown in Figure 6 suggests

that we could further increase resource utilization per host.

We choose not to go this route and prefer to keep a certain

headroom for absorbing workload spikes caused by changes

in individual jobs, machine failures, and large-scale dependent

services outages.

Before Turbine, each Scuba Tailer task ran in a separate

Tupperware container. The migration to Turbine resulted in a

∼33% footprint reduction thanks to Turbine’s better use of the

fragmented resources within each container.

To demonstrate the effectiveness of Turbine’s load balancing

component, we conducted an experiment in a test cluster which

shadows a fraction of production traffic. We first disabled the

load balancer (hour 6), resulting in occasional spiky CPU

utilization on some hosts. This was caused by traffic spikes

in the input of some jobs and would have been mitigated

by the load balancer moving other tasks off the busy hosts.

To mimic maintenance events, we then manually triggered

the failover on a few machines (hour 14), which resulted in

imbalanced CPU and memory utilization across the cluster.

For the jobs that were running on the machines with very high

CPU utilization, we observed both lag due to lack of CPU, and

crashes due to lack of memory. After we re-enabled the load

balancer (hour 20), host resource consumption came back to

normal levels very quickly. Figure 7 shows the changes in

CPU utilization; memory utilization exhibits similar patterns

(figures are omitted for brevity).

Proactive re-scheduling is instrumental in keeping the load

balanced. Turbine is configured to periodically re-evaluate load

metrics and redistribute tasks accordingly. Our measurement

shows that each execution of the placement algorithm comput-

ing the mapping of 100K shards onto thousands of Turbine

containers takes less than two seconds. We believe this is

unlikely to become a scalability bottleneck even with 100×
growth in the future. After the scheduling decision is made,

the shard re-assignments are propagated to Task Managers.

B. Responding to Workload Change

Turbine automatically performs scaling actions to ensure

that all jobs have sufficient resources and to maintain efficient

cluster-wide resource utilization. This section describes several

cases of the Auto Scaler in action as observed in production

Turbine environments.

1) Scaling at Job Level: Figure 8 shows a Scuba tailer job

that was disabled for five days due to application problems—

resulting in a large backlog of data. When the application

was fixed and re-enabled, it needed to process the backlog as
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Fig. 6: In one Turbine cluster with > 600 hosts, CPU and memory utilization numbers are very close across hosts. With each

host running hundreds of tasks, the reserved per-host headroom can tolerate simultaneous input traffic spike from many tasks.
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Fig. 8: Turbine’s Auto Scaler helped a backlogged Scuba tailer

job recover much faster.

quickly as possible. At the time, the Auto Scaler was available

in cluster1, but it was not yet launched in cluster2.

Figure 8 shows how the Auto Scaler helped with the recovery

after the fixed application began processing the backlog. The

purple line indicates that the Auto Scaler first scaled the job

in cluster1 to 32 tasks. 32 is the default upper limit for

a job’s task count for unprivileged Scuba tailers. It is used

to prevent out of control jobs from grabbing too many cluster

resources. After the operator temporally removed the limit, the

Auto Scaler quickly scaled up to 128 tasks and redistributed

the traffic to fully utilize the processing capability of each task.

In comparison, the job in cluster2 took more than two days

(∼8× slower) to process the same amount of backlog. We

manually increased the task count of the job in cluster2
to 128 as well, but the recovery speed was still suboptimal

because of uneven traffic distribution among tasks.

2) Scaling at Cluster Level: Facebook periodically prac-

tices disaster recovery drills, known as storms, that involve

disconnecting an entire data center from the rest of the

world [31]. During a storm, the traffic from the affected data

center is redirected to other available data centers. The Turbine

Auto Scaler plays an important role during a storm: it is

responsible for scaling up jobs in the healthy data centers so

they can handle additional redirected traffic. Figure 9 captures

the aggregated task count change in a Turbine cluster (around

1000 jobs) as Turbine Auto Scaler was reacting to the storm

traffic. The storm started on the morning of Day 2; the purple

line shows that the cluster-wide traffic increased by ∼16%

at peak time compared to the previous non-storm day. At

the same time, the total task count was increased by ∼8%

to handle the extra traffic. Recall that Turbine Auto Scaler

performs vertical scaling first before attempting any horizontal

scaling (Section V). This is why the task count change was

relatively smaller compared to the traffic change. Before,

during, and after the storm, ∼99.9% of jobs in that cluster

stayed within their SLOs. After the storm ended, the total task

count dropped to a normal level.

Figure 9 also subtly shows the effect of the predictive

aspect of the Auto Scaler. Notice that the difference between

the peak and low traffic during Day 1 is much larger than

that between the peaks of Day 1 and Day 2. At the same

time, the corresponding differences in task counts are not as

pronounced. This is because the normal (Day 1) fluctuation

is accounted for by the Auto Scaler’s historical analysis as it

tries to reduce task movements in anticipation of daily ebbs

and flows (see Section V-C). Conversely, the relatively higher

traffic during Day 2 peak is unexpected, and, so, the Auto

Scaler is forced to add a relatively high number of tasks.

3) Scaling for Resource Efficiency: Turbine Auto scaler

improves resource efficiency as well as helps keeping jobs

within their SLOs. Without auto scaling, jobs have to be over-

provisioned to handle peak traffic and reserve some headroom

for unexpected traffic spikes. Figure 10 records the CPU

and memory footprints when auto scaling was launched in

one Scuba Tailer cluster. The overall task count dropped

from ∼120K to ∼43K, saving ∼22% of CPU and ∼51%

of memory. After the rollout, the Capacity Manager was

authorized to reclaim the saved capacity.
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Fig. 9: Turbine’s Auto Scaler reacted to Storm by performing

horizontal scaling at cluster level.

VII. LESSONS LEARNED

Facebook’s streaming workload is highly variable. This is

due to diurnal peak, quick experimentations, or even applica-

tion bugs from upstream. Unlike batch pipelines that process

offline on hourly or daily partitions and can tolerate a certain

degree of delay by letting the processing wait for resources,

stream processing must maintain low latency. Successful sys-

tems quickly grow too large for a human to be involved in

handling workload changes. The importance of this lesson only

increases with growth: any feature that involves manual effort

to scale eventually becomes an operational bottleneck.

A significant part of large-scale distributed systems is about

operations at scale: scalable monitoring, alerting, and diag-

nosis. Aside from job level monitoring and alert dashboards,

Turbine has several tools to report the percentage of tasks not

running, lagging, or unhealthy. For each of these higher level

metrics, we have a comprehensive runbook, dashboards, and

tools that drill down into the root cause of the problem. Our

comprehensive monitoring, diagnosis, self-adjusting services,

and the Facebook ecosystem of monitoring tools helps to keep

the clusters healthy.

VIII. RELATED WORK

Cluster management systems like Tupperware [25],

Borg [33], Omega [27], Kubernetes [10], and Mesos [15] are

all examples that enable co-location of latency-sensitive and

batch jobs in shared clusters. Turbine is a nested container in-

frastructure built on top of Tupperware: the Turbine Container

serves as the parent container managing a pool of resources on

each physical host. Stream processing tasks are run as children

containers below the Turbine Container. Building Turbine on

top of a cluster management system rather than simply using

it directly allowed us to be more focused on streaming-specific

needs: fast scheduling, load balancing, and auto scaling.

YARN [30] and Corona [4] are resource managers for big

data analytics workloads initially built for batch applications.

They provide resource isolation and enforcement frameworks

which work best if resource requirements can be determined

in advance. This is rarely the case for streaming workloads.

Though Turbine has been tailored for supporting stream pro-

cessing jobs at Facebook scale, we have been investigating the

integration of Turbine with the YARN-like resource manager

used in Facebook’s Data Warehouse so we can co-locate batch

and streaming jobs in the future. We believe that the end result

will retain the essential characteristics of Turbine enabling fast

scheduling and resource reconfiguration.

Job scheduling has been studied extensively. This topic

covers centralized [14], [32], [34] and distributed [9], [27]

scheduling frameworks. An important characteristic of a dis-

tributed scheduler is how it deals with scheduling conflicts.

Omega [27] adopts optimistic concurrency control [22]: if a

scheduling request fails, it will be rolled back and retried

later. Apollo [9] postpones any corrective action until tasks

are dispatched and the on-node task queue can be inspected

for resource availability. Both of these approaches introduce a

potential scheduling delay. In stream processing, we prefer to

schedule jobs as quickly as possible. Turbine focuses less on

initial scheduling but relies on subsequent load balancing to

mitigate poor scheduling choices. In practice, this works well

because load balancing is quick and can be further optimized

by packing more tasks into one shard without increasing the

total number of shards.

Declaration-based resource management approaches [2],

[14], [17], [34] work by allocating resources according to each

job’s specified amount or relative shares. In these systems,

fairness is often one optimization goal, with the assumption

that some jobs can be throttled when resources are low.

Turbine takes a different approach: it allocates resources based

on each job’s observed consumption and proactively balances

the load to avoid hot hosts. As a result, Turbine is able to

adopt a simpler resource allocation algorithm and meanwhile

achieve good resource utilization. Turbine throttles resource

consumption by stopping tasks only as a last resort, and does

so by prioritizing the availability of tasks belonging to high

business value applications.

IX. CONCLUSION AND FUTURE WORK

We have described Turbine, a large-scale management

framework for stream processing applications. Turbine lever-

ages a mature cluster management system and enhances it with

loosely coupled microservices responsible for answering what
to run (Job Management), where to run (Task Management),

and how to run (Resource Management)—yielding a high

scale and high resiliency management infrastructure capable

of supporting a large number of pipelines processing a large

amount of data with little human oversight.

Going forward, we plan to investigate machine learning

techniques for automatic root cause analysis and mitigation

of incidents that previously required human intervention. Ad-

ditional avenues of exploration include maximizing resource

utilization by reducing the reserved capacity headroom and

optimizing task placement with the help of a continuous

resource estimation algorithm.
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Fig. 10: The production results of slowly rolling out the auto scaling capability to one Scuba Tailer cluster.
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