
SAFE: Scalable Automatic Feature Engineering
Framework for Industrial Tasks

Qitao Shi, Ya-Lin Zhang†, Longfei Li, Xinxing Yang, Meng Li, Jun Zhou
Ant Financial Services Group

{qitao.sqt, lyn.zyl, longyao.llf, xinxing.yangxx, lm168260, jun.zhoujun}@antfin.com

Abstract—Machine learning techniques have been widely ap-
plied in Internet companies for various tasks, acting as an
essential driving force, and feature engineering has been generally
recognized as a crucial tache when constructing machine learning
systems. Recently, a growing effort has been made to the devel-
opment of automatic feature engineering methods, so that the
substantial and tedious manual effort can be liberated. However,
for industrial tasks, the efficiency and scalability of these methods
are still far from satisfactory. In this paper, we proposed a staged
method named SAFE (Scalable Automatic Feature Engineering),
which can provide excellent efficiency and scalability, along with
requisite interpretability and promising performance. Extensive
experiments are conducted and the results show that the pro-
posed method can provide prominent efficiency and competitive
effectiveness when comparing with other methods. What’s more,
the adequate scalability of the proposed method ensures it to be
deployed in large scale industrial tasks.

Index Terms—feature engineering, automatic machine learning

I. INTRODUCTION

Nowadays, machine learning (ML) techniques have been
widely explored and applied in almost all Internet companies,
and serving as essential parts in diversified fields, such as
recommendation system [1]–[3], fraud detection [4]–[6], ad-
vertising [7]–[9], and face recognition [10], [11], etc. With the
help of these techniques, excellent performance and significant
improvement have been obtained.

Generally speaking, to build a machine learning system,
a professional and complex ML pipeline is always needed,
which usually includes data preparation, feature engineering,
model generation, and model evaluation, etc. It is widely
agreed that the performance of machine learning methods
depends to a large extent on the quality of the features, and
generating a good feature set becomes a crucial step to chase
high performance [12]. Therefore, most machine learning
engineers take a large effort to obtain useful features when
building a machine learning system.

However, it is frustrating that feature engineering is often
the most indispensable part of human intervention in ML
pipelines since human intuition and experience are gravely
required, thus, it becomes tedious, task-specific and challeng-
ing, and hence, time-consuming. On the other hand, with the
growing need for ML techniques in industrial tasks, it becomes
impracticable to manually perform feature engineering in all
of these tasks. This promotes the birth of automatic feature

†: corresponding author.

engineering, which is an important topic of automatic machine
learning (AutoML) [13]–[16]. The development of automatic
feature engineering can not only liberate machine learning
engineers from the substantial and tedious process, but also
power machine learning techniques to be applied in more and
more applications.

For a regular supervised learning task, problem can be
formulated as using training examples to find a function
F : X → Y , which is defined as returning the y value that
obtains the highest score: F(x) = arg max

y
S(x, y), where X

is the input space, Y is the output space and S : X×Y → R is
a scoring function. The goal of automatic feature engineering
is to learn a feature representation Ψ : X → Z, to construct a
new feature representation z from the original feature x, with
which the performance of subsequent machine learning tools
can be further improved as much as possible.

Several studies have been conducted on this topic. To name
a few, some methods use reinforcement learning based strategy
to perform automatic feature engineering [17]–[19]. These
methods require many rounds of attempts and it is necessary
to generate a new feature set and evaluate it in each round,
making them infeasible in industrial tasks. Transfer learning or
meta-learning based strategies are also proposed for automatic
feature engineering [20], [21]. However, a large number of
experiments on various datasets are needed in advance to
train these methods, and it is intractable to introduce new
operators or increase the number of parent features. Some
methods follow the generation-selection procedure [22]–[24]
to do automated feature engineering. However, these methods
always perform as generating all legal features in the feature
generation stage and then selecting a subset features from
them, thus the time and space complexity is extremely high,
making it unapplicable for tasks with large data size or high
feature dimension.

In industrial tasks, the size of real business data is always
very huge, which introduces extremely high requirements for
space and time complexity. At the same time, due to the rapid
change of business, there are also high requirements for the
flexibility and scalability of the algorithms. Besides, there are
more requirements that need to be addressed [25]:

• Strong applicability: A tool that is highly adaptable means
that it is user-friendly and easy to use. The performance
of an automatic feature engineering algorithm should not
depend on a large number of hyper-parameters or one

1645

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00146

of its hyper-parameter configurations can be applied to
different data sets.

• Distributed computing: the number of samples and fea-
tures in real-world business tasks are pretty large, which
makes distributed computing necessary. Most parts of the
automatic feature engineering algorithm should be able to
be calculated in parallel.

• Real-time inference: real-time inference is involved in
many real-world businesses. In such cases, once an in-
stance is inputted, the feature should be produced in-
stantly and the prediction can be performed subsequently.

In this paper, we approach the problem from the typical
two-stage perspective and propose a method named SAFE
(Scalable Automatic Feature Engineering) to perform efficient
automatic feature engineering, which includes feature gener-
ation stage and feature selection stage. We guarantee compu-
tational efficiency, scalability and the requirements mentioned
above. The major contributions of this paper are summarized
as follows:
• In the feature generation stage, different from the previ-

ous methods which focuses on what operator to use or
how to generate all legal features, we focus on mining
the original feature pairs that generate more effective new
features with higher probability, to improve the efficiency
of the process.

• In the feature selection stage, we propose a pipeline of
feature selection, with the consideration of the power of
a single feature, the redundancy of feature pairs, and the
feature importance evaluated by the typical tree model.
It is suitable for multiple different business data sets and
various machine learning algorithms.

• We have experimentally proved the advantages of our al-
gorithm on a large set of data sets and multiple classifiers.
Compared with the original feature space, the prediction
accuracy is improved by 6.50% on average.

The rest of this paper is organized as follows: Section II
reviews the related work; Section III explains the problem
setting; Section IV details the proposed method and provides
some analyses; Section V states the detail of the data set,
evaluation method and presents the experimental results to
validate our method; Section VI concludes the paper.

II. RELATED WORK

As a nonnegligible issue for automatic machine learn-
ing [13]–[16], automatic feature engineering has drawn exten-
sive attention in recent years, and many methods have been
proposed from different perspectives to solve this task [17]–
[24], [26]–[28]. In this section, we mainly discuss three typical
strategies, which include the generation-selection strategy,
reinforcement learning based strategy and transfer learning
based strategy.

Given a supervised learning data set, a typical method for
automatic feature engineering is to follow the generation-
selection procedure. The FICUS algorithm [26] initializes by
constructing a set of candidate features, and iterates to improve

it until the computation budget is exhausted. During each
iteration, it performs beam search to construct new features
and selects features typically by using heuristic measures
based on information gain in a decision tree. TFC [27] also
solves this task by an iterative framework. In each iteration, it
generates all legal features based on the current feature pool
and all available operators, then selects the best features from
all candidate features by using information gain, and keeps
them as the new feature pool. With this framework, higher-
order feature combinations can be obtained as the iteration
progresses. However, the exhaustive search in each iteration
leads to a combinatorial explosion of feature space, making
this approach non-scalable. To avoid exhaustive search, learn-
ing based methods, such as the FCTree algorithm [28], have
been proposed. FCTree trains a decision tree and performs
feature generation by applying several sequential transforma-
tions to the original feature, and select features according to
information gain on each node of the decision tree. Once a
tree is built, features chosen at internal decision nodes are
used to obtain the constructed features. [24] is a regression-
based algorithm, which learns the representation by mining
pairwise feature associations, identifying the linear or non-
linear relationship between each pair, applying regression and
selecting those relationships that are stable and improve the
prediction performance. These algorithms always encounter
performance and scalability bottlenecks since the cost of time
and resource in the feature generation and selection procedure
may be extremely unsatisfactory, if without ingenious design.

Reinforcement learning based strategies are also explored.
[17] formalizes feature selection as a reinforcement learning
problem and introduces an adaptation of the Monte-Carlo tree
search. Here, the problem of choosing a subset of the available
features is cast as a single-player game whose states are all
possible subsets of features and the actions consist of choosing
a feature and adding it to the subset. [18] handles this problem
by exploring on a directed acyclic graph which represents
the relationship between different transformed versions of the
data, and learns an effective strategy to explore available
feature engineering choices under a given budget through Q-
learning. [19] formalizes this task as an optimization problem
over a Heterogeneous Transformation Graph (HTG). It pro-
poses a deep Q-learning on HTG to support efficient learning
of fine-grained and generalized FE policies that can transfer
knowledge of engineering “good” features from a collection
of data sets to other unseen data sets.

Transfer learning or meta-learning based strategies are also
proposed for automatic feature engineering. [20] employs
learning to rank techniques to evaluate the newly constructed
features and select the most promising ones. It is extremely
time-consuming. For instance, their reported results were ob-
tained after running for several days on moderately sized data
sets. In contrast, [21] can generate effective features within
seconds on average. It is based on learning the effectiveness
of applying a transformation (e.g., arithmetic or aggregate
operators) on numerical features, from past feature engineering
experiences. However, since the meta-features do not take the

1646

relationship between features into account, it works better only
when using unary transformations.

Beyond that, there are also other methods that direct at
different settings. For example, [22] automatically constructs
features from relational databases via deep feature synthesis.
It focuses on the relationships between the various tables in
the database to generate new features. A similar approach is
adopted by [23]. What’s more, many studies try to perform
feature engineering simultaneously while training the model,
by introducing operations such as feature cross [29] or using
techniques like self-attentive neural networks [30]. We need
to address that, different from the methods that learn feature
representations simultaneously with model training, we are
aiming at learning a new representation for each sample based
on the original features, which can be used to perform the sub-
sequent machine learning models, and we have no constraint
on what model to be used afterward. At the same time, for
industrial tasks, interpretability is always required [31]. The
generated features in our framework can be easily explained,
to satisfy the interpretability requirement in industrial tasks.

To apply automatic feature engineering techniques in real-
world applications, especially for industrial tasks, the effi-
ciency and scalability of the aforementioned methods are still
far from satisfactory. Methods with excellent efficiency and
scalability, along with requisite interpretability and promising
performance are in high demand.

III. PROBLEM STATEMENT

Consider a predictive modeling task, which consists of:
• A dataset of input-output pairs. Let x ∈ X be a

record of the input space with M original features{
x(1), · · · ,x(M)

}
. Let y ∈ Y be the corresponding out-

put label. Training data with N records can be denoted as
Dtrain = {Xtrain, Ytrain} = {(x1, y1), · · · , (xN , yN)}.
Similarly, validation data and test data can be denoted as
Dvalid and Dtest.

• A machine learning algorithm A that accepts a training
set and a validation set as input and produces a function
F : X → Y , which return the predicted label y given the
input x.

• A loss function L which computes the loss of a learned
function F , according to the ground-truth label y.

The goal of automatic feature engineering is to learn a
feature generation function Ψ : X → Z to generate new
feature representation z ∈ Z based on the original features
x ∈ X , by using the set of k operations O = {o1, · · · , ok},
so that the learning algorithm A can find a function F that
minimizes the loss function L. i.e., to approximate the true
underlying input-output function as much as possible. More
formally, we want to obtain the feature generation function,
with which the loss L of the learned predictive function F
can be minimized:

Ψ∗ = arg min
Ψ
L(F(Ψ(Xtest)), Ytest) (1)

in which the predictive function can be obtained by
F = A(Dtrain new,Dvalid new), Dtrain new and Dvalid new

are the generated training and validation dataset, i.e.,
Dtrain new = {Ψ(Xtrain), Ytrain}, and Dvalid new =
{Ψ(Xvalid), Yvalid}.

The operators O, also known as n-ary operators, acts on
n original features for feature generation, and it can be
divided into unary operators O1, binary operators O2, ternary
operators O3, etc. It should be noted that operators which
do not satisfy the commutative property will be treated as
multiple different operators in our subsequent descriptions and
experiments, such as “÷”.

Unary operators are used for discretizing, normalizing, or
mathematically transforming unit features:
• Discretization is the process of transferring continuous

features into discrete features. It plays an important role
in feature processing. It is robust to anomalous data and
can make the trained model more stable. Typical feature
discretization methods include ChiMerge, equidistant bin-
ning, equal-frequency binning, clustering binning, etc.

• Normalization refers to a process that makes features
more normal or regular. Typical feature normalization
methods include Min-Max normalization, Z-score, stan-
dardization of dispersion, etc.

• Mathematical transformations acting on unit features in-
clude log, sigmoid, square, square root, tanh, round, etc.

Binary operators combine two original features to generate
a new feature:
• Four basic arithmetic operations: +, −, ×, ÷.
• Logical operators act on two boolean features, such con-

junction (∧), disjunction (∨), alternative denial (↑), joint
denial (↓), material conditional (→), converse implication
(←), biconditional (↔), exclusive or (=), etc.

• GroupByThenMax, GroupByThenMin, GroupByThenAvg,
GroupByThenStdev and GroupByThenCount. These oper-
ators implement the SQL-based operations with the same
name.

• Ridge regression and kernel ridge regression in [24] can
also be considered as binary operators.

Ternary operators combine three features to generate a new
feature. A common ternary operator is a conditional operator,
which is a basic conditional statement in many programming
languages. For the conditional expression a?b : c, if the value
of a is true, the value of b is obtained; otherwise, the value of
c is obtained.

There are also many operators that can accept multiple
original features as input, such as MAX, MIN, MEAN, etc.
We divide them into different categories when they accept a
different number of inputs.

It should be pointed out that there are still many operators
that apply in specific fields, we call them domain-specific
operators, such as lag operators in time series analysis, genetic
operators in biology, etc.

Because of the existence of various operators, an applicable
automatic feature engineering algorithm framework should not
limit operators and new operators should be easily added.

What’s more, to ensure the method to be feasible for large
scale industrial tasks, the whole automatic feature engineer-

1647

ing framework should be time and space-friendly, and with
requisite interpretability and promising performance.

IV. PROPOSED METHOD

A. Overview

As shown in Fig. 1 and Algorithm 1, our automatic feature
engineering algorithm is an iterative process where each iter-
ation comprises of two phases: feature generation and feature
selection. The number of iterations is limited by the calculation
time or computation space.

Fig. 1. Flow chart of SAFE

As discussed above, exhaustive searching is ineffective due
to the infinite feature space. Even if the numbers of operators
and iterations are limited, exhaustive searching can also result
in a combinatorial explosion. To avoid this problem, we
use a tree based method, i.e., XGBoost [32], to mine the
relationships between the current set of base features Xi to
narrow down the search space for feature combinations and
then sort and filter the feature combinations by information
gain ratio. We then apply the predefined operators on the
filtered feature combinations with a high information gain
ratio and obtain the new feature set X̃i. By combining the
base features Xi and the generated features X̃i, the candidate
feature set can be obtained, which is denoted as X̂i = Xi∪X̃i.

As the number of the current set of features X̂i is still
very large, we use efficient and effective feature ranking and
selection methods after that. The basic idea is to find the
informative features, remove the redundant ones, and then
each feature with be attached a score so that the filter process
can be performed if necessary. Concretely, we first use the
information value to pick out the features that have a high
impact on the label, which are regarded as more informative

features. Then, we use the pearson correlation coefficient to
remove the redundant features. Finally, we use XGBoost to
score the remaining features by the average gain across all
splits in which the feature is used. We only choose the features
with the highest scores as Xi+1 for the next iteration, with the
consideration of scalability and efficiency.

In the next two subsections, we will explain the feature
generation and feature selection process in detail.

B. Feature Generation

The goal of this phase is to ingeniously generate the set
of the new feature set X̃i using the current feature set Xi.
Moreover, we want to reduce the number of newly generated
features, while the effective ones should not be omitted. The
training set, validation set, and test set at this point are
represented as Di

train, Di
valid and Di

test.
The search space of original feature generation is:

S =

M⋃
i=1

 ⋃

1≤s1≤···≤si≤M

{xs1 , · · · , xsi}

×Oi

 (2)

where M is the number of original features and Oi represents
the set of i-ary operators.

The number of elements in the search space is:

T =
M∑
i=1

(Ai
M × |Oi|) (3)

where Ak
n represents the number of ways of obtaining an

ordered subset of k elements from a set of n elements.

Fig. 2. Example of a regression tree in the XGBoost model

1) Mine feature combination relations: As mentioned ear-
lier, this search space is so large that we have to narrow it
down, and the informative feature combinations should not be
ignored. First we train a tree model, i.e., XGBoost, on Di

train

and Di
valid. Consider a regression tree in the XGBoost model,

as shown in Fig. 2. We call
{
x(i)

}
as the split features and

{vi} as the corresponding split values, and the features which
do not act as a split feature are called non-split features. The
parent node of the leaf node is represented as lj and the differ-
ent split features on a path of the tree from the root node to lj
can be represented as pj . For example, p1 =

{
x(1),x(2),x(3)

}

1648

Algorithm 1 Pseudo-code of proposed method SAFE
Input: The raw data set Dtrain and Dvalid; The operators O; Number of iterations nIter or iteration time tIter.
Output: Feature generation function Ψ.
1: i← 0, tstart ← now()
2: while i < nIter and now()− tstart < tIter do
3: Train XGBoost model on Dtrain and Dvalid.
4: Constitute feature combinations from the same path of the model.
5: Sort and filter feature combinations to get P̃ by information gain ratio. See Algorithm 2.
6: Apply the operations on the filtered feature combinations P̃ to get the generated features X̃ .
7: Construct candidate features X̂i by combining the generated features X̃ and the base features X in this iteration.
8: Remove features with low predictive power from X̂ , and get X̂A. See Algorithm 3.
9: Remove redundant features X̂A, and get X̂B . See Algorithm 4.

10: Sort the remaining candidate features X̂B and select the features with high importance to form X̂C

11: Dtrain ←
{
X̂C

train, Ytrain

}
, Dvalid ←

{
X̂C

valid, Yvalid

}
12: i← i+ 1
13: end while
14: The feature generation function Ψ is obtained from the selected features in the last iteration.
15: return Ψ.

and p2 =
{
x(1),x(2),x(4)

}
in Fig. 2. All k paths of all trees in

the XGBoost model can be represented as P = {p1, · · · , pk}.
Our automatic feature engineering algorithm SAFE is based
on two basic assumptions:
• For unary operators, features that generated based on split

features are more efficient than that generated based on
non-split features.

• For other operators, new features that generated based
on split features which from the same path are more
efficient than the new features that generated based on
split features which from different path, while the latter
is still more efficient than features that generated based
on non-split features.

We empirically verify the rationality of these two assump-
tions in section V. Based on these two basic assumptions, we
can find features or feature combinations on these paths for
feature generation, which not only greatly reduces the search
space, guarantees efficiency, but also ensures the validity of
feature generation. The search space of feature generation by
this way is:

S∗ =
k⋃

i=1

|pi|⋃
j=1

 ⋃

1≤s1≤···≤sj≤|pi|

{
ps1i , · · · , psji

}×Oj

 (4)

where k is the number of paths and Oi represents the set of
i-ary operators.

The maximum number of elements in the search space is:

T ∗ =

k∑
i=1

|pi|∑
j=1

(Aj
|pi| × |Oj |) (5)

where pji means the j-th feature on the path. It should be noted
that some combinations of features on different paths may be
the same, so the actual number will be much smaller than this
value. It can be found through formulas and experiments that:
T ∗ << T .

2) Sort feature combinations: To further narrow down the
search space of feature generation, we use the information
gain ratio to sort the features and feature combinations in
the search space. Take a feature combination with q elements{
x(1), · · · ,x(q)

}
as an example, we already know their split

values V1, · · · , Vq . Here, Vi is a collection because a split fea-
ture may appear multiple times in a path. These split features

and split values can divide all records into
q∏

i=1

(|Vi|+ 1) parts.

The information gain ratio can be calculated by subtracting
the original information entropy from the information entropy
on these parts. The pseudo-code of the algorithm at this phase
is shown in Algorithm 2.

Algorithm 2 Sorting feature combinations
Input: All paths in the XGBoost model P ; Number of output

features or feature combinations γ.
Output: γ features or feature combinations P̃ .
1: for each path pi in P do
2: for each combination cj =

{
x(s1), · · · , x(sq)

}
in pi

do
3: Divide all records into

q∏
i=1

(|Vsi |+ 1) parts accord-

ing to
{
x(s1), · · · , x(sq)

}
and

{
Vs1 , · · · , Vsq

}
.

4: Calculate the information gain raito of cj .
5: end for
6: end for
7: Select the γ features or feature combinations with the

highest information gain ratio and mark them as P̃ .
8: return P̃ .

3) Generate features: γ features or feature combinations
with the highest information gain ratio will be used to generate
M∑
i=1

(γi× |Oi|) new features X̃i, where γi denotes the number

of feature combinations with i features.

1649

Since the number of features that searched and generated is
much less than exhaustive searching, this allows us to employ
iterative feature generation strategies on large data sets.

C. Feature Selection

Candidate features X̂i that composed of the base features
Xi in this iteration and generated features X̃i might not
be of equal importance. To computationally-efficiently select
the more informative features, we use a three-step feature
selection process: Firstly, according to the information value,
the features with low predictive power are removed. Then
the redundant features are removed according to the pearson
correlation coefficient. Finally, the remaining features are
sorted by using a tree based method, i.e., XGBoost [32].

1) Remove uninformative features: Since some of the can-
didate features will inevitably have little or no impact on the
target, we first remove the features with low predictive power.
The pseudo-code of the algorithm at this phase is shown in
Algorithm 3.

Algorithm 3 Remove features with low predictive power

Input: The data set D∗train =
{
X̂train, Ytrain

}
; Threshold

of information value α; Number of bins β.
Output: Selected candidate feature set X̂A

train.
1: X̂A

train ← ∅
2: for each candidate feature x(i) in X̂train do
3: Pack D∗train into β bins at the same frequency.
4: Calculate IVi, the IV of feature x(i) by Eq. (6).
5: if IVi > α then
6: X̂A

train = X̂A
train ∪

{
xi
}

.
7: end if
8: end for
9: return X̂A

train.

Information value (IV) is a very useful concept for feature
selection during model building, and it is widely used in the
industrial tasks. IV measures the degree to which a feature
affects the target. The formula for information value is shown
below:

IV =
∑
i

(
nip
np
− nin
nn

)×
nip/np

nin/nn
(6)

where np and nn represent the number of all positive records
and negative records. nip and nin represent the number of
positive records and negative records in the i-th bin.

TABLE I
INFORMATION VALUE

Information Value Predictive Power
0 to 0.02 Useless for prediction
0.02 to 0.1 Weak predictor
0.1 to 0.3 Medium predictor
0.3 to 0.5 Strong predictor
> 0.5 Extremely strong predictor

As shown in Table I, the rules of thumb guide us on how
to remove features with low predictive power. Typically, vari-
ables with medium and strong predictive powers are selected
for model development. Therefore, we take the threshold of
feature selection as α = 0.1.

2) Remove redundant features: The candidate features at
this time are with certain predictive power, but some of them
are redundant. For example, “speed” and “one-hour travel” are
highly relevant, we only need to keep one. The pseudo-code
of the algorithm at this phase is shown in Algorithm 4.

Algorithm 4 Remove redundant features

Input: The data set D∗train =
{
X̂A

train, Ytrain

}
; Threshold

of pearson correlation θ.
Output: Selected candidate feature set X̂B

train.
1: X̂B

train ← ∅
2: for each candidate feature x(i) in X̂A

train do
3: for each candidate feature x(j) in X̂A

train do
4: if i < j then
5: Calculate Pearson(i, j) by Eq. (7).
6: if |Pearson(i, j)| > θ then
7: if IVi > IVj then
8: X̂B

train = X̂B
train ∪

{
x(i)
}

9: else
10: X̂B

train = X̂B
train ∪

{
x(j)

}
11: end if
12: end if
13: end if
14: end for
15: end for
16: return X̂B

train.

A pearson correlation is a number between −1 and 1
that indicates the extent to which two features are linearly
related. Its absolute value of 1 means that the two features
are completely linearly related, and its absolute value of 0
means there is no linear relationship between the two features.
Pearson(i, j), a pearson correlation between features x(i)

and x(j) is calculated by:

Pearson(i, j) =

N∑
k=1

(x
(i)
k − x(i))(x

(j)
k − x(j))√

N∑
k=1

(x
(i)
k − x(i))2

√
N∑

k=1

(x
(j)
k − x(j))2

(7)

where x(i) and x(j) means the average of all elements of
feature i and feature j.

The larger the absolute value of the correlation coefficient,
the stronger the correlation is. Usually, the relative strength
of the variable is judged by the range of values in Table II.
Therefore, we set the threshold θ of pearson correlation to
0.8. If the pearson correlation coefficient of the two features
is greater than 0.8, the feature with the smaller IV of them
will be removed.

1650

TABLE II
PEARSON CORRELATION

Pearson Correlation Coefficient Correlation
0 to 0.2 Very weak or no correlation
0.2 to 0.4 Weak correlation
0.4 to 0.6 Moderate correlation
0.6 to 0.8 Strong correlation
0.8 to 1 Extremely strong correlation

3) Rank feature importance: At this stage, we use a
lightweight tree-based method, i.e., XGBoost, to sort the
remaining candidate features by the average gain across all
splits, and further filter can be performed if a maximum value
of the number of final selected features is required to make
the later process more efficient.

D. Time complexity Analysis

In this section, we analyze the time complexity of the
algorithm. We first analyze the time complexity of some
existing algorithms. Reinforcement learning based strategies
are beyond our consideration since the executing time of them
is too long. We mainly analyze generation-selection based
strategies (TFC, FCTree, AutoLearn) and transfer learning or
meta-learning based strategies (ExploreKit, LFE). Then we
analyze the time complexity of SAFE. It should be noted that
for the sake of simplicity and generality, we only consider
the first iteration of all iterative algorithms (TFC, ExploreKit,
SAFE), and we only consider binary operators. Recall that
we denote the number of records and features as N and M ,
respectively, and Ak

n represents the number of ways to obtain
an ordered subset of k elements from a set of n elements.

1) TFC: TFC [27] generates all legal features and then
selects the best ones using information gain. The time com-
plexity of feature generation is O(NA2

M) = O(NM2), the
time complexity of feature selection is O(NM2), the time
complexity of feature ranking is O(M2 logM2). For real
business data with a large amount of data, logM is always
much smaller than N , so its time complexity is:

OTFC = O(M2(N + logM2)) = O(NM2) (8)

2) FCTree: The time complexity of decision tree algorithm
is O(NMD) ≤ O(NM logN), in which D is the depth of
the tree. FCTree [28] algorithm adds ne features at each level
of decision tree, so its time complexity is O(NM logN +
1
2N(ne(logN − 1)) ∗ logN) = O((M + ne logN)N logN).
For real business data with large amount of data, M is always
much smaller than logN , so its time complexity is:

OFCTree = O(neN(logN)2) (9)

3) AutoLearn: AutoLearn [24] identifies the linear or non-
linear relationship between each pair and uses randomized
lasso and mutual information for feature selection. The time
complexity of feature generation is O(M2) × (ORidge +
OKernelRidge) = O(NM2), the time complexity of feature
selection is OLasso + OMI = OLasso + O(NM2), the time

complexity of feature ranking is O(M2 logM2). So the time
complexity is:

OAutoLearn = O(M2(N + logM2)) +OLasso (10)

4) ExploreKit: ExploreKit [20] is a meta-learning based
strategies. In the feature generation phase, it needs an ex-
haustive combination of features, so its time complexity of
feature generation is O(NM2). In the feature ranking phase,
it calculates the meta-features associated with the original data
set and candidate features, such as entropy-based measures and
statistical tests, to score each candidate feature, so its time
complexity of feature generation is O(NM2) +M2×Oscore.
In addition, it needs OMeta to train a meta-learning model in
advance. So the all-time complexity is:

OExploreKit = OMeta +O(NM2) +M2 ×Oscore (11)

5) LFE: LFE [21] is also a meta-learning based strategy.
The difference is that it does not require exhaustive feature
generation. At the feature selection stage, meta-features are
only related to the original features. So the whole complexity
can be calculated as:

OLFE = OMeta +O(NM) +M2 ×Oscore (12)

6) SAFE: The most important calculation at the phases
of mining feature combination relations and feature impor-
tance ranking is to train an XGBoost. Their time complex-
ity is O(NMK1D1 + NM logR) and O(NM̂BK2D2 +
NM̂B logR), respectively. Where K1 and K2 mean the total
number of trees, D1 and D2 mean the maximum depth of the
tree and R is the maximum number of rows in each block [32]
and M̂B is the number of features after removing redundant
features. The number of features after feature generation and
removing uninformative features can be denoted as M̂ and
M̂A, respectively. Next, we analyze the time complexity of
the other four phases:

• Sorting feature combinations: As shown in Algorithm 2,
there are 2D1K1A2

D1
binary feature combinations and the

time complexity of this phase is O(2D1K1ND1
2).

• Feature generation: As shown in section IV-B3, γ2×|O2|
new features will be generated, so the time complexity
of this phase is O(γ2N |O2|) = O(γ2N).

• Remove uninformative features: As the Algorithm 3
shows, the time complexity of the third and fourth steps
is O(N) and O(N), respectively. So the overall time
complexity of this phase is O(M̂N).

• Remove redundant features: As the Algorithm 4 shows,
pearson correlation is calculated once for each feature
pair. Because the time complexity of Pearson correlation
calculation is O(N), the overall time complexity of this
phase is O(N(M̂A)2).

The trees in XGBoost are usually not deep, so we can treat
D as a constant and ignore it. For real business data with large
amount of data, logR < logN < M < M̂C < M̂B < M̂A <

1651

M̂ << N , M̂ = γ2|O2| and logR < K1,K2. So the all time
complexity is:

OSAFE = O(N(M̂A)2) +O(NM̂BK2)

≤ O(NM̂(M̂ +K2)) = O(Nγ2(γ2 +K2))

≤ O(N2D1K1A2
D1

(2D1K1A2
D1

+K2))

= O(NK1(K1 +K2))

(13)

As shown in Eq. (13), we can easily control the number of
features generated and the time complexity of the algorithm
by controlling the total number of trees of XGBoost.

E. Discussion

The time complexity and space complexity of our algorithm
is very low and can be adjusted flexibly according to actual
needs. Below we will continue to discuss whether the algo-
rithm meets the requirements in section I.

1) Strong applicability: Our algorithm is user-friendly and
does not require learning a cumbersome model like reinforce-
ment learning and transfer learning based methods. Besides,
the hyperparameters which needed to set in advance are only
used to control the complexity of the algorithm, such as the
number of iterations or iteration time, the number of trees in
the forest and the depth of each tree. Therefore, the setting of
these hyperparameters is not complicated.

2) Distributed computing: XGBoost is recognized as an al-
gorithm that leverages the parallelism of computing resources,
and it has been proven that XGBoost can push the limits of
computing power for boosted trees algorithms. At the same
time, other aspects of our algorithm can be easily parallelized,
such as calculating the information value of the individual
feature and the pearson correlation of each feature pair in
parallel.

3) Real-time inference: In our algorithm, whether newly
generated features can be used for real-time inference depends
on the operators O that used for feature generation. Users can
choose different operators according to the actual situation to
meet the real-time requirements of the business.

V. EXPERIMENTS

For simplicity and versatility, we only select four basic
binary operators +, −, × and ÷ when experimenting with
each algorithm.

TABLE IV
THE INFORMATION OF THE BENCHMARK DATA SETS

Dataset #Train #Valid #Test #Dim
valley 900 - 312 100
banknote 1,000 - 372 4
gina 2,800 - 668 970
spambase 3,800 - 801 57
phoneme 4,500 - 904 5
wind 5,000 - 1,574 14
ailerons 9,000 2,000 2,750 40
eeg-eye 10,000 2,000 2,980 14
magic 13,000 3,000 3,020 10
nomao 22,000 6,000 6,000 118
bank 35,211 4,000 6,000 51
vehicle 60,000 18,528 20,000 100

A. Experiments on benchmark data sets

We first conduct experiments on 12 benchmark data sets,
with different sample and feature size. All of these data are
available on the OpenML database1. The number of training,
validation, and test samples are shown in Table IV, with the
feature size. Note that for the data set whose sample size is
less than 10000, no validation set is splitted, and we simply
use training data for validation if necessary. All experiments
are performed on a 4-core computer with 16GB of RAM.

1) Algorithms for comparison: We compare our model with
the original features (ORIG), two other state-of-the-art feature
generating algorithms, i.e., FCTree [28] and TFC [27], and two
of our own comparison algorithms, i.e., Random (RAND) and
SAFE-Important (IMP). We use Area Under Curve (AUC) as
the evaluation metric.

RAND algorithm randomly selects γ different feature com-
binations of all original features for feature generation. Differ-
ent from it, IMP algorithm only randomly selects γ different
feature combinations with the split features of XGBoost for
feature generation. RAND and IMP follow the same feature
selection process as SAFE. For the convenience of compari-
son, The maximum number of RAND, IMP, and SAFE output
features are set to 2M . Features generated by FCTree will also
be reduced to 2M according to information gain. Moreover,
TFC, RAND, IMP and SAFE only perform one iteration.

2) Classification performance: We evaluate the generated
features (and also the original features) of each compared
algorithm on 9 state-of-the-art classification algorithms (CLF),
which are AdaBoost (AB), Decison Tree (DT), Extremely
randomized Trees (ET), k nearest neighbors (kNN), Logistic
Regression (LR), Multi Layered Perceptron (MLP), Random
Forest (RF), SVM with linear kernel (SVM) and XGBoost. All
parameters of these algorithms are set as the default values in
scikit-learn [33] and XGBoost [32]. We performed n times
experiments, and obtain the final results by averaging the
results of these experiments (n is 100 for the first 9 data sets
and 10 for the rest data sets).

The reported performances are measured in terms of AUC,
which are shown in Table III. The value in the table means
100×AUC. It can be seen from the experimental results that
SAFE has a significant advantage over all other compared
algorithms no matter what model is performed after the feature
generation process. Compared with the original feature space,
the features generated by our model can improve the overall
prediction AUC by 6.50% on average. Compared with FCTree
and TFC, SAFE can improve the performance by 2.03% and
3.74% on average, respectively. What’s more, SAFE performs
better than RAND and IMP, indicating that our algorithm does
mine a combination of features that are more likely to generate
better features.

3) Feature importance: We compare the importance of
generated features with original features. We combine the M
original features with the top-ranked generated features (up
to M) to form a new data set and use random forest to

1https://www.openml.org/

1652

TABLE III
CLASSIFICATION PERFORMANCE ON BENCHMARK DATA SETS

Dataset CLF ORIG FCT TFC RAND IMP SAFE Dataset CLF ORIG FCT TFC RAND IMP SAFE
AB 52.10 78.27 87.33 88.20 88.30 88.92 AB 99.55 99.38 96.59 99.62 99.58 99.53
DT 54.38 70.78 77.37 77.37 77.43 78.32 DT 98.20 98.90 96.38 98.83 98.78 98.99
ET 55.54 76.64 88.44 85.77 86.03 88.33 ET 99.83 99.76 96.95 99.88 99.88 99.93

kNN 51.84 78.69 94.81 93.01 92.69 93.66 kNN 99.86 99.75 97.45 99.88 99.90 99.96
valley LR 58.54 80.69 92.53 93.31 93.39 93.80 banknote LR 94.80 96.47 88.14 97.24 97.12 97.79

MLP 59.63 81.27 92.71 93.93 93.97 94.08 MLP 98.77 98.51 88.07 99.25 99.21 99.36
RF 54.54 76.31 87.06 84.34 84.34 87.11 RF 99.01 99.46 96.98 99.51 99.48 99.57

SVM 65.62 81.53 93.39 94.22 94.38 94.94 SVM 98.29 98.03 88.22 98.56 98.53 98.64
XGB 54.75 86.92 94.75 95.14 95.23 95.68 XGB 99.83 99.88 99.25 99.91 99.89 99.91
AB 85.15 85.24 86.22 85.60 87.54 90.19 AB 93.61 93.49 92.06 93.61 93.59 93.74
DT 85.50 85.75 84.01 85.69 86.11 87.53 DT 91.28 91.06 90.72 91.51 91.65 92.18
ET 91.65 91.31 88.44 91.59 92.27 92.79 ET 94.22 93.09 92.43 94.34 94.48 94.45

kNN 83.95 91.98 88.46 85.03 88.03 89.08 kNN 89.10 89.30 91.21 90.38 90.44 91.09
gina LR 85.12 86.23 86.38 85.61 87.34 90.35 spambase LR 87.71 87.86 83.68 89.48 89.53 90.15

MLP 93.09 93.81 89.09 93.21 93.75 93.83 MLP 93.81 93.43 91.04 93.84 93.81 93.94
RF 90.50 90.45 87.96 90.40 91.23 91.86 RF 93.94 92.74 92.58 93.96 94.01 94.17

SVM 81.40 86.25 84.90 82.07 84.58 88.59 SVM 90.21 90.08 86.51 91.13 91.07 91.60
XGB 97.76 97.33 96.46 97.74 97.71 97.90 XGB 98.27 98.18 97.86 98.34 98.41 98.46
AB 76.90 79.25 73.98 79.70 79.64 79.90 AB 85.62 85.43 83.84 85.47 85.40 85.44
DT 84.07 83.92 79.68 83.65 83.95 84.05 DT 79.76 79.63 78.41 79.99 80.12 80.13
ET 86.31 85.69 82.07 87.03 86.87 87.09 ET 84.41 84.49 82.92 85.03 84.90 85.06

kNN 83.92 83.65 79.59 84.60 84.47 84.65 kNN 83.91 84.91 83.49 84.56 84.59 84.80
phoneme LR 66.32 66.91 64.69 67.21 67.42 67.47 wind LR 85.12 85.18 83.90 85.28 85.28 85.34

MLP 76.56 77.23 72.94 78.25 78.27 78.39 MLP 86.77 86.52 84.93 86.67 86.66 86.66
RF 85.72 85.72 81.25 86.02 86.13 86.14 RF 84.66 84.65 83.39 85.10 85.11 85.24

SVM 66.88 67.21 65.20 68.15 68.47 68.68 SVM 85.09 85.12 84.24 85.32 85.30 85.46
XGB 93.81 93.56 90.96 93.63 93.67 93.58 XGB 93.72 93.71 92.51 93.69 93.74 93.70
AB 87.16 87.16 81.58 87.08 87.07 87.14 AB 73.48 74.61 73.48 74.76 74.59 75.18
DT 82.92 83.46 78.38 83.28 83.37 83.46 DT 82.37 83.46 82.55 83.76 83.55 83.99
ET 83.32 84.14 79.04 85.04 85.64 86.25 ET 89.24 90.34 89.41 90.31 90.27 90.67

kNN 85.72 85.51 78.95 86.08 86.41 86.60 kNN 86.32 89.38 86.49 89.37 89.48 90.34
ailerons LR 87.47 87.55 80.61 87.58 87.60 87.64 eeg-eye LR 51.25 52.92 50.61 53.69 53.73 53.75

MLP 87.54 87.79 80.09 87.83 87.99 87.96 MLP 54.58 55.71 52.52 55.85 55.81 56.64
RF 84.46 85.60 79.29 86.05 86.39 86.82 RF 88.21 89.02 87.84 89.03 88.99 89.34

SVM 87.49 87.55 80.54 87.65 87.66 87.75 SVM 54.56 56.56 54.62 56.97 56.80 57.23
XGB 95.48 95.62 90.62 95.58 95.60 95.64 XGB 91.70 93.02 91.63 92.89 92.84 93.28
AB 81.01 81.89 77.72 82.53 82.53 82.95 AB 93.13 93.47 92.46 93.66 93.73 94.04
DT 79.89 80.04 77.51 80.45 80.43 80.67 DT 93.26 92.90 91.95 93.06 93.14 93.28
ET 82.64 81.60 80.48 83.29 83.41 83.76 ET 95.58 95.44 95.07 95.56 95.63 95.69

kNN 79.55 80.17 79.40 80.70 80.89 81.10 kNN 94.25 94.09 93.29 94.29 94.32 94.44
magic LR 74.24 75.84 75.84 77.00 76.92 77.31 nomao LR 93.30 93.12 91.93 93.73 93.74 93.76

MLP 83.66 83.70 80.38 84.26 84.28 84.43 MLP 95.00 94.84 91.94 94.98 95.02 95.19
RF 83.70 82.93 80.87 84.15 84.21 84.43 RF 95.53 95.33 94.27 95.49 95.52 95.62

SVM 74.09 75.92 75.34 76.94 76.89 77.14 SVM 93.54 93.42 92.01 94.01 94.03 94.05
XGB 92.14 92.21 89.74 92.68 92.70 92.88 XGB 98.95 98.97 98.73 99.01 99.05 99.13
AB 67.05 67.83 67.09 67.37 67.46 68.95 AB 85.81 85.86 83.88 86.52 86.48 86.69
DT 70.88 70.67 68.28 70.24 70.15 70.94 DT 78.44 78.42 75.81 79.53 79.21 79.27
ET 64.65 67.40 65.39 68.09 68.70 68.77 ET 85.53 85.17 83.03 85.90 85.89 86.19

kNN 61.49 64.75 68.20 62.97 63.57 64.76 kNN 78.58 81.64 82.19 79.24 79.97 81.88
bank LR 65.03 65.98 61.16 66.03 66.03 66.28 vehicle LR 85.66 85.68 83.02 85.74 85.71 85.96

MLP 72.37 72.36 68.26 71.79 72.70 72.26 MLP 86.79 87.10 83.27 86.63 86.48 87.03
RF 66.54 66.29 65.51 67.53 67.71 68.24 RF 85.55 85.18 82.93 86.28 86.16 86.50

SVM 63.95 64.13 60.61 64.15 64.28 64.44 SVM 85.31 85.33 82.54 85.48 85.37 85.81
XGB 91.84 91.98 90.77 91.90 92.07 92.29 XGB 91.86 92.05 90.85 92.30 92.29 92.47

score feature importance. The experimental results are shown
in Fig. 3. It is evident that the new features generated by
SAFE (indicated in orange) are relatively more important than
the original features (indicated in blue), which validates the
effectiveness of the generated features.

4) Execution time: Section IV-D has analyzed the time
complexity of each method. Table V lists the actual executing
time. It can be seen that SAFE has a great advantage and
the execution time of it is on average 0.13 (0.08) times the
execution time of FCTree (TFC).

5) Feature stability: We further compare the stability of the
generated features of each algorithm. The basic idea is that
the generated features are more stable if the same features
are generated each time when we repeat the automatic feature
engineering procedure; and if the features generated each time
are different, then the stability of the generated features is
unsatisfactory.

Suppose we have conducted T experiments, each time
the automatic feature engineering algorithm will generate
2M features. Therefore, a total of 2MT features will be

1653

(a) valley (b) banknote (c) gina

(d) spambase (e) phoneme (f) wind

(g) ailerons (h) eeg-eye (i) magic

(j) nomao (k) bank (l) vehicle

Fig. 3. Feature importance

TABLE V
EXECUTION TIME (IN SECOND)

Dataset FCT TFC RAND IMP SAFE
valley 9.80 228.93 0.55 0.65 0.73
banknote 0.16 0.27 0.08 0.31 0.12
gina 84.03 95.73 3.39 5.28 5.31
spambase 23.84 262.11 2.85 3.23 3.17
phoneme 10.83 2.48 0.46 0.58 0.51
wind 25.03 22.87 2.13 2.39 2.33
ailerons 80.73 336.53 2.12 2.57 2.72
egg-eye 58.88 42.13 1.09 1.20 1.18
magic 52.45 36.79 2.55 2.96 3.32
nomao 104.59 1469.19 22.22 26.61 28.82
bank 838.17 552.48 13.70 13.81 12.28
vehicle 1355.19 2748.89 52.86 40.34 62.14

generated. Their distribution can be expressed as Dis ={
(x(s1), t1), · · · , (x(sk), tk)

}
, where si represents the feature

id, ti represents the number of occurrences of the feature and
t1 ≥ t2 ≥ · · · ≥ tk. Therefore, the distribution with the best
feature stability is D̂is =

{
(x(s1), T), · · · , (x(s2M), T)

}
, and

the worst is D̃is =
{

(x(s1), 1), · · · , (x(s2MT), 1)
}

.
We use Jensen-Shannon Divergence (JSD) [34] to evaluate

the stability of the feature distribution generated by different
automatic feature engineering algorithms. JSD is a variant of
Kullback-Leibler divergence (KLD) [35], which is converted
as:

JSD(P ||Q) =
1

2
× (KLD(P ||R) +KLD(Q||R)) (14)

where R = 1
2 × (P +Q) and KLD is calculated as:

KLD(P ||Q) =
∑
i

P (i)ln
P (i)

Q(i)
(15)

We take T as 100 and calculate the stability of the generated
features of each algorithm. That is, the JSD between the actual

1654

(a) valley (b) banknote (c) gina

Fig. 4. Performance at different iterations

feature distribution Dis and the ideal distribution D̂is. The
smaller the value is, the better it is. The experimental results
are shown in Table VI. We did not compare the TFC algorithm
because the execution time of TFC is too long, so it is difficult
to calculate so many times. From the experimental results, it
can be seen that the stability of the generated features of SAFE
has certain advantages.

TABLE VI
FEATURE STABILITY

Dataset FCT RAND IMP SAFE
valley 0.6991 0.4933 0.4947 0.4710
banknote 0.4405 0.3233 0.3174 0.1197
gina 0.5700 0.4639 0.4739 0.4163
spambase 0.5101 0.4571 0.4399 0.3587
phoneme 0.1947 0.3269 0.3294 0.2616
wind 0.3707 0.3608 0.3570 0.3230
ailerons 0.4440 0.4590 0.3963 0.3330
egg-eye 0.3529 0.3768 0.3741 0.3212
magic 0.1847 0.3306 0.3384 0.2620
nomao 0.5061 0.5032 0.4735 0.4065
bank 0.3713 0.4240 0.4072 0.2853

6) Performance at different iterations: We then validate
whether the performance can be further improved as the
iteration process goes on. We set the iteration round to 5, and
the sampled results are shown in Fig. 4. As we can see, the
performance may further be improved as the round proceeds,
and become stable after some rounds. This is reasonable, since
that in the first some rounds, more useful feature combinations
can be excavated so that the performance can be further
improved, and after some rounds, there may be no new useful
feature combinations can be found, thus the features will not
be updated, and the performance keeps unchanged.

B. Experiments on business data sets

Experiments on extra-large scale business data sets are
further conducted to verify the effectiveness and scalability of
the proposed method on real industrial tasks. The data sets
come from the tasks for fraud detection in Ant Financial,
which aims at finding the potential fraud transactions (or
malicious users), so that the system can stop these transactions
(or catch these users) to avoid the economic losses. Table VII
presents the detailed information of these data sets. As we can
see, the number of samples is extremely large (e.g., up to 8
million training samples for Data3), which severely hinders

the employment of many preceding state-of-the-art methods.
All parameters of the evaluated models are set as the default
values as before.

TABLE VII
THE INFORMATION OF THE BUSSINESS DATA SETS

Dataset #Train #Valid #Test #Dim
Data1 2,502,617 625,655 625,655 81
Data2 7,282,428 1,820,607 1,820,607 44
Data3 8,000,000 2,000,000 2,000,000 73

The results are shown in table VIII. TFC and FCTree
are not compared since the execution time is too long for
these two methods when applying for these extremely large
scale data sets. Thanks to the delicate design in the feature
generation procedure of SAFE, the whole time consuming
is acceptable even for the industrial tasks. More important,
as we can see, the proposed method SAFE can consistently
improve the performance, which validate the effectiveness of
the proposed method when applying in real industrial tasks and
make it a choice for performing automatic feature engineering
for extremely large scale industrial data sets. Actually, this
framework has been deployed in our system, providing help
for many different real-world tasks.

TABLE VIII
CLASSIFICATION PERFORMANCE OF BUSINESS DATA SETS

Dataset CLF ORIG RAND IMP SAFE
LR 93.07 95.81 95.83 95.93

Data1 RF 96.26 97.62 97.60 98.20
XGB 97.04 96.59 97.35 97.46
LR 90.24 90.26 90.26 90.31

Data2 RF 88.26 88.71 88.61 88.95
XGB 90.13 90.33 90.44 90.61
LR 89.64 89.82 89.84 89.94

Data3 RF 86.98 87.05 88.26 88.59
XGB 89.77 89.74 89.92 90.37

VI. CONCLUSION

Automatic feature engineering has become an important
topic of autoML in recent years, and many different methods
have been proposed to handle this task. However, the efficiency
and scalability of these methods are still far from satisfactory,
especially for industrial tasks, while automatically performing

1655

feature engineering is severely demanded. In this paper, we
propose a scalable and efficient method named SAFE for
automatic feature engineering. Extensive experiments on both
benchmark data sets and extra-large scale business data sets
are conducted, and detailed analysis is provided, which shows
that the proposed method can provide prominent efficiency and
competitive effectiveness when comparing with other methods.

REFERENCES

[1] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. V. Vleet, U. Gargi, S. Gupta,
Y. He, M. Lambert, B. Livingston, and D. Sampath, “The youtube video
recommendation system,” in Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, Barcelona, Spain, September
26-30, 2010, 2010, pp. 293–296.

[2] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,”
in The Adaptive Web, Methods and Strategies of Web Personalization,
2007, pp. 325–341.

[3] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, S. Bowers, and J. Q. Candela, “Practical lessons from
predicting clicks on ads at facebook,” in Proceedings of the Eighth
International Workshop on Data Mining for Online Advertising, ADKDD
2014, August 24, 2014, New York City, New York, USA, 2014, pp. 5:1–
5:9.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

[5] Y. Zhang, L. Li, J. Zhou, X. Li, and Z. Zhou, “Anomaly detection with
partially observed anomalies,” in Companion of the Web Conference
2018, WWW 2018, Lyon, France, April 23-27, 2018, 2018, pp. 639–
646.

[6] Y. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li, Z. Zhang,
C. Chen, X. Li, Y. A. Qi, and Z. Zhou, “Distributed deep forest and
its application to automatic detection of cash-out fraud,” ACM TIST,
vol. 10, no. 5, pp. 55:1–55:19, 2019.

[7] A. Lacerda, M. Cristo, M. A. Gonçalves, W. Fan, N. Ziviani, and B. A.
Ribeiro-Neto, “Learning to advertise,” in SIGIR 2006: Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Seattle, Washington, USA, August
6-11, 2006, 2006, pp. 549–556.

[8] B. A. Ribeiro-Neto, M. Cristo, P. B. Golgher, and E. S. de Moura,
“Impedance coupling in content-targeted advertising,” in SIGIR 2005:
Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Salvador, Brazil,
August 15-19, 2005, 2005, pp. 496–503.

[9] H. Zhu, J. Jin, C. Tan, F. Pan, Y. Zeng, H. Li, and K. Gai, “Optimized
cost per click in taobao display advertising,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, 2017, pp.
2191–2200.

[10] M. Alajmi, K. Awedat, A. Essa, F. Alassery, and O. S. Faragallah,
“Efficient face recognition using regularized adaptive non-local sparse
coding,” IEEE Access, vol. 7, pp. 10 653–10 662, 2019.

[11] H. W. F. Yeung, J. Li, and Y. Y. Chung, “Improved performance of
face recognition using CNN with constrained triplet loss layer,” in
2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, May 14-19, 2017, 2017, pp. 1948–1955.

[12] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition, ser.
Springer Series in Statistics. Springer, 2009.

[13] Q. Yao, M. Wang, H. J. Escalante, I. Guyon, Y. Hu, Y. Li, W. Tu,
Q. Yang, and Y. Yu, “Taking human out of learning applications: A
survey on automated machine learning,” CoRR, vol. abs/1810.13306,
2018.

[14] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning.
Springer, 2019.

[15] M. Zöller and M. F. Huber, “Survey on automated machine learning,”
CoRR, vol. abs/1904.12054, 2019.

[16] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
CoRR, vol. abs/1908.00709, 2019.

[17] R. Gaudel and M. Sebag, “Feature selection as a one-player game,” in
Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, 2010, pp. 359–366.

[18] U. Khurana, H. Samulowitz, and D. S. Turaga, “Feature engineering for
predictive modeling using reinforcement learning,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7, 2018, 2018, pp. 3407–3414.

[19] J. Zhang, J. Hao, F. Fogelman-Soulié, and Z. Wang, “Automatic feature
engineering by deep reinforcement learning,” in Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, 2019,
pp. 2312–2314.

[20] G. Katz, E. C. R. Shin, and D. Song, “Explorekit: Automatic feature
generation and selection,” in IEEE 16th International Conference on
Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain,
2016, pp. 979–984.

[21] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S. Turaga,
“Learning feature engineering for classification,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, 2017, pp. 2529–
2535.

[22] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in 2015 IEEE International Con-
ference on Data Science and Advanced Analytics, DSAA 2015, Campus
des Cordeliers, Paris, France, October 19-21, 2015, 2015, pp. 1–10.

[23] H. T. Lam, J. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan,
“One button machine for automating feature engineering in relational
databases,” CoRR, vol. abs/1706.00327, 2017.

[24] A. Kaul, S. Maheshwary, and V. Pudi, “Autolearn - automated feature
generation and selection,” in 2017 IEEE International Conference on
Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21,
2017, 2017, pp. 217–226.

[25] Y. Luo, M. Wang, H. Zhou, Q. Yao, W. Tu, Y. Chen, W. Dai, and
Q. Yang, “Autocross: Automatic feature crossing for tabular data in
real-world applications,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019., 2019, pp. 1936–
1945.

[26] S. Markovitch and D. Rosenstein, “Feature generation using general
constructor functions,” Machine Learning, vol. 49, no. 1, pp. 59–98,
2002.

[27] S. Piramuthu and R. T. Sikora, “Iterative feature construction for
improving inductive learning algorithms,” Expert Syst. Appl., vol. 36,
no. 2, pp. 3401–3406, 2009.

[28] W. Fan, E. Zhong, J. Peng, O. Verscheure, K. Zhang, J. Ren, R. Yan,
and Q. Yang, “Generalized and heuristic-free feature construction for
improved accuracy,” in Proceedings of the SIAM International Confer-
ence on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus,
Ohio, USA, 2010, pp. 629–640.

[29] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for
ad click predictions,” in Proceedings of the ADKDD’17, Halifax, NS,
Canada, August 13 - 17, 2017, 2017, pp. 12:1–12:7.

[30] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
“Autoint: Automatic feature interaction learning via self-attentive neural
networks,” in Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, 2019, pp. 1161–1170.

[31] Y. Zhang and L. Li, “Interpretable MTL from heterogeneous domains
using boosted tree,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, CIKM 2019,
Beijing, China, November 3-7, 2019, 2019, pp. 2053–2056.

[32] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, 2016, pp. 785–794.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Information Theory, vol. 37, no. 1, pp. 145–151, 1991.

[35] D. J. C. MacKay, Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

1656

