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Abstract—The e-commerce appeals to a multitude of online
shoppers by providing personalized experiences and becomes
indispensable in our daily life. Accurately predicting user pref-
erence and making a recommendation of favorable items plays
a crucial role in improving several key tasks such as Click
Through Rate (CTR) and Conversion Rate (CVR) in order to
increase commercial value. Some state-of-the-art collaborative
filtering methods exploiting non-linear interactions on a user-
item bipartite graph are able to learn better user and item
representations with Graph Neural Networks (GNNs), which do
not learn hierarchical representations of graphs because they
are inherently flat. Hierarchical representation is reportedly
favorable in making more personalized item recommendations in
terms of behaviorally similar users in the same community and
a context of topic-driven taxonomy. However, some advanced
approaches, in this regard, are either only considering linear
interactions, or adopting single-level community, or computa-
tionally expensive. To address these problems, we propose a
novel method with Hierarchical bipartite Graph Neural Network
(HiGNN) to handle large-scale e-commerce tasks. By stacking
multiple GNN modules and using a deterministic clustering algo-
rithm alternately, HiGNN is able to efficiently obtain hierarchical
user and item embeddings simultaneously, and effectively predict
user preferences on a larger scale. Extensive experiments on
some real-world e-commerce datasets demonstrate that HiGNN
achieves a significant improvement compared to several popular
methods. Moreover, we deploy HiGNN in Taobao, one of the
largest e-commerces with hundreds of million users and items, for
a series of large-scale prediction tasks of item recommendations.
The results also illustrate that HiGNN is arguably promising and
scalable in real-world applications.

Index Terms—Hierarchical Representation, Graph Neural Net-
work, Bipartite Graph, E-commerce Recommendations

I. INTRODUCTION

The e-commerce era is witnessing a rapid development of

online retailers who have attracted increasing people favoring

online shopping, which conveniently provides items of interest

with personalized experiences in our daily life. Leading e-

commerce companies nowadays generate hundreds of mil-

lions of interactions (e.g. browsers, clicks, add-to-favorites,

purchases, and comments) between tens of millions of users

and a huge amount of items every day for a series of prediction

§ is the corresponding author.

Fig. 1: An example of topic-driven taxonomy in E-commerce.

The virtual arrows of a bipartite graph (on the left) indicate

a user’s potential preference on items, based on which the

hierarchical topic tree (on the right) is constructed to represent

conceptual shopping scenarios.

tasks including Click Through Rate (CTR), Conversion Rate

(CVR), personalized recommendation list, and so on [1]–

[5]. Precisely predicting a user preference in such a complex

environment of e-commerce is very vital for improving user

experience, and quite challenging for increasing business vol-

umes. However, unexploited information in these numerous

interactions are valuable user preferences and item attractive-

ness in a collaborative manner, which is arguably beneficial

to improving the performance of top-K recommendation and

preference ranking [6]. More specific, collaborative filtering

assumes that behaviorally similar users would exhibit similar

preference on items, and vice versa [7]. As a result, users and

items are vectorized as embeddings to reconstruct historical

interactions for efficiently predicting user preference. Recently,

graph neural networks (GNNs) have gained a high reputa-

tion of obtaining state-of-the-art results through effectively

learned node embeddings of non-linear interactions in tasks

such as node classification and link prediction [8]–[17]. In

particular, [18] proposes a neural graph collaborative filtering

method to explicitly integrate the user-item interactions into
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the embedding process, which is able to encode collaborative

signal in the interaction graph structure by exploiting the

high-order connectivity from user-item interactions and lead

to a better performance of recommendation systems. Intu-

itively, collaborative filtering is an indication of the effect of

community generalization on individual preference. However,

in this regard, most state-of-the-art methods including neural

graph collaborative filtering do not consider underlying user-

community interactions or user hierarchy which have shown

an advantageous performance over paradigms using user-item

interactions alone [19]–[21].

Generally speaking, GNN methods are inherently flat and

do not learn hierarchical representations of graphs. On one

hand, it demonstrates in [20] that hierarchical representations

of graphs can be combined with various graph neural network

architectures in an end-to-end fashion to achieve prevail-

ing results on graph classification benchmarks. Nonetheless,

generating a hierarchical representation involves extensive

and unscalable computation with the adjacent matrix of the

graph. [19] learns a hierarchical representation of graphs by

decomposing user information into two orthogonal spaces,

each of which represents information captured by community

level and individualized user preference respectively, which

improves the prediction accuracy with promising scalability.

But it neglects multi-level effects of hierarchical clustering

and item hierarchy information which limits its application

in unsupervised learning for computing meaningful and in-

terpretable clusters on input graphs. On the other hand, [22]

proposes an approach that automatically constructs an easy-

to-interpret taxonomy on a large-scale bi-partite graph in a

unsupervised manner, facilitating an efficient browsing naviga-

tion that enhances user search experiences with inherent high-

order connections, and the resulting descriptive hierarchical

tree is also reported in favor of making more personalized

item recommendations to users within the same cluster (com-

munity) they belong to. For example, a user, who has bought

beach dresses and sunglasses, may prefer the topic of “trip to

beach”, in which an item under this topic such as sunblock

may be clicked. Also, dress and sunglasses may indicate a

more extensive topic like “outdoor activities” at a higher level,

in which an item such as sneakers may be clicked. Likewise,

an item, such as sneakers, may attract some users who prefer

”sports”, in which a user such as a sports enthusiast may click.

Also, sneakers may attract more extensive users who prefer

”outdoor activities” at a higher level, in which a user such as

an outdoor enthusiast may click on. In spite of flexible topic-

driven taxonomy capturing user’s intention in many scenarios,

by performing parallel hierarchical agglomerative clustering, it

is not sufficient to yield satisfactory embeddings for exploiting

the user-item non-linear interactions.

In this paper, motivated by the above pioneering work, we

aim to learn hierarchical representations on bi-partite graphs

to not only exploit the hierarchical high-order connections but

also capture non-linear interactions for the purpose of applying

to a series of tasks, such as, user preference prediction, and

personalized browsing navigation, in large-scale e-commerce

scenarios. Therefore, we propose a Hierarchical bipartite

Graph Neural Network (HiGNN) which allows one to stack

multiple GNN modules in a hierarchical fashion. It builds a

coarsened graph as input to the next GNN layer by performing

general clustering algorithms on embeddings obtained from

the previous GNN layer. The whole process repeats several

times until a stopping criteria, i.e., a specified number of levels,

are satisfied. Although HiGNN is a two-stage hierarchical

representation learning by combining GNN with deterministic

clustering algorithms, which is able to preserve non-linear

interactions and hierarchical high-order connections as well.

More importantly, it is easy to scale to a very large real-

world application without involving computationally expensive

matrix operations. We summarize the major contributions of

this paper as follows:

1) First, we introduce a large-scale Hierarchical bipartite

Graph Neural Network (HiGNN), which effectively and

efficiently addresses the problem of utilizing high-order

connections and non-linear interactions through hierarchi-

cal representation learning on bi-partite graphs. Moreover,

it is scalable to large-scale sparse graph data related

applications.

2) Second, from perspective of supervised learning, by

stacking multiple GNN in a hierarchical fashion, HiGNN

is able to obtain hierarchical user preferences and the

hierarchical item attractiveness through the learned hi-

erarchical structure for depicting users and items pre-

cisely. Extensive experiments on large-scale e-commerce

datasets, both online and offline, show its prevailing

performances in a couple of prediction tasks including

Click Through Rate (CTR) and Conversion Rate (CVR).

3) Third, from perspective of unsupervised learning, we

apply HiGNN to automatically generate a topic-driven

taxonomy of a large-scale real-world e-commerce for

providing browsing navigation with personalized rec-

ommendation lists to enhance user experiences. It not

only demonstrates the superiority of HiGNN compared

to existing methods for placing favorable items into right

topics, but also boosts the user preference prediction in

terms of precision, which sheds a light on its promising

applications in large-scale real-world e-commerce.

The remainder of this paper is organized as follows: in

Section II, we investigate most related works. Section III gives

a detailed description of the proposed HiGNN approach. Ex-

perimental results on the real world e-commerce applications

for supervised learning are shown in Section IV, while the

demonstrations of building a concept-driven taxonomy from

unsupervised learning perspective are displayed in Section V.

At last, Section VI concludes the paper.

II. RELATED WORKS

Our work builds upon a rich line of recent research on

graph neural networks (GNNs) with the aim of applying to

a serials of e-commerce prediction tasks such as click through

rate, conversion Rate, and topic-driven taxonomy. In particular,
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the GNNs with collaborative filtering and GNNs with hier-

archical representation are most relevant literature regarding

e-commerce applications and investigated elaborately here.

A. Graph Neural Networks

In recent years, graph neural networks (GNNs) have exerted

a tremendous fascination on research community dedicating to

effectively learn node embeddings over graph structured data,

such as social network data or graph-based representations.

GNNs treat the underlying graph as a computation graph and

generate individual node embeddings by passing, transform-

ing, and aggregating node feature information across the graph

[23]–[26]. The generated node embeddings are widely used as

input to any prediction tasks, e.g., for node classification, link

prediction, and item recommendation.

B. Graph-based Collaborative Filtering

Another line of research [27], [28] exploits the user-item

interaction graph to infer user preference in a collaborative

fashion, assuming behaviorally similar users would exhibit

similar preference on items. Intuitively, integrating user-item

interactions into the embedding function could contribute

to making better user preference prediction. An approach

named HOP-Rec in [29] performs random walks to enrich

the interactions of a user with multi-hop connected items,

which is beneficial to obtain better embeddings by partially

capturing the collaborative effect of user-item interactions. The

recently proposed neural graph collaborative filtering method

is designed to propagate embeddings recursively on the graph

for modeling the high-order connectivity information in the

embedding function, a natural way that encodes collaborative

signal in the interaction graph structure. Most of graph-based

collaborative filtering methods are highly depended on matrix

operations, such as matrix factorization or matrix multiplica-

tion, which makes it less scalable on large-scale graphs [30].

C. Hierarchical Graph Representation

General GNN based methods are inherently flat as they only

propagate information across edges of a graph and generate

individual node embeddings, which is problematic or ineffi-

cient for predicting the label associate with the entire graph.

However, learning hierarchical representations of graph enjoys

its outstanding features in graph classification and clustering,

and becomes prevailing in several scenarios such as link

prediction, e-commerce recommendation, etc, [19], [22]. There

are some recent works that learn hierarchical graph representa-

tions by combining GNNs with different clustering processes.

In particular, the recently proposed approach DIFFPOOL [20],

a differentiable graph pooling module that can generate hier-

archical representations of graphs and can be combined with

various graph neural network architectures in an end-to-end

fashion. It hierarchically learns a differentiable soft assignment

at each layer of a deep GNN, mapping nodes to a set of clus-

ters based on their learned embeddings. DIFFPOOL obtains

favorable hierarchical representation and computes meaningful

and interpretable clusters on the input graphs, while requiring

explicitly expressing with the adjacent matrix of the graph.

Consequently, it is computationally expensive that make it less

popular in handling large-scale graphs [30]. On the other hand,

some researchers [31], [32] illustrate a user’s community-level

embedding to be effective in graph classification tasks, in

addition to a user’s individual embedding. In [20], authors

make some efforts in effectively co-training two embeddings

by decomposing user information into two orthogonal spaces,

each of which represents information captured by community

level and individualized user preference respectively. Another

intriguing application of hierarchical graph representation is

e-commerce taxonomy for offering a personalized dynamic

shopping navigation. [22] illstrates a topic-driven hierarchical

taxonomy based on user-item bi-partite graph in presence

of query interactions effectively expressing user intention. It

establishes correlation between categories of ontology-driven

taxonomy, and offers an explainable recommendation with a

noticeable prediction accuracy. While it is shown advantageous

in some applications, it is not sufficient to capture the user-item

non-linear interactions as it perform a traditional hierarchical

agglomerative clustering to explore the hierarchical structure.

III. HIERARCHICAL GRAPH NEURAL NETWORKS

In this section, we present the proposed HiGNN framework.

First, we introduce bipartite GraphSAGE on a user-item graph

to project user vertices and item vertices into two different

feature spaces, i.e., user embedding and item embedding.

Then, we elaborate on HiGNN implementation regarding

constructing the hierarchical structure.

A. Preliminaries

The user-item graph is a quadruple G = (U, I, E, S), where

users U = {u1, u2, . . . , uM} and items I = {i1, i2, . . . , iN}
are two sets of vertices, E is the set of edges and each edge

{e = (um, in)|um ∈ U, in ∈ I} is associated with a weight

S(e) to denote the connection strength. An edge (um, in)
exists if user um clicks item in in the behavior history. In this

graph, there are no edges between users or between items. The

CTR prediction task is to learn a function between a user um

and an item in, which can be used to predict the probability

in is clicked by um.

B. Bipartite GraphSAGE

The intuition behind bipartite GraphSAGE is that at each

iteration, a user aggregates information from local neighbor

items, and an item aggregates information from local neighbor

users. As this process iterates, vertices incrementally gain

more and more information from further reaches of the graph.

We first denote AGGREGATEp
u, ∀p ∈ {1, 2, . . . , P}

and AGGREGATEp
i , ∀p ∈ {1, 2, . . . , P} as the aggregator

functions for users and items, which aggregate information

from neighbors respectively. Denote sets of weight matrices

W p
u , ∀p ∈ {1, 2, . . . , P} and W p

i , ∀p ∈ {1, 2, . . . , P} for

users and items, which are used to propagate information

between different steps of the model.
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In the bipartite GraphSAGE method, the entire bipartite

graph G = (U, I, E, S) and features for all users Xu =
{xu, ∀u ∈ U} and all items Xi = {xi, ∀i ∈ I} are provided

as input, where xu ∈ R
du and xi ∈ R

di . Denote hp
u and hp

i

as the embedding of user and item at step p, and h0
u = xu

and h0
i = xi for all users and items. In step p, each user u

aggregates item embeddings in its immediate neighborhood,

hp−1
i , ∀i ∈ N(u), and transforms item embeddings into

the corresponding user embedding hp
N(u) by multiplying a

transformation matrix Mu
i . This process is described as

hp
N(u) ←Mu

i ·AGGREGATEp
u({hp−1

i , ∀i ∈ N(u)}). (1)

With the same consideration, the aggregated item embedding

is derived from

hp
N(i) ←M i

u ·AGGREGATEp
i ({hp−1

u , ∀u ∈ N(i)}), (2)

where M i
u is the transformation matrix from user to item. Any

type of aggregator is available and we adopt mean aggregator

in our demonstration.

After aggregating the neighboring vertex embedding, bi-

partite GraphSAGE concatenates the vertex (both users and

items) current embedding with the aggregated neighborhood

embedding, and feeds the concatenated embedding through a

full connection layer with nonlinear activation function σ, in

order to transform the embedding to be used at the next step

of the method. The method is expressed as

hp
u ← σ

(
W p

u · CONCAT(hp−1
u ,hp

N(u))
)

(3)

for users and

hp
i ← σ

(
W p

i · CONCAT(hp−1
i ,hp

N(i))
)

(4)

for items. Denote zu ≡ hP
u , ∀u ∈ U and zi ≡ hP

i , ∀i ∈ I as

the final embedding output at step P .

In order to learn useful, predictive embeddings in a fully

unsupervised setting for bipartite graphs, we apply a bipartite

graph-based loss function to the output embeddings, zu, ∀u ∈
U and zi, ∀i ∈ I , and tune the weight matrices, W p

u , ∀p ∈
{1, 2, . . . , P}, u ∈ U and W p

i , ∀p ∈ {1, 2, . . . , P}, i ∈ I ,

the transformation matrices, Mu
i and M i

u, and parameters

of the aggregator functions via stochastic gradient descent.

The bipartite graph-based loss function encourages nearby

users and items have similar embeddings, while enforcing that

embeddings of disparate users and items are highly distinct:

JBG =− log
[
σ
(
f [CONCAT(zu, zi), S((u, i))]

)]

−Qu · Eun∼Pn(u) log
[
σ
(
f [CONCAT(zun

, zi), γ]
)]

−Qi · Ein∼Pn(i) log
[
σ
(
f [CONCAT(zu, zin), γ]

)]
,

(5)

where (u, i) is a pair of user and item if an edge exists

between them. f is a full connection network for generating

similarity based on the concatenation of user embedding and

item embedding, and the corresponding edge weight. σ is the

sigmoid function. Pn is a negative sampling distribution. Qu

and Qi are defined as the number of negative samples for users

and items, respectively. γ is a hyper-parameter for denoting the

weight of negative samples.

C. HiGNN implementation

In this subsection, we present HiGNN, a network that

allows one to stack multiple GNN modules, i.e., bipartite

GraphSAGE, in order to construct a hierarchical structure in

an end-to-end fashion.

Denote Zu = {zu, ∀u ∈ U} and Zi = {zi, ∀i ∈ I} as

the sets of user embedding and item embedding, respectively.

For brevity, we denote (Zu,Zi) ← BG(G,Xu,Xi) as the

implementation of bipartite GraphSAGE with input bipartite

graph G, user features Xu and item features Xi in the

following article.

Given (Zu,Zi) and the origin user-item graph, we adopt

some clustering approach, i.e., K-means, to cluster similar

users and similar items together in their own feature spaces,

respectively. We consider user clusters Cu and item clusters

Ci clustered by K-means as new users and items in a new

coarsened user-item graph. The user cluster feature XCu is

able to be expressed as the average user embedding of users

who belong to the cluster. With a similar method, the item

cluster feature XCi
can be expressed. The edge weight of

(Cu, Ci) in the new coarsened graph is calculated as

S(Cu, Ci) =
∑

e

S(e), ∀e = (u, i) ∈ G, u ∈ Cu, i ∈ Ci, (6)

where u ∈ Cu means user u belongs to user cluster Cu, and

i ∈ Ci has the similar meaning. An edge is existed between

Cu and Ci if and only if S(Cu, Ci) > 0.

Based on all information above (vertices, edges and edge

weights), we are able to construct a new coarsened user-item

graph. This graph is able to be used as input to the bipartite

GraphSAGE at the next level. For clearly, denote Ku(Z
l
u),

Ki(Z
l
i) as the K-means process at level l for users and items

respectively. Denote F (Cl
u, C

l
i , G

l−1) as the coarsened graph

construction process at level l. The hierarchical structure is

able to be constructed by repeating bipartite GraphSAGE L
times. We summarize the implementation of HiGNN in Al-

gorithm 1. Then, the learned hierarchical user preference and

hierarchical item attractiveness from the hierarchical structure

can be utilized for the subsequent prediction tasks.

D. Algorithm Complexity Analysis

As we can see, the user/item aggregator in bipartite Graph-

SAGE and clusting are the main operations. For the two kind

of operations, the computational complexity of the first layer

is dominant. For the first layer of GNN, the computational

complexity of aggregator is O((M+N)(K1 ∗K2)), where M
is the number of users, N is the number of items and K1 and

K2 is the number of neighbors sampled at the depth of 1 and 2

respectively. For the first layer of Kmeans, we use the single-

pass version which estimates the cluster centers with a single

pass over all data and is appropriate for large-scale clustering.

Thus, the computational complexity is O(M ∗Ku +N ∗Ki),
where Ku and Ki is the specified cluster number of user and

item respectively.
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Algorithm 1: HiGNN implementation

Input: User-item graph G(U, I, E, S), user features

Xu and item features Xi

Output: Hierarchical structure

G ← {G0, G1, . . . , GL},
Zu ← {Z1

u, . . . ,Z
L
u } and

Zi ← {Z1
i , . . . ,Z

L
i }

1 G,Zu,Zi ← {G0}, {}, {};
2 l← 1;

3 while l ≤ L do
4 (Zl

u,Z
l
i)← BG(Gl−1,X l−1

u ,X l−1
i );

5 Cl
u, C

l
i ← Ku(Z

l
u),Ki(Z

l
i);

6 (Gl,X l
u,X

l
i)← F (Cl

u, C
l
i , G

l−1);
7 G,Zu,Zi ← G ∪Gl,Zu ∪ Zl

u,Zi ∪ Zl
i ;

8 l← l + 1;

9 end

IV. HIERARCHICAL BIPARTITE GRAPH NEURAL

NETWORK FOR E-COMMERCE PREDICTION

HiGNN obtains hierarchical user preferences and hierar-

chical item attractiveness by stacking multiple GNNs in a

hierarchical fashion. To utilise the learned user embeddings

and item embeddings to precisely predict e-commerce tasks,

we develop a deep neural network with HiGNN. Extensive

experiments on large-scale e-commerce datasets, including

offline and online, show our method outperforms other popular

compared algorithms.

A. Supervised Deep Neural Network with HiGNN for E-
commerce Predictions

As shown in Figure 2, a supervised deep neural network

with HiGNN for e-commerce predictions is proposed to solve

a series of prediction tasks, including CTR, CVR, and person-

alized recommendation. In this section, we extract the hierar-

chical user preference and hierarchical item attractiveness from

the hierarchical structure and utilize it for CVR prediction.

Considering user and item embeddings obtained from the

user-item graph, zu describes the user preference on different

items and zi describes the item attractiveness on different

kinds of users. In a CVR prediction task, for a user u and

a candidate item i, if the user preference of u and the item

attractiveness of i are matched, we predict that user i will

purchase the item i.
In our proposed hierarchical structure, the user cluster

embedding zl
Cu

at level l presents the level l user pref-

erence for all users in this cluster. Thus, we derive the

hierarchical user preference of user u by concatenating

the user cluster embedding (user embedding at the first

level) zH
u = CONCAT(z1

u, z
2
u, . . . , z

L
u ), which synthesizes

different-grained user preferences together. With the similar

consideration, we obtain hierarchical item attractiveness of

item i as zH
i = CONCAT(z1

i , z
2
i , . . . , z

L
i ).

Given the hierarchical user preference, hierarchical item

attractiveness, user profile (gender, purchasing power, etc.) and

item statistic (click count, purchase count, etc.) as input, full

connection layers are used to learn the combination of features

automatically. The loss function of CVR prediction problem

is defined as

JCV R = − 1

NT

∑

(x,y)

[
y log p(x)+(1−y) log(1−p(x))

]
, (7)

where NT is the size of the training set, with x as the input

of the network and y ∈ {0, 1} as the label, p(x) is the output

of the network after sigmoid function, indicating the predicted

probability of sample x be purchased.

B. Offline Experiments and Results

We design our offline experiments to demonstrate whether

the hierarchical user preference and hierarchical item attrac-

tiveness help to improve CVR prediction accuracy, and discuss

the sensitivity of hyper-parameters in HiGNN.
1) Datasets and Metrics: We use Taobao dataset, a real-

world industry dataset, to evaluate the performances of dif-

ferent methods. Table I summarizes the statistics of our

experimental datasets.

TABLE I: Statistical Information of Datasets

Dataset Users Items User-Item Clicks Density

Taobao #1 34,519,150 13,296,702 280,522,717 6.11e-7
Taobao #2 11,727,217 3,053,149 1,109,274 3.10e-8

Taobao datasets contain user-item click behaviors and trans-

actions on Taobao, one of the largest online e-commerce

platforms in the world. One week’s logs are used for training

and logs of the following day for testing. Specifically, Taobao

#1 utilizes click and transaction logs in one week as the

training set, and click and transaction logs on the next day as

the testing set. Taobao #2 utilizes click and transaction logs

about new arrival products in one week as the training set,

and click and transaction logs about new arrival products on

the next day as the testing set. Taobao #2 dataset concerns

cold-start scenario, which focuses on the new items published

within 2 months. Thus, Taobao #2’s data density is relatively

smaller than Taobao #1’s.

We consider purchase behaviors as positive samples, and

click behaviors without purchasing as negative samples. Be-

cause the number of positive samples is relatively small, to

achieve better performance, we adopt a replicate sampling

strategy to make the ratio of positive samples to negative

samples as 1:3 in Taobao #1 dataset. However, to keep the real

cold-start scenario in the e-commerce system, and test different

algorithms in relatively sparse and unbalanced data, we utilize

original records in Taobao #2 dataset. Table VI summarizes

the statistics of samples in datasets.

We adopt the area under the receiver operator curve (AUC)

to evaluate the performance of all the methods [33]. AUC

is the most popular evaluation metric on prediction tasks in

both research and industry area. Larger AUC means better

performance.
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Fig. 2: Supervised Deep Neural Network with HiGNN for E-commerce Predictions

TABLE II: Samples Information of Datasets

Dataset Training Set Testing Set
Positive Negative Total Total

Taobao #1 78,988,312 223,612,179 302,600,491 40,824,588
Taobao #2 2,074,792 28,689,261 30,764,053 3,986,179

2) Compared Algorithms and Settings: To the best of our

knowledge, no existing algorithm can deal efficiently with

hierarchical user preferences and hierarchical item attractive-

ness to predict real-world e-commerce tasks of such large

scale, including [30] and [20]. Our baseline algorithms are

as follows:

• CGNN: A graph neural network method learns two

user embeddings for prediction by decomposing user

information into two orthogonal spaces, each of which

represents information captured by community level and

individualized user preference respectively. CGNN can

be considered as a special case of our proposed method,

which fixes the number of user levels to 2. The parameter

of CGNN refers to [19].

• DIN: A popular deep neural network method without

graph structure information and hierarchical information

in the e-commerce system. DIN can be regarded as a

special case of our proposed method at level 0 (L = 0).

The parameter of DIN refers to [1].

• GE: Single level Graph Embedding-based (GE) method,

which is our proposed method using only one level,

without hierarchical information.

• HUP-only: Submodel of our proposed method, which

considers Hierarchical User Preference only, without item

attractiveness.

• HIA-only: Submodel of our proposed method, which

considers Hierarchical Item Attractiveness only, without

user preference.

We deploy our algorithm on Alibaba’s server clusters

comprising of 300 computing workers with 3000 CPUs.

Empirically, both the dimension of user embedding du and

item embedding di in bipartite GraphSAGE equal to 32. To

keep consistency and simplicity, in this paper, we set the

level number of a hierarchical structure L = 3 and the

K-means parameter Kl at level l satisfies Kl = Kl−1/α,

α = 5 in Taobao datasets for achieving better performance.

Furthermore, we will discuss the parameters’ sensitiveness in

this section later. We also set sizes of fully connected layers

as 256, 128 and 64, learning rate as 0.001, batch size as 1024.

L2-norm is used for regularization. Leaky ReLu is utilized

as the activation function, and Sigmoid is utilized as the loss

function.

3) Performance Comparison: Table III lists the perfor-

mance results of all compared methods. We evaluate our

proposed method, HiGNN, with five popular and state-of-the-

art methods in two different Taobao datasets.

TABLE III: Performance Evaluation (AUC).

Dataset CGNN DIN GE HUP-o HIA-o HiGNN

Taobao #1 0.829 0.844 0.863 0.853 0.855 0.870
Taobao #2 0.875 0.870 0.893 0.881 0.881 0.899

It can be observed that our proposed method significantly
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Fig. 3: AUC comparisons with different K and L strategies.

outperforms the baselines in all two datasets in terms of AUC.

In particular, GE is better than DIN, which indicates that

the graph embedding method is able to represent the user

preference and the item attractiveness more precisely. Both

HUP-only and CGNN consider user hierarchical embedding

without item hierarchical embedding. Because CGNN fixes the

level to 2, it is relatively worse than HUP-only. Our proposed

method performs better than HUP-only and HIA-only, which

indicates that either the user hierarchical embedding or item

hierarchical embedding is effective for the CVR prediction

model. Moreover, the proposed method performs best among

all compared methods, which indicates that the combination of

hierarchical embedding of user and item can further improve

the CVR prediction accuracy. A more important thing we

observed is that HiGNN still works on very sparse dataset,

i.e. the cold-start scenario. Notice that HiGNN outperforms

DIN by 3.08% and 3.33% in Taobao #1 and #2 respectively,

hierarchical information works more effectively when the

graph is sparse.

4) Sensitivity Analysis: There are two key hyper-parameters

having the most influence on HiGNN, i.e., the level number

L and the K-means parameter K. We conduct experiments

for investigating the influence of different L and different K
update strategy. The results are shown in Fig. 3.

In this figure, we also plot one compared algorithm, DIN,

which can be regarded as a special case of our proposed

method at level 0 (L = 0). It can be observed that adding

hierarchical information can achieve better performance. In

most cases, AUC increases with an increase of L when L is

less than or equal to 3, which demonstrates the hierarchical

information is able to improve AUC performance. Obtaining

more levels of user embeddings and item embeddings can

better learn user preferences and item attractiveness.

Different K strategies lead to different clustering results,

and the influence of clustering is determined as the distribution

and scale of datasets. In particular, we set Kl = Kl−1

α from

α = 5 to α = 20 on Taobao #1 dataset, which are shown in

Fig. 3. Larger α can decrease the scale of hierarchical bi-partite

graphs quickly, which reduces the running time. However,

Larger α also means more information loss. So smaller α can

achieve better performance, specifically, α = 5 in the best in

this parameter sensitiveness experiment.

C. Online Experiments and Results
This subsection shows the results of the online evaluation

in the large-scale real-world e-commerce platform, Taobao

system, with a standard A/B testing configuration. We mainly

concern crucial e-commerce evaluation metrics as follows:

• Unique Visitor (UV): the number of different clicked vis-

itors, indicating whether our recommendation can attract

users to click.

• transaction CouNT (CNT): the number of transactions, in-

dicating whether our recommendation can increase sales

volume.

• CTR: the ratio of click number to visit number, one

popular evaluation metric in an e-commerce system,

especially in search and recommendation scenarios.

• CVR: the ratio of transaction number to click number,

which directly shows the recommendation effectiveness

on sales volume.

We apply our model on the real Taobao e-commerce online

system for new arrival products to solve the cold-start problem.

Table IV reports the results of improvement of UV, CNT, CTR,

and CVR on two testing days.

TABLE IV: Online A/B Testing of Performance Evaluation

Date Day 1 Day 2

UV 43,514 → 44,341 (+1.90%) 48,531 → 49,522 (+2.04%)
CNT 54,438 → 55,940 (+2.76%) 60,717 → 62,001 (+2.11%)
CTR 0.3569 → 0.3581 (+0.34%) 0.3469 → 0.3492 (+0.66%)
CVR 0.1226 → 0.1253 (+2.25%) 0.1206 → 0.1231 (+2.09%)

The results show that our proposed method increases com-

mercial volumes under all e-commerce evaluation metrics.

Both CNT and CVR, two crucial commercial metrics reflecting

the sales volume, are improved by more than 2% on two

A/B testing days. Moreover, HiGNN also increases UV and

CTR, which indicates our proposed method can achieve user

preferences and item attractiveness more precisely, and attract

more visitors to click their interested items.

V. HIERARCHICAL BIPARTITE GRAPH NEURAL

NETWORKS FOR E-COMMERCE TAXONOMY

In this section, we first briefly revisit the background about

taxonomy and the basic definition of topic-driven taxonomy

based on query-item graphs. Then we introduce the Hierar-

chical Bi-partite Graph Neural Network (HiGNN) on a query-

item graph, which is an indication of users’ search intention

and somewhat different from the method on a user-item graph.

Next we compare our proposed HiGNN method with the

current taxonomy solution of Taobao, giving the quantita-

tive experiments and analysis. Finally, we demonstrate the

cases of constructing a topic-driven taxonomy structure from

large-scale real-world e-commerce data using our proposed

approach.
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A. Brief Background

In addition to the specific e-commerce prediction ap-

plications, taxonomy construction is another crucial task

in e-commerce scenarios. Dictionary-based ontology taxon-

omy [34] is a widely used method to organize items into

categorical structures in most existing e-commerce platforms,

because the hierarchical conceptual knowledge behind the

items can be naturally distilled into the ontology dictionary.

Take Fig. 4 for example, ”Beach Dress” is a leaf category

and belongs to a parent category “Dress” and a grandparent

category “Women’s Clothing”. The ontology taxonomy fol-

lows the pre-defined dictionary rules to manage items, which

ignores the correlations between items in the shopping history

and results in low coverage of the taxonomy. What’s more, the

terms in the dictionary are likely to be highly redundant since

the concept of one item can be expressed in many different

ways. Thus the ontology taxonomy in many cases can’t capture

the user’s search intention. However, helping users explore

items with categories sharing the same topic, in other words,

the same search intention, in massive number of data is one

of the most important characteristics required for e-commerce

systems.

Noticeably, user’s search queries can effectively reflect the

topics of interest to the user, to bridge the gap between item

taxonomy and user search intention, we apply our HiGNN on

the query-item graph to automatically generate a new topic-

driven taxonomy structure.

1) Query-Item Graph: Similar to the user-item graph,

a query-item graph can be represented by the quadruple

G = (Q, I,E, S), where queries Q = {q1, q2, . . . , qM}
and items I = {i1, i2, . . . , iN} are two sets of vertices,

E = {e = (qm, in) | qm ∈ Q, in ∈ I} is the set of edges

and S is the weights set where S(e) denotes the connection

strength of edge e. Note that an edge (qm, in) exists if and

only if a user clicked item in from the resulting items of the

query qm. In addition, there is no edge between query-query

pair or item-item pair in this graph, hence it is a bi-partite

graph.

2) Topic-Driven Taxonomy: The taxonomy construction

task in e-commerce scenarios is to organize hundreds of

millions of items into hierarchical topics-based structures, in

which each topic consists of a group of items sharing the same

user’s search intention and a set of descriptions extracted from

search queries. In particular, the taxonomy structure in this

paper is constructed from the query-item graph, which not

only contains the conceptual information, but also considers

the conceptual shopping relationship on the query-item graph.

B. HiGNN on Query-Item Graphs

Different from the user-item graph in e-commerce predic-

tion task, the query-item graph has features embedded into the

same space.

Specifically, the e-commerce prediction task is to measure

the user’s preference for different items and the attractiveness

of an item to different users, which requires a lot of user

information, such as age, gender, education level etc., and

Fig. 4: An example of ontology-driven taxonomy in E-

commerce, each node of which represents a category.

item information, e.g., price, sales, brand, etc., those are

orthogonally distributed in different feature spaces. However,

taxonomy task is to construct a hierarchical topics-driven

structure from the historical interactions between queries and

items, especially from those keywords and titles, first capturing

the hierarchical topics preserved in items and then assigning

descriptions extracted from search queries to each topic. Note

that the original keywords and titles of both queries and

items in taxonomy task are composed of texts, which allows

us to exploit the widely used natural language processing

technique, word2vec [35], to embed the original features of

queries and items into the same latent space. Thus, the Bi-

partite Graph Neural Network applied on query-item graphs

is slightly different from the method on the user-item graphs.

First, we denote AGGREGATE as the aggregate operation

for both queries and items, and W as the weight matrix

used to propagate information between query-item vertices

and their local neighbors. For each aggregate operation step

p ∈ {1, 2, . . . , P}, the aggregate operations and the weight

matrices can be represented by AGGREGATEp and W p.

The inputs of this Bi-partite Graph Neural Network are

the entire bipartite query-item graph G = (Q, I,E, S) and

features for all queries XQ = {xq, ∀q ∈ Q} and all items

XI = {xi, ∀i ∈ I}, where xq,xi ∈ R
dw since the features

are in the same word-embedding latent space.

1) Aggregator: We denote hp
q and hp

i as the embedding

of query and item at the aggregation step p, and h0
q = xq

and h0
i = xi. In step p, each query q aggregates information

from its one-hop neighborhood, denotes as hp−1
i , ∀i ∈ N(q),

and transforms the features into the corresponding query

features hp
N(q) by multiplying a transformation matrix Mp.

This process is described as

hp
N(q) ←Mp ·AGGREGATEp({hp−1

i , ∀i ∈ N(q)}). (8)

Note that the item and query features are embedded into the

same space, with the shared transformation matrix Mp, the

aggregated item embedding is derived from

hp
N(i) ←Mp ·AGGREGATEp({hp−1

q , ∀q ∈ N(i)}), (9)

similar to the supervised part, we adopt mean aggregator in

this paper.
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2) Dense Layer: After aggregating the neighboring in-

formation, we concatenate the target vertex embedding with

the aggregated neighborhood embedding, then feed the con-

catenated embedding through dense layer with a nonlinear

activation function σ. The method is expressed as

hp
q ← σ

(
W p · CONCAT(hp−1

q ,hp
N(q))

)
(10)

for queries and

hp
i ← σ

(
W p · CONCAT(hp−1

i ,hp
N(i))

)
(11)

for items. Denote zq = hP
q and zi = hP

i as the final

embedding output at step P .

3) Unsupervised Loss: As we mentioned above, the input

embeddings of queries and items are in the same latent space,

and the differentiable weight matrices for queries and items

are shared, which suggests that the output embeddings of both

queries and items are distributed in the same feature space.

Following the same rules, the unsupervised query-item graph-

based loss function can be rewritten as:

JBG =− log
[
σ
(
f [CONCAT(z(e)), S(e)]

)]

−Nn · Een∼Pn(e) log
[
σ
(
f [CONCAT(z(en)), γ]

)]
,

(12)

where e = (q, i) is a pair of query and item if e exists in set E.

f is Multi-Layer Perceptron (MLP) for generating similarity

based on the concatenation of query-item embeddings and

edge weight S(e). σ is the activation function. Pn is a negative

sampling distribution. Nn is defined as the number of negative

samples for edges. γ is a hyper-parameter for denoting the

weight of negative samples.

C. Topic-Driven Taxonomy Construction

In this subsection, we show how to generate topic-driven

taxonomy with the unsupervised HiGNN, and to obtain a set

of meaningful topic descriptions.

1) Hierarchical Taxonomy: The intuition behind HiGNN

for taxonomy is to enhance the connections between queries

and items that share the same search intention, i.e., the

same topic, by clustering vertices which have the similar

learned embeddings. The new coarsened graph consisting of

the centroid of each cluster will be considered as the input

of HiGNN at the next level. After repeating this coarsening

procedure a few times, we can construct a hierarchical topic-

based structures from the query-item graph. Obviously, the

taxonomy results are very sensitive to the number of clusters

that we set to be coarsened at each level. In order to generate

a better clustering result, we exploit the Calinski-Harabasz

Index [36] to maximize the between-cluster variance and

minimize the within-cluster variance, the objective function

can be formulated as

max CH =
DB(k)

DW (k)
× N − k

k − 1
, (13)

where k is the number of clusters, DB(k) denotes the between-

cluster variance, DW (k) denotes the within-cluster variance

and N is the number of point data.

2) Topic Description Matching: Once the topic-driven tax-

onomy structure is generated, the topic is probably associated

with a set of items and each item will be connected with

a number of queries. To make the topic more interpretive,

we follow the similar strategy described in [37] to find the

most representative query as the description for a specific

topic. The topic description matching method mainly considers

two factors for calculating the representativeness of a query

q for a topic tk, which are popularity and concentration.

Specifically, the popularity stands for the frequency at which

a query q appears in the topic tk, and the concentration
represents the relevance of the topic tk and the query q
compared with other topics. The representativeness of a query

q for a topic tk can be derived from

r(q, tk) =
√

pop(q, tk) · con(q, tk), (14)

in which pop(q, tk) and con(q, tk) are the popularity and

concentration scores of q for tk. Denote Ik as the items in

the cluster of topic tk, pop(q, tk) can be calculated as

pop(q, tk) =
log tf(q, Ik) + 1

log tf(Ik) (15)

where tf(Ik) is the number of tokens in Ik and tf(q, Ik)
denotes the number of tokens from the items that in the same

cluster of topic tk with query q.

The con(q, tk) is defined as

con(q, tk) =
exp(rel(q,Dk))

1 +
∑

1≤j≤K exp(rel(q,Dj))
(16)

rel(:, :) is the BM25 relevance of two elements, Dk denotes

the concatenation of the titles of all items belonging to the

same topic tk.

D. Experiments and Results

SHOAL [22] is Alibaba’s current topic-driven taxonomy

solution deployed on Taobao platform, which also con-

siders a hierarchical graph-based strategy but only uses a

well-defined metric to calculate the query-item embeddings.

SHOAL doesn’t apply a trainable graph neural network to

learn the non-linear interactions between queries and items,

which results in the inability to generate more meaningful

query-item embeddings. We compare our proposed method

with SHOAL in both online and offfline environments.

1) Offline Datasets and Metrics: We design our quantitative

experiments to demonstrate whether the hierarchical embed-

dings which contain the non-linear query-item interactions

will help to construct the topic-driven taxonomy that captures

users search intention as much as possible. We use a real-

world large-scale Taobao dataset, which contains hundreds of

millions of items and query-click history in the last seven days,

to evaluate the performances of different methods. Table V

shows the information of our experimental dataset. Taobao

#3 dataset contains query-item click behaviors on Taobao.

Over seven days’ logs are used for training the neural network

and generating the topic-driven taxonomy. Specifically, each

existing query-item click log indicates that a user clicked the
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item from the result of the search query, a query-item edge

exists if and only if the corresponding click appears in the

logs, and the weight of the edge is the number of the specific

query-item clicks.

TABLE V: Statistical Information of Taxonomy Dataset

Dataset Queries Items Q-I Edges Density

Taobao #3 76,218,663 138,514,439 1,000,947,908 9.481e-8

The purpose of the unsupervised loss function of this graph

neural network is to encourage the nearby queries and items to

share the similar embeddings, while enforcing the embeddings

of disparate users and items are highly distinct. We consider all

the existing query-item edges as positive samples, and items

without being clicked in the search query results as negative

query-item samples. We follow the same ratio of positive

samples and negative samples in the e-commerce prediction

experiments, which is set to 1:3. Table VI summarizes the

statistics of samples in dataset.

TABLE VI: Sample Information of Taxonomy Dataset

Dataset Positive Negative Total

Taobao #3 1,000,947,908 3,002,843,724 4,003,791,632

We report the results of taxonomy to the domain experts to

evaluate the performance of all methods. For each taxonomy

results, the experts pick 100 topics from the taxonomy and

randomly select 100 items under each topic to calculate the

accuracy. The larger accuracy, the better result. Furthermore, to

demonstrate the hierarchical separating capacity of methods,

we use a new metric, the diversity. To define the diversity,

we first introduce the term, “qualified topic”. Items belonging

to a qualified topic should cover more than two different

categories. We define diversity as the ratio of the number

of qualified topics to the number of all topics discovered by

the algorithm. Then larger diversity means better hierarchical

separating capacity.

2) Offline Experimental Results: To investigate the model

effectiveness, we compare our proposed method with Al-

ibaba’s current topic-driven taxonomy solution SHOAL [22].

In the parameter setting, we set the level number of the

hierarchical structure L = 4 according to the observation of

natural ontology level of items in the e-commerce platform.

The dimension of all embeddings for both query and item are

set to 32, which is the same as the previous experiments. To

keep consistency, we set SHOAL’s number of clusters as same

as HiGNN’s.

Table VII lists the performance results of SHOAL and

HiGNN, in which the number of clusters are user specified

and set to be the same for fair comparisons. It is noted

that SHOAL’s average numbers of final levels is 4.31, which

is similar to ours. It is also observed that our proposed

TABLE VII: Taxonomy Quality Evaluation

Algorithm #Level Accuracy Diversity

SHOAL 4.31 (on average) 85% 66%
HiGNN 4 89% 70%

method outperforms the Alibaba’s current topic-driven taxon-

omy solution, which is improved by more than 4% of the

accuracy. That’s because our method not only considers the

graph-based non-linear interactions between queries and items

but also applies a trainable neural network architecture to

learn a hierarchical features which embeds the user search

intention successfully. The diversity, our proposed new metric,

is also used to evaluate SHOAL and HiGNN. As Table VII

shown, HiGNN outperforms Alibaba’s existing method by

6% in diversity. Under the same cluster number, HiGNN can

discover more qualified topics, which demonstrates its strong

hierarchical separating capacity.

3) Offline Case Study: We show a taxonomy case generated

by our method from the real-world Taobao dataset in Figure 5.

We apply our method to generate a four-level taxonomy, and

each parent topic is split into several child topics. Figure 5

shows parts of the taxonomy generated by HiGNN. As shown

in Figure 5(a), HiGNN splits the root topic ‘Healthy Home’

into five sub-topics: ‘Environmental Test’, ‘Beauty Products’,

‘Smart Home’, ‘Kitchen Equipment’ and ‘Disposable Items’.

The description of those topics are generated automatically by

selecting the term that is most representative for a topic. We

find those topics are of good quality and precisely summarize

the major topics in our daily home life. In Figure 5(a) and

5(b), we also show how HiGNN splits level two topics

‘Beauty Products’ and ‘Disposable Items’ into more fine-

grained topics. Taking ‘Beauty Products’ as an example: (1)

at level three, HiGNN can successfully find five child topics

in ‘Beauty Products’: ‘Massage Treatment’, ‘Health Care’,

‘Cosmetics’, ‘Male Care’, and ‘Sports Health Care’; (2) at

level four, HiGNN splits the ‘Cosmetics’ topic into more fine-

grained topics: ‘Basic Care’, ‘Facial Products’, ‘Hair Care’,

‘Eye Makeup Tool’ and ‘Hydration Product’. Similarly for the

‘Disposable Items’ topic (Figure 5(b)), HiGNN can discover

level-three topics like ‘Chinese Medicine Supplies’ and level-

four topic like ‘Household Appliance Cleaning’. Moreover, the

description of child topics for each topic are of good quality

and they are semantically coherent and cover different aspects

of the same topic. We also find some interesting topics, such

as ‘Quit Smoking Clean lungs’ in ‘Male Care’ topic and ‘Baby

bathroom’ in ‘Clean Care’ topic, which are not existed in the

taxonomy generated by the compared method.

4) Online Evaluation: In order to verify the effectiveness

of our HiGNN method on taxonomy construction tasks, we

design an online A/B test with more than 3 million users in

a Taobao’s real recommendation application. In the control

group, the taxonomy structure with the matched recommenda-

tions are generated by SHOAL. While in the experiment group,
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(a) The sub-topics under the topics ‘Healthy Home’, ‘Beauty Products’, and ‘Cosmetics’.

(b) The sub-topics under the topics ‘Disposable Items’ and ‘Clean Care’.

Fig. 5: An example of a topic-driven taxonomy generated by HiGNN.

we apply our HiGNN to generate the topic-driven taxonomy

structure and based on that we give matching recommenda-

tions. The result of the A/B test shows that HiGNN brings

a 3.8% improvement in terms of Click Through Rate (CTR)

compared to the recommendations generated by SHOAL.

VI. CONCLUSIONS

In this paper, we introduce a large-scale Hierarchical Bi-

partite Graph Neural Network (HiGNN) with the aim of

applying to a series of e-commerce scenarios such as user

preference prediction, item recommendations, and so on.

Although state-of-the-art methods armed with Graph Neural

Network (GNN) considerately utilize high-order connections,

non-linear interactions, and hierarchical representation on a

user-item bipartite graph to bring collaborative filtering signal

into fullplay, they are inadequate to display their abilities in

large-scale e-commerce applications. However, by stacking

multiple GNN modules and using a deterministic clustering

algorithm alternately, HiGNN is able to efficiently obtain user

and item embeddings simultaneously in a hierarchical fashion,

and scalable to large-scale bipartite graphs. To evaluate the

performance of HiGNN, we conduct extensive experiments

from two perspectives: supervised learning for predicting on

user preference, and unsupervised learning for constructing

topic-driven taxonomy. The experimental results demonstrate

that HiGNN is able to effectively and efficiently obtain the

hierarchical structure, and achieve a significant improvement

compared against state-of-the-art baselines. Moreover, HiGNN

is also deployed into Taobao, one of the largest real-world

e-commerce platforms, and is potential to capture increasing

attention in various applications.
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