
PocketView: A Concise and Informative Data
Summarizer

Yihai Xi1,2, Ning Wang1,2*, Shuang Hao1,2, Wenyang Yang1,2, Li Li1,2

1
School of Computer and Information Technology, Beijing Jiaotong University, China

2
Beijing Key Laboratory of Traffic Data Analysis and Mining, China

{xiyihai, nwang, haoshuang, yangwy, bjtulili}@bjtu.edu.cn

Abstract—A data summarization for the large table can be of
great help, which provides a concise and informative overview
and assists the user to quickly figure out the subject of the
data. However, a high quality summarization needs to have two
desirable properties: presenting notable entities and achieving
broad domain coverage. In this demonstration, we propose a
summarizer system called PocketView that is able to create
a data summarization through a pocket view of the table. The
attendees will experience the following features of our system:
(1) time-sensitive notability evaluation - PocketView can auto-
matically identify notable entities according to their significance
and popularity in user-defined time period; (2) broad-coverage
pocket view - Our system will provide a pocket view for the table
without losing any domain, which is much simpler and clearer
for attendees to figure out the subject compared with the original
table.

Index Terms—data summarization, pocket view, notability,
domain coverage

I. INTRODUCTION

There are lots of semantic recovery or tagging tasks in
crowdsourcing platforms (e.g., annotating column labels).
Due to the limitation of crowdsourcing tasks, requesters are
recommended to reduce the table size. The most common
way is random selection, as used in [1]. It mainly suffers
from two limitations. On the one hand, random selection
neglects the notability of different entities. Given a large
table, it would be hard for workers to undertake a task in
face of the unfamiliar data. On the other hand, it does not
consider the coverage of domain information. The random
selection may lose lots of domains covered by the original
table and cause misunderstanding. In contrast, a high-quality
data summarization would pick out notable entities and be
more representative for covering most of domains, which will
contribute to the semantic understanding of the table for crowd
workers.

We capture the quality of a data summarization through
the notions of notability and coverage. Notability refers to
the property of an entity in the data summarization to be of
a high degree of popularity and significance. Wikipedia uses
the importance scale that contains four levels ‘Top’, ‘High’,
‘Mid’, ‘Low’ to describe the importance of an entity, which
is manually evaluated by project watchers. [2] proposed a no-
tability determination system by training a Boolean classifier,
which is a coarse-grained evaluation where each entity finally
get a yes/no category label. However, we need a fine-grained
notability ranking algorithm in order to create a high quality

summarization. Coverage measures the amount of different
domains covered in the data summarization. A dataset usually
has a topic but cover many domains. For example, a Company

table may contain Internet, Media, Retail domains, etc. And
an entity may cover more than one domain such as Samsung

is a magnate that covers Electronics, RealEstate, Chemical,
etc. The domain of each entity can be obtained by existing
knowledge bases (KBs) or question answering system. Given
a table T where each tuple refers to some facts of an entity and
a size limitation n, we try to create a concise and informative
summarization T

s consisting of n entities in T , which covers
all domains and achieves maximal notability.
Challenges. Although important, generating a high quality
summarization is not an easy task. Firstly, it is challenging to
evaluate the notability of each entity in a fine-grained manner,
which is sensitive to time. Secondly, taking both notability and
coverage into consideration is hard since they are independent
targets i.e., notable entities in the table may focus on a small
number of domains while broad coverage entities may not be
notable.
Our Methodology. Inspired by Google PageRank [3], we
observe that notable entities get more links from others in
Wikipedia pages. Consequently, we first utilize the Name
Entity Linking technology [4] to map the entities in T to
the articles in Wikipedia, and then calculate the notability
of each entity iteratively. In addition, the entity notability is
also related to its page views in a certain period of time.
We combine the factor to propose a time-sensitive notability
evaluation algorithm. With the notability of each entity, we
model our problem into a weighted bipartite graph. Each
vertex in the left part represents an entity in T and the
vertex weight is its notability. Each vertex in the right part
represents a domain under the topic of T . If an entity covers
a domain, we add an edge between them. Then we simplify
the data summarization problem to the maximum weight set
N-covering problem (MWSNCP), which is to find a set of
entities with size not larger than n that cover all domains and
have maximum total vertex weight. Since it can be proved
to be NP-hard by a variant of the set covering problem, we
propose an efficient heuristic algorithm to find the vertex set.
Related Work. Previous work mostly focuses on schema
summarization [5], which produces an overview of a schema
with representative elements. In contrast, our goal is to create

1742

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00159

Fig. 1. The Architecture of PocketView

a summarization of instances in a table instead of schema
elements. In addition, [6] proposed a K-means algorithm to
cluster similar tuples in a table based on Euclidean distance
and prompt workers with tuples that are nearest to each of k
cluster centers. However, it just shrinks the table while those
selected tuples may not be notable. Thus, it can not help to
quickly understand the table.

We develop a system called PocketView that helps us
easily create a high quality pocket view of a large table. It has
the following features: (1) PocketView can automatically
identify the primary entity column without the user’s guidance;
(2) PocketView is equipped with a time-sensitive evaluation
module that takes the popularity factor into consideration to
pick out notable entities exactly; (3) PocketView will return
us a concise and informative summarization of the target table
consisting of notable entities and covering all domains.

II. SYSTEM OVERVIEW

Fig. I shows the building blocks of PocketView. It
consists of three core modules.
Entity Detection Module. This module is to identify the
primary entity column of the table. Intuitively, the primary
entity column is the one that can determine the values of most
other columns. Thus, after obtaining the candidate concepts of
each column and the candidate relations between two columns
with the help of knowledge bases, this module utilizes the
Pointwise Mutual Information [7] to prune some incoherence
concepts and relations, and further calculate the dependency
strength between each pair of related columns based on the
Probase [8], a probabilistic knowledge base that contains a
large number of concepts, entities, isA relationships, etc. The
column that has the highest dependency strength is the primary
entity column.
Notability Evaluation Module. A time-sensitive notability
evaluation algorithm is integrated in this module. It consists
of three components: EntityLinkView (ELV), Balancer and
Timer. ELV maps entities to Wikipedia articles and constructs
a directed graph where each vertex is an entity and each
edge means that two entities have a hyperlink in Wikipedia

pages. The entity links may be sparse which will affect the
performance of our algorithm. Therefore, Balancer provides
two functions Expander and Classifier to avoid this prob-
lem. Expander aims to find some other related entities from
Wikipedia but not in T to add more links in the graph,
which will be treated as virtual vertices. Classifier is to train
a classifier model to identify the entities that are obviously
innominate and remove the corresponding vertices. Timer is
designed to obtain the page views of each entity within a
certain period. More details will be given in Section IV-A.
Domain Coverage Module. This module takes on two jobs.
The first one is to obtain the domains of each entity with
SPARQL queries. The second one is to build a weighted
bipartite graph to represent the notability information of each
entity and the coverage relationship between entities and
domains, and then find a solution to the MWSNCP problem
in graph model to return a pocket view that consists of notable
and broad-coverage entities. More details can be found in
Section IV-B.

III. DEMONSTRATION OVERVIEW

Next, we will show how one can easily use PocketView
to generate a concise and informative data summarization.
Datasets Specification. The user can upload a relational table
by clicking the “UPLOAD” button in Fig 2. No label like the
table header is needed. We have also prepared a real-world
table fetched from Wikipedia, which contains 229 nameless
or famous companies and covers most of domains under the
topic of company.
Pocket View Generation. PocketView will begin to work
with the default settings after clicking the “POCKET” button
in Fig 2. The user can also manually set the running parameters
in the setting bar, such as “View Scale” to control the size of
summarization T

s, “Time Sensitivity Weight” to control the
weight of time factor in measuring notability and also “Start”
and “End” to set a certain time period for evaluating entity
notability. Fig. 2 presents a pocket view of our prepared table,
composed of 15 representative entities. Compared with the
entire dataset as the background in Fig. 2, our pocket view

1743

Fig. 2. A running example of PocketView

only display notable entities while not losing any domain.
Furthermore, it also uses the boldface to highlight the primary
entity column.
PocketView can also provide some data information to

tell stories of a table, which includes
Notability View. During the workflow of creating a pocket
view, our system will also provide the user a view of the
notability information as shown in Fig. 3(a) by clicking the
“NOTABILITY” button. The user can easily pick out the
notable entities in it since the size of the vertex is proportional
to its notability. He/She can also check the links of an entity
as shown in Fig. 3(b) after selecting it with the mouse.
Domain View. The user can easily check the covering domains
of an entity in PocketView by clicking the “DOMAINS”
button. The domain coverage of the 15 representative entities
in the pocket view is shown in Fig. 3(c) where domains
involved are distributed on both sides of the entities. Besides,
the coverage rate is provided in the bottom right, and the
detected topics of the table is given in the top right.

IV. CORE TECHNIQUES

In this section, we will introduce some technical details of
PocketView including the time-sensitive notability evalua-
tion and the solution to domain coverage.

A. Time-sensitive Notability Evaluation

The evaluation of notability may not perform well if we only
consider the entity links since the popularity of some entities
may vary greatly in different periods. To solve this problem,
we propose a time-sensitive notability evaluation algorithm.
Given the ELV, the significance of an entity depends on its

connectivity in the graph. Recall that popularity is sensitive to
time. Then with a time period t, the notability of an entity ei,
denoted as NB (ei, t), could be calculated using the following
iterative formula:

NB
k
(ei, t) = (1� ↵) ·

X

ej2Iei

NB
k�1 (ej , t)

O(ej)
+ ↵ · TW (ei, t)

where k denotes the number of iteration; Iei denotes the set of
inlinks to ei; O(ej) denotes the number of outlinks from ej ;
TW (ei, t) denotes the popularity degree of ei within period
t; and ↵ is a time damping factor. The larger ↵ is, the more
sensitive that notability would be affected by t.

B. A Heuristic Solution to Domain Coverage

Recall that we model our data summarization problem into a
weighted bipartite graph model G(U, V,E) where U, V denote
the vertex set of entities and domains respectively and an edge
(u, v) 2 E means that v is one of the domains of entity u.
When the weight w(u) denotes u’s notability, our problem is to
find a subset of U with no more than n items that can cover
all vertices in V and has the maximum total vertex weight
(MWSNCP problem).

We denote the minimal number of entities that can cover
V as mine. Many algorithms such as [9] have been proposed
to calculate mine and we just use them as the tool. In this
paper, we focus on the situation where n � mine, which
means that there certainly exist a n-size subset of U that can
cover all vertices in V . A simple but time consuming method
is enumerating all n-size vertex set from U and finding out the
one with maximum weight. During the process, some effective
pruning techniques can be utilized to reduce the search space.
For example, assume that the current optimal result is Tn with

1744

(a) (b) (c)

Fig. 3. Notability View and Domain View

n items covering all vertices in V , and the next candidate path
is Sm with m items while m < n. We can prune Sm if there
not exist a subset D(n�m) in U � Sm that can cover the left
vertices in V or the total weight of (Sm + Dn�m) can not
exceed Tn’s weight.

Since the MWSNCP problem is NP-hard, we also propose a
greedy algorithm to improve the response speed of our system.
The basic idea is, if n is large enough, we prefer the entity
in each step whose weight is high since it is easily to cover
all vertices in V . On the contrary, if n is close to mine, we
prefer the entity whose coverage is broad since the coverage
requirement becomes hard to meet.

Specifically, when n is large enough, we first change the
vertex weight from the notability of an entity to the potential
loss of notability from its neighbour set, which means if an
entity u is selected, the probability of choosing the entities
that share at least one domain with u will decrease for
their coverings have lost part of effect. Then we can switch
our problem to the existing MWSCP problem to obtain the
approximate optimal result, which is to cover all domains with
no vertex size limitation while achieving minimal total vertex
weight. Thus, we propose a loss function for each entity to
calculate the new weight. After the switch, we could get our
preliminary result Lm, which has covered all domains.

The next work is to ensure the size limitation of Lm. If
m < n, we continue to add vertices to Lm until m = n.
Since all domains have been covered, the vertex in U � Lm

whose notability is highest will be the first choice in each
step. However, if m > n, we have to reduce m � n items
from Lm while not losing any domain. There are two ways
of reducing the size: replacing or cutting. Replacing is the
strategy that replaces a set of vertices (size > 1) in Lm

with one in U � Lm while keeping the same coverage. Each
replacement will be evaluated by the average loss of losing the
weight of one vertex. Note not every vertex in U � Lm can
be a candidate, it must contains more than one child vertex
in Lm (child vertex of u: whose coverage is the subset of u).
Recall that the MWSCP problem does not consider the size
limitation, it means there may exist unnecessary vertices in
Lm, whose coverage is not unique. These vertices can be cut
safely but may lose much weight. Thus, we need to make a
trade-off between replacing and cutting.

We compare the average loss of each case and choose the
smallest one at each step until the size of Lm decreases to
n. If there are no vertices to cut or replace while the size is
still larger than n, we can take the randomized basin hopping
strategy to get out of the deadlock. The worst case is to use the
result set of the MSCP problem to replace the same number
of vertices in Lm and then return to the cutting step. It is
the worst because the MSCP problem will not consider the
total vertex weight, but it is an insurance of a reliable solution
to cover all domains under the size limitation n. Similarly,
if n is closer to mine, we can switch our problem to the
MSCP problem and improve the result by adding or replacing
vertices.
Discussion. If n < mine, there is no solution under the size
limitation n. In this situation, we can only try to cover the
vertices in V as many as possible. A simple but effective
strategy is to select the vertex in U with the largest degree
in each step which also has the largest weight if there exist
other vertices that have the same degree value until n vertices
are chosen.

ACKNOWLEDGMENT

This work is supported by the National Key R & D Program
of China (2018YFC0809800) and the National Natural Science
Foundation of China (61370060, 61902017).

REFERENCES

[1] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang and Y.
Ye. ”KATARA: a data cleaning system powered by knowledge bases
and crowdsourcing”. In SIGMOD, 2015.

[2] Y. Pochampally and K. Karlapalem. ”Notability Determination for
Wikipedia.” In WWW, 2017.

[3] S. Brin and L. Page. ”The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine”. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[4] J. Brank, G. Leban and M. Grobelnik. ”Annotating documents with
relevant Wikipedia concepts”. In SiKDD, 2017.

[5] C. Yu and H. V. Jagadish. ”Schema Summarization”. In VLDB, 2006.
[6] N. Wang and H. Liu. ”Annotating web tables with the crowd”. Com-

puting and Informatics, 37(4):969-991, 2018.
[7] K. W. Church and P. Hanks. ”Word association norms, mutual informa-

tion, and lexicography”. Comput. Linguist., 16(1):22-29, 1990.
[8] W. Wu, H. Li, H. Wang, and K. Zhu. ”Probase: A probabilistic

taxonomyfor text understanding”. In SIGMOD, 2012.
[9] Z. Ren, Z. Feng, L. Ke and Z. Zhang. ”New ideas for applying ant colony

optimization to the set covering problem”. Computers & Industrial
Engineering, 58(4):774-784, 2010.

1745

