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Abstract—Local differential privacy (LDP) is an emerging
technique for privacy-preserving data collection without a trusted
collector. Despite its strong privacy guarantee, LDP cannot
be easily applied to real-world graph analysis tasks such as
community detection and centrality analysis due to its high
implementation complexity and low data utility. In this paper, we
address these two issues by presenting LF-GDPR, the first LDP-
enabled graph metric estimation framework for graph analysis. It
collects two atomic graph metrics — the adjacency bit vector and
node degree — from each node locally. LF-GDPR simplifies the
job of implementing LDP-related steps (e.g., local perturbation,
aggregation and calibration) for a graph metric estimation task
by providing either a complete or a parameterized algorithm for
each step.

Index Terms—Local differential privacy; Graph metric;
Privacy-preserving graph analysis

I. INTRODUCTION

With the prevalence of big data and machine learning, graph

analytics has received great attention and nurtured numerous

applications in web, social network, transportation, and knowl-

edge base. However, recent privacy incidents, particularly the

Facebook privacy scandal, pose real-life threats to any central-
ized party who needs to safeguard graph data of individuals

while providing graph analysis service to third parties. In that

scandal, Facebook exposed the personal profiles of 87 million

users to Cambridge Analytica through Facebook API for third-

party apps [11]. The main cause is that Facebook allows

these apps to access the friends list of a user, which helps

to propagate these apps easily through friends. Unfortunately,

most existing privacy models assume that the trusted party

cannot be compromised, which is seldom true in practice

as echoed by this scandal. With General Data Protection

Regulation (GDPR) enforced in EU since May 2018, there is

a compelling need to find alternative privacy models without

such a trusted party.

A promising model is local differential privacy (LDP) [1],

[15], where each individual user locally perturbs her share
of graph metrics (e.g., node degree and adjacency list, de-

pending on the graph analysis task) before sending them to the

data collector for analysis. As such, the data collector does not

need to be trusted. A recent work LDPGen [10] has also shown

the potential of LDP for graph analytics. In that work, LDP

is used to collect node degree for synthetic graph generation.

However, such solution is usually task specific — for different

tasks, such as centrality analysis and community detection,

dedicated LDP solutions must be designed from scratch. To

show how complicated it is, an LDP solution usually takes

four steps: (1) selecting graph metrics to collect from users

for the target metric (e.g., clustering coefficient, modularity,

or centrality) of this task, (2) designing a local perturbation

algorithm for users to report these metrics under LDP, (3)

designing a collector-side aggregation algorithm to estimate

the target metric based on the perturbed data, (4) designing

an optional calibration algorithm for the target metric if the

estimation is biased. Obviously, working out such a solution

requires in-depth knowledge of LDP, which hinders the

embrace of LDP by more graph applications.

In this paper, we address this challenge by presenting

LF-GDPR (Local Framework for Graph with Differentially

Private Release), the first LDP-enabled graph metric estimation

framework for general graph analysis. It simplifies the job of a

graph application to design an LDP solution for a graph metric

estimation task by providing complete or parameterized algo-

rithms for steps (2)-(4) as above. As long as the target graph

metric can be derived from the two atomic metrics, namely,

the adjacency bit vector and node degree, the parameterized

algorithms in steps (2)-(4) can be completed with ease. To

summarize, our main contributions of this paper are as follows.

• This is the first LDP-enabled graph metric estimation

framework for a variety of graph analysis tasks.

• We present efficient perturbation algorithms on adjacency

bit vector and node degree, respectively, to address data

correlation among nodes.

• We provide a complete solution for local perturbation,

collector-side aggregation, and calibration.

The rest of the paper is organized as follows. Section II

introduces preliminaries on local differential privacy and graph

analytics. Section III presents an overview of LF-GDPR. Sec-

tion IV describes the implementation details of this framework.

Section V draws a conclusion with future work.

II. LOCAL DIFFERENTIAL PRIVACY ON GRAPHS

In this paper, a graph G is defined as G = (V,E), where

V = {1, 2, ..., n} is the set of nodes, and E ⊆ V × V is

the set of edges. For the node i, di denotes its degree and

Bi = {b1, b2, ..., bn} denotes its adjacency bit vector, where

bj = 1 if and only if edge (i, j) ∈ E, and otherwise bj = 0.

The adjacency bit vectors of all nodes constitute the adjacency
matrix of graph G, or formally, Mn×n = {B1,B2, ...,Bn}.
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Local differential privacy (LDP) [1] is proposed to as-

sume each individual is responsible for her own tuple in the

database. In LDP, each user locally perturbs her tuple using a

randomized algorithm before sending it to the untrusted data

collector. Formally, a randomized algorithm A satisfies ε-local

differential privacy, if for any two input tuples t and t′ and

for any output t∗,
Pr[A(t)=t∗]
Pr[A(t′)=t∗] ≤ eε holds. As with existing

LDP works, we concern attacks where an adversary can infer

with high confidence whether an edge exists or not, which

compromises a user’s relation anonymity in a social network.

This directly leads to Definition 2.1.

Definition 2.1: (Edge local differential privacy). A random-

ized algorithm A satisfies ε-edge local differential privacy

(a.k.a., ε-edge LDP), if and only if for any two adjacency bit

vectors B and B′ that differ only in one bit, and any output

s ∈ range(A), Pr[A(B)=s]
Pr[A(B′)=s] ≤ eε holds.

III. LF-GDPR: FRAMEWORK OVERVIEW

A. Design Principle

The core of privacy-preserving graph analytics often in-

volves estimating some target graph metric without access-

ing the original graph. Under the DP/LDP privacy model, there

are two solution paradigms, namely, generating a synthetic

graph to calculate this metric [5], [7], [10] and designing

a dedicated DP/LDP solution for such metric [4], [6], [9].

The former provides a general solution but suffers from low

estimation accuracy as the neighborhood information in the
original graph is missing from the synthetic graph. The latter

can achieve higher estimation accuracy but cannot generalize

such a dedicated solution to other problems — it works poorly

or even no longer works if the target graph metric or graph

type (e.g., undirected graph, attributed graph, and DAG) is

changed [5].

LF-GDPR is our answer to both solution generality and

estimation accuracy under the LDP model. It collects from

each node i two atomic graph metrics that can derive a wide

range of common metrics. The first is the adjacency bit vector
B, where each element j is 1 only if j is a neighbor of i. B
of all nodes collectively constitutes the adjacency matrix M
of the graph. The second metric is node degree d, which is

frequently used in graph analytics to measure the density of

connectivity [4]. Table I lists some of the most popular graph

analysis tasks in the literature [3], [8], [13] and their graph

metrics, all of which can be derived from B, M and d.

Intuitively, d can be estimated from B. However, given a

large graph and limited privacy budget, the estimation accuracy

could be too noisy to be meaningful. To illustrate this, let us

assume each bit of the adjacency bit vector B is perturbed

independently by the classic Randomized Response (RR) [12]

algorithm with privacy budget ε. As stated in [12], the variance

of the estimated node degree d̃ is

V ar[d̃] = n ·
[ 1

16( eε

eε+1 − 1
2 )

2
− (

d

n
− 1

2
)2
]

(1)

Even for a moderate social graph with extremely large privacy

budget, for example, d = 100, n = 1M , and ε = 8 (the largest

TABLE I
POPULAR GRAPH ANALYSIS TASKS AND METRICS

Graph Analysis Task Graph Metric Derivation from
Concerned B, M , and d

synthetic graph
clustering coefficient cci =

M3
ii

di(di−1)generation
community detection,

modularity Qc =
||Mc||∑

d
− ||dc||2

(
∑

d)2graph clustering

node role, page rank
degree centrality ci = di

eigenvector centrality ci = BiM
k

connectivity analysis
structural similarity τ(i, j) =

||Bi
⋂

Bj ||√
didj(clique / hub)

node similarity
cosine similarity τ(i, j) =

BiB
′
j√

didjsearch

ε used in [10] is 7), V ar[d̃] ≈ 435 > 4d, which means the

variance of the estimated degree is over 4 times that of the

degree itself. As such, we choose to spend some privacy budget

on an independently perturbed degree. This further motivates

us to design an optimal privacy budget allocation between

adjacency bit vector B and node degree d, to minimize the

distance between the target graph metric and the estimated

one.

To summarize, in LF-GDPR each node sends two perturbed

atomic metrics, namely, the adjacency bit vector B̃ (perturbed

from B) and node degree d̃ (perturbed from d), to the data

collector, who then aggregates them to estimate the target

graph metric.

B. LF-GDPR Overview

LF-GDPR works as shown in Fig. 1. A data collector who

wishes to estimate a target graph metric F first reduces it

from the adjacency matrix M and degree vector d of all

nodes by deriving a mapping function F = Map(M ,d) (step
1©). Based on this reduction, LF-GDPR allocates the total

privacy budget ε between M and d, denoted by ε1 and ε2,

respectively (step 2©). Then each node locally perturbs its

adjacency bit vector B into B̃ to satisfy ε1-edge LDP, and

perturbs its node degree d into d̃ to satisfy ε2-edge LDP (step
3©). According to the composability of LDP, each node then

satisfies ε-edge LDP. Note that this step is challenging as both

B and d are correlated among nodes. For B, the j-th bit of

node i’s adjacency bit vector is the same as the i-th bit of node

j’s adjacency bit vector. For d, whether i and j has an edge

affects both degrees of i and j. Sections IV-B and IV-C solve

this issue and send out the perturbed B and d, i.e., B̃ and d̃.

The data collector receives them from all nodes, aggregates

them according to the mapping function Map(·) to obtain the

estimated target metric F̃ , and further calibrates it to suppress

estimation bias and improve accuracy (step 4©). The resulted

F̃ is then used for graph analysis. The detailed implementation

of LF-GDPR for steps 1© 3© 4© will be presented in Section IV.

Note that the algorithms in steps 1© 2© 4© are parameterized,

which can only be determined when the target graph metric

F is specified.

Example III-B. LF-GDPR against Facebook Privacy
Scandal. Facebook API essentially controls how a third-party

app accesses the data of each individual user. To limit the
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Fig. 1. An overview of LF-GDPR

access right of an average app (e.g., the one developed by

Cambridge Analytica) while still supporting graph analytics,

Facebook API should have a new permission rule that only

allows such app to access the perturbed adjacency bit vector

and degree of a user’s friends list under ε1 and ε2-edge LDP,

respectively. In the Cambridge Analytica case, the app is a

personality test, so the app developer may choose structural

similarity as the target graph metric and use the estimated

value for the personality test. To estimate structural similarity,

the app then implements steps 1© 2© 4© of LF-GDPR. On the

user side, each user u has a privacy budget εu for her friends

list. If εu ≥ ε1 + ε2, the user can grant access to this app for

perturbed adjacency bit vector and degree; otherwise, the user

simply ignores this access request.

IV. LF-GDPR: IMPLEMENTATION

In this section, we present the implementation details of

LF-GDPR. We first discuss graph metric reduction (step 1©),

followed by the perturbation protocols for adjacency bit vector

and node degree, respectively (step 3©). Then we elaborate on

the aggregation and calibration algorithm (step 4©).

A. Graph Metric Reduction

The reduction outputs a polynomial mapping function

Map(·) from the target graph metric F to the adjacency

matrix M = {B1,B2, ...,Bn} and degree vector d =
{d1, d2, ..., dn}, i.e., F = Map(M ,d). Without loss of

generality, we assume F is a polynomial of M and d. That

is, F is a sum of terms Fl, each of which is a multiple of M
and d of some exponents. Since F and Fl are scalars, in each

term Fl, we need functions f and g to transform M and d
with exponents to scalars, respectively. Formally,

F =
∑

l
Fl =

∑
l
fφl

(Mkl) · gψl
(d), (2)

where Mkl is the kl-th power of adjacency matrix M whose

cell (i, j) denotes the number of paths between node i and j
of length kl, φl projects a matrix to a cell, a row, a column
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Fig. 2. Illustration of RABV protocol

or a sub-matrix, and fφl
(·) denotes an aggregation function f

(e.g., sum) after projection φl. Likewise, ψl projects a vector

to a scalar or a sub-vector, and gψl
(·) denotes an aggregation

function g after ψl.
As such, the metric reduction step is to determine kl, fφl

(·),
and gψl

(·) for each term Fl in Eq. 2.

B. Adjacency Bit Vector Perturbation

An intuitive approach, known as Randomized Neighbor List
(RNL) [10], perturbs each bit of the vector independently

by the classic Randomized Response (RR) [12]. Formally,

given an adjacency bit vector B = {b1, b2, ..., bn}, and

privacy budget ε1, the perturbed vector B̃ = {b̃1, b̃2, ..., b̃n} is

obtained as follows:

b̃i =

{
bi w.p. eε1

1+eε1

1− bi w.p. 1
1+eε1

(3)

RNL is proved to satisfy ε1-edge LDP for each user.

However, for undirected graphs, RNL can only achieve
2ε1-edge LDP for the collector, because the data collector

witnesses the same edge perturbed twice and independently.

Let M̃ = {B̃1, B̃2, ..., B̃n} denote the perturbed adjacency

matrix. The edge between node i and j appears in both

M̃ij and M̃ji, each perturbed with privacy budget ε1. Then

according to the theorem of composability, RNL becomes a

2ε1-edge LDP algorithm for an undirected graph, which is

less private. Furthermore, RNL requires each user to perturb

and send all n bits in the adjacency bit vector to data collector,

which incurs a high computation and communication cost.

To address the problems of RNL, we propose a more

private and efficient protocol Randomized Adjacency Bit Vector
(RABV ) to perturb edges in undirected graphs. As shown in

Fig. 2(b), the adjacency matrix is composed of n rows, each

corresponding to the adjacency bit vector of a node. For the

first 1 ≤ i ≤ �n2 	 nodes, RABV uses RR as in Eq.3 to

perturb and transmit t = �n2 	 bits (i.e., bits in grey) — from

the (i+ 1)-th bit to the (i+ 1+ t mod n)-th bit; for the rest

nodes, RABV uses RR to perturb and transmit t = �n−1
2 	

bits in the same way. In essence, RABV perturbs one and
only one bit for each pair of symmetric bits in the adjacency

matrix. The data collector can then obtain the whole matrix

by copying bits in grey to their symmetric positions.

Following the same proof of RNL, RABV is guaranteed

to satisfy ε1-edge LDP for the collector. Further, since each

node only perturbs and transmits about half of the bits in an

adjacency bit vector, RABV significantly reduces computa-

tion and communication cost of RNL.
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C. Node Degree Perturbation

Releasing the degree of a node while satisfying edge ε-
LDP is essentially a centralized DP problem because all edges

incident to this node, or equivalently, all bits in its adjacency

bit vector, form a database and the degree is a count function.

In the literature, Laplace Mechanism [2] is the predominant

technique to perturb numerical function values such as counts.

As such, LF-GDPR adopts it to perturb the degree di of

each node i. According to the definition of edge LDP, two

adjacency bit vectors B and B′ are two neighboring databases

if they differ in only one bit. As such, the sensitivity of

degree (i.e., count function) is 1, and therefore adding Laplace

noise Lap( 1
ε2
) to the node degree can satisfy ε2-LDP. That is,

d̃i = di + Lap( 1
ε2
).

Similar to perturbing adjacency bit vector, however, in the

above naive approach the data collector witnesses two node

degrees di and dj perturbed independently, but they share the

same edge between i and j. As DP or LDP does not refrain

an adversary from possessing any background knowledge, in

the worst case the collector already knows all edges except for

this one. As such, witnessing the two node degrees di and dj
is degenerated to witnessing the edge between i and j twice

and independently.

Unfortunately, the remedy that works for perturbing adja-

cency bit vector cannot be adopted here, as direct bit copy

is not feasible for degree. As such, we take an alternative

approach to increase the Laplace noise. The following theorem

proves that if we add Laplace noise Lap( 2
ε2
) to every node

degree, ε2-LDP can be satisfied for the collector.

Theorem 4.1: A perturbation algorithm A satisfies ε2-LDP

for the collector if it adds Laplace noise Lap( 2
ε2
) to every

node degree di, i.e., d̃i = A(di) = di + Lap( 2
ε2
).

PROOF. Please refer to our technical report [14].

D. Aggregation and Calibration

Upon receiving the perturbed adjacency matrix M̃ and

degree vector d̃,1 the data collector can estimate the target

graph metric F̃ by aggregation according to Eq. 2 with a

calibration function R(·):
F̃ =

∑
l
R

(
fφl

(M̃kl)
)
· gψl

(d̃) (4)

The calibration function aims to suppress the aggregation bias

of M̃ propagated by fφl
. On the other hand, no calibration is

needed for gψl
(d̃) as d̃ is already an unbiased estimation of

d, thanks to the Laplace Mechanism.

To derive R(·), we regard R as the mapping between

fφl
(Mkl) and fφl

(M̃kl). In other words, R estimates

fφl
(Mkl) after observing fφl

(M̃kl). Formally,

R : fφl
(M̃kl)→ fφl

(Mkl)

Further, the following theorem shows the accuracy guaran-

tee of LF-GDPR.

1In the sequel, ˜d denotes the refined degree ˜d∗ to simplify the notation.

Theorem 4.2: For a graph metric F and our estimation F̃ ,

with at least 1− β probability, we have

|F − F̃ | = O(

√
E[F̃ 2] · log(1/β) )

PROOF. Please refer to our technical report [14].

V. CONCLUSION

This paper presents a parameterized framework LF-GDPR

for privacy-preserving graph metric estimation and analytics

with local differential privacy. The building block is a user-

side perturbation algorithm, and a collector-side aggregation

and calibration algorithm. LF-GDPR simplifies the job of

developing a practical LDP solution for a graph analysis task

by providing a complete solution for all LDP steps. As for

future work, we plan to extend LF-GDPR to more specific

graph types, such as attributed graph and DAG. We will also

evaluate the performance of LF-GDPR on other graph analysis

tasks such as influential node analysis to demonstrate its wide

applicability.
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