
Fast Error-tolerant Location-aware Query
Autocompletion

Jin Wang
University of California, Los Angeles.

jinwang@cs.ucla.edu

Chunbin Lin∗
Amazon AWS

lichunbi@amazon.com

Abstract—Location-based services have become ubiquitous in
smart life, but typing queries in mobile devices is tedious
and error-prone. Therefore, query autocompletion is needed to
instantly provide users with query suggestions based on the
incomplete user input. A recent trend is to support error-tolerant
autocompletion, which could improve the usability by allowing
a small number of errors between the query input and prefixes
of strings in database. In addition, the query autocompletion
should be location-aware for location-based services since it
makes more sense to provide query suggestions for nearby
objects. Unfortunately, existing query autocompletion algorithms
cannot efficiently support both error-tolerate and location-aware
features at the same time.

In this paper, we propose a novel framework AutoEL to
support error-tolerant location-aware query autocompletion. The
error-tolerate feature is enabled by applying edit distance to
evaluate the textual similarity between given query and the
underlying data, while the location-aware feature is guaranteed
by choosing the k-nearest neighbors. To improve the efficiency,
we construct a hybrid data structure to jointly index spatial and
textural information. We also propose several optimizations on
data partition as well as search algorithm. Extensive experiments
on real datasets demonstrate that AutoEL outperforms the
baseline methods by up to an order of magnitude.

I. INTRODUCTION

With the rapid growth of Location-based Services, it be-

comes more and more important to support location-aware

search engines, which aim at finding point-of-interests (POI)

such as hotels, restaurants and gyms near the current location 1.

The input of such search engines is usually text keywords, e.g.,

the names of hotel and restaurant. However, it is challenging to

type complete and correct full names in mobile devices due to

the following facts [12]: (i) mobile devices usually have small

screens especially for wearable devices, e.g., Apple Watch;

(ii) users may type via moving, which makes harder to hit the

correct key tokens; and (iii) it is difficult for users to spell the

accurate full names as some of those are quite long and hard

to spell. Thus, in order to form a correct query, users usually

need to repeat the time-consuming process of typing-trying-

refining multiple times.

To help users form complete and correct query input,

the feature of query autocompletion (QAC) becomes highly

necessary. QAC provides a list of suggested queries based on

the incomplete query typed by users so far. Then users can just

*corresponding author
1The current location can be obtained via embed GPS in mobile devices.

Fig. 1. Example of Location-aware Query Autocompletion (QAC). When
typing “sta” in the search box, system provides a list of suggested queries
(a), and the corresponding objects are shown in (b).

select their intend query to start the search. Location-aware

QAC takes the distance between the POI and query place into

consideration on the basis of it. Figure 1 shows a scenario of

location-aware query autocompletion. When a user types “sta”,

it shows a list of possible queries, e.g., “stable cafe” and “stan-

ford shopping center” for users to choose. For example, the

user’s intend query is “starbucks”, then the user can directly

click the fifth suggested query in the autocompletion to begin

a search without typing the complete query. Although QAC

indeed improves the user experiences, the existing studies on

QAC still have the following limitations.

On the one hand, the error tolerate feature is not supported

by previous studies about location-aware QAC and instant

search [7]. The output of these approaches is a list of queries

whose prefix are exactly matched with the user input, which

is not user-friendly as it does not allow typos in prefixes.

Actually, the real intend queries might not be included in

such a list just because of the typos. For example, the nearby

“burger king” will not show up in the list when typing

“bugger”, as they are not exactly matched. As a result, if users

do not have enough knowledge of the spelling, it would be

difficult for them to get reasonable query results.

On the other hand, although some existing studies support

error-tolerate QAC and instant search, they just ignore the

location information [2]. It might lead to meaningless search

results as the suggested POIs may be thousand miles away

from current location. As is observed from Figure 1, the

top-1 suggestion is more than 100 miles, which is not quite

interesting for users.

One possible solution is to make simple extension on the

basis of existing studies. We can first adopt the state-of-

1998

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00223

the-art approaches for error-tolerate QAC to identify textual

similar objects, and then find those nearest to current location.

However, the search performance could be sub-optimal due to

the lack of filtering power. Although there are some pruning

techniques in string similarity queries [13], [5], [8], [9], [10]

and spatial keyword search [11], [1], they cannot directly be

adopted in the QAC problem where the input query needs to

be dealt incrementally.

To address above limitations, we propose a novel framework

AutoEL to support location-aware and error-tolerated QAC.

More precisely, (i) The error-tolerate feature is enabled by

applying edit distance, which has been proven to be the most

widely used metric to capture typographical errors [4]. If

the edit distance between the query input and the prefixes

of objects in database is within a given threshold, such

objects should also be regarded as candidates; and (ii) The

location-aware feature is guaranteed by choosing the k-nearest

neighbors (KNNs) objects that are candidates from the current

location. In real world applications, the suggested queries

should be returned within milliseconds even for large amounts

of data. Therefore, it is essential to provide an efficient

solution. To improve the performance of AutoEL, we construct

a hybrid index structure to jointly index the spatial and textual

information. Then a top-down search algorithm can be adopted

to incrementally find all results. Since the pruning power is

closely related to the spatial and textual features, we also study

the problem of space segmentation in order to make similar

objects closer to each other in the index structure, which

will further boost the efficiency. Furthermore, we propose

several optimizations to avoid unnecessary accesses to index

and fetching redundant results. We perform a comprehensive

evaluation on two real-life datasets to demonstrate the superior

efficiency of our algorithms. The results show that AutoEL
outperforms the baseline methods with 3× to 13× speedup.

II. FRAMEWORK

A. Problem Formulation

In the ELQA problem, we are dealing with the spatio-textual

objects where an object S has two fields, a textual description

s and a spatial location sl, denoted by S =
〈
s, sl

〉
. Here s is a

string with several characters and sl is a location descriptor in

multi-dimensional space. To enable the error-tolerate feature,

we adopt the similarity metric of edit distance. Given a string

s, let s[i] denote the ith character of s and s[i..j] denote

the substring of s starting from s[i] and ending at s[j]. We

call the substring s[1...j] (j ∈ [1, |s|]) the prefix of s and

denote it as P j
s . We use the Euclidean distance between two

locations to measure the spatial distance. The spatial distance

between two spatial textual objects S and Q is denoted as

DIST(S,Q) =
√∑n

i=1(S
l
i −Ql

i)
2 where n is the number

of dimensions 2. Next we formally define the problem of

Error-tolerate Location-aware Query Autocompletion (ELQA)

as Definition 1.

2In this paper we focus on the case of n=2

Definition 1 (ELQA): Given a query Q = (q, ql), a database

of spatio-textual objects S, an edit distance threshold τ and

a number k, the location-aware query autocompletion aims at

finding a set of objects R s.t. |R| = k, and for any S ∈ R,

S′ ∈ C − R, we have DIST(S,Q) ≤ DIST(S′, Q), where

C = {S|S ∈ S ∩maxj∈[1,|s|] ED(q, P j
s) ≤ τ}.

B. The AutoEL Framework

The cornerstone of this work is the most well-known text-

only approach IPCAN [3]. We employ the idea of text-first

methodology to construct index by integrating both spatial

and textual information and perform search accordingly. To

integrate the spatial information into the trie index, we split the

whole space into a set of disjoint grids, which are rectangles.

Each object in database belongs to one grid. We denote the

set of grids as G. Suppose there are M grids in total, the

ith grid is denoted as gi, i ∈ [1,M] We can attach a bitmap

with cardinality of M to each trie node, with the bitmap for

a trie node n as Gn. We will also use Gn to denote the set of

grids corresponds to node n without ambiguity. If gi has an

object belonging to n, then the value of Gn[i] is set as 1 and

otherwise 0.

We use a max heap R to keep the current top-k results

ranked by the spatial distance. The spatial distance between the

object on top of R and ql is denoted as UBR. Since each trie

node n corresponds to a set of objects that share the common

prefix, it also has a corresponding spatial area that encloses all

the objects. Then we can use the lower bound of the spatial

distance between ql and the area corresponding to n, denoted

as MINDIST(ql, n), to perform pruning. If MINDIST(ql, n) >
UBR, we can prune the whole sub-trie of n even n is still an

active node. The reason is that it is guaranteed that no object in

the sub-trie can have smaller spatial distance than the current

k objects in R. Given a location ql and a grid g, the minimum

distance between ql and any object in g can be calculated with

Equation 1 as illustrated in [6].

MINDIST(ql, g) =

√
|qlx − gr,x|2 + |qly − gr,y|2 (1)

where

gr,x(gr,y) =

⎧⎨
⎩

g.lx(g.ly) qlx(q
l
y) < g.lx(g.ly)

g.ux(g.uy) qlx(q
l
y) > g.ux(g.uy)

qlx(q
l
y) otherwise

(2)

In order to integrate above computation into IPCAN, we

need to compute the value of MINDIST(ql, n) once we

reach a new active node n. If the given node n satisfies

MINDIST(ql, n) ≥ UBR, we can safely exclude n from the

active node set. Note that the value of UBR can be updated

by checking the bitmap of a trie node without fetching the

results. To reach this goal, we maintain the cardinality of

each grid g ∈ G as |g|. We can compute the upper bound of

distance MAXDIST(ql, g) in a similar manner with Equation 1

according to [6]. By computing this upper bound, we can

know that there are |g| objects with MAXDIST(ql, g) distance.

Consequently, we can update the value of UBR from node n

1999

by estimating the upper bound of distance for the kth smallest

object from all grids in Gn.

Algorithm 1: Location-aware QAC(S, Q, τ , k)

Input: S: The collection of strings; Q =
〈
q, ql

〉
: The

query; τ : The edit distance threshold; k: The

number of results

Output: R: The top-k results

begin1

Initialize A with 〈root, 0, ∅, 0〉;2

Initialize UBR as ∞;3

for i = 1 to |q| do4

Initialize A′ = ∅;5

foreach A ∈ A do6

if A.dn + 1 ≤ τ then7

Add 〈n, dn + 1, j, dn,j + 1〉 into A′;8

Traverse the subtrie rooted by n within height9

τ −A.dn,j + 1, check each node n′;
if MINDIST(ql, n′) ≥ UBR then10

continue;11

Update the value of UBR with12

MAXDIST(ql, n′);
d′ = A.dn,i +max(|n′| − |n| − 1, i− j)13

if d′ ≤ τ then14

Add 〈n′, d′, i+ 1, d′〉 into A′;15

16

Remove non-pivotal active nodes and duplicates17

from A′;
A = A′;18

Traverse leaf nodes reachable from all active nodes19

in A;

Compute the spatial distance and obtain the top-k20

results in R;

return R;21

end22

Algorithm 1 shows the process of ELQA. It first initializes

the active node set with the dummy trie root (line 2). And

the value of UBR can be initialized as the infinity distance

(line 3). For each input character, it incrementally computes

the active nodes with the IPCAN [3] method (line 6-18). To

utilize the textual information, it identifies new active nodes

by considering insertion (line 9) and deletion (line 8) where

the last character is matched. In this process, when accessing

a new trie node n, if MINDIST(ql, n′) ≥ UBR the sub-trie

rooted by n will be pruned (line 11). Otherwise, the value

of UBR is updated and the process of collecting active node

continues (line 12).

Next it fetches the results by visiting all the reachable leaf

nodes from the set of active node (line 19). Finally, it performs

verification using the true spatial information of each candidate

and return the top-k results (line 20). Actually, the steps

of fetching and verification do not necessarily happen after

seeing the whole query. Since the algorithm is incremental, it

can happen in the process of typing any character q[i] upon

practical requirement.

C. Optimization

To further improve the performance, we also made several

optimizations. The high level ideas of such techniques are

summarized as following.

1) Space Segmentation: To improve the pruning power

of Algorithm 1, a key step is to produce a high quality

segmentation of the space to generate grids. A straightforward

solution is to use some rule based methods, e.g. put all objects

with the same city into one grid. However, it might result

in data skewness problem which will reduce the filter power.

To address this issue, we propose a weight based approach

to perform space segmentation so as to generate the grids.

Specifically, we propose a weighting mechanism to describe

the data distribution of each grid by considering both spatial

and textual similarity. Based on it, we then devise a greedy

algorithm to decide the grids accordingly.

2) Avoid Unnecessary Bitmap Access: Recall that in Al-

gorithm 1, we need to check the bitmap of each trie node

in order to update the value of UBR, which might involve

heavy overhead considering the large number of trie nodes.

To improve the performance, we propose three bitmap-based

improvements: Firstly, we remove the duplicate bitmaps if a

parent has only one child node; Secondly, we will make a

bitwise XOR operation between the bitmap of a parent node

and its child where it only needs to check the bits with 1

for the child. Lastly, once we find a value larger than UBR,

we can stop earlier as this trie node cannot further lower the

spatial bound.

3) Improve Results Fetches: To avoid redundant node

traversal, we propose another optimization to eliminate de-

scendant active nodes before fetching results. The basic idea

is to identifying the ancestor-descendant relationship in the

process of finding active nodes. If an ancestor node and its

descendant co-exist in the set of active nodes, we remove all

descendant active nodes and only maintain the ancestor. To

keep record of this relationship, we maintain a forest data

structure where we can only use the root of each tree in the

forest for result fetching. This optimization strategy can be

integrated into Algorithm 1 without much space overhead by

modifying the places where results fetching is required (line

7-8, 14-15 and 18).

III. EVALUATION

A. Experiment Setup

TABLE I
DATASETS STATISTICS

Dataset Cardinality Avg String Length Size (MB)
OSM 2 million 17 183
SGP 12.9 million 19 866

We use two public available POI datasets to evaluate

our proposed techniques, which have been widely applied

in previous studies. OpenStreetMap 3 (OSM) is from the

3http://www.openstreetmap.org/

2000

0

50

100

150

200

250

300

1 2 3 4

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance Threshold

INSPIRE
META

AutoEL

(a) varying τ , OSM

0

500

1000

1500

2000

2500

1 2 3 4

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance Threshold

INSPIRE
META

AutoEL

(b) varying τ , SGP

0

50

100

150

200

250

300

350

10 20 30 40 50

A
ve

ra
ge

 T
im

e(
m

s)

Number of k

INSPIRE
META

AutoEL

(c) varying k, OSM

0

500

1000

1500

2000

10 20 30 40 50

A
ve

ra
ge

 T
im

e(
m

s)

Number of k

INSPIRE
META

AutoEL

(d) varying k, SGP
Fig. 2. Comparison with State-of-the-art Methods

project of OpenStreet open-source spatial database. It consists

of POIs for multiple kinds of places in the United States,

such as parks, schools and restaurants. SimpleGeo Place 4

(SGP) is a database of business listings and POIs. The detailed

information is shown in Table I.

As there is no previous work for the ELQA problem,

we extend two previous studies as the baseline methods:

INSPIRE [14] and META [2]. The evaluation metric is the

average processing time per query. We implement the two

baselines by ourselves since there is no public available code.

All experiments are conducted on a server with an Intel i7-

4770 CPU processor, 32 GB RAM, running Ubuntu 14.04.

All the algorithms are implemented in C++ and compiled with

GCC 4.8.4.

B. Results and Analysis

We compare our framework with the extension of two state-

of-the-art methods. From the results shown in Figure 2, we

observe that our AutoEL achieves the best performance. For

example, as shown in Figure 2(c) when τ = 2 and k = 50 on

OSM, the average time per query for INSPIRE and META
is 371.54 ms and 92.32 ms, respectively, while AutoEL takes

only 28.64 ms. The reason is that compared with previous

approaches, AutoEL can perform pruning with spatial and

textual information simultaneously. Then we can avoid visit

redundant trie nodes with the help of spatial information.

In almost all the experiment settings, the performance of

META ranks second and obviously outperforms INSPIRE.

The reason could be that in the ELQA problem, finding similar

strings is more expensive than identifying spatial distance.

As META is specifically optimized for text-only task, the

performance would benefit greatly from its simplified trie

index. Meanwhile, INSPIRE enables pruning on the textual

dimension with inverted index, which is not as good at

supporting incremental search as trie-based indexes.

However, META cannot make use of the spatial information

to perform pruning. Therefore, it has much larger search space

and thus worse overall performance than AutoEL. We can

see that simply extending text-only approach is not efficient

enough Therefore, it also illustrates the necessity of devising

effective techniques to perform pruning with both spatial and

textual information.

4https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces

IV. CONCLUSION

In this paper, we study the problem of Error-tolerate

Location-aware Query Autocompletion and propose the Au-
toEL framework. We jointly index the spatial and textual

features in a trie-based index structure to perform pruning with

both information simultaneously. We devise a weight-based

strategy to split the space before index construction so as to

improve pruning power. We further develop effective search

strategies to accelerate the query processing. Experimental

results on real world datasets demonstrate the superiority of

our proposed framework over alternative solutions.

REFERENCES

[1] L. Chen, S. Shang, C. Yang, and J. Li. Spatial keyword search: a survey.
GeoInformatica, 24(1):85–106, 2020.

[2] D. Deng, G. Li, H. Wen, H. V. Jagadish, and J. Feng. META: an efficient
matching-based method for error-tolerant autocompletion. PVLDB,
9(10):828–839, 2016.

[3] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead
search. VLDB J., 20(4):617–640, 2011.

[4] G. Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[5] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and
scalable distributed set similarity joins for big data analytics. In ICDE,
pages 1059–1070, 2017.

[6] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In SIGMOD, pages 71–79, 1995.

[7] S. B. Roy and K. Chakrabarti. Location-aware type ahead search on
spatial databases: semantics and efficiency. In SIGMOD, pages 361–
372, 2011.

[8] J. Wang, C. Lin, M. Li, and C. Zaniolo. An efficient sliding window
approach for approximate entity extraction with synonyms. In EDBT,
pages 109–120, 2019.

[9] J. Wang, C. Lin, and C. Zaniolo. Mf-join: Efficient fuzzy string similarity
join with multi-level filtering. In ICDE, pages 386–397, 2019.

[10] J. Wu, Y. Zhang, J. Wang, C. Lin, Y. Fu, and C. Xing. Scalable metric
similarity join using mapreduce. In ICDE, pages 1662–1665, 2019.

[11] J. Yang, Y. Zhang, X. Zhou, J. Wang, H. Hu, and C. Xing. A hierarchical
framework for top-k location-aware error-tolerant keyword search. In
ICDE, pages 986–997, 2019.

[12] A. Zhang, A. Goyal, R. A. Baeza-Yates, Y. Chang, J. Han, C. A. Gunter,
and H. Deng. Towards mobile query auto-completion: An efficient
mobile application-aware approach. In WWW, pages 579–590, 2016.

[13] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan. An efficient
framework for exact set similarity search using tree structure indexes.
In ICDE, pages 759–770, 2017.

[14] Y. Zheng, Z. Bao, L. Shou, and A. K. H. Tung. INSPIRE: A framework
for incremental spatial prefix query relaxation. IEEE Trans. Knowl. Data
Eng., 27(7):1949–1963, 2015.

2001

