
Spark Performance Optimization Analysis In
Memory Management with Deploy Mode In

Standalone Cluster Computing

1st Deleli Mesay Adinew 2nd Zhou Shijie†and 3rdYongjian Liao‡
∗School of Information and Software engineering

∗University of Electronic Science and Technology College, Chengdu, China.

Abstract—As data is growing in different dimensions, it is dif-
ficult to get appropriate data analytic tools. Spark is one of high
speed ”in-memory computing” big data analytic tool designed to
improve the efficiency of data computing in both batch and real-
time data analytic. Spark is memory bottleneck problem which
degrades the performance of applications due to in memory
computation and uses of storing intermediate and output result in
memory. Investigating how performance is increased in relation
to spark executor memory, number of executors, number of
cores, and deploy mode parameters configuration in a standalone
cluster model is our primary goal. Three representative spark
applications are used as workloads to evaluates performance in
relation to changing these parameters value. Experimental result
show, submitting the job in cluster deploy mode is faster to finish
than a submitting job in client deploy mode under two workloads.
This implies spark performance does not depend on deploy mode
rather it depends on types of application. However,increasing
number of executor per worker, a number of core per executor
and memory fraction will increase spark performance under all
workloads in any deploy mode.

Index Terms—Spark Performance Tuning, Parameter configu-
ration, Standalone cluster, Deploy mode, Memory Management,
Performance improvement

I. INTRODUCTION

As the internet became popular, data grows exponentially

in volume which becomes known as big data. Big data

need better management and proper data analytic tools to

make more effective decision and better benefit in different

organizational and industrial area. It is a technique used in

different organizations and industry to extract the most and

better valuable information that supports better decision mak-

ing processes[4].Hadoop is one of the most popular big data

analytic platform which has its own limitation. Apache Spark

is one of recently designed big data analytic tool to overcome

certain Hadoop’s limitation.It emerged as good fault tolerance

and support a distributed computing framework designed

based on principles of Hadoop MapReduce algorithms which

uses in ”memory computation” to improve the efficiency of

data computing to minimize disk read to reduce data loading

latency[4]. It is well suitable for iterative applications used

in both batch and real-time which has more than 180 con-

figuration parameters which helps to optimize its performance

according to user’s requirements[2]. It’s performance is depend

on combinations of these configuration parameters values [4].

Memory management and other parameters such as a number

of executors, a number of cores, and deploy mode are one

of the parameters need to investigate whether it improves

performance of the application or not.

The contribution of this paper is described as follows.

• We studied big-data analytic approaches and tools

with its deployment techniques.

• We identified and selected appropriate big data ana-

lytic tools suitable for data analytic.

• We propose those selected parameters to improve

spark performance.

• We confirm spark performance doesn’t depend on

job submission mode rather it depends on types of

workloads. values.

• We confirm deploy mode does not affects spark

performance.

• We measure and confirm increasing execution mem-

ory fraction, a number of executors per Worker

and number of cores per executor increase spark

performance under any deploy mode regardless of

applications workloads.

This paper is organized as follows. Section 2 Background.

Section 3 Experimental Methodology. Section 4Environmental

and configuration setup. Section 5 Experimental Result and

Discussion. Section 6. Related work. Section 7 Conclusion.

II. BACKGROUND

In this section, we will discuss big data computational tools

including their limitation and usage

A. Hadoop

In the past few years, Hadoop is well known as most

dominant platforms for structural Big Data analytic using

MapReduce computation model[13,16]. It is designed to scale

up the performance of commodities machines with a very high

degree of fault tolerance and efficient. However, analyzing big

data is still a challenging job, unless it is analyzed properly.

Hadoop framework faces performance bottlenecks for iterative

machine learning algorithms and interactive data queries [3].

B. Apache Spark

Spark is high-speed computing framework which use in

”memory computation” to improve the efficiency of data

computation, designed as fault tolerant and more powerful for

2049

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00242

big data Analytic which is designed based on the principles of

Hadoop MapReduce algorithms. However, unlike MapReduce,

the intermediate and output results of its jobs can be stored

in memory[1] and more suitable for iterative applications and

real-time data processing[5,7].

C. Spark performance Model

Although, spark has high processing speed, it requires op-

timization framework due to daily increasing data in volume.

Framework is designed and defined as follows[4].

Spark Perf =F (A, D, R, C) where A denotes the user’s

application, D denotes the input data, R denotes the resources,

and C denotes the configuration parameters of Spark platform,

F is a function that is performed on A, D, R, and C parameters.

Even-though, Spark performance depends on the above param-

eters, Spark performance bottlenecks are moved to resources

utilization such as CPU, memory, and network communication

layer that requires to adjusting settings to memory, cores, and

instances to guarantees that the Spark has optimal performance

and prevents resource bottle-necking during run-time of an

application. Proper Spark tuning can ensure the following

properties. Proper use of all resources in an effective and

efficient manner will support:

• Avoid those jobs that run a long time in the execution

of tasks.

• Improves the performance time of the system in the

execution of tasks.

• Guarantees jobs are on a correct execution engine in

the process of execution activities.

1) Memory management : is grouped into two categories
execution and storage memory[6]. The execution memory is

usually used for handling computation in shuffles, joins, sorts

and aggregations, while the storage memory is usually used

for handling the caching and propagating internal data across

the cluster of spark. In Spark, execution and storage memory

share a unified region (M) in the case when one does not

require more space, that means when execution memory is no

more used(free), storage can acquire all the available memory

and vice versa[9]. if necessary, sometimes execution may

enforce to drive out storage until total storage memory usage

or capacity falls under a certain threshold(R)[6].

D. Spark Memory Management Policy

Spark has two memory area named execution and storage

memory which used for computation in shuffles, joins, sorts

and aggregations, and for caching and propagating internal

data across the cluster. In spark, execution, and storage mem-

ory share a unified memory region which means when no

execution memory is used, storage can acquire all the available

memory and vice versa. If necessary, execution may force

moving out storage until total storage memory usage falls

under a certain threshold[6,14]. This requires managing the

efficient utilization of memory between the two fractions.

The best way to size the amount of memory consumption

transforming datasets into RDD, like easily put into cache,

and look at the storage[6,15]. We can handle RDDs affect on

the performance of workloads by changing memory Faction

ratio and changing different resource configuration of spark

executors. Different spark executors parameter and deploy

mode is selected with a different experimental approach to

investigate how memory and other parameters are efficiently

utilized under different

III. EXPERIMENTAL METHODOLOGY

To do our experiment, we identified different experimental

approaches, tools, components and deployment approaches,

methods, and parameters configuration as experimental criteria

based on our experimental goal. Spark standalone cluster

deployment model is selected as the best deployment ap-

proaches and methods. Environmental variable and parameters

configuration was selected along with their deployment mode.

Spark standalone cluster component interaction were identified

as the Driver, the Master, the Cluster Manager, and the

Executor(s), which run different Worker. The experimental

model is designed as an architectural model to show its

component interaction. Application interaction anatomy was

also identified and designed as one of application interaction

model that computer tasks in the model. Different spark

workloads were identified, developed and used for evaluating

performance under different deploy mode and parameters

value.

IV. ENVIRONMENT AND PARAMETER CONFIGURATION

SETUP

This section describes the Environment variable and Param-

eters configuration setup that can be identified, configured, and

used for our experiment.

A. Environment setup

Our experimental activities and results depend on environ-

mental variables configuration so that it requires to identify

and configure the environment variable. Our experimental

environment is categorized as Hardware and Software envi-

ronment. Hardware used for this experiment is a standalone

laptop where the details are listed in table 1. Among software

used for this experiment spark,python, scala, SBT, and IntelliJ

idea are some of them that were installed on a standalone

laptop where the details are listed1. Spark is installed and

configured according to deploy the model for data analytics.

Scala, SBT and IntelliJ idea are installed to support developing

and writing different spark application that was used for doing

this experiment.

TABLE I
SHOW HARDWARE AND SOFTWARE CONFIGURATION ENVIRONMENTS

Hardware Software
Memory :4GB Window 10 OS with 64-bits

Hard Disk :750GB
Processor: Intel(R)
Core(TM)i5-5200U
CPU@2.20GHz

Spark 2.4.0 with Hadoop 2.7
Python,Scala 2.11.12,JDK 11.0.1
SBT Intellij idea 2019.1

2050

B. Parameter Configuration Setup

To evaluate our experiments we identify and configure spark

parameters those appropriate parameters for our experiments.

These selected spark parameters for this experiment were

listed with the default and new value as spark parameters

configuration in table 2.

TABLE II
SHOW SPARK PARAMETER CONFIGURATION WITH THE DEFAULT AND NEW

VALUES

Catagories Parameters Default
Value

New
Value

Application
Properties

spark.executor
.memoryOverhead

1000M 2048M

spark.executor.memory 1000M 2000M
Deployment Env’t
Run Modes

spark.submit.deployMode None Client

Cluster
Memory
Management

spark.shuffle.memoryFraction 0.2 0.9

spark.storage.memoryFraction 0.6 0.9
Execution
Behavior

spark.executor.cores 4 8

Runtime
Environment

InitiatingHeap
OccupancyPercent

45 85

num-executors 1 8

C. Experiment

1) Procedure: To do this experiment we install and config-
ure different software according to our experimental model.

After the installation is completed, we developed different

spark application workloads in Scala and create a jar file for

each application. Once jar files are completed, we start one

master server with two workers to connecting them to the

Master via Master URL to create spark standalone cluster

with one Master and two workers. The master launch a

master daemon process for manages all the worker processes.

The worker launches a worker daemon process which is

responsible for communicating with the master and managing

executors. Finally, we submit a different application jar as

spark job to cluster with different parameters values and

different deploy mode to measure performance spark related

to these parameters configuration.

2) Architectural Overview: Our experimental architectural
used for this research is shown in figure 1, which describe

how to spark a standalone cluster communicates with each

other. The interaction describes, as whole the cluster waiting

to receive job requests from a client with different parameters

configuration options to pass it into the master and worker as

resources for executors. When submitting a job every client

is required to specify as whole resource requirement such as

how many executors, CPU, and memory is required for each

executor. Spark scheduler then allocates resources to the client

as wishes to run the job. Such kind of allocation requires every

client to calculate resource volume carefully in order to run.

3) Performance Evaluation: Performance evaluation was
done by categorizing our experimental view as performance

in job submission mode and performance in parameters values

Fig. 1. Shows spark components in a standalone cluster with their interaction.

under different workloads and dataset.

1) Impact of job Submission Mode: Client vs Cluster Deploy

Mode. The experiments were done by submitting different

workloads by specifying –deploy-mode as client or cluster to

evaluate performance difference in job submission mode.

2) Impact of changing parameters value: Default vs New value

The experiments were done by submitting different workloads

under default or new parameters value to evaluate spark

performance in different parameters value.

In both the above cases experiments were done repeatedly with

the same parameters values and deploy mode with the same

workload, then average performance is calculated as the final

performance of spark application under that workload.

4) Performance Improvement Calculation: We calculated
performance improvement based on one of the principles used

to calculate performance improvement which defined as

Perf.Improve =
NewV alue

OldV alue
) ∗ 100%

by assuming New value is the short response time than Old

value.

i) Performance improvement rate in deploy mode can be

calculated as
ClusterV alue

ClientV alue
∗ 100%

by taking change parameter as reference for those workloads

that have shown higher value in cluster deploy mode but for

Tera Sort we calculated as

ClientV alue

ClusterV alue
∗ 100%

because Tera Sort shows higher performance in client deploy

mode. the result is shown in table 1. ii) Performance improve-

ment rate among default and a new value can be calculated

as
NewV alue

DefaultV alue
∗ 100%

by taking deploy mode as reference. the result is shown in

table 2.

5) Workloads and Datasets: We used 3 representative spark
applications as workloads to evaluate the impact of memory

limitation and job submission mode on performance. The

workloads selected for our experiments are implemented in

spark machine learning algorithms named as WordCount,

TeraSort, and PageRank to evaluate performance under dif-

ferent parameters value and deploy mode. Datasets used for

2051

TABLE III
SHOW SPARK PARAMETER CONFIGURATION WITH THE DEFAULT AND NEW

VALUES

Application Parameter
Value

Deploy
Mode

Avg.Perf/sec
in deploy mode

Perf.Improve

Page Rank

Default Cluster 532.8 (533/2016)*100
=26.43%

Client 2,016
New Cluster 276 (276/1012)*100

=27.27%
Client 1,012

wordCount

Default Cluster 12 (12)/35*100
=34.29%

Client 35
New Cluster 6.5 (6.5/11.2)*100

=58.04%
Client 11.2

TeraSort

Default Cluster 160.8 (63/160.8)*100
=39.38%

Client 63
New Cluster 32.2 (28.2/32.2)*100

=87.58%
Client 28.2

TABLE IV
SHOW SPARK PARAMETER CONFIGURATION WITH THE DEFAULT AND NEW

VALUES

Application
Deploy
Mode

Parameters
Value

Avg.
Perf/sec

Perf.Improve.in
Para. value change

Page Rank

Client Default 2016 (1012/2016)*100
=50.2%

New 1,012
Cluster Default 532.8 (276/532.8)*100

=51.8%
New 276

wordCount

Client Default 35 (11.2/35)*100
=32%

New 11.2
Cluster Default 12 (6.5/12)*100

=54.2%
New 6.5

TeraSort

Client Default 63 (28.2/63)*100
=44.8%

New 28.2
Cluster Default 160.8 (32.2/160.8)*100

=20%
New 32.2

these experiments were accessed from different data sources

such as Stanford dataset[9].

TABLE V
SHOW DATASET USED FOR PERFORMANCE COMPUTING

Workloads Input size
PageRank 31.3MB
TeraSort 11KB
WordCount 4KB

V. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental Result

The experiment result show, different performance rate for

different workloads under different deploy mode and parame-

ters value. The result is visualized in different workload with

Fig. 2. Performance Comparision among deploy mode

Fig. 3. Performance Comparision among parameter value: default vs new
value

different deploy mode and parameters value. PageRank and

WordCount application perform higher in cluster deploy mode

than client mode regardless of parameter change whereas

TeraSort performs higher in client deploy mode than cluster

deploys mode regardless of parameter change. Increasing de-

fault value increase performance of all application depending

on deploy mode.

1) Performance results in deploy Mode: This section de-
scribes performance improvement comparison between cluster

and client deploy mode by taking default parameter value as a

base reference. The result shows submitting the job in cluster

deploy mode has high performance than a submitting job in

client deploy mode in case of WordCount and PageRank.

However, spark performance in TeraSort, client deploy mode

has high performance than cluster deploy mode.

2) Performance result in changing parameters value:
This section describes performance improvement comparison

between default and new parameter value by taking deploy

mode as a base reference. The result shows performance in

new parameters configuration is better than default parameters

values under both deploy mode in all workloads.

B. Discussion

The result shown in figure 3 indicate a performance im-

provement among deploy mode in both default and new values

that means increasing default configuration parameters listed

2052

in table 2 will increase performance of spark under both deploy

mode in all workloads. The result shown in Figure 2 indicate

performance of spark increased in cluster deploy mode under

PageRank and WordCount but decreased for TeraSort. This

implies performance in deploy mode depends on types of

applications which is directly related to internal structure of

the application.

VI. RELATED WORK

Spark configuration parameters require to identify which

combination increase performance in big data analytics. In[10]

K. Zhang et al. proposed in MEMORY ONLY, DISK ONLY,

OFF HEAP MEMORY, AND DISK for intermediate data

caching in case of operating as RDD and DataFrame in K-

means benchmark under different datasets size to increase

performance. The result shows when using memory-only for

intermediate data caching, serialization process is not executed

in the RDD but the encoding is executed in the DataFrame

that make RDD is faster than the DataFrame. However, the

encoding of DataFrame is faster than serialization of RDD

when storing the cache on disk or off-heap memory. In[11]

L. Xu et al. MEMTUNE are proposed for Memory Man-

agement Policy which implements to strives as best utiliza-

tion of memory resource that ensures MEMTUNE improves

individual allocated memory utilization of each application.

It uses storage memoryFraction to manage OutOfMemory

and evaluate execution time of different workloads under the

default Spark, MEMTUNE, MEMTUNE with prefetch only,

and dynamic RDD cache tuning only in Logistic Regression,

Linear Regression, Page Rank, and Shortest Path to study the

impact of garbage collection and Cache Hit Ratio. In [12]

H. Du et al. Proposed Otterman to parameters optimization

approach based on Simulated Annealing algorithm and Least

Squares method, which required to adapt them to the MapRe-

duce paradigm to evaluate the impact of these parameters in

the available resources such as CPU, Memory, and Disk in

the cluster. In reference[11] L. Xu et al focus to manage

OutOfMemory, which use garbage collection strategies to

evaluate the performance of spark using different memory

fraction under different workloads. In reference[12] H. Du et

al don’t focus to identify which parameters and job submission

mode will affect spark performance and in which aspect. All

the above papers don’t focus on deploy mode and even use

different methodology to evaluate in which way performance

can be increased under different workloads. As we observe

from the above reason, research work on the performance

optimization of the Spark platform is still not addressed from

a different aspect. This free space initiates us to focus on a

certain group of parameters that were not covered with such

methodology by any of them.

VII. CONCLUSION

Big data analytics requires the proper tools to extract

valuable information. Spark is one of high-speed big data

analytic tool with efficient resource utilization such as memory

under different parameters configuration. Increasing default

value of a number of executor per worker and number of

core per executor, executors memory fraction increase spark

application performance under all deploy mode and workloads.

However, deploy mode doesn’t determine spark performance

rather it depends internal structure of the application.

REFERENCES

[1] Z. Han and Y. Zhang, “Spark: A Big Data Processing Platform Based on
Memory Computing,” 2015 Seventh International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), 2015.

[2] A.-K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, and J. Keane,
“Towards Automatic Memory Tuning for In-Memory Big Data Analytics
in Clusters,” 2016 IEEE International Congress on Big Data (BigData
Congress), 2016.

[3] K. Grolinger, M. Hayes, W. A. Higashino, A. Lheureux, D. S. Allison,
and M. A. Capretz, “Challenges for MapReduce in Big Data,” 2014 IEEE
World Congress on Services, 2014.

[4] V. M. Bande and G. K. Pakle, “CSRS: Customized service recommenda-
tion system for big data analysis using map reduce,” 2016 International
Conference on Inventive Computation Technologies (ICICT), 2016.

[5] Z. Matei, C. Mosharaf, D. Tathagata. “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing” NSDI’12
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation[C].2012, 2-

[6] Apache Spark™ - Unified Analytics Engine for Big Data,” Apache
Spark™ - Unified Analytics Engine for Big Data. [Online]. Available:
https://spark.apache.org/. [Accessed: 29-Feb-2019].

[7] Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate Data
Caching Optimization for Multi-Stage and Parallel Big Data Frame-
works,” 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018.

[8] “Stanford Large Network Dataset Collection.” [Online]. Available:
https://snap.stanford.edu/data/index.html. [Accessed: 10-Mar-2019].

[9] I. S. Choi, W. Yang, and Y.-S. Kee, “Early experience with optimizing
I/O performance using high-performance SSDs for in-memory cluster
computing,” 2015 IEEE International Conference on Big Data (Big Data),
2015.

[10] K. Zhang, Y. Tanimura, H. Nakada, and H. Ogawa, “Understanding and
improving disk-based intermediate data caching in Spark,” 2017 IEEE
International Conference on Big Data (Big Data), 2017

[11] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu, “MEM-
TUNE: Dynamic Memory Management for In-Memory Data Analytic
Platforms,” 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016.

[12] H.Du, P. Han, W. Chen, Y. Wang, and C. Zhang, “Otterman: A
Novel Approach of Spark Auto-tuning by a Hybrid Strategy,” 2018 5th
International Conference on Systems and Informatics (ICSAI), 2018.

[13] J. Dean and S. Ghemawat, MapReduce: simplified data processing on
large clusters” International Journal of Research and Engineering, vol. 5,
no. 5, pp. 399–403, 2018.

[14] W.Guolu, X.Jungang, and H. Ben, “A Novel Method for Tuning
Configuration Parameters of Spark Based on Machine Learning”, 2016
IEEE 18th International Conference on High-Performance Computing and
Communications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems,2016

[15] Z. Zhu, Q. Shen, Y. Yang, and Z. Wu, “MCS: Memory Constraint
Strategy for Unified Memory Manager in Spark,” 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS),
2017.

[16] D. M. Adinew, Z. Shijie, and Y. Liao, “Spark Performance Optimization
Analysis in Memory Tuning On GC Overhead for Big Data Analytics,”
Proceedings of the 2019 8th International Conference on Networks,
Communication and Computing, 2019

2053

