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Abstract—In the cloud environment, data warehouse solu-
tions need to be self-managing in order to be usable without
prior database administration knowledge. Additionally, data is
typically not clean in these environments, as it is imported
from various sources. As a consequence, automatic schema
optimization as an important task of self-management becomes
difficult without human interaction and data cleaning steps.
Within this paper, we focus on constraint discovery as a subtask
of schema optimization. Real world datasets with unclean data
may not contain perfect constraints, as a minor part of the values
hampers the definition of them. Therefore, we introduce the
PatchIndex structure, which handles these exceptions to column
constraints and enables self-management tools to discover and
define approximate constraints on unclean data. We present
“nearly unique column” and “nearly sorted column” constraints,
both managed by the generic PatchIndex structure. Furthermore,
we provide mechanisms to discover these constraints and show
how query performance can benefit from them for different use
cases by integrating them into query optimization. Our evaluation
shows that the PatchIndex structure offers opportunities for
a significant performance boost in different use cases while
enabling self-management tools to define constraints on unclean
data.

Index Terms—self-managing databases, schema refinement,
approximate constraints, uniqueness, patch processing

I. INTRODUCTION

Bringing database management systems (DBMS) to the

cloud environment lowers the barrier to start data analysis by

making DBMS accessible within minutes and avoiding ad-

ministration effort of on-premise solutions. As a consequence,

users are enabled to start working with their data and achieve

business value out of it without the requirement of prior

database administration knowledge. Therefore, applications

using cloud databases typically lack database administrators

and raise the need for self-managing databases. Tools for

automatic database administration cover a wide range of tasks,

e.g., schema refinement, index selection, constraint discovery

or data cleaning.

With this paper, we want to address the problem of auto-

matic constraint discovery. In big data environments, datasets

are typically unclean. Therefore, it becomes challenging, if

not even impossible, for automatic tools to discover perfect

constraints like primary keys, uniqueness constraints or sorting

constraints without human interaction to decide for data clean-

ing steps. This results in database schemes with sparse schema

information. As constraints are used in query optimization,

e.g., selecting the actual join algorithm or estimating cardinal-

ities of intermediate results, non-optimal query plans and non-

optimal query performance are a consequence. Additionally,

even if constraints are defined, maintaining and enforcing them

is expensive and therefore often avoided by users.

Except potentially non-existing perfect constraints, these

datasets may include approximate constraints, which are con-

straints that hold for nearly all tuples except a number of

exceptions. These constraints occur for different reasons in

big data environments, e.g.:

• Data integration: Data is integrated from various

sources. This may lead to duplicates or an arbitrary order

based on the order of integration.

• Missing values: Integrating different data schemas into

one common schema may lead to NULL values.

• Real world anomalies: Real world datasets may not

contain perfect constraints, e.g. equal names of persons,

shared telephone numbers or shared addresses.

Approximate constraints contain valuable information that

cannot be used for query execution, as the constraint definition

is prohibited by a small part of the values. In order to prevent

these information from being lost and to take advantage

of them, allowing the definition and usage of approximate

constraint is worth investigating.

Common real world use cases further underline the need

for handling approximate constraints. In many cases, users

combine analytical database systems with dashboard gener-

ation tools to simplify reporting, provide an overview over

business data for management processes or utilize the built-in

interactive query generators. While definetely increasing the

usability of database management systems, these dashboard

tools convert user interactions to SQL queries that are very

large and complicated in many cases. An example query graph

commonly generated by these tools is shown in Figure 1. Here,

each subtree is a distinct query on an arbitrary column of

the database. Out of the results from these queries, dashboard

elements like controllers, drop-down selections or similar are

generated. These queries would significantly benefit from

any additional information on the processed data, like the

described approximate constraints. Furthermore, many real

world datasets are timestamp-based, as they are generated by

e.g. sensor networks. Not only being sorted on the times-

tamp, these datasets often show an approximate co-sorting of
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other columns and the timestamp column, e.g. auto-generated

values, version numbers or increasing measurements. These

nearly co-sorted columns also occur in sales datasets, e.g

increasing order numbers leading to increasing order dates, or

increasing order dates leading to increasing ship dates. For

these cases, knowing about the approximate sorting of the

columns would significantly accelerate sorting queries on these

columns.

Fig. 1. Overview over a query generated by dashboard tool. Every branch is
a distinct query. Graph generated using Actian Vector.

In order to exploit approximate constraints in analytical

databases, the main idea of this paper is to handle tuples

violating constraints separately to accelerate query execution.

We therefore introduce the PatchIndex structure, supporting

“nearly sorted columns” and “nearly unique columns” in a

common index structure. The main contributions of this paper

are:

• We provide methods to discover approximate constraints

and to handle them in the PatchIndex structure. These

discovery methods can be easily integrated into arbitrary

self-managing tools.

• We describe possibilities to benefit from approximate

constraints in query planning and query execution and

prove the impact in our evaluation.

• By carefully designing the index scan and not changing

the way data is physically stored, we enable systems to

have multiple (approximate) sort keys within a single

table to exploit nearly co-sorted columns.

The remainder of this paper is organized as follows: Sec-

tion II presents related work in the field of self-management

database concepts. In Section III we state basic definitions to

base further discussions on. Section IV presents methods to

discover the approximate constraints before discussing con-

siderations for the actual PatchIndex design in Section V and

describing the integration into a DBMS and query execution in

Section VI. We evaluate our approach for different use cases

in Section VII before concluding and providing an outlook in

Section VIII.

II. RELATED WORK

Constraint discovery is an active research field and based

on data profiling techniques [1]. A basic problem of constraint

discovery is the discovery of unique column combinations

(UCC), which is a set of table columns whose projection only

contains unique rows. A UCC is the basic condition for the

definition of primary keys and therefore also foreign keys.

Finding all exact UCCs for a given relation is shown to be NP-

hard [2] and various algorithms like DUCC [3] or HyUCC [4]

were introduced to handle the problem complexity by reducing

the search space. In [5], not only the search space traversal, but

also communication effort is taken into account to cope with

the complexity by distributed processing. As candidate classi-

fication is a suitable use case for machine learning approaches,

candidate pruning is realized using a classificator trained on

SQL-extractable features like distinctness, dependencies, value

length or column and table names in [6].

Nevertheless all these approaches are limited to exact

UCCs, so the occurrence of NULL values remains a problem.

Especially for the cloud environment, we can expect that

NULL values appear in real world data sets. Possibilities and

approaches for data cleaning are numerous and classified in

[7]. There are mainly two possibilities to handle NULL values

in columns where a constraint is violated by them. Either these

tuples are deleted from the data set or missing values are

replaced with existing ones by using observed value distri-

butions. While the first one might not be desired, especially if

done automatically, the latter one might falsify data analysis.

In order to handle NULL values for uniqueness constraints

and offering larger possibilities for schema refinement as a

consequence, “possible” and “certain” keys were introduced

in [8], replacing violating tuple values to enforce constraints.

Another approach to handle NULL values was given in [9]

with the definition of embedded uniqueness constraints (eUC).

The main idea behind eUC is to separate uniqueness from

completeness by enforcing uniqueness constraints only on the

subset of tuples without the occurrence of NULL values in

key columns. The authors give some application examples like

schema design and query optimization and provide an imple-

mentation approach using existing index structures defined on

views without the violating tuples. Furthermore they show that

deciding whether a given relation has a eUC is NP-complete

and present several discovery algorithms.

Not only taking NULL values into account, the PYRO al-

gorithm is presented in [10] to discover and rank approximate

functional dependencies and UCC, extending the pruning rules

of the TANE algorithm [11]. The algorithm uses a sampling

strategy for candidate pruning to reduce the search space,

combined with a separate-and-conquer approach for candidate

validation.
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The concept of patch processing, handling exceptions to

certain distributions or properties of data, is commonly used

in the field of compression. The authors of [12] proposed

the PFOR, PFOR-DELTA and PDICT compression schemes,

making common compression schemes more robust by han-

dling outliers separately. Additionally, the concept of white-

box compression was introduced in [13]. Instead of choosing

a compression schema for all values of a column, the concept

aims at learning functions or properties of the data using

an automatic learning approach. Based on this, compression

can be optimized by varying compression algorithms between

values that follow the observed behaviour and values that

are exceptions to this, leading to a significant increase of

compression ratios.

III. DEFINITIONS

Within this section, we describe the concept of “nearly

unique columns” (NUC) and “nearly sorted columns” (NSC).

Values of these columns fulfill the uniqueness constraint or

the sorting constraint, respectively, except a set of tuples. We

collect the rowIDs of tuples that violate the constraint in a set

of patches Pc for a column c, so that the respective constraint

is fulfilled by all remaining column values of c. An example is

shown in Figure 2. The shown integer values of c are unique

if we exclude, e.g., tuples with rowIDs in {1, 2, 3, 7}, while

they are sorted if we exclude tuples with rowIDs in {4, 7}.
In the following, we want to provide formal definitions of the

outlined concepts to base our further discussions on.

Fig. 2. Example for NUC and NSC for a given dataset

Definition III.1. Naming conventions
R Relation

t ∈ R Tuple of relation R
dom(c) Set of possible values of a column c
id Column of tuple identifiers

id(t) ∈ N Tuple identifier of t
c(t) ∈ dom(c) Value of column c of tuple t

Additionally, we define a projection function
PROJ(R, c) : relation × column → relation
as a projection of relation R on column c, which similarly

to the SQL operator performs no duplicate elimination and

therefore differs from the relational algebra operator π.

Definition III.2. Set of patches
For a column c we define a set of patches Pc ⊆ {id(t) | t ∈
R}. Based on this, we define RP = {t ∈ R | id(t) ∈ Pc} as

the set of tuples of R whose tuple identifiers are in Pc and

R\P = {t ∈ R | id(t) /∈ Pc} as the set of tuples of R whose

tuple identifiers are not in Pc.

Definition III.3. Threshold variables
We define threshold variables nuc threshold and

nsc threshold , both in [0, 1] ⊂ R.

Definition III.4. Nearly unique column (NUC)
A column c is a nearly unique column (NUC), when there is

a set of patches Pc such that all of the following conditions

are fulfilled:

(NUC1) PROJ(R\P , c) is unique

(NUC2) PROJ(R\P , c) ∩ PROJ(RP , c) = ∅
(NUC3) |Pc|/|R| ≤ nuc threshold

As an intuition, we want values of c (described using

the projection operator PROJ on c) to be unique after we

excluded all tuples with tuple identifiers in Pc. The second

condition (NUC2) is important to ensure the correctness of

the query result, as we later want to utilize the PatchIndex

in query execution by querying RP and R\P separately

from each other. In column c of Figure 2, values 3 and

6 are duplicates, so they have to be excluded to make the

column unique. As we have to exclude all occurrences of

the duplicate values according to (NUC2), Pc consists of four

tuple identifiers. Therefore, the column c would be classified

as a NUC if nuc threshold ≥ 0.5. The choice of a minimal

set is obviously unambiguous.

Definition III.5. Nearly sorted column (NSC)
Given a column c, let � be an arbitrary order relation on

dom(c). Column c is a nearly sorted column (NSC), when

there is a set of patches Pc such that both of the following

conditions are fulfilled:

(NSC1) ∀ti, tj ∈ R\P : id(ti) < id(tj)⇒ c(ti) � c(tj)
(NSC1) |Pc|/|R| ≤ nsc threshold

As an intuition, we want values of c to be sorted according

to the given order relation � based on the order of their tuple

identifiers after we excluded tuples with tuple identifiers in

Pc. In order to fulfill the sorting constraint for column c of

Figure 2, we can exclude the two tuple identifiers shown by

Pc to get a sorted sequence, so column c could be classified as

a NSC if nsc threshold ≥ 0.25. Nevertheless, this choice is

ambiguous, as we can find another set of patches Pc = {3, 7}
with the same cardinality of two. In the discovery mechanism

of NSC presented in Section IV, we are interested in a smallest

set Pc.

IV. CONSTRAINT DISCOVERY

Based on the definitions in Section III, the problem of

deciding whether a given column c is a NUC or NSC trans-

lates to finding a set of patches Pc such that the respective

constraints are fulfilled. Within this section, we give general

approaches for both problems that can be integrated into

arbitrary automatic database administration tools.

In order to discover a NUC, we need to find all column

values that are not unique, which can be realized using a hash

table. Instead of realizing this, we can reuse existing operators

of database systems, as the described approach is equal to

a distinct aggregation. Therefore, we can simply realize the
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NUC discovery on SQL level. It is not sufficient to simply

compute a distinct query or query all values that occur more

than once, as we need all occurences of a non-unique column

value in order to meet condition (NUC2). Therefore, we join

the result of a aggregation query with the actual table on the

examined column c to get the tuple identifiers of all tuples with

non-unique values for c, which is equal to the set of patches

Pc we want to compute. We need to pay special attention

to NULL values, as they are not joined with each other but

should be assigned to the set of patches. Therefore, the join

operation is realized using an outer join with a subsequent

selection, resulting in the following query:

select tab.tid from tab
left outer join

(select c from tab
group by c
having count(∗) > 1)
as temp

on tab.c = temp.c
where temp.c is not null
or tab.c is null

By checking for non-null values in temp we ensure that

we only select values with matching join partners. Based on

the result of the query, the classification of a column c as a

NUC can be made based on the third condition |Pc|/|R| ≤
nuc threshold .

In order to discover a NSC, we utilize the longest sorted

subsequence algorithm [14], for which we need the full data

of a given column c as a prerequisite. The algorithm then

maintains arrays to keep the length and the predecessor of

the last element in the longest sorted subsequence of data

[1, . . . , k] at position k. For each of the n elements in the

array, the algorithm performs a binary search on the already

computed results, resulting in an overall worst case runtime

of O(n · log(n)). In order to compute Pc, the resulting list

of indexes that are included in the longest sorted subsequence

is inverted (with respect to the examined relation R). This

way we ensure that R \ Pc is sorted on column c and as

we computed the longest sorted subsequence, we also ensure

that the cardinality of Pc is minimal. NULL values are also

assigned to Pc in order to ensure correctness of sorting queries.

The classification of a column c as a NSC can then be based

on the second condition |Pc|/|R| ≤ nsc threshold .

V. INDEX DESIGN

The PatchIndex data structure is intended to maintain the

set of patches Pc for the column c it is defined on. For

this, we implemented two basic approaches, which are the

identifier-based approach and the bitmap-based approach. For

the identifier-based approach, we store the 64 Bit tuple iden-

tifiers of all tuples in Pc in an array, which is similar to a

sparse approach. As a result, the memory consumption of

this approach is proportional to the cardinality of Pc. On the

contrary, the bitmap-based approach is similar to a dense way

of storing data. With n being the number of tuples in c (or the

respective relation R), the PatchIndex holds a bitmap of size

n for the column c, which is in particular independent of the

cardinality of Pc. The element at position i within this bitmap

indicates whether tuple i belongs to Pc or not.

Similar to the decision between a sparse and a dense way of

storing, deciding between the identifier-based and the bitmap-

based approach is based on the cardinality of Pc. As we

require 1 Bit per element for the bitmap-based approach and

64 Bit per element for the identifier-based approach, we can

expect that the identifier-based approach has a lower memory

consumption for all cases where |Pc|/|R| ≤ 1/64 = 1.56%.

In order to fill the PatchIndex structure, we invoke an “Ap-

pendToIndex” query as a post-query whenever a PatchIndex

is created. The actual computation of Pc varies between the

two types of constraints NUC or NSC and is related to the

discovery methods described in Section IV. For a NUC on

the one hand, the described discovery query is evaluated and

the result is passed to the append operator, which simply

stores the tuple identifiers or sets the corresponding bit in the

PatchIndex. In order to create an index on a NSC on the other

hand, a scan of the whole indexed column c is passed to the

append operator. The index itself stores the values of c in

a temporary array and starts the computation of the longest

sorted subsequence once it has the full data set. Based on this

sorted subsequence, Pc is computed and stored in the index,

before the temporary data array is dropped.

The PatchIndex is currently designed as an in-memory data

structure. The index creation is logged to a write-ahead log

(WAL), so the index can be reconstructed when performing

the log replay in case of a system restart or failure. The

determined patches are not written to the WAL in order to

keep it slim, so the index is reconstructed from the data

using the same mechanisms as for index creation. There are

several alternatives to the in-memory approach that should

be evaluated in the future. First, the index data could be

materialized to disk, which has the advantages of durability,

easy recovery and reducing the main memory consumption, as

not all PatchIndexes have to be held in-memory at the same

time. On the contrary, reading the relevant PatchIndex data

from disk during query execution might decrease query perfor-

mance, harming the desired benefit from the PatchIndex usage.

Second, the PatchIndex information could be materialized as a

bitmap column to the table. This way, reading the information

could be done using ordinary table scan operators.

VI. INTEGRATION INTO DBMS

A. Index Scan

1) Design: In order to benefit from PatchIndexes in query

execution, we first have to efficiently apply the patch in-

formation to the dataflow of a query execution tree (QET).

Therefore, we introduce the PatchedScan. Scan operators

typically support the definition of scan ranges to prune data

and reduce I/O effort. These scan ranges are typically de-

termined by evaluating selection predicates and using small

materialized aggregates [15] that are guaranteed to be filtered

out during query optimization. As tuples that harm constraints
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and are therefore classified as patches might be scattered

across the data, translating PatchIndex information into scan

ranges would result in numerous fine-grained ranges and non-

negligible overhead.

Therefore we decided to realize the PatchedScan by com-

bining an ordinary table scan with a specialized PatchSelect

operator placed directly on top of the scan. In order to apply

the information of the PatchIndex, we introduce selection

modes use patches and exclude patches for these PatchSelect

operators. As the PatchIndex works on tuple identifiers, we

try to avoid scanning the tuple identifier column by assuming

that rowIDs of incoming tuples are equal to tuple identifiers.

This is ensured by placing the selection operators directly on

top of scan operators, as intermediate operators could harm

this assumption by filtering tuples. As a result, the output

dataflow of the scan operator is logically splitted by the

PatchSelect operators like shown in Figure 3, resulting in a

dataflow containing the tuples of the set of patches Pc and a

dataflow containing all tuples except the patches. An advantage

of this approach is that the physical way tuples of a table

are stored is not changed by creating a PatchIndex on that

table. As a consequence, it becomes possible to create multiple

PatchIndexes on a single table, which significantly differs from

the typical limitation of one sort key per table.

Once during the query build phase, selection operators with

modes use patches and exclude patches query the PatchIndex

in order to receive a pointer to the patch array or to the bitmap

holding the patch information. The pointer as well as other

metadata like processed tuples are stored in a state variable of

the operator. During query execution, both modes pass the

incoming dataflow to the next operator while applying the

patch information on-the-fly using a merge strategy for the

identifier-based approach. Therefore we use the elements of

the set of patches Pc in a sorted way (Note that the both

discovery methods automatically produce the order. Otherwise

the elements would need to be sorted during index creation).

The basic concept of the merge strategy for exclude patches
is shown in Algorithm 1 and is based on maintaining a patch

pointer to the next element in the patch array and increasing

the pointer once the element is applied. For exclude patches,

applying patch information means skipping a matching tuple

and is realized in lines 11 to 16. If the condition in line 11

is not fulfilled, the commented condition in line 14 is ensured

as the set of patches Pc is sorted and as the patch pointer

is increased by one for each match. The mode use patches
only passes elements that match elements of the patch array.

For this, the conditions in lines 11 and 14 of Algorithm

1 are exchanged and the patch pointer is increased before

returning the tuple, also making the else branch obsolete.

Additionally, we return NULL in the case that all patches are

already processed in line 7. For the bitmap-based approach,

both selection modes are simply realized using a lookup

operation on the bitmap holding the patch information. If

a bit in the bitmap is set, the respective tuple passes the

use patches mode, while passing the exclude patches mode

if the respective bit is not set.

Algorithm 1 Identifier-based ExcludePatches.Next

Input: SelectionState state

1: while TRUE do
2: tuple ← scan.next()

3: if tuple == NULL then
4: return NULL

5: end if
6: if state.patch pointer ≥ state.num patches then
7: return tuple

8: end if
9: next patch id ← state.patches[state.patch pointer]

10: state.processed tuples++

11: if state.processed tuples < next patch id then
12: return tuple

13: else
14: // state.processed tuples == next patch id

15: state.patch pointer++

16: end if
17: end while

2) Partition support: PatchIndexes also support several

common techniques of analytical database systems. First, they

support partitioning by creating a PatchIndex for each partition

separately. This way, partitioning is transparent to the actual

index implementation. During query execution, subqueries are

executed on partitions as far as possible and we do not harm

this ability by placing the specific selection operators directly

on top of the scan operators. For NSC, the sorted subsequences

are computed for each partition locally, so it is ensured that

sorts and MergeJoins can also be evaluated locally (assuming

the partitioning attribute of the joined tables match the join

attribute). For NUC, the discovery query computes a global

grouping in the subquery. As we afterwards join with the

partitioned table again, each partition’s PatchIndex receives

all tuple identifiers for its responsible partition to append.

3) Scan range support: Second, scan ranges are supported

by the PatchScan. While building the QET, exclude patches
and use patches selection operators fetch the scan ranges from

the scan operators below. During query execution, they merge

the scan ranges on-the-fly with the patches by adjusting the

patch pointer in order to skip patches outside the ranges or

computing an offset within the bitmap. Applying scan ranges

to scan operators decreases the number of scanned tuples.

As we computed the set of patches Pc on the full set of

values for the indexed column c, the selected patches are not

accurate anymore. For the case of NSC, pruning tuples from

the table may result in the sorted subsequence not being the

longest sorted subsequence anymore. Nevertheless, pruning

tuples from a sorted subsequence keeps the sequence sorted.

For NUC, values that were unique within the full table stay

unique for the pruned table as well. As a consequence, merging

scan ranges with patches does not harm the correctness of the

query result.
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B. Query Optimization
We integrated PatchIndexes into query plan rewriting for

three different use cases: distinct, sort and join operators.
1) Distinct operator: A use case for NUC is the distinct

operator, which is typically realized using a very expensive

hash-based aggregation. For this case, we can benefit from

the information that the major part of the values of the

aggregation column is already unique when a PatchIndex is

defined on it. The left part of Figure 3 shows the query plan

rewriting for this use case with the highlighted operators being

introduced to benefit from the PatchIndex. Starting from a

distinct query (shown in black color) consisting of a table scan,

followed by an arbitrary subtree X (may consist of selections

and non-arithmetic projections) and a distinct aggregation on

top, we copy the subtree below the aggregation and insert

select operators above the scans of each subtree copy. The

select operator with mode exclude patches makes the distinct

aggregation unnecessary, as the PatchIndex ensures that values

are already unique when excluding the patches. In the second

subtree, the select operator with mode use patches only passes

the elements of the PatchIndex. We have to apply the distinct

operator on these patches, as they are not unique by design

of the PatchIndex. As a result, the effort for the expensive

aggregation can be avoided for the major part of the tuples.

Both dataflows are then combined using a union operator. This

use case is currently limited to the lowest aggregation in the

query plan, so X is not allowed to contain furter aggregations

or join operations.
2) Sort Operator: For NSC, the provided information about

a sorted subsequence can be exploited in queries that perform

a sort operator on a column c a PatchIndex is defined on.

Similar to the rewriting of distinct queries in the left part of

Figure 3 (exchanging the aggregation operator with the sort

operator), the sort operation only needs to be performed on

the set of patches. This significantly reduces the runtime of

the sort operator. The dataflow in the right subtree is already

sorted on the indexed column c after the patches are excluded

by the select operator with mode exclude patches, due to

the definition of a NSC. In order to combine both sorted

datastreams, the union operator needs to be replaced by a

MergeUnion operator to produce a sorted dataflow.
3) Join Operator: The second use case for a NSC is the join

operator with the join attribute being the attribute a PatchIndex

is built on. Here we can exploit the information that the major

part of the table is sorted by using a MergeJoin operator

instead of the more expensive HashJoin operator for the sorted

subsequence. The right part of Figure 3 shows the rewritten

query plan for a join operation between an arbitrary subtree

X (needs to be sorted in the join attribute) and a table T

with an arbitrary subtree Y above (shown in black color) with

operators introduced by this optimization highlighted in blue

color. It is currently not allowed that Y contains any joins,

so we apply this optimization only on the lowest join. In this

case, we can replicate the join subtree and insert the specific

select operators above the scans. For the tree that uses the

select operator with mode exclude patches, we can exchange

the HashJoin with a MergeJoin, as the PatchIndex ensures that

the dataflow is sorted when excluding the patches. This way,

we can benefit from the faster MergeJoin for the major part of

the data. As we know the cardinality of Pc and can estimate

the input cardinality for the HashJoin, we can choose the join

side with the lower cardinality as the side to build the hash

table on as a further improvement.

Fig. 3. Distinct query (left) and join query (right) using patches (X, Y are
arbitrary subtrees without any join operations)

VII. EVALUATION

For our evaluation, we integrated the concept of PatchIn-

dexes into Actian Vector 6.0. The system runs on a machine

consisting of two Intel(R) Xeon(R) CPU E5-2680 v3 with

2.50GHz, offering 12 physical cores each, 256 GB DDR4

RAM and 12 TB SSD. As an example workload, we use

the TPC-DS [16] benchmark, which is a synthetical deci-

sion support benchmark representing a retail database in a

snowflake schema. We generated data using the benchmark

for scale factor 1000 GB and evaluated two typical use cases

for PatchIndexes in this schema. Additionally, we designed a

custom data generator for a more fine-grained evaluation of

different exception rates in the second experiment. All tables

are distributed into 24 partitions.

A. TPC-DS

1) Nearly sorted column: A common use case for NSC

is a fact table that is (nearly) sorted on a dimensioning

attribute. This especially holds for time-based data, where

several columns can be nearly co-sorted according to insertion

order of tuples (e.g. order numbers or similar, ship dates

co-sorted to order dates). Additionally, dimension tables are

typically sorted on their primary key, which is the join key

when joining with fact tables. An example in TPC-DS is the

catalog sales.sold date join with the date dimension. Here we

have to exclude 0.5% of the 1.4B tuples to get the sold date

column sorted. This way, we can reduce the total runtime for

scanning both relations and joining them from 1.4 seconds to

0.7 seconds.

2) Nearly unique column: For evaluating NUC, we chose

columns from the customer table (12M tuples) with different

exception rates. Table I shows the measured results in terms

of runtime for a count distinct query. While the performance

gain is significant for a small amount of exceptions, we can

also observe a slight increase in performance even for a very

large amount of exceptions.

144



0 20 40 60 80 100
0

0.5

1

Exception rate in %

R
u

n
ti

m
e

in
se

co
n

d
s

w/o PI w/ PI bitmap w/ PI identifier

Fig. 4. Runtime for count distinct query with varying exception rate

Column Exceptions w/o PI w/ PI
c email address 3.6% 0.37 s 0.10 s
c current addr sk 86.5% 0.19 s 0.15 s

TABLE I
PERFORMANCE OF NUC PATCHINDEX

B. Varying exception rates

1) Query performance: Using a custom data generator, we

generated a dataset of 100M tuples and varied the exceptions

for uniqueness and sorting constraints. The exceptions were

placed in random locations within the table. After generation,

we ran a count distinct query or a sort query respectively on

a column with and without a PatchIndex.

For uniqueness, the exceptions were evenly distributed into

100K different values. The results shown in Figure 4 show a

significant increase in performance when using the PatchIndex

for all exception rates, while both implementation alternatives

perform similarly. The runtime when using a PatchIndex

slightly increases when increasing the exception rate, which

is caused by the increasing number of tuples that have to be

evaluated in the distinct aggregation. On the other hand, query

runtime when not using a PatchIndex decreases with higher

exception rates. Increasing the number of exceptions decreases

the number of distinct values, as all exceptions form a fixed

number of 100K groups, and therefore also decreases the

number of aggregation groups. As a consequence, the distinct

aggregation becomes faster the more exceptions to uniqueness

the dataset has. Nevertheless, queries using a PatchIndex was

faster for all exception rates, as excluding unique values

from the actual distinct aggregation significantly decreases the

number of aggregation groups to 100K for all exception rates.

For the sorting constraint, we focused on discovering as-

cending orders. The exceptions in the dataset were generated

randomly, so the exception rate varied about ± 0.1% after

discovering the longest subsequence. As the dataset was

pre-generated, this variation impacts all measurements for a

single exception rate in the same way. The results shown in

Figure 5 again show a significant performance gain when using

PatchIndexes with both design approaches behaving similarly.

Without using a PatchIndex, runtime increases with increasing

exception rate. This is caused by the pivoting strategy of the

internal QuickSort implementation, behaving better the more
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Fig. 5. Runtime for sort query with varying exception rate

sorted the data values already are. When using the PatchIndex,

runtime increases with increasing exception rates in a linear

way. It shows a higher growth compared to the uniqueness

case in Figure 4, caused by the sorting operator not scaling

linearly. This way, the actual performance gain shrinks with

increasing exception rates, but using a PatchIndex for this use

case never leads to worse performance compared to the basic

case.

2) PatchIndex creation runtime: Figure 6 shows the run-

time for the PatchIndex creation for NUC and NSC vary-

ing the exception rate. First, it can be observed that both

design approaches behave similarly, as the creation process

is dominated by the computation of the exception and the

actual insertion of exceptions differs only in a negligible way

(inserting an identifier to a list or setting a bit in the bitmap).

For NSC, the observed runtimes are a result of the addition of

three basic steps: the longest sorted subsequence algorithm, the

construction of the exceptions and their insertion. While with

increasing exception rates the effort for insertion increases

linearly and the effort for construction decreases linearly, the

longest sorted subsequence algorithm shows a non-linear be-

haviour, resulting in the shown runtimes. For NUC, increasing

the number of exceptions significantly decreases the number

of aggregation groups and accelerates the aggregation as a

consequence, like described in Section VII-B1,. As this ag-

gregation dominates the creation process, the overall creation

runtime decreases with increasing exception rates. Overall we

can state that the PatchIndex creation time is slightly higher

than the performance gain it generates in a single usage, so

creating a PatchIndex is valuable for use cases that query the

indexed column multiple times during the database lifetime,

which is the common case.

3) PatchIndex memory consumption: In terms of memory

consumption of the PatchIndex data structure, our experiments

confirm the expectations we discussed in Section V. For the

bitmap-based approach, we measured a constant memory con-

sumption of 12.5 MB for the 100M tuples, while we measured

a memory consumption of 7.9 MB per 1% exceptions for the

identifier-based approach. As a consequence, the bitmap-based

approach should be chosen for use-cases with more than 1.6%

exceptions.
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C. Resume

The evaluation showed the existence of approximate con-

straints in different use cases and proved the expected per-

formance benefit of PatchIndexes for these use cases. The

more fine-grained experiments using a custom data generator

with varying exception rates show a performance benefit of

both NUC and NSC even for very high exception rates.

While the bitmap-based approach and the identifier-based

approach of realizing the PatchIndex showed nearly similar

performance, the bitmap-based approach showed the expected

lower memory consumption and is therefore the clearly better

choice.

VIII. CONCLUSION

In this paper, we motivated the need to handle approximate

constraints in self-managing databases. We introduced the

concept of PatchIndexes for “nearly unique columns” and

“nearly sorted columns”, handling exceptions to constraints

in a common data structure. We provided discovery methods

for the discussed constraints that can be easily integrated into

existing self-managing databases or auto-administration tools.

After discussing different design approaches for the index

structure, we presented the index scan mechanism and the

integration into sort, join and distinct queries. The evaluation

showed use cases for approximate constraints in benchmark

representing a retail database and proved the performance

benefit when using PatchIndexes.

As the idea of PatchIndexes is able to improve query perfor-

mance, we plan to further enhance the concept. The feature

of maintaining exceptions of constraints offer opportunities

for lightweight support for table inserts, deletes and updates.

We especially aim at enabling update operations to global

constraints (like the uniqueness constraint) while avoiding a

full table scan. Additionally, the alternatives to the in-memory

design described in Section V should be evaluated. Using

PatchIndexes comes along with overhead in query execution,

mainly caused by additional operators in the query plan and

by copying subtrees of query execution graphs. Therefore,

we plan to create a cost model covering additional costs of

the PatchIndex usage and integrate it into query optimization.

Based on this, reasonable values for both nuc threshold and

nsc threshold should be defined. Furthermore, we plan to

investigate on opportunities the PatchIndex offers for data

compression, potentially increasing compression ratios when

treating discovered set of patches separately and this way

basing compression algorithms on discovered properties of

data.
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