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Abstract—Knowledge graph completion technology is
important for the integrity of knowledge graph. However, the
feature mining of knowledge graph is not sufficient due to the
lack of hierarchical and neighborhood information. To solve
such issues, this paper proposes a knowledge graph
completion method based on the Hyperbolic Graph
Contrastive ATtention network(HyGCAT). HyGCAT
embedded the knowledge graph into the hyperbolic space with
constant negative curvature to capture the complex
hierarchical relations between entities with less memory.
Meanwhile, HyGCAT uses the attention mechanism to learn
the latent representations of neighborhood entities.
Furthermore, HyGCAT strengthens the correlation between
representations of entities and neighbor subgraphs through
contrastive learning. The proposed method can improve the
performance of link prediction for knowledge graphs
completion significantly.
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I. INTRODUCTION
Knowledge graph is a semantic network that reveals the

relationships between entities in the world. The structured
knowledge in a knowledge graph is usually organized into
triples (�ℎ, �, ��) , which are head entities, relations and tail
entities. In recent years, knowledge graphs has been widely
used in the field of industrial artificial intelligence. However,
with the continuous growth of industrial knowledge, most of
the knowledge stored by knowledge graphs is sparse and
incomplete. In order to complete the knowledge system,
finding all true triples manually will be costly. As a result,
how to complete the knowledge automatically in the
evolving knowledge graphs becomes an important challenge.

Generally, knowledge graph completion uses an encoder-
decoder framework as Figure 1 shows. The encoders based
on GCN[1](graph convolutional neural network) generate
representations of entities and relations in the knowledge
graph to predict the adjacency tensor. When recovering the
graph structure, the decoder based on KGE(knowledge graph
embedding) can predict the missing links in the original

graph to complete the knowledge graph. KGE is the common
method for decoding due to its simplicity and effectiveness.
KGE embeds entities and relations into knowledge graphs as
low-dimensional representations. It defines a score function
on the embedding space to measure the rationality of triples.
Generally , triples with a higher score will be regarded as
more credible.

Although knowledge graph completion is becoming more
and more important, the existing methods have some
problems. Knowledge networks in the real world are often
characterized by multi-hierarchical structures, especially in
large-scale knowledge graph. Existing knowledge graph
completion methods embed independent triples into a
continuous low-dimensional vector space in Euclidean space.
The entities and relations are inferred by the vectors in
Euclidean space. The missing elements in knowledge triples
are predicted by neural network model. Nevertheless, the
hierarchical relations between entities in this space are
missing. The hierarchical relation is important to large-scale
knowledge mapping for storing high-level represents.

Hyperbolic space is a embedding space with negative
constant curvature. The curvature at any position in this
space is a negative constant. Compared with the graph in
Euclidean space, the graph in hyperbolic space has unique
expressive representation. As shown in Figure 2, the
knowledge graph can expand exponentially in hyperbolic
space and polynomially in Euclidean space. It can better
capture the hierarchical structure of graph data because of its
distribution pattern. Meanwhile, considering a large-scale
knowledge graph, the hyperbolic graph can save redundant
embedding space.

Moreover, most existing knowledge graph completion
methods treat triples independently as simple link prediction
problems. It will lose the information from neighborhoods of
entities that is likely to ignore the latent feature contained in

Fig. 1. Encode-decoder framework for knowledge graph completion
Fig. 2. Knowledge distribution in Euclidean space (left) and
hyperbolic space (right)



neighbor entities.

All neighbors share the same weight during
neighborhood aggregation in GCN. In order to improve the
feature learning from neighbors, we use GAT (Graph
Attention Network) [2] to model the neighborhood structure
of each central entity through the attention mechanism. The
weights of neighbor entities will depend on the importance of
the node feature. Therefore, attention networks can
comprehensively capture the neighborhood features of each
central entity.

Meanwhile, contrastive learning has been widely used in
graph representation learning recently. The positive sample
and the negative sample will be obtained by data
augmentation. Contrastive learning mainly aims to capture
the statistical relevance of positive and negative samples by
training encoders. We change the the neighbor structure of
the central entity by node dropping and edge perturbation to
generate negative samples. Contrasting these samples can
enhance the strong relevance to important information from
neighbor domain.

This paper proposes a knowledge graph completion
method based on the hyperbolic graph contrastive attention
network(HyGCAT). It consolidates the hierarchical
modeling capability of hyperbolic geometry and the structure
learning capability of graph contrastive attention network to
learn embedded representation on knowledge graphs. At the
encoder stage of knowledge graph completion, this paper
uses graph attention mechanism to capture the relationship
between neighbors and the central entity. The entities and
neighbors feature from graph neural network in Euclidean
space will be embedded in hyperbolic space. In addition, the
contrastive module will further strengthen the links between
entities and their neighbors. At last, the KGE method will
recover the graph by these representations to complete the
knowledge graph.

II. HYPERBOLIC REPRESENTATION LEARNING AND GRAPH
CONTRASTIVE LEARNING - A PRELIMINARYWORK
Hyperbolic space is one of the most potential space

researches recently. The curvature of hyperbolic space is a
negative constant and it is zero in Euclidean space. Previous
studies have shown that hyperbolic space is better than
Euclidean space when modeling knowledge graph data of
tree hierarchy with multi-relations. In recent years, many
studies have attempted to embed a variety of hierarchical

data into hyperbolic space including graph representation
learning and recommendation systems. Chami et al.[3]
aggregates the expressive ability of GCN and hyperbolic
geometry to learn the representation of nodes in scale-free or
hierarchical graphs. This paper shows that the GCN in
hyperbolic space can learn hierarchical structures and
performs well even when the dimensions are low. The MuRP
model from Balazevic et al.[4] embeds hierarchical multi-
relation data into the Poincare sphere of hyperbolic geometry.
Multi-relation knowledge graph data is embedded into the
hyperbolic space for link prediction. Hyperbolic is also
widely used in NLP due to its special embedding. Sun et
al.[5] proposes a hyperbolic relational graph neural network
for KG embedding. The hyperbolic transformation is used to
capture knowledge associations with the hierarchical
relationship.

Graph contrastive learning is the state-of-the-art method
in unsupervised graph representation learning recently. The
graph contrastive learning method DGI proposed by Petar et
al[6]. It maximizes the information between local structure
and global context to find the satisfying results. The
graphical mutual information proposed by Peng[7] et al. can
maximize the mutual information between the original
features of an entity and its 1-hop neighbors. It obtain the
optimal results in inductive node classification and link
prediction tasks. GraphCL[8] maximizes the consistency
between two augmented views of the same graph through the
contrast loss in the latent space. However, there has been
little research on the contrastive learning in knowledge graph
completion nowadays.

III. METHOD OVERVIEW

In this section, the framework of HyGCAT will be
introduced. The overview of HyGCAT is shown in Figure 3.

Firstly, the input of the framework is the knowledge
graph in the Euclidean space. The entities and relations are
embedded into hyperbolic space to obtain hyperbolic
embedded vectors. In various hyperbolic spaces, the
Poincare sphere model is most suitable for representation
learning because it can be adjusted using gradient
optimization. Points in Euclidean tangent space are mapped
to hyperbolic space according to the exponential mapping in
Poincare sphere model.

Random walk is often used in entities sampling. In order
to better extract the hierarchical relationship in the

Fig. 3. The overview of Hyperbolic Graph Contrastive ATtention network(HyGCAT)



subsequent hyperbolic space, the Diffusion Sampler is
adopted as the entities sequence sampling method. The
diffusion process on the graph can be used to create the
vertex sequence with the hierarchical information and tree
topology of the input graph.

After completing entities sampling, the coding layer uses
GAT network as graph neural network for training. We can
transform the sampled entities and subgraphs into vector
representations in hyperbolic space. GAT treats different
neighbor nodes differently by measuring the correlation
between the central entities and its neighbor nodes. It applies
the importance as a weight to aggregate the central entities
and neighbor structure information. As a result, it can
describe the central node more accurately and improve the
expression ability of the representation model. In this stage,
HyGCAT uses two attention layers for relations attention and
entities attention. These layers are respectively used to
generate the embedded vector and the attention of neighbor
triples for the fusion of neighborhood information. In
addition, HyGCAT uses the pooling algorithm to aggregate
the neighbor vectors which can generate the vector
representation of the neighbor subgraph.

In the phase of graph contrastive learning, HyGCAT uses
node dropping and edge perturbation for data augmentation
using the vectors in hyperbolic space. Then we can generate
the negative representation samples of entities and neighbor
subgraphs corresponding to real entities and subgraphs. By
comparing the positive relationships with the negative
relationships, the contrastive loss can be adjusted under
different combinations. The contrastive learning stage can
strengthen the association between the central entity and the
positive neighbor subgraph while the association between the
central entity and the negative samples is weakened.

Finally, knowledge triples are predicted in the decoder
stage. Various of existing knowledge graph embedding
models can be used as the decoder. The decoder uses the
generated representations to predict the adjacency vectors.
Since there is a bijection between the adjacency vector and
the graph structure, the prediction can be regarded as a
recovery of the original knowledge graph structure. When
recovering the knowledge graph structure, the decoder can
predict the missing links in the original graph which can
complete the knowledge graph. MuRP can embed multiple
graph data with the Poincare sphere model in hyperbolic
space. In the previous stage the operation was in hyperbolic
space similarly that MuRP model will be used as decoder in
HyGCAT. MuRP transforms the entity embedding by
learning relation specific parameters through Mobius matrix-

vector multiplication and Mobius addition. The prediction
results are scored by the score function in MuRP. The loss of
triplet prediction is obtained in the training stage while the
predicted score of each triplet is obtained in the test stage.
Then the decoder can recover the graph though predictions to
complete the knowledge graph.

IV. CONCLUSION
In general, this paper proposes a knowledge graph

completion method named HyGCAT. The main
contributions of this paper are summarized as follows:

1) Different from the previous link prediction methods
based on Euclidean space, HyGCAT embedded the
knowledge graph into hyperbolic space at the start of
knowledge graph completion. It solved the problems
including the lack of hierarchical information and large space
usage of complex knowledge graphs by using the
characteristics of hyperbolic space graphs such as
hierarchical representation and exponential diffusion.

2) Considering the weak knowledge mining ability of
neighbor subgraph in knowledge graph completion, this
paper strengthens the correlation between the representation
of the central entity and the neighbor subgraph through
contrastive learning. We improve the mining effect of
important information from neighbor entities through
attention mechanism which can improve the overall learning
effect for edge knowledge.
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