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Abstract—Autonomous cognitive ground penetrating radar
(ACGPR), carried by drones or other robotic platforms, may
perform robust and accurate subsurface object detection and
recognition in varying environments based on real-time data pro-
cessing and decision making. However, limited system computing
resources and intelligence generating capability pose significant
challenges for the operations of such systems. To address these
challenges, in this paper we propose an ACGPR enabled by edge
computing (EC) and reinforcement learning. Specifically, an edge
computing based system architecture is presented to utilize edge
resources for real-time intelligence generation. A reinforcement
learning approach is developed as the decision-making model
for the ACGPR to adaptively adjust its operational parameters.
Simulation results show the accuracy and efficacy of the proposed
ACGPR system. The framework also provides insight into the
design of autonomous cognitive industrial Internet of things (IoT)
supported by edge computing and machine learning.

Index Terms—Autonomous cognitive GPR, reinforcement
learning, edge computing, signal processing

I. INTRODUCTION

Ground penetrating radars (GPRs) have been extensively
used in many industrial applications, such as coal mining,
structural health monitoring, subsurface utilities detection and
localization, and autonomous driving [1], [2]. A GPR system
transmits an electromagnetic wave into the ground at several
spatial positions and receives the reflected signal to form
GPR data, called A-scans, B-scans and C-scans with different
number of dimensions [1], [3]. Through processing these
types of GPR data, subsurface objects can be detected and
recognized.

Although GPRs are effective in many applications, most of
existing GPR systems are human-operated due to the need of
experience in operation configurations based on the interpre-
tation of collected GPR data. GPR-based subsurface survey
is complicated as various sensing environment and subsurface
objects have dissimilar features. In actual GPR survey, GPR
sensing quality could be affected by many factors, including
environmental factors, such as soil dielectric properties, envi-
ronment noise, clutter, multipath effects, combined near and
far field effects, and GPR operational system parameters, such
as wavelength (or frequency), waveform, polarization, wave
timing, and transmitter and receiving antennas direct coupling,
etc. In addition, the subsurface objects have different structural
features and electromagnetic (EM) properties that affect GPR

Fig. 1. A drone-borne GPR transmits radio signals into the ground and
receives the signals reflected by a underground object.

EM wave propagation differently. Hence processing GPR data
and extracting information of interest are challenging and
involve a series of sophisticated steps. In nearly all existing
GPR systems, GPR data processing is performed off-line
where the data are collected and stored on field, and then
post-processed on a computer after the scanning. Such a
processing approach is time-consuming and lacks adaptivity.
Also, some applications involve sensing tasks within haz-
ardous and inaccessible environments. To achieve optimal
sensing performance, it is desired to design an autonomous
cognitive GPR (ACGPR) system that can operate adaptively
under varying sensing conditions. Specifically, the system is
able to adaptively move with a robotic platform and adjust its
operational parameters through real-time interaction with the
sensing environment.

There has been some work done on the study and de-
velopment of autonomous GPRs [4]–[6]. Cornick et al. [4]
describe a localizing GPR system fused with GPS, LiDAR
and camera hooked at the bottom of an autonomous vehicle
for autonomous ground vehicle localization. The system al-
lows real-time creation of single-track maps with online data
processing, as well as real-time localization of the vehicle to a
prior map. In [5] the authors developed an autonomous robotic
system employing GPR probing of glacier surfaces for void
detection in ice. Supervised machine learning with pre-trained
models was applied to automatically classify data into crevasse
and crevasse-free classes. Foessel et al. [6] described a sled-
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mounted GPR integrated with position and latitude instrument
for autonomous search for antarctic meteorites. Although the
aforementioned systems have used robotic systems to move
GPR scanners, GPR moving and operational parameters were
not adaptively adjusted on the fly.

The concept of cognitive radar was first proposed in [7]
where recursive cognitive cycles are performed through a
feedback mechanism to dynamically tune radar operational
parameters and continuously improve sensing performance.
The cognition is based on real-time GPR data processing,
which requires significant computing and storage capability
of the system. However, typical ACGPR systems, such as
drone-borne GPR, as shown in Fig. 1, have limited computing,
storage, and power resources.

Edge computing (EC) provides promising support for the
implementation and operation of ACGPRs. Edge computing
aims at pushing the computation, communication, and storage
resources from the remote data center to the edge of network
[8]–[10]. The name “edge” typically signifies the point at
which traffic enters or exits the network, for example, data
gateways to collect data from sensors or user devices. EC
is expected to reduce the computing latency and the burden
of backbone, and enable analytics and intelligence generation
to occur at the source of the data. In an edge-computing-
enabled ACGPR system, the proximity of edge servers to
the ACGPR sensor may satisfy requirement for real-time
or low-latency transmission of data and control feedback.
Also, for the purpose of resource conservation, the ACGPR
sensor may offload some of the computation tasks to an edge
server. In contrast, traditional remote cloud computing services
are not suitable for ACGPR due to the intermittent network
connectivity and long communication latency. There has been
some work done on the research of edge computing for the
support of real-time and/or autonomous systems [11], [12].

Although edge computing makes it very promising to
develop an ACGPR , there are still several significant re-
search challenges that need to be addressed. One of the
major challenges is the online intelligence generation in the
context of edge computing to enable a resource-constrained
GPR to autonomously and adaptively perform sensing tasks
in unknown environment. Existing robotic or drone-borne
GPRs are human-controlled with prior knowledge of the
environment [13]. In reality, however, these human-controlled
systems lack flexibility, scalability, and efficiency. Also, the
knowledge regarding the environment is normally limited or
unavailable. Therefore, a methodology allowing GPR to learn
to make decisions on missions through exploring unknown
environment is needed.

As a computational methodology for automatic decision-
making of intelligent agents in uncertain environments, rein-
forcement learning (RL) has progressed tremendously in the
past decade [14]. RL is mainly concerned with how RL agents
ought to take actions in an environment so as to maximize
some notion of cumulative reward. The full potential of RL
requires an agent to directly interact with the environment to
attain a flow of real-world experience. RL methods have been

(a) Traditional GPR

(b) Cognitive GPR

Fig. 2. The operational flows of a traditional GPR (a) and a cognitive GPR
(b).

successfully applied on the operation of autonomous systems
[15], [16].

This paper is focused on the development of an edge
computing and reinforcement learning framework that enables
autonomous cognitive GPR (ACGPR). First, an edge com-
puting architecture for ACGPR is developed. Functions of
different modules of the architecture are explained. Second, a
Q-learning approach with proper reward function is developed
to learn a policy that directs the ACGPR’s actions in an
unknown environment. To the best of our knowledge, this is
the first work based on edge computing and reinforcement
learning for the development of ACGPR.

II. SYSTEM ARCHITECTURE

The tuning of operational system parameters of a ACGPR,
such as wavelength (or frequency), waveform, polarization and
wave timing, can lead to considerable improvement in the
quality and scope of gathered information. Fig. 2(a) shows
the conventional mode of ACGPR operation where an expert
sets the operational parameters into an optimal configuration
based on prior experience with similar past situations. This is
an iterative time-consuming process. The conventional mode
is not suitable for continuous long-time operations, especially
in a complex environment inaccessible to humans.
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Fig. 3. The architecture of the proposed edge computing (EC)-enabled autonomous cognitive GPR (ACGPR).

The concept of cognitive GPR was proposed in [7] where
intelligence is generated on the fly to adaptively adjust the
operational parameters based on data analysis and feedback
control. As shown in Fig. 2(b), a cognitive GPR consists of
an adaptive GPR transceiver, a perceptor module, a memory
module, and a cognitive analyzer. The operation of the cog-
nitive GPR follows a perception-action cycle: first, the GPR
transceiver collects the reflected wave data about subsurface
objects and sends them to the preceptor. Then, the preceptor
processes and analyzes the data to extract signature patterns
and format a perception of subsurface conditions. The memory
module has a geographic information system (GIS) database
containing attributes about environment conditions and spatial
locations. The cognitive analyzer carries out computational
learning based on both the processing results from the percep-
tor and the prior knowledge about the environment from the
memory module to produce intelligent response for the control
of radar transceiver reconfigurations. During this process,
collected GPR data can also be integrated with other data
acquired by IoT devices such as positioning sensors and soil
moisture sensors. Once receiving the intelligent feedback from
the cognitive analyzer, the adaptive GPR transceiver adjusts its
operational parameters.

Although the concept of cogitive GPR is promising for
detection and recognition of subsurface objects, it is chal-
lenging to develop an ACGPR with resource-limited mobile
robotic platforms, such as unmanned aerial vehicles (UAV) and
unmanned ground vehicles (UGV). Both the perceptor module
and the cognitive analyzer need sufficient computing capacity
to perform real-time data analysis. A large memory capacity is
required to maintain and update the prior knowledge available
to the system.

In view of the advantage of edge computing that brings
computing and storage resources to edge devices, we propose
an edge computing based system architecture for ACGPR,
as shown in Fig. 3 [17]. The system mainly includes two
parts: the front end and the back end. The front end is
mobile and includes a GPR transceiver for launching and
receiving electromagnetic waves, a microcomputer for local

computation, and a wireless access point for communicating
with the edge server. The back end of the ACGPR resides at
the edge server and includes the perceptor module, the memory
module, and the cognitive analyzer.

The perception-action cycle of the edge computing enabled
ACGPR incorporates the communication between the front
end and the back end, and can be described as follows. The
GPR transceiver at the front end captures the reflected wave
data about underground objects. There are several types of
computation tasks that need to be performed over the GPR
data, such as data preprocessing, data compression, region-
of-interest identification, and object detection and recognition.
Based on the resource constraints and the delay performance
requirement, a scheduler running within the microcomputer
at the GPR front will decide whether each task should be
performed locally at the front end or offloaded to the edge
server at the back end [17]. Following the decision, the
microcomputer either executes a task locally or offloads the
task. With the related information from the GPR front end, the
cognitive analyzer at the edge server performs machine learn-
ing and generates control command for the GPR transceiver
recalibration. The control command will be wirelessly sent
back to the GPR front-end. As a result, the operational
parameters of the GPR is adjusted in a self-adaptive manner,
and will be continuously updated as the GPR scanner explores
the environment.

For a detailed discussion about the computation tasks of-
floading method, the interested readers are referred to refer-
ence [17]. This paper will focus on the implementation of the
cognitive analyzer module based on reinforcement learning.

III. THE COGNITIVE ANALYZER BASED ON Q-LEARNING

The cognitive analyzer is a critical module of the proposed
ACGPR. It produces intelligent responses to control the GPR
movement and its operational configurations based on the
collected GPR data and prior knowledge about GPR measure-
ment. This section presents a reinforcement learning approach
to the implementation of the cognitive analyzer. Specifically
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Fig. 4. An autonomous cognitive GPR, performing subsurface sensing for a
buried L-shaped pipe.

a near optimal ACGPR sensing algorithm based on ε-greedy
Q-learning is developed.

A. Modeling of Autonomous Cognitive GPR Sensing

In view of typical missions of the proposed ACGPR system
and its limited energy resource, it is considered in this work
that the goal of the proposed ACGPR is to detect a subsurface
object in some unknown environment with minimum latency
and energy consumption.

Let sk = (xk, yk, Ek) ∈ S denote the system state in each
time epoch k, where xk and yk are the horizotal coordinates
of the GPR location in a three-dimensional environment, as
shown in Fig. 4. Ek is the amount of remaining energy of the
battery powering the GPR.By observing the state sk the GPR
chooses an action ak = (nk, sk, ek, wk, pk, fk) ∈ A where
nk, sk, ek, wk denote the actions of moving north, south, east,
west, respectively, and pk and fk are the adopted transmit
power and radio frequency, respectively. Let rk specify the
immediate reward the GPR agent attains after taking action
ak at state sk and transitioning to state sk+1. Thus, rk can be
defined as a reward function: rk : SXA −→ R.

The action variables are optimized in each time epoch to
maximize the long-term accumulated reward. In addition, the
state transition and reward are stochastic and can be modelled
as a Markov decision process, where the state transition
probabilities and reward depend only on the environment
and the obtained policy. The state transition probability P =
(sk+1, rk|sk, ak) is defined as the probability of transition
from state sk to state sk+1 with the reward rk when the action
ak is taken according to the policy π. Therefore, the long-term
expected reward is given by

V (s, π) = Eπ
K∑
k=0

γkrk (1)

where γ = (0 ≤ γ ≤ 1) is the discount factor and E indicates
the statistical conditional expectation with the state transition
probability P.

B. The Reward Function

It is assumed that at the start the ACGPR has no knowledge
of the environment. Through exploration over time, the GPR
agent learns a policy that maximizes the long-term reward.

Fig. 5. 1A and 1B show the entropy values with respect to B-Scan’s scan axis
and two-way time, respectively. OTSU [18] thresholds of 0.3793 and 0.95 for
1A and 1B were used to identify points on the graph that fall below them
and forms a valley. 2A and 2B are a one to one mapping with 1A and 1B
that shows the exact region where entropy values are low. 3A indicates the
identified region-of-interest (ROI) in red boxes derived by superimposing 2A
on 2B to detect multiple hyperbola on a B-Scan.

Specifically the agent would receive a higher reward when it
detects a subsurface object using less energy in a shorter time
period. The reward function rk can be defined as

rk = a
Cmax
Ck

+ b
pmax
pk

+ c
tmax
tk

(2)

Ck = fEα(t) + gEα(s) (3)

where a, b, c, f, g are the weight coefficients of different quan-
tities; Cmax, pmax, tmax are the maximum entropy, maximum
transmit power, and the sensing deadline respectively; pk is
the GPR transmit power, tk is the actual time spent, and Ck
denotes the sum of entropy where Eα(t) and Eα(s) are Renyi
entropy that characterizes the singularity of the captured GPR
data. Higher data singularity, corresponding to lower Renyi
entropy, indicates higher chance of detecting the subsurface
object. The calculation of Eα(t) and Eα(s) will be explained
later as shown by Eq. (6) and Eq. (8), respectively.

In radargram, the region-of-interest (ROI) data have dissim-
ilar features from the background data. By performing statisti-
cal analysis to evaluate data singularity, ROI data segments can
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be identified. Then by checking corresponding coordinates,
the location and burying depth of a subsurface object can be
determined. In this study, Renyi entropy analysis [18], [19] is
implemented to search for ROI.

For GPR data processing, Renyi entropy characterization is
developed to identify the singular region. In particular, a high
Renyi entropy value indicates high degree of data similarity
while a low entropy value highlights high degree of data
singularity. Assume the received GPR reflection signal is Y (t),
it can be described as

Y (t) = D(t) + S(t) (4)

where D(t) represents the reflection signal from the object
of interest; S(t) models remaining interference and noise
upon preprocessing. In calculation, power normalization is
first performed with the summation of the power of the same
time index data points on different traces. The normalization
equation is expressed as

yi(t) =
||Yi(t)||2∑M
i=1 ||Yi(t)||2

(5)

where yi(t) is the normalized signal, i is the trace index, M
is the total number of traces included, and t is the time index
of pulse data on each reflection trace waveform. Upon power
normalization, a generalized Renyiś entropy is calculated to
assess data singularity over wave travel time along Y -axis

Eα(t) =
1

1− α
loge

M∑
i=1

yi(t)
α. (6)

where Eα(t) is the entropy quantification, and α denotes the
entropy order. Eq. (6) is equivalent to the basic Shannon
entropy when α equals 1.

Subsequently, Renyi entropy calculation is applied to scan-
ning traces along X-axis

yj(s) =
||Yj(s)||2∑T
j=1 ||Yj(s)||2

(7)

where yj(s) is the normalized signal, j is the time index of
pulse and T is the total number of time indexes; s is the trace
index of pulse data. Then the Renyi entropy to assess data
singularity over scanning position along X-axis is

Eα(s) =
1

1− α
loge

T∑
j=1

yj(s)
α. (8)

Fig. 5 1A and 1B show the entropy values Eα(s) and
Eα(t) with respect to B-Scan’s scan axis and two-way time,
respectively. The four low entropy value regions that fall below
the OTSU threshold in Fig. 5 1A along the scan axis are 100
- 201, 382 - 413, 607 - 722, and 987 - 106, each indicating
the presence of a subsurface object. Likewise in Fig. 5 1B is
the region 49 - 100 along the two-way time axis. These values
are marked one-to-one onto the original B-Sans as shown in
Fig. 5 2A and 2B, which are superimposed to form Fig. 5 3A
displaying the exact ROI marked with red boxes.

Algorithm 1: Autonomous Cognitive GPR sensing optimiza-
tion algorithm based on ε-greedy Q-Learning

1 Initialize learning rate α ∈ (0 < α ≤ 1), epsilon ε = 0.9,
discount factor γ ∈ (0 ≤ γ ≤ 1), EPS DECAY = 0.9998,
power max, environment

2 Initialize Q(s, a), for all s ∈ S, a ∈ A
3 Set x = 1, Maximum epoch X
4 for x ≤ X do
5 obs = env.reset();
6 e← random number from (0,1);
7 if e < ε then
8 Choose action ak randomly;
9 else

10 Choose action ak according to
11 argmaxak∈AQ(sk+1, a)
12 end
13 Generate B-Scan and calc. Renyi entropy;
14 Calculate Ck by Eq. (3);
15 if Ck+1 ≤ Ck then
16 rk = aCmax

Ck
+ bpmax

pk
+ c tmax

tk
;

17 Ck = Ck+1;
18 done = True
19 else
20 done = False
21 end
22 new obs = env.(obs);
23 maxaQ(sk+1, a) = np.max(q table[new obs]);
24 if done = True then
25 Qnew = rk;
26 else
27 Qnew = (1− α) ∗Q(sk, ak)

+α ∗ (rk + γ.max
a

Q(sk+1, a))

28 end
29 Update Q(sk, ak) with Qnew;
30 Set sk+1 = (xk+1, yk+1);
31 ε *= EPS DECAY;
32 end

The entropy analysis is an intensive computation process
that highly demands for computing power and CPU time. To
leverage the strength of edge computing, in the proposed edge
computing enabled ACGPR system, the entropy analysis is
most likely implemented on the edge server instead of on the
front-end microcomputer.

C. The Proposed Q-Learning Approach

In reality, the state transition probability P is difficult to
obtain due to the uncertainty of the sensing environment. In
this work, a model-free reinforcement learning approach, Q-
learning, is investigated to solve the decision-making problem
for optimal ACGPR sensing. The optimal policy π∗ will be
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derived to maximize the long-term reward V (s, π). For any
given state s, the optimal policy π∗ can be obtained by

π∗ = argmax
π

V (s, π),∀s ∈ S (9)

We denote the Q-value, Q(s, a), as the expected accumulated
reward when taking an action ak ∈ A following a policy π for
a given state-action pair (s, a). Thus, the action-value function
Q(s, a) can be defined as

Q(s, a) = Eπ[rk + γQπ(sk+1, ak+1)|sk = s, ak = a] (10)

In our proposed Algorithm 1, Q(s, a) is the value calculated
from reward function Eq. (2) for any given state s and action
a, and is stored in a Q-table which is built up to save all
the possible accumulative rewards. The Q-value is updated
during each time epoch if the new Q-value is greater than the
current Q-value. The Q(s, a) is updated incrementally based
on the current reward function r and the discounted Q-value
Q(sk+1, a),∀a ∈ A in the next time epoch. This is achieved
by the one-step Q-update equation:

Q(sk, ak)← (1− α).Q(sk, ak) + α(rk + γ.max
a

Q(sk+1, a))

(11)
where rk is the immediate reward for the current state, α is the
learning rate (0 < α ≤ 1) and γ discount factor (0 ≤ γ ≤ 1)
of the learning algorithm. In each time epoch, the Q-value
is calculated in the next step by taking into account all the
possible actions that could be taken, and then the maximum
Q-value is chosen and the corresponding action is recorded.

To navigate through the unknown states instead of trusting
the learned values of Q(s, a) completely, the ε-greedy ap-
proach is used in the Q-learning algorithm with epsilon decay
factor to strike a balance between the exploration and exploita-
tion dilemma. Specifically, a random number e = (0 < e ≤ 1)
is picked and if it is less than ε the agent selects a random
action, otherwise chooses an action that maximizes Q(sk+1, a)
as shown on lines (6-11) of Algorithm 1.

TABLE I
RELATIVE DISTANCE BETWEEN THE ACGPR AND THE SUBSURFACE

OBJECT, AND THE RESPECTIVE ENTROPY VALUES WITH RESPECT TO SCAN
AXIS AND THE TWO WAY TIME DERIVED FROM THE B-SCAN X AXIS AND

Y AXIS RESPECTIVELY, Ck DERIVED FROM EQU. (3)

.

Distance
(m) Traces

Entropy w.r.t
scan axis
(Eα(s))

Entropy w.r.t
two way time
(Eα(t))

Ck

1 21 7.65 1.58 1.538
2 23 8.48 1.57 1.675
3 25 5.79 1.56 1.225
4 27 6.11 1.55 1.277
5 30 4.66 1.54 1.034
6 33 4.78 1.53 1.057
7 38 3.47 1.525 0.833
8 42 3.36 0.152 0.585
9 50 2.76 1.51 0.712
10 60 2.62 1.506 0.688
11 75 2.50 1.5 0.667
12 100 2.28 1.49 0.628
13 150 2.09 1.48 0.595
14 300 1.09 1.43 0.42

Fig. 6. Learning curves of different epsilon values ε = {0.2, 0.5, 0.9} applied
to the autonomous cognitive GPR with 25k episodes.

Fig. 7. Convergence performance of the proposed ε-greedy Q-learning
algorithm in terms of the average cost.

IV. PERFORMANCE EVALUATION

In this work simulation is curried out to evaluate the
proposed ACGPR. GprMax [20], designed for modeling GPR,
is used to simulate a GPR agent that is configured to operate in
two radio frequency bands, 400 MHz and 1.6 GHz. Selecting
different radio frequencies and moving in different directions
are considered as the possible actions of the GPR agent.
Based on the relative distance between the GPR and the
subsurface object, corresponding B-Scan can be generated as
the collected observation data from the environment. Renyi
entropy is calculated with respect to scan axis and two-way
time as shown in Table I.

To evaluate the proposed Q-learning algorithm, its per-
formance with epsilon ε = {0.2, 0.5, 0.9} and learning rate
α = {0.01, 0.2, 0.7} is measured. High long-term reward r of
20.04 is achieved by the ACGPR when ε = 0.9, learning rate
α = 0.1, discount factor γ = 0.95, and the epsilon decay =
0.9998.

Fig. 6 shows the learning curves of different epsilon values
ε = {0.2, 0.5, 0.9} applied to the ACGPR with 25k episodes.
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Fig. 8. Learning curves of different learning rate values α = {0.01, 0.2, 0.7}.

It illustrates a high epsilon value close to 1 enables the agent
to learn to achieve a higher long-term reward of approximately
20.04 while a lower epsilon value close to zero (i.e. 0.2 and
0.5) enables the agent to achieve a descent long-term reward
of 17.1 and 18.9, respectively.

Fig. 7 illustrates the convergence performance of the pro-
posed Q-learning algorithm, where Y-axis presents the average
cost C, in each episode. It is observed that the average cost
is converged to stable values below zero from episode 15K
onward, where the ACGPR was able to locate the subsurface
object accurately with the shortest time period.

Different configurations of learning rate α were carried out,
as shown in Fig. 8. It can be observed that high Learning rates
outperform lower learning rates.

V. CONCLUSIONS

In this paper, we proposed an autonomous cognitive GPR
(ACGPR) system enabled by edge computing and reinforce-
ment learning. The system architecture of the ACGPR was
presented. A typical perception-action cycle of the ACGPR
was explained. To adaptively adjust the movement of the GPR
scanner and its operational parameters with the constraints of
operational latency and power resource limitation in an un-
known sensing environment, an ε-greedy Q-learning algorithm
was developed to derive the optimum policy which tells the
action of the ACGPR system at a given state, hence achieving
a long-term reward for accurately identifying a subsurface
object. Simulation was conducted to demonstrate the efficacy
of the proposed system.

In real-world scenarios with high-dimensional observation
spaces Q-learning algorithm is intractable because a huge
size of memory is needed to store all the Q-values. Studies
show that Deep Q-Network (DQN) algorithm may address
this issue. However DQN can only handle the cases with
discrete and low-dimensional action space [21]. Since ACGPR
sensing is a physical control task with continuous and high-
dimensional action spaces, as future work we will consider the
Deep Deterministic Policy Gradient (DDPG) method which
concurrently learns a Q-function and a policy [21].
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