2020 IEEE International Conference on Software Architecture Companion (ICSA-C)

Modeling Microservices with DDD

Paulo Merson
Brazilian Federal Court of Accounts (TCU)
Brasilia, DF — Brazil
pmerson@acm.org

Abstract— Many have suggested using Domain-Driven
Design (DDD) to help define the functional scope of
microservices. But how to apply this idea in practice is not clear
to everyone. DDD is a domain modeling technique created in the
early 2000s. Microservices is an architecture style that became
popular in 2015 as means to break software solutions into a set
of independently deployed services. In this full-day tutorial we'll
cover basic DDD concepts and discuss why and how DDD can
help to create microservices with better availability, scalability,
reliability, and modifiability. Using examples, we'll navigate
from a domain model created using DDD to the design of both
synchronous (REST-based) and asynchronous (reactive)
microservices. We’ll explore five different microservice design
scenarios around DDD aggregates, bounded contexts (BC),
domain events and other strategies for inter-BC interaction.

Keywords—domain-driven design (DDD), microservice

[. THE TOPIC, STATE OF THE PRACTICE, AND RELEVANCE

Domain-Driven Design (DDD) saw significant attention
from the software development community since it was
proposed by Eric Evans in 2003 [1]. Many organizations
applied DDD (or parts of it) successfully and more recent
publications have given us practical advice and best practices
on using DDD [2][3][4].

Microservice is an architecture style where the
applications comprise a suite of small, independently
deployed backend services, each running in its own process or
VM, and typically interacting via http APIs or asynchronous
messaging [5]. The defining design constraint of the
microservice style is that the deployment unit shall contain
only one service or a small set of cohesive services [6].

Microservices became popular in 2014-2015 to the point
that it was then a buzzword. Since then, we as an industry
identified one of the main challenges of microservice design:
creating microservices that are not too large or too small, and
hence contain the right amount of functionality. Many authors
saw in DDD a modeling approach that could help to overcome
this challenge. Sam Newman says that the modular boundary
established by a DDD bounded context (BC) becomes an
excellent candidate for a microservice [7]. In recent
conference presentations, Eric Evans himself has talked about
microservices as context boundary, but he also says there are
different types of BCs that map to microservices [8][9]. In his
recent book, Chris Richardson describes the relation between
DDD and microservices in the Decompose by Subdomain
pattern [10]. He goes on to discuss both BC and aggregate as
DDD elements that can provide functional boundaries for
microservices. Neal Ford and colleagues say that BCss serve
as a quantum boundary in a microservices architecture [11].

Thus, with the popularity of the microservice architecture
style, DDD has seen rekindled interest from the software
community. However, much of the conference talks, blog
posts and even book sections discussing the relation between
DDD and microservice design fall short at providing a
concrete design solution. One is left wondering, for example,

978-1-7281-4659-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSA-C50368.2020.00010

Joseph Yoder
The Refactory
Urbana, IL — USA
joe@refactory.com

how does microservice Purchase Order proposed in this box-
and-line diagram translate to real implementation
technologies? How do these boxes map to actual REST
controller modules, Kafka listeners, ETL batch processes,
etc.? What design elements can become docker images?

In this tutorial we take a step further to discuss and
describe how a domain model created using DDD terminology
can be translated into a microservice-based design. To
describe a realistic design solution, we use different
technologies, such as Spring Boot, Kafka, and Docker—the
proposed microservice design uses types of components and
connectors provided by these technologies. The examples of
technologies used in the tutorial allow participants to relate or
correlate the design solutions to their technologies of choice.
However, the guidelines for DDD modeling to microservice
design in the tutorial are platform agnostic.

The relevance of this tutorial is linked to the relevance of
the microservice architecture style, since we address the
challenge that is central to successfully applying the style:
defining the functional scope of microservices. As many have
proposed, we employ DDD as the technique to understand the
problem space, but we shed light on the microservice-based
solution space to allow a closer look at components and
connectors created with today’s technologies.

II. TARGET AUDIENCE AND PREREQUISITES

This tutorial is primarily targeted at practitioners that work
with distributed systems in general, or microservices in
particular. Educators who teach distributed systems design
will also benefit from it. The prerequisites are: intermediate
level of knowledge/experience in microservice design,
familiarity with domain modeling, and willingness to discuss
software architecture.

III. OBJECTIVE AND TAKEAWAYS

Many have suggested using DDD to help define the
functional scope of microservices. The main goal of this
tutorial is to make clear how to apply this idea in practice. We
will look at patterns, technologies, and good practices to create
microservice architectures with better availability, scalability,
reliability, and modifiability. Teaching DDD is not a goal, but
we will cover basic DDD concepts.

The key takeaway messages of this tutorial are:
e DDD can help with defining microservices.

e The key DDD concepts for microservice design are:
aggregate, bounded context (BC), domain event, and
anticorruption layer.

e A service (e.g., a REST service) can have the scope of
a microservice.

e A microservice can have the scope of a BC.

e For inter-microservice (i.e., inter-BC) interaction, we
can use domain events with asynchronous messaging,
API calls, and service data replication.

IV. TUTORIAL DETAILS AND IMPLEMENTATION

A. Duration, structure, and schedule

This tutorial is designed as a full-day interactive session.
It is organized with the following sections:

e Brisk introduction to DDD: the main concepts
specifically relevant for microservice design: domain
and domain model, entity and value object, aggregate,
bounded context, context map and anticorruption
layer, ubiquitous language, application service,
domain service, repository, and domain event.

e DDD modeling exercise: hands-on exercise where
participants work in groups of 4-6 (or in pairs
depending on the classroom layout). They are given a
problem and are asked to discuss and create a domain
model using DDD concepts. Presenters oversee the
exercise by playing the roles of domain expert and
DDD specialist. At the end, domain models created by
the participants are discussed in class.

e Size of a microservice: how granularity in terms of
functional scope can affect the runtime behavior of
microservices; microservice definition and design
constraint discussion; practical examples.

e DDD and microservice design: looking at a possible
solution for the DDD modeling exercise, we propose a
microservice architecture covering five different
scenarios. The first scenario is for a BC with a single
aggregate. The second scenario shows a BC with
multiple aggregates that need to interact. The third
scenario shows multiple BCs that need to interact, and
they use domain events for doing so. The fourth
scenario has also different BCs, but they interact via
API calls and an anticorruption layer. The last scenario
shows different BCs but we use data replication with
anticorruption layer in the form of an ETL component.
For each scenario, we see the microservice design
down to types of components and connectors using
specific implementation technologies as examples.

e Final exercise and wrap-up: we finish with a fun
Kahoot! exercise and discussion of the key takeaways.

B. Presentation approach and requirements

This tutorial is primarily a slide-based presentation. The
topics covered are illustrated with examples. Questions and
comments are stimulated at all times. The modeling exercise
is a hands-on design exercise where participants put in
practice the concepts just covered in the slides.

V. PRESENTERS’ BACKGROUND

Paulo Merson has been programming in the small and
programming in the large for over 30 years. He is a software
developer at the Brazilian Federal Court of Accounts. He is
also a Visiting Scientist with the Software Engineering
Institute (SEI), a certified instructor for Arcitura, and a faculty
member of the master program in Applied Computing at
University of Brasilia. Paulo often delivers professional
training to fellow developers in the United States, Latin
America, and Europe. His speaking experience also includes

tutorials at JavaOne, SPLASH/OOPSLA, SD Best Practices,
SATURN, Dr. Dobb’s Architecture & Design World, The
SOA and Cloud Symposium, lectures to graduate students in
different universities, and invited talks at different companies.
He is co-author of Documenting Software Architectures:
Views and Beyond, 2nd edition. Paulo holds a Bachelor of
Science in Computer Science from University of Brasilia and
a Master of Software Engineering from Carnegie Mellon
University.

Joe Yoder (agilist, computer scientist, speaker, and pattern
author) is the founder and principal of The Refactory, a
company focused on software architecture, design,
implementation, consulting, and mentoring on all facets of
software development. Joe is also the president of The Hillside
Group, a non-profit dedicated to improving the quality of life
of everyone who uses, builds, and encounters software
systems. Joe has presented many tutorials and talks, arranged
workshops, given keynotes, and help organized leading
international agile and technical conferences. He is best
known as an author of the Big Ball of Mud pattern, which
illuminates many fallacies in software architecture. Joe
teaches and mentors developers on Agile and lean practices,
architecture, building flexible systems, clean design, patterns,
refactoring, software quality, and testing. Recently Joe has
been working with organizations and thought leaders on the
best practices for including quality aspects throughout the
complete software life-cycle. Joe thinks software is still too
hard to change and wants to do something about this. He
believes using good practices (patterns), putting the ability to
change software into the hands of the people with the
knowledge to change it, and bringing the business side closer
to the development process helps solve this problem.

Paulo and Joe created this tutorial over a year ago and have
been evolving it ever since. A short version of the tutorial was
presented at SATURN 2019 [12] and received very positive
evaluations. A full-day version of the tutorial has been
presented eight times to different microservice developers
from various organizations, with spirited discussions in class
and very positive feedback every time.

REFERENCES

[1] E. Evans, Domain- Driven Design. Addison-Wesley, August 2003.

[2] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley,
February 2013.

[3] S.Millett and N. Tune, Patterns, Principles, and Practices of Domain-
Driven Design. Wrox, April 2015.

[4] S. Wlaschin, Domain Modeling Made Functional. Pragmatic
Bookshelf, January 2018.

[5] J. Lewis and M. Fowler, “Microservices.” 2014. Available at
martinfowler.com/articles/microservices.html.

[6] P.Merson, “Defining Microservices.” SATURN blog, 2015. Available
at insights.sei.cmu.edu/saturn/2015/11/defining-microservices.html.

[7]1 S.Newman, Building Microservices. O’Reilly Media, 2015.

[8] E. Evans, “DDD & Microservices — At last, some boundaries!”.
Presentation at QCon London 2016. Available at
infoq.com/presentations/ddd-microservices-2016.

[9] E. Evans, “Language in Context.” Presentation at DDD Europe 2019.
See infoq.com/news/2019/06/bounded-context-eric-evans.

[10] C. Richardson, Microservices Patterns. Manning, 2018.

[11] N. Ford, R. Parsons, and P. Kua, Building Evolutionary Architectures.
O’Reilly, September 2017.

[12] P. Merson and J. Yoder, “Modeling Microservices with DDD”.
Presentation at SATURN 2019. Available at
saturn2019.sched.com/event/LY 5d/modeling-microservices-with-ddd.
May 2019.

