
Static source code metrics and static analysis
warnings for fine-grained just-in-time defect

prediction
Alexander Trautsch

Institute of Computer Science
University of Goettingen, Germany

alexander.trautsch@cs.uni-goettingen.de

Steffen Herbold
Institute AIFB

Karlsruhe Institute of Technology, Germany
steffen.herbold@kit.edu

Jens Grabowski
Institute of Computer Science

University of Goettingen, Germany
grabowski@cs.uni-goettingen.de

Abstract—Software quality evolution and predictive models to
support decisions about resource distribution in software quality
assurance tasks are an important part of software engineering
research. Recently, a fine-grained just-in-time defect prediction
approach was proposed which has the ability to find bug-inducing
files within changes instead of only complete changes. In this
work, we utilize this approach and improve it in multiple places:
data collection, labeling and features. We include manually
validated issue types, an improved SZZ algorithm which discards
comments, whitespaces and refactorings. Additionally, we include
static source code metrics as well as static analysis warnings and
warning density derived metrics as features. To assess whether
we can save cost we incorporate a specialized defect prediction
cost model. To evaluate our proposed improvements of the fine-
grained just-in-time defect prediction approach we conduct a case
study that encompasses 38 Java projects, 492,241 file changes in
73,598 commits and spans 15 years. We find that static source
code metrics and static analysis warnings are correlated with bugs
and that they can improve the quality and cost saving potential
of just-in-time defect prediction models.

Index Terms—Software quality, Software metrics

I. INTRODUCTION

Quality assurance budgets are limited. A risk analysis for
changes introduced to software would provide hints for quality
assurance personal on how to make the most of their limited
resources. Just-in-time defect prediction models are predictive
models that assign a risk to changes, or files within a change,
of being defect-inducing. Because just-in-time models are able
to provide feedback directly after a change happened, they can
reduce the cost of bug removal.

Just-in-time defect prediction is an active research topic
which tries to enable the aforementioned theoretical risk
probabilities on a per-change basis. A lot of research is being
conducted in this area, e.g., improving the granularity of the
predictions [1], adding features, e.g., code review [2], change
context [3], or applying deep learning models [4].

Just-in-time defect prediction models are trained on bug-
inducing changes, which are found by tracing back bug-fixing
changes, e.g., with the SZZ algorithm [5]. Some researchers
utilize keyword only approaches that scan the commit mes-
sages for certain keywords, e.g., fixes, fixed or patch, to find
bug-fixing commits, e.g., [1, 3, 6]. We refer to this approach as

ad-hoc SZZ. Others apply full SZZ which requires a link from
the commit to the Issue Tracking System (ITS) for identifying
bug-fixing commits, e.g., [2, 7, 8]. We refer to this approach as
ITS SZZ. In addition to this information, features that describe
the change are used as independent variables, e.g., size of the
change or diffusion, i.e., how may different subsystems are
changed [1, 7, 9].

In contrast to just-in-time defect prediction, release-level
defect prediction utilizes features describing files, classes
or methods. These features encompass size and complexity
metrics as well as object oriented metrics extracted from the
files. D’Ambros et al. [10] incorporated change level features
into release level defect prediction by including a time-frame
before the release for change metric calculation. In addition
to static, size and complexity metrics, static analysis warnings
were also investigated in the context of quality insurance.
Rahman et al. [11] investigated static analysis warnings in the
context of release-level defect prediction. Zheng et al. [12]
found that the number of static analysis warnings may help to
identify defective modules.

Static analysis warnings are generated by tools which
inspect different source code representations, e.g., Abstract
Syntax Trees (ASTs) or call graphs and find patterns that are
known to be problematic. If a problematic pattern is found a
warning for the line in the code is generated for the developer.
The combination of pattern and generated warning is defined
in a rule, these tools allow the developers to define which
rules should be utilized by the tool. The rules depend on the
tool but most are concerned with readability, common coding
mistakes as well as size and complexity thresholds. Results
of questionnaires show that developers assign importance to
static analysis software, especially at code review time [13],
see also Panichella et al. [14].

Recently, Pascarella et al. [1] introduced a fine-grained just-
in-time defect prediction approach where instead of complete
changes the files contained in these changes are used to train
predictive models. Static analysis warnings were not included,
however the authors adopted change features for their fine-
grained approach together with an ad-hoc SZZ implementa-
tion. While Querel et al. [15] included static analysis warnings

127

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00022

for just-in-time defect prediction models, this information has
not yet been included in a fine-grained approach. Fan et al. [16]
investigated the impact of mislabels by SZZ on just-in-time
defect prediction models and found that, depending on the
SZZ variant, there can be a significant impact on the models
performance.

Independent of the implemented SZZ variant, if a valid link
to the ITS is required, there may be additional data validity
problems regarding the chosen type of the issue. Prior research
by multiple groups found that not every issue classified as a
bug in the ITS is actually a bug [17]–[19].

In this work we combine the fine-grained approach by
Pascarella et al. [1] with static source code metrics and static
analysis warnings. In addition, we include an improved SZZ
algorithm which works similar to the approach proposed by
Neto et al. [20]. Instead of keyword matches this approach
requires valid links to the ITS for each bug-fixing commit.
Similar to the approach used by Pascarella et al., its implemen-
tation ignores whitespace and comment changes. In addition,
it also ignores refactorings. The links between commits and
the ITS as well as the types of the linked issues are manually
validated. We explore the impact that this SZZ approach has on
the resulting models performance in comparison to a keyword
based ad-hoc SZZ approach.

We are interested in the impact of additional features on
the performance of fine-grained just-in-time defect prediction
models. Similar to previous just-in-time defect prediction
approaches we include a model to estimate effort. In contrast
to effort based on lines of code, the cost model we incorporate
is a specialized defect prediction model by Herbold [21] which
calculates whether we can save cost by implementing our
predictive model.

To summarize the contributions of this work:
• An evaluation of the impact of static source code metrics

and static analysis warnings on fine-grained just-in-time
defect prediction models.

• Three novel features based on static analysis warning
density designed to capture quality evolution regarding
static analysis warnings.

• Combination of a specialized defect prediction cost
model [21] with a fine-grained just-in-time approach.

• Evaluation of two common labeling strategies in a fine-
grained approach, ad-hoc SZZ [1, 3, 6] and ITS SZZ [7,
9, 22].

The rest of this article is structured as follows. In Section II,
we introduce prior publications on the topic and relate our
current article to it. In Section III, we motivate and define the
research questions that we want to answer. Afterwards, we
define our case study in Section IV. Section V presents the
results of the case study which we discuss in Section VI. After
that, we describe threats to validity in Section VII. Finally, we
present a short conclusion in Section VIII.

II. RELATED WORK

Just-in-time defect prediction has been an active area of
research. In this section, we discuss the relevant related work

and draw comparisons with our own.
Kamei et al. [7] performed a large-scale empirical study of

just-in-time defect prediction. They build predictive models
for bug-inducing changes, including effort awareness and
also investigate the difference between bug-inducing changes
and the rest of the changes. To this end the authors intro-
duced change based metrics which incorporate size, diffusion,
purpose, and the history of a change as well as developer
experience. The authors use ITS SZZ to find bug-inducing
commits without falling back on a keyword based approach.
This has a detrimental effect on the performance of their
models due to heavy class imbalance as the authors note in
the discussion. The predictive models are evaluated with 10-
fold-cross-validation.

Tan et al. [8] apply online defect prediction where the
window for the training data expands stepwise from the
beginning of the project. The authors utilize the commit
message, the characteristic vector [23], and churn metrics to
build models for 6 open source and one proprietary project.
Ad-hoc SZZ is utilized to find bug-fixing commits. The authors
point out that cross-validation is not a realistic scenario for
just-in-time defect prediction due to it including information
from the future. They point out that due to this limitation
their model performance is impacted negatively. To mitigate
class-imbalance the authors apply and discuss four sampling
variants.

Yang et al. [9] further investigated the model complexity
utilizing the same data as Kamei et al. [7]. They found that
sometimes simple unsupervised models are better than the
model introduced by Kamei et al. [7]. The authors also found
no big difference between cross-validation and a time-sensitive
approach when evaluating the models.

McIntosh et al. [2] investigate whether the properties of bug-
inducing changes change over time. The authors utilize change
metrics proposed by Kamei et al. [7] and include code review
metrics for the predictive models. They analyze the evolution
of two open source projects.

Pascarella et al. [1] combine the features used previously
by Kamei et al. [7] and Rahman et al. [24] with a fine-
grained approach. Instead of predicting bug-inducing changes
at the commit level they predict bug-inducing files within one
commit. An ad-hoc SZZ implementation is used. To predict
one instance the authors use the previous three months of data
as training data.

Querel et al. [15] present an addition to commit guru [25]
which includes static analysis warnings for building just-in-
time defect prediction models. They show that they are able to
improve the predictive models with the additional information.
Their result complements the results of our case study.

Almost every prior work regarding just-in-time defect pre-
diction relies on some variant of the SZZ algorithm. Although
there are differences in its implementation. Some publications
use a modified version of the SZZ algorithm which does not
utilize an ITS. The original SZZ algorithm does not work as
well without an ITS. Without an ITS there is no way to define
a suspect boundary date [5]. This results in more bug-fixes

128

and bug-inducing changes with keyword only ad-hoc SZZ
approaches.

In our case study, we investigate this difference by including
the ad-hoc SZZ keyword based approach as well as the ITS
SZZ approach which requires bug-fixing changes to have a
link to a valid ITS issue. The dataset we build upon contains
manually validated issue types for every issue that is linked
to a bug-fixing commit to account for wrongly classified
issues [19].

None of the prior work investigated if static source code
metrics or static analysis warnings can improve just-in-time
defect prediction models in a fine-grained context. Moreover,
none of the prior studies compared how the difference be-
tween ad-hoc SZZ and ITS SZZ impact the results of defect
prediction. Finally, while some publications considered aspects
related to the costs [1, 9, 22] this is the first publication that
applies a complete cost model [21] to evaluate the cost saving
potential of just-in-time defect prediction.

III. RESEARCH QUESTIONS AND ANALYSIS PROCEDURE

We hypothesize that additional features in the form of
static source code metrics and static analysis warnings may
improve just-in-time defect prediction models. The commonly
used features are change metrics, e.g., [7, 24]. They capture
information about the change and itself and the process, e.g.,
developer experience, size and diffusion of the change. Static
source code metrics, e.g., Logical Lines of Code (LLOC),
McCabe complexity [26] or object oriented metrics [27] would
add additional information about the structure of the files that
are contained in the change. Static analysis warnings can add
information about violated best practices or naming conven-
tions within the changed files. These features are commonly
used for release-level defect prediction and perform well [28].
Moreover, a combination of different sets of features seem
promising [29]. Both of the additional sets of features offer
different additional information that might positively affect
just-in-time defect prediction models. Our investigation into
the impact of different features and SZZ approaches on just-
in-time defect prediction is driven by the following research
questions.

RQ1: Which feature types are correlated with bug-inducing
changes?
This question aims to quantify the impact of the features
we chose on identifying bug-inducing changes. We are
utilizing a linear model which regularizes collinearity
between features so that we can focus on the direct
impact of each feature on the dependent variable. To
broaden our view we also utilize a non-linear model
which can also handle collinear features in addition to
the linear model.

RQ2: Which feature types improve just-in-time defect pre-
diction?
For this question, we combine recent state-of-the art data
extraction and features for just-in-time defect prediction
with features that are commonly used for release-level
defect prediction. We hope to shed some light on how

much release-level feature sets, including static analysis
warnings, can improve just-in-time defect prediction.

RQ3: Are static features improving cost effectiveness in
just-in-time defect prediction?
Cost awareness is important to estimate the usefulness
of the created models. To estimate the cost effectiveness
we utilize a cost model explicitly created for defect
prediction.

To answer RQ1 we build two models, a linear logis-
tic regression model and a non-linear random forest [30]
model. The data for the linear model is scaled by a z-
transformation [31] to prevent features with different scale
magnitudes to dominate the objective function. The linear
model is regularized via elastic net to remove collinear fea-
tures. The data is not scaled for the random forest as it is robust
to scale differences. The random forest choses relevant features
via gini impurity which also mitigates collinear features.

The models that are build for RQ1 contain perfect knowl-
edge, e.g., all information independent of the time it became
available is included. As both models get all data, we do
not perform sampling to mitigate class imbalance here. Both
models are used to rank the features by their importance in the
predictive model. The random forest provides this information
directly via a feature importance score. For the regularized
logistic regression we determine the feature importance by
the absolute value of the coefficients, i. e., their impact on the
prediction.

To answer RQ2 we utilize both models as they were used
previously in RQ1. As the first performance metric for the
evaluation of our models we use the harmonic mean of
precision and recall, F-measure.

precision =
TP

TP + FP

recall =
TP

TP + FN

F-measure =
2 · precision · recall
precision + recall

TP are the bug-inducing instances correctly predicted by the
model, FP non bug-inducing instances incorrectly predicted
as bug-inducing. TN are non bug-inducing instances correctly
predicted as such and FN are bug-inducing instances incor-
rectly predicted as non bug-inducing.

Additionally, we include AUC as a model performance
measure that is not as impacted by highly imbalanced data.
AUC is defined as the area under the Receiver Operating
Characteristic (ROC) curve which is a plot of the false positive
rate, against the true positive rate. AUC values range from 0 to
1 with 0.5 being equivalent to random guessing and 1 being
the perfect value with no false positives and every positive
correctly identified. AUC and F-measure are common choices
in evaluating model performance, e.g., [1, 4, 7, 8]

To mitigate the class imbalance in our data, we perform
SMOTE [32] sampling. SMOTE performs an oversampling
of the minority class by creating additional instances which

129

are similar but not identical to the existing instances of the
respective class.

Both classifiers are trained and evaluated on all projects.
The models are evaluated for both labeling strategies (ad-hoc
SZZ and ITS SZZ) as well as a train/test split as it is done
in the replication kit by Pascarella et al. [1]. Additionally, to
allow a comparison we replicate the commit label used in the
replication kit. The commit label marks every commit in which
a file was found inducing as bug-inducing, subsequently every
file changed in an inducing commit as inducing.

Additionally, we include a time-sensitive interval approach
where we use 3 months as training data and 1 month as testing
data. The choice of 3 months is common in related literature,
e.g., [1, 7, 8]. The first and last 3 months of each study
subject are dropped from the analysis. After that, a sliding
window approach is used to train and evaluate a model over
the remaining time frame for each study subject.

Restricting the time frame in which training and test data is
collected has certain drawbacks. Most prominently we may
simply not have enough data to train a model. Therefore
we relax the timeframe for the sliding window under certain
conditions. 1) Sample size: we select a minimum sample size
of the mean number of commits for one month over the project
history. For training data this number is multiplied with 3
because the train window size is 3 months. 2) Insufficient
positive instances: to perform SMOTE on the training data
a minimum number of 5 instances of the minority class is
needed. If the training data does not fulfill these conditions,
we extend the timeframe of the training data further until we
met the conditions.

To compare their performance with different sets of features
the results are first combined into boxplots. After that, we per-
form prerequisite tests for selecting a statistical test to compare
the difference between the feature sets. We use autorank [33]
to conduct the statistical tests. Autorank implements Demsar’s
guidelines [34] for the comparison of classifiers. It tests the
data for normality and homoscedacity and then automatically
selects suitable tests for the data: repeated measures ANOVA
as omnibus tests with a post-hoc Tukey HSD test [35] in case
the data is normal and homoscedastic and Friedman test [36]
as omnibus test with a post-hoc Nemenyi test [37] otherwise.
In case of normally distributed data we calculate effects sizes
with Cohen’s d [38]. If the data is not normal we use Cliff’s
δ [39] for effect sizes.

We chose a significance level of α = 0.05. After Bonfer-
roni [40] correction for 16 statistical tests (4 model perfor-
mance metrics, 2 labeling strategies for both train/test split
and interval approach) we reject the H0 hypothesis that there
is no difference in model performance at p < 0.003. We also
include critical distance diagrams and plots for the confidence
intervals for a combination of both classifiers for both labels,
all performance metrics and all feature sets.

For RQ3 we calculate whether costs can be saved by
utilizing a predictive model for directing quality assurance
with a cost model introduced by Herbold [21]. The cost model
estimates boundaries on the ratio between costs of quality

assurance and costs of bugs (C). Whether defect prediction
can save cost for a project depends on this ratio. To this
end, the cost model estimates lower and upper boundaries
for C that give a range for which cost can be saved by a
predictive model. As not every bug is fixed in one file, the
cost model also accounts for m-to-n relationships between
bugs and files. Therefore, it does not work with the confusion
matrix but instead a bug-issue matrix that is generated in the
mining process which maps every bug to the changes in files
that induced the bug. The cost model uses LLOC as a proxy
for quality assurance effort. The boundaries are calculated as
follows.∑

s∈S:h(s)=1 size(s)

|DPRED|
< C <

∑
s∈S:h(s)=0 size(s)

|DMISS |
S is the set of files which are predicted as bug-inducing,

h is the prediction model, D is the set of bugs, DPRED =
{d ∈ D : ∀s ∈ d | h(s) = 1} is the set of predicted bugs, and
DMISS = {d ∈ D : ∃s ∈ d | h(s) = 0} is the set of missed
bugs.

We count for how many projects our models can save costs
and include the upper and lower cost boundaries as further
model performance metrics in our ranking.

IV. CASE STUDY

In this case study, we investigate the changes introduced
into a codebase over a multi-year time period. We use 38 Java
open source projects of the Apache Software Foundation from
Herbold et al. [19]. All data is available in our replication kit1.

Table I shows the summary statistics of the projects. The
number of bug-inducing commits and files is small when
we only consider ITS SZZ labels (denoted %its). If we
consider ad-hoc SZZ fixes (denoted %adh) the number of bug-
inducing commits and files increases significantly. The number
of commits only shows the commits where Java source code
files were changed. All other commits are ignored.

The data collection by Herbold et al. [19] was performed
by SmartSHARK [41]. To utilize the data for a just-in-time
defect prediction case study, we implemented an extraction on
top of the SmartSHARK database snapshot provided in [19].

We base our extraction on the replication kit by Pascarella et
al. [1]. In addition to change features, the extraction provides
static source code metrics as well as static analysis warnings as
additional features from [19]. Moreover, it provides bug-fixing
commits with valid links to the ITS and manually validated
bug issues from [19]. This data is integrated into our approach
as ITS SZZ labels. Ad-hoc SZZ labels are extracted analogous
to [1]. As we want to maximize the data we use all branches,
i.e., the complete commit graph.

Although the extraction is based on Pascarella et al. [1]
we extend it in three places. First, to improve the linking
between bug-fixing and bug-inducing files, we directly utilize
the underlying GitPython2 instead of the wrapper provided by
Pydriller [42]. This allows us to directly access the name of

1https://doi.org/10.5281/zenodo.3974204
2https://pypi.org/project/GitPython/

130

TABLE I
NUMBER OF COMMITS, FILES AND DEFECTIVE RATES OF OUR STUDY

SUBJECTS FOR AD-HOC SZZ AND ITS SZZ

Project #com %its %adh #files %its %adh
ant-ivy 1917 3.29% 25.98% 11581 4.83% 29.91%
archiva 3873 2.89% 11.72% 23899 3.46% 12.25%
calcite 2056 1.07% 12.89% 24653 4.53% 29.81%
cayenne 4157 1.95% 7.60% 42203 3.18% 9.54%
c-bcel 957 1.57% 7.21% 10842 1.02% 10.15%
c-beanutils 741 1.35% 13.09% 4760 0.82% 10.23%
c-codec 1093 0.73% 12.63% 3299 1.76% 14.55%
c-collections 2229 0.58% 8.97% 18362 0.43% 7.26%
c-compress 1765 2.38% 5.38% 5026 4.12% 7.54%
c-configuration 2010 1.24% 8.71% 7011 2.31% 12.22%
c-dbcp 1004 1.99% 21.61% 3459 2.66% 22.95%
c-digester 1375 0.73% 8.44% 5684 0.48% 6.30%
c-io 1411 1.42% 9.99% 4912 1.71% 9.85%
c-jcs 942 2.02% 14.01% 10905 2.60% 20.02%
c-jexl 884 2.15% 15.05% 3962 5.98% 20.92%
c-lang 3966 1.64% 10.26% 11962 1.74% 10.08%
c-math 5098 0.82% 8.14% 32421 1.55% 9.51%
c-net 1435 4.46% 5.64% 6645 2.48% 5.64%
c-scxml 620 1.13% 29.35% 2898 3.11% 39.41%
c-validator 724 2.07% 15.47% 2356 2.12% 13.03%
c-vfs 1378 1.45% 17.78% 9360 1.63% 14.97%
deltaspike 1519 1.97% 3.75% 7464 3.56% 8.87%
eagle 609 0.82% 10.67% 8989 3.39% 32.86%
giraph 861 1.86% 8.83% 9760 3.65% 15.28%
gora 568 1.41% 4.58% 3250 2.62% 7.45%
jspwiki 5086 2.22% 22.87% 20233 1.57% 15.27%
knox 841 2.02% 5.23% 7667 5.16% 9.69%
kylin 4362 3.07% 7.47% 31027 3.64% 11.09%
lens 1491 2.15% 12.41% 11207 5.84% 24.19%
mahout 2393 1.55% 10.03% 26713 2.74% 18.11%
manifoldcf 2609 7.51% 19.93% 17096 4.01% 11.61%
nutch 1536 6.45% 15.17% 7805 6.43% 21.42%
opennlp 1288 2.72% 12.66% 11490 2.04% 10.53%
parquet-mr 1184 1.10% 40.79% 8016 2.88% 47.32%
santuario-java 1432 1.19% 20.11% 12190 1.14% 16.46%
systemml 3645 1.48% 19.56% 36761 2.33% 24.23%
tika 2640 3.64% 10.34% 8797 6.45% 18.17%
wss4j 1899 1.42% 8.64% 17576 1.92% 10.55%

the file at the time when the bug-inducing change happened
instead of the current file name. This is important as we label
bug-inducing changes and the file may have been renamed
later.

Second, we implemented a traversal algorithm on top of a
Directed Acyclic Graph (DAG) constructed from a complete
traversal by Pydriller. By traversing the constructed graph in-
stead of a date ordered list of commits we gain improvements
with regard to changes on different branches. We can keep
track of files during subsequent renaming or additions and
deletions happening on different branches. Furthermore, we
can accumulate state information, e.g., number of changes to
a file, even if it was renamed on a different branch.

Third, due to the implemented traversal algorithm we can
not just ignore merge commits. As Pydriller currently does
not support returning modifications on merge commits we
use the underlying GitPython library to directly access the
modifications.

We now describe details of the data collection for our
predictive models, namely labels and features. We start by
introducing the basic SZZ [5] algorithm, the improvements
available from [19] and then both of our labeling strategies.
After that we introduce the additional features our models use.

c1 c2 c3 c4 c5 Fixing ISSUE-1

suspect

inducing

ISSUE-1 lifetime
Fig. 1. SZZ algorithm

TABLE II
LABELING STRATEGIES USED IN THIS CASE STUDY.

Label Description
ITS SZZ Only links to ITS, manually validated issue types

and links, discard whitespace, comments and refac-
torings.

Ad-hoc SZZ Keywords only (fix, bug, repair, issue, error), discard
whitespace and comments.

A. Label

Supervised learning models require labeled data, which in
our case would be whether a change introduced a bug or not.
The purpose of SZZ is to link bug-fixing commits with their
respective bug-reports in the ITS and to link each bug-fixing
change to a list of probable bug-inducing changes. Figure 1
shows the basic SZZ algorithm. Changes are denoted as c1-5,
where c5 is a bug-fixing change. The time in which ISSUE-1
is created is defined as the suspect boundary, changes that
happen before the suspect boundary are bug-inducing changes.
Changes after the suspect boundary are suspects and further
divided. A suspect change is a partial fix if the suspect change
is a fix for another bug. A suspect change is a weak suspect if
it is a bug-inducing change (non suspect) for another bug. A
suspect change is a hard suspect if it is neither a partial fix or
a weak suspect. Hard suspects are discarded while partial fixes
and changes inducing another bug are both counted towards
bug-inducing changes.

In this work we use two labeling strategies. One uses the
ITS and discards hard suspects as described above. The ITS
SZZ approach discards whitespace, comments and refactorings
in changes and also uses manually validated data as it uses
the data from [19]. The second uses an ad-hoc SZZ keyword
only approach. It filters whitespace changes and comment
only changes but does not filter refactoring changes as it is
based on Pydriller [42] and not part of the SmartSHARK
infrastructure. This approach is similar to the data collection
used by Pascarella et al. [1].

Table II provides an overview of the labeling strategies.
Table I shows the defective rates for our study subjects of
the commits and files. A commit is counted as defective if at
least one file contained in the commit is defect-inducing. A
file is defective if at least one line in the change for that file
is defect-inducing.

B. Features

The features our supervised learning models use to predict
potential bug-inducing changes are based on prior publica-
tions. We include all features used by Pascarella et al. [1].
They consist of features introduced by Kamei et al. [7] and
Rahman et al. [24] adopted for fine-grained just-in-time defect
prediction. The features introduced by Kamei et al. are used

131

TABLE III
FEATURES USED IN THE FEATURE SETS.

Name Features
jit COMM, ADEV, ADD, DEL, OWN, MINOR, SCTR, NADEV, NCOMM, NSCTR, OEXP, EXP, ND, ENTROPY, LA, LD, LT, AGE, NUC, CEXP, SEXP, REXP, FIX_BUG
static PDA, LOC, CLOC, PUA, McCC, LLOC, LDC, NOS, MISM, CCL, TNOS, TLLOC, NLE, CI, HPL, MI, HPV, CD, NOI, NUMPAR, MISEI, CC, LLDC, NII, CCO, CLC, TCD, NL, TLOC, CLLC, TCLOC, MIMS,

HDIF, DLOC, NLM, DIT, NPA, TNLPM, TNLA, NLA, AD, TNLPA, NM, TNG, NLPM, TNM, NOC, NOD, NOP, NLS, NG, TNLG, CBOI, RFC, NLG, TNLS, TNA, NLPA, NOA, WMC, NPM, TNPM, TNS,
NA, LCOM5, NS, CBO, TNLM, TNPAA

pmd ABSALIL, ADLIBDC, AMUO, ATG, AUHCIP, AUOV, BII, BI, BNC, CRS, CSR, CCEWTA, CIS, DCTR, DUFTFLI, DCL, ECB, EFB, EIS, EmSB, ESNIL, ESI, ESS, ESB, ETB, EWS, EO, FLSBWL, JI, MNC,
OBEAH, RFFB, UIS, UCT, UNCIE, UOOI, UOM, FLMUB, IESMUB, ISMUB, WLMUB, CTCNSE, PCI, AIO, AAA, APMP, AUNC, DP, DNCGCE, DIS, ODPL, SOE, UC, ACWAM, AbCWAM, ATNFS, ACI,
AICICC, APFIFC, APMIFCNE, ARP, ASAML, BC, CWOPCSBF, ClR, CCOM, DLNLISS, EMIACSBA, EN, FDSBASOC, FFCBS, IO, IF, ITGC, LI, MBIS, MSMINIC, NCLISS, NSI, NTSS, OTAC, PLFICIC,
PLFIC, PST, REARTN, SDFNL, SBE, SBR, SC, SF, SSSHD, TFBFASS, UEC, UEM, ULBR, USDF, UCIE, ULWCC, UNAION, UV, ACF, EF, FDNCSF, FOCSF, FO, FSBP, DIJL, DI, IFSP, TMSI, UFQN, DNCSE,
LHNC, LISNC, MDBASBNC, RINC, RSINC, SEJBFSBF, JUASIM, JUS, JUSS, JUTCTMA, JUTSIA, SBA, TCWTC, UBA, UAEIOAT, UANIOAT, UASIOAT, UATIOAE, GDL, GLS, PL, UCEL, APST, GLSJU,
LINSF, MTOL, SP, MSVUID, ADS, AFNMMN, AFNMTN, BGMN, CNC, GN, MeNC, MWSNAEC, NP, PC, SCN, SMN, SCFN, SEMN, SHMN, VNC, AES, AAL, RFI, UWOC, UALIOV, UAAL, USBFSA,
AISD, MRIA, ACGE, ACNPE, ACT, ALEI, ARE, ATNIOSE, ATNPE, ATRET, DNEJLE, DNTEIF, EAFC, ADL, ASBF, CASR, CLA, ISB, SBIWC, StI, STS, UCC, UETCS, ClMMIC, LoC, SiDTE, UnI, ULV,
UPF, UPM, System/WD, File/System/WD, Author/Delta/WD

TABLE IV
FEATURE SETS USED IN OUR CASE STUDY.

Name Feature set description
combined All features combined
jit Change features commonly used in just-in-time defect prediction adopted for a fine-grained scenario by Pascarella et al. [1].
static Static source code metrics by OpenStaticAnalyzer. A full list is available online5

pmd Static analysis warnings by PMD also collected via OpenStaticAnalyzer. A full list is available online5

TABLE V
WARNING DENSITY BASED FEATURES INTRODUCED IN OUR CASE STUDY.

Name Description
System/WD The warning density of the project.
File/System/WD The cumulative difference between

warning density of the file and the project as a whole.
Author/Delta/WD The cumulative sum of the changes in warning

density by the author.

frequently in just-in-time defect prediction, e.g., [9, 43, 44].
They contain features such as the number of lines added,
experience of developers and ages on a per file basis.

Additionally, we include features consisting of static anal-
ysis warnings by PMD3 and static source code metrics by
OpenStaticAnalyzer4. The static source code metrics include
object oriented metrics as well as size and complexity metrics,
a full list is available online5.

The static analysis warnings by PMD contain a broad range
of rules. From formatting rules, e.g., class names must be in
CamelCase over rules regarding empty catch blocks up to
very specific rules regarding BigDecimal usage. The static
analysis warnings and source code metrics are collected for
each change and its parent, then a delta is calculated from
the current change to its parent change. This allows the
included feature to quantify the impact of the change as well
as its current and previous value. Table III shows all features
included in our case study and their respective feature set.
Table IV shows the all feature sets and a short description.
In addition to the sum of static metrics and static analysis
warnings we introduce new change based metrics utilizing
warning density.

Warning density =
Number of static analysis warnings

Product size
Warning density, analogous to defect density [45], describes
the ratio of the sum of static analysis warnings to the size of
the product, in our cases the LLOC of a file or a whole project.
Table V describes the additional features we introduce based
on warning density. With these additional features we hope to
capture quality evolution regarding static analysis warnings. If

3https://pmd.github.io/
4https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
5https://www.sourcemeter.com/resources/java/

a modified file is consistently below the warning density of the
whole project, i.e., contains less static analysis warnings per
LLoC, it may be helpful in estimating its quality. Analogous, if
the author of a commit consistently lowers the warning density
it may also be a good indicator whether a commit by that
author may induce defects or not.

V. RESULTS

To answer RQ1, we applied a linear logistic regression and
a non-linear random forest classification model to a complete
set of our data.

Table VI shows the top ten features for both of our clas-
sifiers. We note that new static and pmd features are in the
top ten for all combinations except for the logistic regression
with ad-hoc SZZ labels. The random forest classifier contains
warning density based features in its most important features.
Jit features, e.g., lines added, deleted or author experience
remain important for both classifiers and both labeling strate-
gies. However, this result indicates that we may be able to
improve just-in-time defect prediction models with additional
static source code metrics and static analysis warnings.

RQ1 Summary: Static as well as pmd warning density
based features appear in the top 10 features in 3 out of
4 combinations.

To answer RQ2, we start with first replicating the approach
utilized in the replication kit by Pascarella et al. [1], i.e.,
the commit label in a train/test split. Figure 2 shows both
performance metrics of both of our models. We can see,
that the random forest model performs best with only the
jit features while the logistic regression model somewhat
performs the same, with the combined features. Our results
are consistent with the results obtained by Pascarella et al. [1].

We restrict the labeling now to ad-hoc and ITS SZZ labels.
As described in Section IV-A with ad-hoc and ITS SZZ we
only label the bug-inducing files themselves as bug-inducing
independent of the commit. This reduces our positive instances
significantly as shown in Table I and also impacts the overall
performance.

Figure 3 shows the performance metrics on a train/test split
on all of our available data. In comparison with the commit

132

TABLE VI
TOP 10 FEATURES OF BOTH CLASSIFIERS

Logistic regression Random forest
ITS SZZ label Ad-hoc SZZ label ITS SZZ label Ad-hoc SZZ label

la (jit) 0.1085 la (jit) 0.3325 la (jit) 0.0143 la (jit) 0.0276
add (jit) 0.0812 age (jit) -0.2253 file/system/WD (pmd) 0.0101 add (jit) 0.0208
del (jit) 0.0689 sctr (jit) -0.2053 system/WD (pmd) 0.0101 exp (jit) 0.0142
entropy (jit) -0.0656 add (jit) 0.1926 add (jit) 0.0099 oexp (jit) 0.0135
delta_CBO (static) 0.0472 nsctr (jit) -0.1753 author/delta/WD (pmd) 0.0096 system/WD (pmd) 0.0134
current_NL (static) 0.0438 oexp (jit) 0.1722 ld (jit) 0.0095 entropy (jit) 0.0133
age (jit) -0.0421 fix_bug (jit) 0.1335 exp (jit) 0.0094 author/delta/WD (pmd) 0.0126
current_NLE (static) 0.0398 ld (jit) -0.1176 oexp (jit) 0.0085 sctr (jit) 0.0114
system/WD (pmd) -0.0343 minor (jit) -0.1113 entropy (jit) 0.0085 delta_HPL (static) 0.0106
current_NUMPAR (static) 0.0340 own (jit) 0.1087 sctr (jit) 0.0078 nd (jit) 0.0101

label we can see that with the ad-hoc label both classifiers
performance improves slightly with regards to the combined
feature set. The combined feature set does not perform best
with ad-hoc but the improvement may be an indication that
there is a possibility of the model performing better with the
combined features. Our next step is to restrict analysis to the
ITS SZZ label.

Figure 4 shows the performance metrics for the ITS SZZ
label. We observe that the F-measure is significantly lower than
with the ad-hoc SZZ labels. However, we can see that both
classifiers perform slightly better for the combined feature set.

While until now we performed a train/test split of our data
as is done in the replication kit of Pascarella et al. [1]. We
now explore whether our assumption holds when evaluating
our models in a time-sensitive approach.

Figure 5 and Figure 6 show both classifiers with the interval
approach. There is a drop in model performance, especially the
F-measure. Regardless of the limited power of the predictive
models, as shown by their F-measure, we can see that what
we previously demonstrated holds. Adding additional features
consisting of static source code metrics and static analysis
warnings can improve fine-grained just-in-time defect predic-
tion models, especially if we consider the ITS SZZ labels.

We now rank the performance of both classifiers for all
feature sets for each model performance metric using statistical
tests. If the data is normally distributed and homoscedastic,
we plot the confidence interval and mean for each feature
set. Otherwise we plot the critical distance diagram. Figure 7
shows the confidence intervals as well as the critical distance
diagrams for both classifiers combined and all feature sets in
the train/test split setting. For AUC and F-measure the com-
bined feature set is ranked first. The difference to the second
rank is not significant for the ad-hoc SZZ label. However, the
difference between first and second rank is significant for the
ITS SZZ label for AUC and close to significant for F-measure.
Moreover, while the jit feature set is second for the ad-hoc SZZ
label this rank is occupied by the static feature set for the ITS
SZZ label. Figure 8 shows the critical distance diagrams for
both classifiers combined and all feature sets for the interval
approach. Again, the combined feature set is ranked first for
ad-hoc as well as ITS SZZ. However, the difference to the
static features is not significant for the F-measure. We notice
that for the ITS SZZ label the static metrics are more important
than the jit metrics as was the case for the train/test split.

So far we determined that the combined feature set is ranked
first for both AUC and F-measure for both labeling strategies
as well as train/test split and interval approaches. However the
difference is only significant in some cases. Table VII provides
additional details. In addition to mean, standard deviation or
in the case of critical distance diagrams, median and median
absolute deviation, they provide effect sizes in the form of
Cohen’s d and Cliffs δ as well as the confidence intervals.

The effect sizes indicate that the differences between the
best ranked combined feature set and the second ranked
feature set is often negligible. Thus, there is always at least
one other feature set that performs similar to the combined
feature set. For the ad-hoc SZZ labels, this is the jit feature
set, for the ITS SZZ labels, this is the static feature set.
However, the difference between combined features and the jit
features is large with AUC with the ITS SZZ labels. Similarly,
the difference between the combined features and the static
features is large with AUC and medium with F-Measure for
the ad-hoc labels. This means the combined feature set is the
save choice, regardless of the type of labels.

RQ2 Summary: The combined feature set ranks first for
AUC and F-measure in every configuration. While the
difference to the second ranked feature set is negligible,
all other feature sets rank significantly worse with a
large effect size for at least once, indicating that the
combined features improve the stability of just-in-time
defect prediction.

For RQ3 we calculate if cost savings are possible with the
cost model for defect prediction introduced by Herbold [21].
The cost model provides boundary conditions for saving cost
by taking predictions for bug-inducing files and the number of
bugs into account. By inspecting lower and upper boundaries
for each project we can see if we are able to save costs in more
projects if we train the predictive model with more features.

Table VIII shows the end result of the cost model boundary
calculations. For each label, feature set and classifier it shows
the number of projects for which cost saving is possible
depending on the costs of defects. For the interval approach
it shows the number of intervals for which cost saving is
possible. We can see that the number increases between the
jit and combined feature sets for both classifiers and both
labels. This further indicates that by including static source
code metrics and static analysis warnings we may improve a

133

combined jit static pmd
0.00

0.25

0.50

0.75

1.00
AU

C
Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Random Forest

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Random Forest

Fig. 2. Model performance metrics with ad-hoc SZZ commit label and train/test split

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Random Forest

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Random Forest

Fig. 3. Model performance metrics with ad-hoc SZZ label and train/test split

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Random Forest

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Random Forest

Fig. 4. Model performance metrics with ITS SZZ label and train/test split

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Random Forest

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Random Forest

Fig. 5. Model performance metrics with ad-hoc SZZ label and interval approach

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Logistic Regression

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

AU
C

Random Forest

combined jit static pmd
0.00

0.25

0.50

0.75

1.00

F-
m

ea
su

re

Random Forest

Fig. 6. Model performance metrics with ITS SZZ label and interval approach

0.400 0.425 0.450 0.475 0.500 0.525
pmd

static

jit

combined
F-measure, ad-hoc SZZ

0.74 0.76 0.78 0.80 0.82 0.84
pmd

static

jit

combined
AUC, ad-hoc SZZ

1234

pmd
static jit

combined

CD
Upper bound, ad-hoc SZZ

1234

static
jit pmd

combined

CD
Lower bound, ad-hoc SZZ

1234

pmd
static jit

combined

CD
F-measure, ITS SZZ

0.78 0.80 0.82 0.84 0.86 0.88
pmd

jit

static

combined
AUC, ITS SZZ

1234

jit
pmd static

combined

CD
Upper bound, ITS SZZ

1234

jit
static pmd

combined

CD
Lower bound, ITS SZZ

Fig. 7. Ranking of model performance metrics and cost boundaries for the train/test split

1234

pmd
jit static

combined

CD
F-measure, ad-hoc SZZ

1234

pmd
static jit

combined

CD
AUC, ad-hoc SZZ

1234

jit
pmd combined

static

CD
Upper bound, ad-hoc SZZ

1234

jit
pmd combined

static

CD
Lower bound, ad-hoc SZZ

1234

jit
pmd static

combined

CD
F-measure, ITS SZZ

1234

jit
pmd static

combined

CD
AUC, ITS SZZ

1234

jit
pmd static

combined

CD
Upper bound, ITS SZZ

1234

jit
combined static

pmd

CD
Lower bound, ITS SZZ

Fig. 8. Ranking of model performance metrics and cost boundaries for the interval approach

134

TABLE VII
RANKING OF MODEL PERFORMANCE METRICS, MEAN (M), STANDARD
DEVIATION (SD), MEDIAN (MED), MEAN ABSOLUTE ERROR (MAD),

CONFIDENCE INTERVAL (CI), COHEN’S d (d), CLIFF’S δ (δ) AND EFFECT
SIZE MAGNITUDES NEGLIGIBLE (n), SMALL (s), MEDIUM (m), LARGE (l).
BOLDING DENOTES A STATISTICALLY SIGNIFICANT DIFFERENCE TO THE

FIRST RANK

Train/test split

ad
-h

oc
SZ

Z

A
U

C

M SD CI d

combined 0.832 0.064 [0.818, 0.847] 0.000 (n)
jit 0.820 0.071 [0.806, 0.835] 0.181 (n)
static 0.766 0.070 [0.752, 0.781] 0.988 (l)
pmd 0.756 0.075 [0.741, 0.771] 1.091 (l)

F-
m

ea
su

re

M SD CI d

combined 0.510 0.149 [0.480, 0.539] 0.000 (n)
jit 0.498 0.152 [0.468, 0.528] 0.078 (n)
static 0.441 0.123 [0.412, 0.471] 0.500 (m)
pmd 0.431 0.139 [0.401, 0.461] 0.545 (m)

IT
S

SZ
Z

A
U

C

M SD CI d

combined 0.865 0.048 [0.853, 0.876] 0.000 (n)
static 0.818 0.059 [0.806, 0.829] 0.876 (l)
jit 0.814 0.050 [0.802, 0.825] 1.051 (l)
pmd 0.786 0.065 [0.774, 0.798] 1.376 (l)

F-
m

ea
su

re

MED MAD CI δ

combined 0.190 0.126 [0.110, 0.320] 0 (n)
jit 0.151 0.103 [0.090, 0.250] 0.152 (s)
static 0.152 0.111 [0.094, 0.247] 0.156 (s)
pmd 0.134 0.089 [0.080, 0.223] 0.249 (s)

Interval approach

ad
-h

oc
SZ

Z

A
U

C

MED MAD CI δ

combined 0.707 0.121 [0.685, 0.732] 0.000 (n)
jit 0.695 0.136 [0.664, 0.716] 0.078 (n)
static 0.681 0.126 [0.657, 0.709] 0.110 (n)
pmd 0.625 0.123 [0.597, 0.645] 0.351 (n)

F-
m

ea
su

re

MED MAD CI δ

combined 0.350 0.236 [0.304, 0.400] -0.000 (n)
static 0.333 0.225 [0.286, 0.382] 0.015 (n)
jit 0.320 0.250 [0.273, 0.370] 0.063 (n)
pmd 0.272 0.227 [0.233, 0.320] 0.158 (s)

IT
S

SZ
Z

A
U

C

MED MAD CI δ

combined 0.759 0.170 [0.730, 0.795] 0.000 (n)
static 0.733 0.162 [0.703, 0.773] 0.088 (n)
pmd 0.697 0.186 [0.657, 0.727] 0.202 (s)
jit 0.672 0.199 [0.632, 0.716] 0.247 (s)

F-
m

ea
su

re

MED MAD CI δ

combined 0.086 0.128 [0.049, 0.126] 0.000 (n)
static 0.091 0.135 [0.055, 0.127] -0.011 (n)
pmd 0.062 0.091 [0.029, 0.100] 0.057 (n)
jit 0.054 0.080 [0.000, 0.087] 0.119 (n)

TABLE VIII
NUMBER OF PROJECTS/INTERVALS WHERE COST CAN BE SAVED FOR

BOTH CLASSIFIERS AND MEAN NUMBER OF PROJECTS.

Label Feature set 1
2

(#LR + #RF) #LR #RF

tr
ai

n/
te

st
sp

lit

ad
-h

oc
SZ

Z jit 23.0 24 22
static 19.5 15 24
pmd 20.5 13 28
combined 34 26 31

IT
S

SZ
Z jit 24.5 23 26

static 35.0 37 33
pmd 32 35 29
combined 34 32 36

in
te

rv
al

ad
-h

oc
SZ

Z jit 109 111 107
static 170.5 162 179
pmd 160.0 152 168
combined 162.5 150 175

IT
S

SZ
Z jit 87.5 109 66

static 129.5 146 113
pmd 137 168 106
combined 121 99 143

fine-grained just-in-time defect prediction approach and also
save cost for software projects using the approach.

In addition to Table VIII, Figure 7 and Figure 8 show the
upper and lower bounds ranked for each feature set. As the cost
model defines the potential for cost saving the lower bound
should be as low as possible while the upper bound as high
as possible. To simplify a visual ranking we reversed the rank
order for the lower bound the plots. For the train/test split
in Figure 7 we can see that for the ad-hoc SZZ label the
combined feature set is ranked first for upper and lower bound.
While this indicates that more cost savings are possible with
the combined feature set the critical distance to the next rank
is not exceeded. For the ITS SZZ label we see that while the
combined feature set is ranked first for the upper bound the
best feature set for the lower bound is static. Although we
note the large difference of the jit feature set to the others.

For the interval approach depicted in Figure 8 we can see
that static performs best for the ad-hoc SZZ, with combined
second. However the critical distance is not exceeded except
for the jit feature set which performs worse. For the ITS SZZ
label, combined is again best, although critical distance is
only exceeded again for jit which performs worse. The lower
bounds show that static is the best feature set for ad-hoc SZZ
and pmd for ITS SZZ. However the critical distance to the
combined feature set is not exceeded. This is also shown in
Table VIII, we can see that models build with ITS SZZ and
static/pmd features are able to save cost in more projects.

RQ3 Summary: The potential for cost saving is higher
with a combined feature set than with only jit features.
However, static and pmd features perform better with
the ITS SZZ labeling strategy.

VI. DISCUSSION

In the answer to our first research question regarding the
importance of adding static features and static analysis warn-
ings to just-in-time defect prediction we first find that the top
10 features for our regularized linear model and random forest
contain static and pmd features in 3 out of 4 combinations.
The linear model with ad-hoc SZZ labels is the only one which
contains only jit features. This analysis shows that, given
perfect knowledge, both ways to measure the importance of
features indicate that static metrics can have correlations with
defects. Since we use regularization to account for collinearity
these correlations provide an indication that static source code
metrics carry useful information about defects that is not
contained in the features proposed by Kamei et al. [7] which
are the standard choice for just-in-time defect prediction.

The results of the model evaluation show that for the label
(commit) also used by Pascarella et al. [1] in their replication
kit there is no performance gain when using additional metrics.
Although, the more detailed the labeling process gets, i.e.,
ad-hoc SZZ for keyword only SZZ, ITS SZZ for full SZZ,
the more positive impact additional static source code metrics
and static analysis warnings as features have on the predictive
models. This is also reflected by our final analysis which

135

incorporates a sliding window approach for time-sensitive
analysis. The combined feature set is ranked first in every case.
The performance drops between train/test split and interval are
also in line with the literature, e.g., Tan et al. [32].

While PMD itself may be able to warn about issues that
are responsible for bugs, it is not the primary use case as with
FindBugs/SpotBugs. We inspected a small sample of bug-fixes
from our data and found no removed warnings in the bug-fix
changes. We believe that PMD and warning density may be
useful features in a long term maintenance perspective, i.e.,
files that contain less static analysis warnings throughout their
lifetime are better maintained, therefore they contain less bugs.

The results for RQ3 show that in our reproduction of
Pascarella et al. [1] our created models can save cost. We see
that the combined feature set allows us to utilize the predictive
model to save cost in more cases than the jit feature set.
However, with ITS SZZ labels we see that the models built
with static and pmd feature sets are able to save cost in more
cases than the combined feature set. This is another indication
that file-based metrics are more important for ITS SZZ labels
than in a ad-hoc SZZ labeling strategy.

As a final note, we believe that both labeling strategies
have their use. Ad-hoc SZZ labels can be used to distinguish
possible quick fixes developers apply from possible bigger
issues that are more indicative of an entry in an ITS. However,
we have shown that it is very important to be aware of this
as the defective rates for both approaches differ significantly,
especially in a fine-grained scenario.

VII. THREATS TO VALIDITY

In this section we discuss the threats to validity we identified
for our work. To structure this section we discuss four basic
types of validity, as suggested by Wohlin et al. [46].

A. Construct Validity

The link between bug-fixing and bug-inducing commits is
at the heart of this study. We are aware that some variants
of the SZZ [5] algorithm have a certain imprecision [16, 47].
The ad-hoc SZZ label in our study ignores whitespace and
comment changes while the ITS SZZ label additionally ignores
refactoring changes which removes more false positives [20].

The ITS SZZ label in our study relies on a link between
the ITS and the Version Control System (VCS), i.e., the bug-
fixing commit must be linked to a valid issue of the type
bug in the ITS. The type of the issue in the ITS may not
reflect the real type but instead feature requests or other change
requests [17, 18]. To mitigate this threat, our study subjects
are based on a convenience sample of the Apache Software
Foundation ecosystem. Not only do the ASF developers a good
job of linking changes to issues, this sample also includes
manually validated issue types and links [19].

B. Internal Validity

Our results are influenced by the data collected from our
study subjects. Factors that we are not able to change include
the number of changes over time. This has a pronounced

impact on model performance as can be seen in Figure 5.
As we do not want to chose our study subjects based on their
commit history we are forced to handle fluctuating change
histories. We do this by relaxing a strict time window as used
in prior publications by also requiring a minimum number
of changes for the dataset. Instead of choosing hard values
for the number of changes we require the average number
of changes for that time frame over the complete change
history of the considered study subject. This improves the
performance of the models and, in our eyes, is a reasonable
choice. Nevertheless, this still is a factor that impacts our
internal validity and warrants future research, i.e., how can
just-in-time defect prediction work with all kinds of projects.

C. External Validity

A threat to external validity is our project selection. Al-
though the projects are all Java and originate from the same
organization they contain a variety of developers due to
their open source nature. Moreover, our sample contains a
diverse set of application domains, e.g., wiki software, math
libraries and build systems. Nevertheless, our results may not
be applicable to all Java projects of the Apache Software
Foundation much less all Java projects in existence.

D. Conclusion Validity

As our study investigates many features we perform regu-
larization on our linear logistic regression classifier. To further
complete our view we additionally include a non linear random
forest classifier. Both should be able to handle collinear
features. Moreover, we apply statistical tests to enhance the
validity of our conclusion for RQ2 and RQ3.

VIII. CONCLUSION

In this work we combined a state-of-the art just-in-time
defect prediction approach with additional static source code
metrics from OpenStaticAnalyzer and static analysis warnings
from a well known Java static analysis tool (PMD). We create
additional features based on warning density and show that
additional features can improve just-in-time defect prediction
models depending on the granularity of the labeling strategy.
We investigated two labeling strategies in depth, ad-hoc SZZ
and ITS SZZ and found that the more targeted the label the
more the models performance is positively impacted by the
additional features. We conclude that highly targeted models,
i.e., models that target bugs linked to an ITS profit from the
additional features.

We applied a defect prediction cost model to investigate if
cost saving is possible with our created models. The number
of projects where cost can be saved increases between jit only
and combined feature sets. For ITS SZZ static and pmd feature
sets provide more cost saving opportunities.

IX. ACKNOWLEDGEMENTS

This work was partly funded by the German Research
Foundation (DFG) through the project DEFECTS, grant
402774445.

136

REFERENCES

[1] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained
just-in-time defect prediction,” Journal of Systems and
Software, vol. 150, pp. 22 – 36, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302656

[2] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, no. 5, pp. 412–428, May
2018.

[3] M. Kondo, D. M. German, O. Mizuno, and E.-H. Choi, “The impact of
context metrics on just-in-time defect prediction,” Empirical Software
Engineering, vol. 25, no. 1, pp. 890–939, 2020.

[4] T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit:
An end-to-end deep learning framework for just-in-time defect predic-
tion,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), 2019, pp. 34–45.

[5] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

[6] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid, “Class imbalance
evolution and verification latency in just-in-time software defect predic-
tion,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), May 2019, pp. 666–676.

[7] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, June 2013.

[8] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, May 2015, pp. 99–108.

[9] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu,
and H. Leung, “Effort-aware just-in-time defect prediction: Simple
unsupervised models could be better than supervised models,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 157–168.
[Online]. Available: https://doi.org/10.1145/2950290.2950353

[10] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Softw. Engg., vol. 17, no. 4-5, pp. 531–577, Aug. 2012. [Online].
Available: http://dx.doi.org/10.1007/s10664-011-9173-9

[11] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu, “Comparing static
bug finders and statistical prediction,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 424–434. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568269

[12] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE Transactions on Software Engineering, vol. 32, no. 4,
pp. 240–253, April 2006.

[13] P. Devanbu, T. Zimmermann, and C. Bird, “Belief evidence in empirical
software engineering,” in 2016 IEEE/ACM 38th International Confer-
ence on Software Engineering (ICSE), May 2016, pp. 108–119.

[14] S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution and
Reengineering (SANER), vol. 00, March 2015, pp. 161–170.

[15] L.-P. Querel and P. C. Rigby, “Warningsguru: Integrating statistical
bug models with static analysis to provide timely and specific bug
warnings,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
892–895. [Online]. Available: https://doi.org/10.1145/3236024.3264599

[16] Y. Fan, D. Alencar da Costa, D. Lo, A. E. Hassan, and L. Shanping, “The
impact of mislabeled changes by szz on just-in-time defect prediction,”
IEEE Transactions on Software Engineering, 2020.

[17] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: A text-based approach to classify
change requests,” in Proceedings of the 2008 Conference of the Center
for Advanced Studies on Collaborative Research: Meeting of Minds, ser.
CASCON ’08. New York, NY, USA: ACM, 2008, pp. 23:304–23:318.
[Online]. Available: http://doi.acm.org/10.1145/1463788.1463819

[18] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature:
How misclassification impacts bug prediction,” in Proceedings of the
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 392–401. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486840

[19] S. Herbold, A. Trautsch, F. Trautsch, and B. Ledel, “Issues with
szz: An empirical study of the state of practice of defect prediction
data collection,” Submitted to: Empirical Software Engineering, 2020.
[Online]. Available: https://arxiv.org/abs/1911.08938

[20] E. C. Neto, D. A. da Costa, and U. Kulesza, “The impact of refactoring
changes on the szz algorithm: An empirical study,” in 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), March 2018, pp. 380–390.

[21] S. Herbold, “On the costs and profit of software defect prediction,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[22] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction,” in 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 159–170.

[23] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov 2013, pp. 279–289.

[24] F. Rahman and P. Devanbu, “How, and why, process metrics are better,”
in 2013 35th International Conference on Software Engineering (ICSE),
May 2013, pp. 432–441.

[25] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk
prediction of software commits,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: Association for Computing Machinery, 2015, p.
966–969. [Online]. Available: https://doi.org/10.1145/2786805.2803183

[26] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2,
no. 4, pp. 308–320, Jul. 1976.

[27] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[28] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[29] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1276–1304, Nov 2012.

[30] L. Breiman, “Random forests,” Mach. Learn., vol. 45,
no. 1, pp. 5–32, Oct. 2001. [Online]. Available:
http://dx.doi.org/10.1023/A:1010933404324

[31] E. Kreyszig, Advanced Engineering Mathematics: Maple Computer
Guide, 8th ed. New York, NY, USA: John Wiley & Sons, Inc., 2000.

[32] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ser. ICSE ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 99–108.

[33] S. Herbold, “Autorank: A python package for automated ranking of
classifiers,” Journal of Open Source Software, vol. 5, no. 48, p. 2173,
2020. [Online]. Available: https://doi.org/10.21105/joss.02173

[34] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[35] J. W. Tukey, “Comparing individual means in the analysis of variance,”
Biometrics, vol. 5, no. 2, pp. 99–114, 1949. [Online]. Available:
http://www.jstor.org/stable/3001913

[36] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings,” The Annals of Mathematical Statistics, vol. 11,
no. 1, pp. 86–92, 1940.

[37] P. Nemenyi, “Distribution-free multiple comparison,” Ph.D. dissertation,
Princeton University, 1963.

[38] J. Cohen, Statistical power analysis for the behavioral sciences. L.
Erlbaum Associates, 1988.

[39] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[40] H. Abdi, “Bonferroni and Sidak corrections for multiple comparisons,”
in Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks,
CA, 2007, pp. 103–107.

[41] F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, “Addressing
problems with replicability and validity of repository mining studies
through a smart data platform,” Empirical Software Engineering, Aug.
2017.

137

[42] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python
framework for mining software repositories,” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018. New York, New
York, USA: ACM Press, 2018, pp. 908–911. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3236024.3264598

[43] Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction,” Empirical Soft-
ware Engineering, pp. 1–40, 2018.

[44] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction,” Information and
Software Technology, vol. 87, pp. 206 – 220, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584917302501

[45] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, Third Edition, 3rd ed. Boca Raton, FL, USA: CRC Press,
Inc., 2014.

[46] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[47] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E.
Hassan, “A framework for evaluating the results of the szz approach for
identifying bug-introducing changes,” IEEE Transactions on Software
Engineering, vol. 43, no. 7, pp. 641–657, 2017.

138

