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Abstract—Researchers have shown that sentiment analysis
of software artifacts can potentially improve various software
engineering tools, including API and library recommendation
systems, code suggestion tools, and tools for improving commu-
nication among software developers. However, sentiment analysis
techniques applied to software artifacts still have not yet yielded
very high accuracy. Recent adaptations of sentiment analysis tools
to the software domain have reported some improvements, but
the f-measures for the positive and negative sentences still remain
in the 0.4-0.64 range, which deters their practical usefulness for
software engineering tools.

In this paper, we explore the potential effectiveness of cus-
tomizing BERT, a language representation model, which has
recently achieved very good results on various Natural Language
Processing tasks on English texts, for the task of sentiment anal-
ysis of software artifacts. We describe our application of BERT
to analyzing sentiments of sentences in Stack Overflow posts and
compare the impact of a BERT sentiment classifier to state-of-the-
art sentiment analysis techniques when used on a domain-specific
data set created from Stack Overflow posts. We also investigate
how the performance of sentiment analysis changes when using a
much (3 times) larger data set than previous studies. Our results
show that the BERT classifier achieves reliable performance for
sentiment analysis of software engineering texts. BERT combined
with the larger data set achieves an overall f-measure of 0.87, with
the f-measures for the negative and positive sentences reaching
0.91 and 0.78 respectively, a significant improvement over the
state-of-the-art.

Index Terms—Sentiment Analysis, Software Engineering,
BERT

I. INTRODUCTION

Sentiment Analysis or opinion mining, is a Natural Lan-

guage Processing (NLP) technique that automatically clas-

sifies whether the opinion/emotion expressed in a textual

unit is positive, negative, or neutral. Researchers have been

exploring sentiment analysis for various Software Engineering

(SE) applications, such as detecting negative comments in

Application Programming Interface (API) reviews to extract

problematic API features [41], analyzing emotions in software

developer Q&A forums such as Stack Overflow to recommend

deficiencies or potential improvements of source code [34],

and assessing the emotions in open source mailing lists to

understand the sentiment status of a development team [37].

To support the use of sentiment analysis in SE, researchers

have conducted studies of various off-the-shelf sentiment

analysis tools in the SE domain. Jongeling et al. studied

off-the-shelf sentiment analysis tools NLTK, SentiStrength,

Stanford NLP, and Alchemy and reported their highest Ad-

justed Rand Index score of 0.21 [17], [18]. Recently, several

studies investigated the accuracy of off-the-shelf sentiment

analysis tools adapted to the SE domain by training on SE-

related texts or by adding software-specific heuristic rules,

dictionary, etc. [3], [6], [10], [14], [15], [22], [27]. While

Imtiaz et al. [14] reported a Weighted Cohen’s Kappa ranging

from 0.16 to 0.33 agreement between manual annotations and

sentiment analysis tools, Novielli et al. [27] and Lin et al.

[22] reported f-measures ranging from 0.15 to 0.5 for the

negative class, and 0.15 to 0.4 for the positive class on a Stack

Overflow data set. On the same data set, our group’s previous

work (which we refer to as RNN4SentiSE in this paper)

obtained f-measures of 0.54 and 0.41 for negative and positive

sentences respectively by additional customization of a neural

network-based sentiment classifier to the SE domain with the

help of software-specific Word2Vec [24] word embeddings

[4]. Chen et al. developed SEntiMoji [8], by emoji-powered

customization and obtained f-measures of 0.64 and 0.47 for

negative and positive sentences, respectively, on Lin et al.’s

data set. Unfortunately, the effectiveness of these techniques

still remains quite low for practical use in the SE domain.

In this paper, we describe our investigation into how much

improvement can be made to sentiment analysis for the SE

domain, by applying and adapting a language representation

model called BERT (Bidirectional Encoder Representations

from Transformers) developed by Devlin et al. [9]. BERT has

been shown to advance the state-of-the-art in eleven NLP tasks

(including sentiment analysis), often by significant margins.

While we use a BERT model pre-trained on general corpus, the

fine-tuning process will allow it to learn the software domain

specific knowledge.

We also created a data set of 4000 manually annotated

sentences from Stack Overflow posts to serve as an extension

to Lin et al.’s software-specific data set of 1500 sentences

from Stack Overflow [22]. We then compare the effectiveness

of the BERT-based sentiment classifier, BERT4SentiSE, and

RNN4SentiSE, using both the extended data set of 5500

sentences and Lin et al.’s data set of 1500 sentences. Our re-

sults indicate that BERT4SentiSE outperforms RNN4SentiSE

by a substantial margin of over 20% improvement on the

extended data set. Furthermore, BERT4SentiSE’s performance
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is considerably better on the Lin et al. data set compared to

RNN4SentiSE, and all tools evaluated by Chen et al. [8] and

Lin et al [22], including SentiMoji.

This paper makes several contributions:

• To our knowledge, this work is the first to explore the po-

tential of applying and adapting BERT sentence represen-

tations for sentiment analysis in the software engineering

domain. BERT4SentiSE combined with a larger data set

achieves an overall f-measure of 0.87, with the f-measures

for the positive and negative sentences reaching 0.78

and 0.91 respectively, a significant improvement over the

state-of-the-art, achieving significantly more reliability in

sentiment analysis for the SE domain.

• We created a software-specific data set of 4000 sentences

from Stack Overflow posts, manually labeled with senti-

ments to serve as an extension to Lin et al.’s [22] original

data set of 1500 sentences for a combined set of 5500

annotated sentences.

II. STATE OF THE ART

As sentiment analysis is leveraged in various software

development, maintenance, and evolution tasks, typically off-

the-shelf sentiment analysis tools are used which are trained on

non-SE texts [12], [13], [17], [28]–[32], [34], [35]. However,

many studies have reported negative results when applying

these off-the-shelf sentiment analysis tools on software-related

texts [17], [18], [26], [37]. Novielli et al. [26] employed an off-

the-shelf lexicon-based sentiment analysis tool, SentiStrength,

to assess affective states in Stack Overflow and noted how the

presence of software domain-specific lexicon increases false

positives for the negative sentiment class. Jongeling et al.

[17], [18] investigated off-the-shelf sentiment analysis tools:

SentiStrength, NLTK, Stanford CoreNLP, and AlchemyAPI;

their findings revealed that these tools do not agree well

with manual sentiment labeling, with the highest Adjusted

Rand Index score of 0.21 achieved by NLTK. Tourani et al.

[37] assessed emotions in the open-source mailing lists of

Apache software projects using SentiStrength and obtained

precision of 0.13 and 0.296 for negative and positive classes,

respectively.

Several off-the-shelf sentiment analysis tools have been

adapted to the SE domain to hopefully improve effectiveness.

Ahmed et al. developed SentiCR [3], a sentiment analysis

tool for code review comments based on supervised learning

algorithms. Islam and Zibran customized SentiStrength by

adding heuristic rules, calling their tool SentiStrength-SE

[15], which achieved improvement over SentiStrength when

applied on JIRA issue comments. Islam and Zibran also

developed DEVA [16], a dictionary-based lexical approach for

detecting emotions (excitement, stress, depression, relaxation)

in JIRA issue comments, but their findings revealed various

limitations in handling complex structures of negations and

subtle emotional expressions. Ding et al. developed SentiSW

[10], an entity-level sentiment analysis tool consisting of

sentiment classification and entity recognition, and used it to

classify GitHub issue comments into (sentiment, entity) tuples.

Although their highest overall accuracy was 0.77, their highest

f-measure for the negative sentiment was 0.39.

Calefato et al. developed Senti4SD [6] by exploiting

lexicon-based, keyword-based, and semantic features utilizing

continuous bag-of-words embeddings. Senti4SD is trained on a

gold set of Stack Overflow questions, answers, and comments

with a balanced distribution of positive, negative, and neutral

sentiment, and it reduced the number of neutral and positive

posts misclassified as negative, compared to the baseline

SentiStrength. Wrobel et al. [39] aimed at examining whether

lexicon adaptation with a focus on the emotional intensity of

words in the context of the SE domain improves the reliability

of sentiment analysis. However, a comparative experiment of

sentiment analysis based on generic and SE-specific lexicon

did not show any significant difference in the results.

Lin et al. [22] set out to build a software library rec-

ommender that leverages developers’ opinions mined from

Stack Overflow (SO). On getting negative results while mining

developer opinions, they investigated the accuracy of off-

the-shelf sentiment analysis tools (SentiStrength, NLTK, and

Stanford CoreNLP) and their adaptations to the SE domain

(SentiStrength-SE and Stanford CoreNLP SO). They adapted

Stanford CoreNLP SO to the SE domain by training on a data

set that they built from Stack Overflow posts and manually

labeled with sentiments. Novielli et al. [27] also carried out

an investigation of SentiStrength, Senti4SD, SentiStrength-SE,

and SentiCR using the same data set developed by Lin et

al. [22]. These studies by Novielli et al. [27] and Lin et

al. [22] reported “unacceptable accuracy levels in classify-

ing positive/negative opinions” with f-measures ranging from

0.15-0.5 and 0.15-0.4 for the negative and positive classes,

respectively. Imtiaz et al. [14] investigated sentiment analysis

tools (SentiStrength, NLTK, Alchemy, Stanford CoreNLP,

Senti4SD and SentiCR) on manually rated GitHub comments,

and found these tools to have low agreement with human

ratings on sentiment and politeness, with Weighted Cohen’s

Kappa ranging from 0.16 to 0.33 agreement between manual

annotations and the sentiment analysis tools.

In our previous work [4], we investigated the effective-

ness of two potential improvements to the training of sen-

timent analysis for SE artifacts when taking a neural network

approach based on Word2Vec [24] word embeddings. The

sentiment classifier RNN4SentiSE, was customized to the

software domain by using software-specific word embed-

dings learned from Stack Overflow posts. However, this addi-

tional customization did not result in significant improvement.

RNN4SentiSE based on generic word embeddings (learned

from Google News data) performed either similar or better

than RNN4SentiSE based on software-specific Stack Overflow

word embeddings. We then investigated sampling techniques

(over- and under-sampling) on the training data [7], [21], [25],

[33]. Our results revealed that sampling the training data to

address the skewed distribution of minority classes improved

the classification of the minority classes with f-measures of

0.54 and 0.41 for negative and positive sentences respectively

on Lin et al.’s data [22], with improvement in both precision
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Fig. 1. Key Components of a Sentiment Classifier

and recall.

Chen et al. developed SEntiMoji [8], an SE-customized

sentiment classifier, built upon DeepMoji [11], an off-the-

shelf approach based on emojis. SEntiMoji learns vector rep-

resentations of texts based on how emojis are used alongside

words on Twitter and GitHub, which are then used to predict

sentiments. Their results show that SEntiMoji outperforms

existing methods on Lin et al.’s data set [22], achieving f-

measures of 0.64 and 0.47 for negative and positive sentences,

respectively.

In summary, there have been many varied approaches to-

wards improving the effectiveness of sentiment classification

for the SE domain. The evaluation results indicate that domain

adaptation of off-the-shelf sentiment analysis tools to the SE

domain does indeed improve their performance; however, ad-

ditional work is needed towards increasing their effectiveness

beyond the 0.4-0.65 f-measure range for reliable sentiment

analysis for SE applications.

III. CLASSIFYING SENTIMENT IN THE SE DOMAIN USING

MACHINE LEARNING

Before describing how we apply BERT (a neural network-

based approach) for the sentiment analysis task, we begin here

with an overview of the construction and application of a

sentiment classifier, specifically for the SE domain. Figure 1

depicts the key components of a sentiment classifier based on

machine learning.

The training data contains text and the corresponding sen-

timent (e.g. positive, negative, or neutral) for each unit of

text, such as a sentence. Depending on the source of the

text used for training, we may need to perform some pre-

processing such as removal of URLs or code segments to

remove noise from the text. As noted in related work, research

has shown that providing software-related text can improve the

effectiveness of the sentiment classifier.

During training, the text from the training data is usu-

ally converted to feature vectors, which are then fed to the

machine learning component such as a neural network that

generates a trained sentiment classifier model. This model

learns to associate a particular input (text) to its corresponding

sentiment based on the training data. For classification, the

test data, which is SE-specific text, is fed into the trained

classifier/model, which predicts sentiment labels for each text

unit, typically each sentence.

IV. INTRODUCING BERT

This section presents a brief description of BERT, including

the key insights leading to its design, why it is so effective for

various NLP tasks in general, and how it works.

A. What Is BERT?

BERT (Bidirectional Encoder Representations from Trans-

formers) is a language representation model developed by

Google in 2018 (Devlin et al. [9]). Since then, BERT has

been considered one of the most prominent breakthroughs

in the field of NLP and has achieved state-of-the-art results

in a variety of tasks including question-answering, sentence

tagging, textual entailment, reading comprehension, extractive

summarization tasks and learning task-independent sentence

representations [2], [9], [23]. This success can be attributed

to the value of transfer learning and fine-tuning of a pre-

trained model’s parameters on a task-specific annotated data

set and the use of the transformer, an elaborate attention-based

architecture.

Through transfer learning, BERT helps mitigate the problem

of shortage of task-specific labeled data, by pre-training a task-

neutral language representation model using a huge corpus

of unlabeled data. The pre-trained model can then be fine-

tuned for specific tasks such as sentiment analysis using task-

specific labeled data. This approach advanced the state-of-the-

art in eleven NLP tasks, often by significant margins, without

requiring task-specific neural architectures. This includes the

sentiment analysis task, where BERT achieved a high GLUE

score of 94.9 on the Stanford Sentiment Treebank data set

[36], a benchmark data set for sentiment analysis.

B. Unique Attributes of BERT

BERT has some features that differentiate it from other lan-

guage representations. Context-free word-embedding models

such as Word2Vec and GloVe generate a single representation

for each word in the vocabulary, despite the fact that words can

have different meanings in different contexts. BERT provides

a contextualized representation, generating representations of

words based on their context.

Another differentiating feature of BERT is in the way it

creates a bidirectional representation. Typically, with the use of

recurrent neural networks, such as Long Short Term Memory

(LSTM), text is processed in a single direction, typically left

to right. Since such models do not see the future context

at the time of predictions, they are augmented by a second
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Fig. 2. BERT’s Pre-Training and Fine-Tuning for Classification Tasks

recurrent network that processes text in the reverse direction.

Together the use of the two RNNs produces a bidirectional

representation of the input text. In contrast, BERT captures

contextual information from left and right simultaneously to

create a unique bidirectional representation.

Finally, we note that BERT is based on the transformer

architecture introduced in [38]. It replaces recurrent units

such as LSTM and Gated Recurrent Units (GRU) and instead

uses multi-head attention and feed-forward components. Using

self-attention components, BERT relates words in different

positions to compute its contextualized representations.

C. Two Phases of BERT Training

As shown in Figure 2, the training of BERT is divided

mainly into two parts:
1) Pre-training: Pre-training a BERT model is the first step

of using BERT. BERT is pre-trained on a large unlabeled cor-

pus that consists of text from English Wikipedia (2,500 million

words) and Book Corpus (800 million words), allowing it to

capture extensive knowledge about the language. The result

of pre-training is a task-neutral language representation which

can then be fine-tuned for specific downstream NLP tasks with

minimal architectural modifications.
2) Fine-tuning: Akin to transfer learning, fine-tuning is a

crucial second step in the use of BERT for specific tasks.

While the pre-training produces a deep bidirectional unsuper-

vised language representation, fine-tuning allows this represen-

tation to be used in learning to solve a new NLP task. For fine-

tuning, the BERT model is first initialized with the pre-trained

parameters, and these parameters are then adjusted using

labeled data from the downstream NLP task. For classification

tasks (such as sentiment classification in our case), fine-tuning

occurs through T[CLS], which is the representation of [CLS]

in the output layer. [CLS] is a special classification token

added at the beginning of each input sequence in BERT

training1. T[CLS] is taken as the aggregated representation of

the input sequence; it allows the context information learned

from other tokens in the transformer’s self-attention layers to

be represented in the T[CLS] vector.

1Another token, [SEP], is used to separate different parts of the text and is
used for tasks such as question-answering.

V. USING BERT FOR SENTIMENT ANALYSIS OF SE TEXT

This section describes the main customization to create

our sentiment classifier BERT4SentiSE for the SE domain

by incorporating the software knowledge implicit in Stack

Overflow’s SE-specific text. To provide an overview of how

we fine-tune BERT for the NLP task of sentiment analysis

for the SE domain, we modified Devlin et al.’s figure called

Illustrations of Fine-tuning BERT on Different Tasks [9] to

create Figure 3. Specifically, we needed to choose a pre-trained

BERT model, provide SE-specific input data, and fine-tune the

model for sentiment classification by providing a sentiment

classification layer.

Pre-trained BERT Model: We downloaded the pre-trained

BERT base model2 to use in BERT4SentiSE. BERT base

consists of 12 layers, hidden state size (dimension of the

encoder layers) of 768, and all together is comprised of 110

million parameters. This BERT model comes with pre-trained

model parameters (weights) trained on English Wikipedia and

Book Corpus for 1M steps, and TensorFlow [1] code for the

BERT model implementation, which we modified for fine-

tuning the model parameters for our sentiment analysis task

on SE-specific sentiment annotated data.

Input to BERT Model: BERT’s architecture allows flexible

input and output representations to accomplish various NLP

tasks. Input to a BERT model can be a single sentence or

a sentence pair with two BERT special tokens [CLS] and

[SEP] to indicate the start and end of the sentences (details in

section IV-C2). The input sentence/s are tokenized into Word-

Piece tokens [40] by the BERT base implementation pack-

age. WordPiece tokens are subwords that are frequent/likely

combinations of characters. The primary reason for using

WordPiece is to tackle the out-of-vocabulary (OOV) problem.

By using common subwords obtained from a large corpus, no

special treatment is needed even if the input sentence contains

unknown/unseen words. BERT accepts a sequence of up to

512 tokens (sub-words, punctuation).

For our sentiment analysis task, we represent the input

sequence as a single sentence from our SE-specific sentiment

annotated data sets. The input sentence is first tokenized into

2http://goo.gl/language/bert
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Fig. 3. Sentiment Classification using BERT

WordPiece tokens, and as required in BERT, the two tokens

[CLS] and [SEP] are inserted at the beginning and end of the

sentence, respectively. With BERT base, each token will have

12 intermediate representations. In Figure 3, Ei represents the

input embedding for token i. Each input embedding, Ei, is the

sum of the token, position, and segment embedding for token

i. Token embedding is the WordPiece embedding for a specific

token. Position embedding is used to indicate the position

of the token in the sequence, since the transformer does not

capture this information like in RNNs. We do not calculate

segment embedding as our input includes single sentences.

Throughout the 12 layers, attention computation is performed

on the representation of the previous layer to create a new

intermediate representation. In the final layer, BERT outputs

a contextual representation for each token; Ti represents the

contextual representation of token i.

Fine-Tuning for Sentiment Classification: To fine-tune for

the sentiment analysis task, we use the Tensorflow library [1]

to initialize the model with the pre-trained parameters. Then,

we add task-specific modifications in the implementation code.

We use the Adam Optimization Algorithm [19] as was used

in BERT pre-training. Recall from section IV-C2, the token

T[CLS] is the aggregated representation of the input sequence.

We add a fully connected layer with a softmax activation

function (classification layer) to the T[CLS] vector, to learn a

mapping from sentence representation to the correct sentiment

label. The classification layer has a dimension of K x H ,

where K is the number of sentiment labels (3) and H is

the size of the hidden state (768). All the parameters in the

network are fine-tuned in an end-to-end fashion to maximize

the log-probability of the correct sentiment label, which is then

passed to the softmax activation function. Finally, the softmax

activation function outputs a probability for the three sentiment

classes: positive, negative and neutral.

We have released the modified code3 for replication pur-

poses.

VI. INCREASING SENTIMENT ANALYSIS DATA FOR SE

DOMAIN

In the SE domain, data sets for supervised learning are

typically relatively small because they involve tedious manual

labeling that requires familiarity with the SE domain and

knowledge of technical terms. However, neural networks typi-

cally perform best when a large amount of data is available for

training. It is possible that a main cause of the low performance

of neural network-based sentiment classifiers for SE is the lack

of larger training sets.

Towards addressing this potential source of poor perfor-

mance, as part of our research reported in this paper, we also

release a data set of 4,000 sentences from Stack Overflow3,

manually annotated with sentiment. The goal is to significantly

extend the Lin et al. data set [22] which we call LinData for

the rest of this paper. From the Stack Exchange archive, we

downloaded the Stack Overflow data dump dated January 2019

- June 2019 to avoid duplicating sentences in the Lin et al.

data set, and used only the Stack Overflow posts (questions

and answers) for building the data set. Stack Overflow posts

contain elements such as code segments, urls, and HTML tags,

which do not convey information about the sentiment of the

text. Removing such elements is common pre-processing that

3https://www.dropbox.com/sh/0dzw55rqo7e6k2g/AACoeQFRyx-
VBoy0tC1EBCwJa?dl=0
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TABLE I
SAMPLE GUIDELINES DERIVED FROM LINDATA FOR SENTIMENT

ANNOTATION

Negative Sentiment

The given sentence indicates:

a. An Error, Exception Message, Error Description

Example: So, everything builds fine, but when we try to deploy the
application to GFNUMBER we get the FILE NAME file not found
”error.

b. A Problem/Failure

Example: But sadly this is not working.
c. A Warning, Discontent, Complaint, Disappointment

Example: else your GUI will be Hanged.

Positive Sentiment

The given sentence refers to any good/useful qualities of code/tool/

features, etc, such as:

a. Providing support for certain features.

Example: Javolution Structs supports mapping of off heap memory
as a data structure.

b. Providing advantages over others.

Example: Databases are much better at handling data than Java.
c. Serving as a useful or good example.

Example: There is a good example showing how to put a file onto
WebDAV server.

d. Availability of certain features.

Example: APKInspector provides both analysis functions and graphic
features for the users to gain deep insight into the malicious apps.

makes sentiment analysis more effective. We pre-processed

the Stack Overflow posts using Python code to remove code

segments, urls, and HTML tags from the body of the posts to

focus only on English sentences, and finally split each of the

posts into individual sentences. We then randomly selected

4000 sentences, and one of the authors manually labeled

each sentence by assigning a sentiment (Positive, Negative,

or Neutral) to the whole sentence. To reduce threat to validity,

other authors confirmed a sample of these labels.

Here, we describe the process we used for developing and

refining the guidelines and the manual labeling using the

guidelines. Since our goal was to supplement the LinData, we

wanted to assign sentiment similar to theirs, but at the sentence

level. We could not follow the exact sentiment annotation

process as Lin et al. since their approach (based on Recursive

Neural Network) required them to assign a sentiment not just

to the whole sentence but to all intermediate nodes (each word

and phrase) composing the sentence. Instead, to assign senti-

ments in a similar way, we thoroughly studied the sentences in

LinData and their respective assigned sentiments, and reverse

engineered a set of guidelines for manual sentiment labeling

to result in the same sentiments as much as possible. Our

guidelines, which are part of our public release3, specifically

contain instructions about what type of sentences are indicative

of negative or positive sentiment (with respect to the software

domain). Table I shows sample guidelines for negative and

TABLE II
DATASETS WITH DISTRIBUTION OF SENTIMENT/POLARITY CLASSES

Dataset Total
Sentences

Sentiment Classes and Distribution
Negative Positive Neutral

LinData 1500 178 11.87% 131 8.73% 1191 0.794

NewSESentiData 4000 1119 27.98% 576 14.40% 2305 0.5763

Total
(CombinedData) 5500 1297 23.58% 707 12.86% 3496 63.56%

positive sentences.

To verify our guidelines before manually creating a new

labeled data set using the guidelines, we asked four doctoral

students/annotators from the Computer Science department to

apply these guidelines to a subset of LinData. This subset

consisted of 30 sentences in total, 10 sentences from each

of the positive, negative, and neutral category. After the 30

sentences were manually labeled by the four annotators, we

discussed and analyzed all disagreements (i.e., cases in which

the annotators assigned a different sentiment compared to the

sentiment assigned by Lin et al.). Based on their reason for

disagreement, we refined the guidelines accordingly and one of

the authors used the refined guidelines to manually annotate a

second subset (different from the above subset of 30 sentences)

of LinData. This subset consisted of 250 sentences, which

has been regarded as a sufficient sample size to compute

agreement measures with high confidence. [5]. We computed

Cohen’s Kappa inter-rater agreement between the annotations

of our author (based on the refined guidelines) and Lin et al.,

observing an agreement of 0.88, which is greater than the 0.6

that is considered to be sufficient [20].

Finally, one of the authors used the refined guidelines

to manually label the data set of 4000 sentences, hereby

referred to as the NewSESentiData. As shown in Table II,

NewSESentiData consists of 1119 negative sentences, 576

positive sentences, and 2305 neutral sentences. For our experi-

ments, we also combine the LinData and NewSESentiData sets

to become the CombinedData set of 5500 sentiment-labeled

Stack Overflow sentences.

VII. EVALUATION STUDY

The goal of our evaluation was to study how much BERT,

which has been very successful on various NLP tasks on

English text, can push the effectiveness of sentiment analysis

in the SE domain, thus increasing the reliability of SE tools

that depend on sentiment analysis.

A. RESEARCH QUESTIONS

Towards our evaluation goal, we designed our study to

answer the following research questions:

• RQ1: How does BERT4SentiSE compare to existing

techniques used for sentiment analysis of software-related

texts?

• RQ2: What is the impact of a larger data set on sentiment

analyzers for SE?

– How does the larger data set affect results of existing

sentiment analysis for SE?
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– What role does the larger data set play in

BERT4SentiSE’s effectiveness?

B. COMPARISON SENTIMENT CLASSIFIER

We compared BERT4SentiSE with RNN4SentiSE, the Re-

current Neural Network (RNN) based sentiment classifier,

from our group’s previous work [4]. RNN4SentiSE provided

one of the leading results previously obtained, including on the

minority classes which has been the bane of previous systems,

and RNN4SentiSE’s code followed the 10-fold cross validation

procedure and sampling techniques to address class imbalance,

similar to our planned experiments. RNN4SentiSE uses Long

Short-Term Memory (LSTM) for its RNN units.

Hyper-parameter Configurations: We ran experiments on

BERT4SentiSE and RNN4SentiSE using various configura-

tions for each. For BERT4SentiSE, we used the following

hyper-parameter values: learning rates [2e-5, 5e-5], batch size

of 16, and epochs [2, 3, 4, 5], different epoch produced

best results for the different data sets. In these listings, the

best results were obtained for the hyper-parameters shown

as the bolded values. The maximum sequence length was

fixed to 256, and the dropout rate was kept at 0.1 across

all the experiments. For RNN4SentiSE, we used the settings

that had obtained the best results in our previous work. The

Google News word embeddings by Mikolov et al. [24] were

used as the word embedding model. The hyper-parameter

configurations used were LSTM unit 30, batch size of 30,

and a dropout rate of 0.2. For epochs, we tested the following

values [100, 200] for each set of experiments and reported the

best results obtained.

C. EVALUATION METRICS

We report the performance of the sentiment classifiers in

terms of the overall f-measure (macro-averaged) over the

three sentiment categories as well as the precision, recall,

and f-measure for each individual sentiment/polarity category

(positive, negative and neutral). The choice of these metrics is

in accordance to the standard practices adopted for sentiment

analysis tools. Precision for a category/class is the ratio of

the number of sentences correctly labeled as belonging to a

class (true positives) over the number of sentences labeled

as belonging to that class (true positives and false positives).

Recall for a class is the ratio of the number of sentences

correctly labeled as belonging to a class (true positives) out of

the total number of sentences in the class (true positives and

false negatives). F-measure for a class is the harmonic mean

of precision and recall for that particular class.

We use f-measure to represent the overall performance

instead of accuracy because the unbalanced distribution of

the three sentiments in our data sets would cause the overall

accuracy to mostly reflect the performance on the majority

class, neutral. In particular, we use the macro-averaged f-

measure value. For computing macro-averaged f-measure, we

first compute the precision and recall for each individual class,

and then we compute the overall precision and recall values

by computing the mean of the scores over the three sentiment

TABLE III
RESULTS OF THE SENTIMENT CLASSIFIERS TRAINED AND TESTED ON

COMBINEDDATA

Sentiment
Classifier

Training Data
Sampling

F-Measure
(Overall)

BERT4SentiSE
None 0.87

Balanced 0.84

RNN4SentiSE

None 0.69

Balanced 0.66

SR Biswas 0.61

SAMPLING RATES: None - No Sampling, Balanced - Undersamples
Neutral to 40%, Neg, Pos stay same), SR Biswas - Sampling rate
reported best by Biswas et al. [2] (over-samples Neg by 7 and Pos
by 9 times, Neutral stays same).

categories. Thus, all three classes are weighted equally. We

do not use micro-averaging, where the number of instances

of each class are used in the computation, because the results

would be influenced heavily by the majority sentiment class,

neutral.

D. PROCEDURE

In accordance with the studies conducted by Lin et al. [22]

and our previous work [4], we applied 10-fold cross-validation

for training and testing of the sentiment classifiers. We split

the data set into 10 subsets while maintaining the original

distribution of sentences from each of the three sentiment

categories. For each fold, we use one unique subset as the

test set and the remaining nine subsets as the training set.

Training Data Sampling: Recall from Table II, both Lin-

Data and CombinedData have unbalanced class distribution.

In addition to reporting our results with no sampling, we also

show the results (in Table III) obtained by sampling to get

a roughly balanced distribution of all the three classes. This

is done by under-sampling the majority neutral class to about

40% of the total neutral sentences, reducing the skew from a

2:1:5 to a 2:1:2 class distribution (negative:positive:neutral).

We had also reported experiments with oversampling of the

minority classes in our previous work [4]. For oversampling,

the sentences in the minority classes (negative and positive) are

increased in the training set by duplication. So for comparison

reasons, we also show the results on the CombinedData for

the RNN4SentiSE model using the sampling rate that gave the

best results in our previous work.

E. RESULTS

The cost of BERT4SentiSE is substantially less than

RNN4SentiSE. In our study, BERT4SentiSE took about 1 hour

for fine-tuning and testing as compared to 3-4 hours taken by

RNN4SentiSE for training and testing.

RQ1 - How does BERT4SentiSE compare to existing tech-
niques used for sentiment analysis of software-related texts?

To answer RQ1, we ran BERT4SentiSE and RNN4SentiSE

using CombinedData for both training and testing of the

sentiment classifiers. Table III reports our results using no
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TABLE IV
PRECISION, RECALL AND F-MEASURE FOR THE INDIVIDUAL SENTIMENT CLASSES (NO SAMPLING) ON COMBINEDDATA

Sentiment
Classifier

Negative Positive Neutral
P R F P R F P R F

BERT4SentiSE 0.91 0.9 0.91 0.77 0.79 0.78 0.93 0.92 0.93

RNN4SentiSE 0.72 0.72 0.72 0.55 0.47 0.51 0.84 0.86 0.85

sampling (None), with sampling to achieve balanced distri-

bution (Balanced). In addition, we also report the results for

RNN4SentiSE using the sampling rate (SR Biswas) that gave

the best results for this model in [4].

BERT4SentiSE (No Sampling) achieves an overall f-

measure of 0.87, a substantial 18% improvement over the

RNN4SentiSE regardless of the sampling rates employed with

the latter model.

The f-measures from RNN4SentiSE indicate that the over-

and under- sampling techniques do not provide any im-

provement in the results, in contrast to the results in our

previous work [4]. Instead, we observe a drop in the re-

sults for both Balanced and SR Biswas sampled training sets

while using RNN4SentiSE. Similar results are observed for

BERT4SentiSE with Balanced sampled training set. It is possi-

ble that the ineffectiveness of sampling is due to the increased

size of the CombinedData data set as compared to LinData,

and the substantial increase in negative and positive sentiment

sentences. In contrast to LinData’s 178 negative and 131

positive sentences, CombinedData is comprised of 1297 nega-

tive and 707 positive sentences. Although BERT4SentiSE’s

f-measure drops 3% when using Balanced training set as

compared to no sampled training set, it retains the same 18%

increase over RNN4SentiSE using the Balanced sampling rate.

To delve more deeply into which sentiment classes are

causing the overall improvement in performance, Table IV

shows further breakdown of the scores for the three individual

sentiment classes. In all previous work, all sentiment analysis

tools struggled to classify negative and positive sentences

correctly while performing better for neutral sentences. Based

on the breakout among negative, positive and neutral classes,

both cases of 18% improvement in overall f-measure (from

Table III) can be attributed to the improvement in the two

minority classes, negative and positive, and not by correct

predictions of the majority class, neutral. BERT4SentiSE’s

f-measure (with no sampling) in detecting the negative and

positive sentiments is 0.91 and 0.78, respectively, which shows

that the majority of the sentences with negative and positive

sentiment are identified correctly. In fact, BERT4SentiSE bet-

ter classifies both the two minority sentiment classes, negative

and positive, with increases in f-measure values by 19% and

27%, respectively, over RNN4SentiSE while still achieving an

8% increase for the neutral class.

For both precision and recall in the negative and neutral

classes, BERT4SentiSE achieves greater than 0.9. Thus, not

only does BERT4SentiSE recall 90% of negative sentences

correctly but also less than 10% of the sentences classified as

negative are incorrect (precision of 0.91), and most of these er-

rors are due to negative sentences misclassified as neutral and

vice-versa (see Table V). Another noteworthy achievement of

BERT4SentiSE is the huge improvement over RNN4SentiSE

in the positive class precision and recall, improvements of

22% and 32%, respectively. As mentioned in earlier works,

identifying positive sentences correctly is the most difficult

since positive sentiment texts are rare in online Q&A sites such

as Stack Overflow. Even in CombinedData, less than 13% of

all sentences are positive. Even with such a low distribution

of positive sentiment sentences, BERT4SentiSE classifies 558

sentences correctly out of a total of 707 (Table V), reaching

a recall of almost 0.8 (Table IV). This high recall shows the

credibility of BERT4SentiSE in correctly identifying positive

sentiment in texts. The 32% improvement in positive recall

over RNN4SentiSE and overall high precision and recall for

both negative and positive sentences highlights the improved

performance of BERT4SentiSE on the two minority classes

that appear less often in Stack Overflow posts, thus further

supporting its application as a reliable tool for sentiment

analysis in the SE domain.

To analyze misclassifications, Table V contains the confu-

sion matrix obtained by the BERT4SentiSE on CombinedData.

The matrix shows that most errors are due to negative or

positive sentences misclassified as neutral and vice-versa.

While differentiating between negative and positive senti-

ments, BERT4SentiSE only misclassified 12 negative sen-

tences as positive, and 8 positive sentences as negative.

Examples of sentiment misclassifications are shown in Table

VI. Most of these misclassifications can be attributed to the

fact that most of these sentences exhibit the presence of

both kinds of sentiments. For example, the sentence ”I have
a recursive function that seems to be working properly up
until I try and return from it.” starts on a positive note, but

later ends negatively. This also causes misclassifications of

negative and positive sentences as neutral. Other reasons for

misclassifications of negative or positive sentences as neutral

are:

• The negative/positive sentiment present in the sentences

are not explicit. (e.g., ”I wanted to see all the files I have
in my external storage, I have this library that display
the text to the user, but when I’m using it to show the
sub files, it says something like.”)

• They can be viewed as either a question or a mere

statement (e.g., ”Any idea what i might be doing wrong.”).
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TABLE V
CONFUSION MATRIX FOR BERT4SENTISE (NO SAMPLING) ON

COMBINEDDATA

Predicted
Neg Pos Neu

Neg 1171 12 114

Pos 8 558 141Actual
Neu 109 159 3228

RQ2 - What is the impact of a larger data set on sentiment
analyzers for SE? How does the larger data set affect results of
existing sentiment analysis for SE? What role does the larger
data set play in BERT4SentiSE’s effectiveness?

To investigate how the increase in the size of the training

set affects the performance of the sentiment classifiers, we

performed a set of experiments where we train two versions

of each classifier, one trained only on LinData, another trained

on CombinedData. We test both the versions of the classifiers

on LinData as well as CombinedData. To get the best pos-

sible results while training on each data set, we conducted

experiments with no sampling as well as various combinations

of over- and under-sampling. We report only the best results

obtained for each training data in Table VII, as our sole

purpose of this study is to compare the results when the

size of the labeled data used for training is increased. Using

BERT4SentiSE, we ran ten-fold cross-validation experiments

using CombinedData as the test data, while training on both

LinData and CombinedData individually, with and without

sampling. We performed similar experiments using LinData

as the test data. We also performed similar experiments using

RNN4SentiSE, but for the results of RNN4SentiSE trained

and tested on LinData, we use the best scores reported in our

previous work [4] by converting the reported precision and

recall for each sentiment to their corresponding f-measures.

The results in Table VII indicate that the increase in

the size of the training data provides improvement for

both BERT4SentiSE and RNN4SentiSE especially when we

test on the larger data set, CombinedData (highlighted in

bold). For BERT4SentiSE tested on CombinedData, overall

f-measure changes from 0.8 to 0.87, a 7% improvement. For

RNN4SentiSE tested on CombinedData, f-measure increases

from 0.58 to 0.69, and improvement of 11%. This improve-

ment might be considered significant especially when we look

at the performance breakdown for each of the three sentiment

classes. With BERT4SentiSE, the positive f-measure increases

by 14%, while still making small improvements of 6% for

negative and 3% for neutral classes. In contrast, RNN4SentiSE

makes quite a significant improvement for both the minority

classes. While testing RNN4SentiSE on CombinedData, neg-

ative f-measure increases by 17% and the positive f-measure

increases by 14%, while still making a 5% improvement for

the neutral class.

We note that the improvements by training on the larger data

set, CombinedData are not as significant when we test using

only the smaller data set, LinData. For BERT4SentiSE, the

overall improvement is about 3% and for RNN4SentiSE, just

about 2%. However, our BERT-based classifier BERT4SentiSE

still provides reliable results when tested on the smaller data

set LinData, achieving f-measures of 0.81 and 0.64 for the

negative and positive class, respectively, as a result of better

classification of these minority class sentences.

Overall, these improvements show that increasing the size

of the training data from 1500 to 5500 did indeed help in im-

proving the sensitivity of both the sentiment classifiers. Thus,

the results support our assumption that sentiment analysis of

SE texts can continue to improve further by increasing the size

of the software-related training data.

VIII. DISCUSSION AND LESSONS LEARNED

This section summarize the lessons learned from our study.

Lesson: Achieving reliable sentiment analysis in the
software engineering (SE) domain is possible using BERT.
Our results demonstrate that BERT (fine-tuned with SE-

specific sentiment annotated data) enables reliable sentiment

analysis. The BERT-based classifier, BERT4SentiSE, obtains

high precision and recall, even for the minority classes of pos-

itive and negative, which have caused problems for previous

sentiment analysis tools in the software engineering domain.

In terms of performance, we see that BERT4SentiSE shows

a significant improvement over an existing leading system,

RNN4SentiSE. RNN4SentiSE recalls less than half of the

positive sentences, and almost half of the sentences classified

as positive are incorrect. In contrast, BERT4SentiSE recalls

almost 80% of the positive sentences, and only a little over

20% of the sentences classified as positive are incorrect. When

trained and tested on the original smaller data set LinData,

we see that BERT4SentiSE significantly improves on the best

results of previous studies [4], [8], [22], [27], especially on the

minority classes. Thus, we can conclude that BERT4SentiSE

can successfully identify the sentiment of SE-related texts and

enable its practical usage as a sentiment analysis tool in the

SE domain.

Lesson: Increasing the size of the data set indeed helps
in improving the performance of BERT-based and existing
sentiment classifiers. The performance difference between

training on the smaller data set (LinData) and training on the

larger data set (CombinedData) is significant when tested on

CombinedData, especially for the minority sentiment classes,

as evident from Table VII. The positive f-measure shows a

huge improvement of 14% when training BERT4SentiSE on

CombinedData. When training RNN4SentiSE on Combined-

Data, both the negative and positive f-measures improve by

a huge margin of 17% and 14%, respectively. Although we

do not observe such huge improvements when tested on only

LinData, we still see some improvement. The results imply

that the larger data set improve the effectiveness of BERT-

based and existing sentiment classifiers.

The results will obviously vary based on the specific data,

basically the quality of the data and how representative the

data is of all kinds of possible communications in the specific

domain. Also, we need to recall the class imbalance of the data
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TABLE VI
EXAMPLES OF MISCLASSIFICATIONS OF NEGATIVE AND POSITIVE SENTENCES BY BERT4SENTISE

Negative Sentences Misclassified Positive Sentences Misclassified

As Positive As Negative
It would really help me debug as I’m facing some strange issues.
I have a recursive function that seems to be working properly up until I try
and return from it.
It’s ugly and inefficient but it should work.
But no Json response nor error is being returned.
So then your migrated project doesn’t build and you have lots of work to fix it.

The documentation was unclear there – I’ve fixed it.
But this gets optimized by the JIT and there is no measurable impact in production.
I still think it’s not the best design, but I did quite a bit of testing and can say with a
good bit of confidence that it had no real impact on performance.
Not sure if this is what you’re looking for but the following code catches and identifies
specific add errors.

As Neutral As Neutral
Any idea what i might be doing wrong.
As of now, I can download all csv files but I can’t limit it to only today’s date.
I wanted to see all the files I have in my external storage, I have this library
that display the text to the user, but when I’m using it to show the sub files,
it says something like.

If you are looking for a way to write to streams in a more intuitive way, try
CODE FRAGMENT.
With the new design, they could also support other encodings in future.
Javolution Structs supports mapping of off heap memory as a data structure.
So no, it is not a bug, simply a design choice.

TABLE VII
RESULTS FOR TESTING THE IMPACT OF THE INCREASE IN SIZE OF THE DATA SETS

Sentiment Classifier Training Data Test Data F-Measure
Negative Positive Neutral Overall

BERT4SentiSE

LinData
CombinedData

0.85 0.64 0.9 0.8

CombinedData 0.91 0.78 0.93 0.87
LinData

LinData
0.76 0.61 0.92 0.77

CombinedData 0.81 0.64 0.93 0.8

RNN4SentiSE

LinData
CombinedData

0.55 0.37 0.8 0.58

CombinedData 0.72 0.51 0.85 0.69
LinData

LinData
0.54 0.41 0.89 0.61

CombinedData 0.55 0.46 0.87 0.63

sets used in our study. Even though we increase the size of

the data set from 1500 to 5500, the distribution of the negative

and positive sentiment classes did not improve significantly.

Further improvement in the distribution of the minority classes

might provide additional improvement in the sensitivity of the

sentiment classifiers.

IX. THREATS TO VALIDITY

Threats to Internal Validity are related to the configuration

of the sentiment classifiers. To limit this threat, we tested

various parameters for both sentiment classifiers. However,

there exists possibility of further tuning these parameters to

improve the performance of the classifiers. Other potential

threats could be related to any errors in our scripts, which we

have tried to eliminate by performing multiple code reviews

and tests.

Threats to External Validity correspond to the generaliz-

ability of our experiments and findings. Sentiment annotation

can be subjective, to limit this threat, we ensured our annotator

had experience in the SE domain and extensive guidelines to

follow. Our data set is limited to texts from Q&A site. Texts

from other software artifacts, such as tutorials, mailing list

might perform differently. Also, both the data sets have a total

of 5500 sentences, this may not be representative of all kinds

of possible communications present in online Q&A forums.

Scaling to a much larger data set might lead to different

results. For comparison baseline we used RNN4SentiSE, using

a different architecture may impact the results. However, this

would not deter the performance of BERT4SentiSE.

X. CONCLUSIONS AND FUTURE WORK

Indeed, our research has shown that the BERT language

representation model that has been so successful for NLP tasks

on English texts, can make significant improvements in the

sentiment analysis task of software-related texts when adapted

to the SE domain-knowledge of Stack Overflow posts. The

improvements bring sentiment analysis for SE from the 0.4-

0.6 f-measure range of the previous state-of-the-art up to an

f-measure of 0.87. The primary reason for the improvements

are the large improvements in the f-measure for the negative

class to 0.91 and positive class to 0.78.

Future improvements to sentiment analysis for the SE

domain could focus on more kinds of SE text data (tutori-

als, blog posts), more balanced and larger data sets. These

improvements achieved by BERT for sentiment analysis in

the SE domain can benefit developers in various downstream

tasks, such as extracting problematic API features by detecting

negative sentiment sentences in online API discussion forums,

recommending software libraries by mining developers’ opin-

ions towards different libraries.
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