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Abstract—Software design is an important concern in modern
code review through which multiple developers actively discuss
and improve each single code change. However, there is little
understanding of the impact of such developers’ reviews on
continuously reducing design degradation over time. It is even
less clear to what extent and how design degradation is reversed
during the process of each single code change’s review. In sum-
mary, existing studies have not assessed how the process of design
degradation evolution is impacted along: (i) within each single
review, and (ii) across multiple reviews. As a consequence, one
cannot understand how certain code review practices consistently
contribute to either reduce or further increase design degradation
as the project evolves. We aim at addressing these gaps through
a multi-project retrospective study. By investigating 14,971 code
reviews from seven software projects, we report the first study
that characterizes how the process of design degradation evolves
within each review and across multiple reviews. Moreover, we
analyze a comprehensive suite of metrics to enable us to observe
the influence of certain code review practices on combating or
even accelerating design degradation. Our results show that the
majority of code reviews had little to no design degradation
impact in the analyzed projects. Even worse, this observation
also applies, to some extent, to reviews with an explicit concern
on design. Surprisingly, the practices of long discussions and high
proportion of review disagreement in code reviews were found to
increase design degradation. Finally, we also discuss how the
study findings shed light on how to improve the research and
practice of modern code review.

Index Terms—code review, software design degradation, code
review practices

I. INTRODUCTION

Modern code review is a lightweight, informal, asyn-

chronous, and tool-assisted technique aimed at detecting and

removing issues that were introduced during development

tasks [1]. Both industrial [2] and open-source [3] projects have

been adopting modern code review on a daily basis as a means

to promote the quality of their software systems [1]. Along

with code reviews, developers inspect and discuss the quality

of each other’s code changes before accepting them.

Modern code review may play a key role at both improving

the design quality of a software as well as its maintainabil-

ity [4]–[6]. Previous studies [1], [7], [8] suggest that certain

code review practices, such as the lack of review participation,

may increase design degradation. Other studies have shown

that, along with code review, developers often argue about

software maintainability and suggest design improvements to

the code owners [4], [9], [10].

Code review may or may not be explicitly focused on

design quality [4], [11], [12]. Unfortunately, even with explicit

design discussions, changes performed by developers along

reviews can lead to design degradation. Design degradation

is the process where design decisions progressively worsen

the structural quality of a system, thereby also hampering

external quality attributes such as maintainability. If not prop-

erly avoided, identified and combated, design degradation has

severe consequences to the software health and also possibly

contributing to its (dis)continuation in the future [13]–[18].

Existing studies tend to analyze design degradation consid-

ering only single events, such as the introduction of a single

design problem [18], [19], or simply analyzing the degradation

frequency [8], [20]–[22]. Nevertheless, understanding how the

design degradation evolves over time – across reviews and

within reviews – is of paramount importance. Otherwise, we

are misinforming the research and practice of modern code

review. Since the code review also aims to improve design

quality, one could expect that, over time, the reviews will

gradually reduce multiple degradation symptoms.

To the best of our knowledge, there is no study that performs

an in-depth investigation of the impact of modern code review

– and its practices – on the design degradation evolution.

Hence, it remains unclear whether and to what extent code

review helps to combat design degradation. Moreover, there

is little knowledge about the impact of developers’ design

discussions on degradation. Additionally, we do not know

which practices may strengthen the combat or the acceleration

of design degradation.

This paper addresses the aforementioned limitations through

an in-depth empirical study that characterizes the impact of

modern code review and its practices on design degradation

evolution. To this end, we retrospectively investigate 14,971

code reviews from seven software systems pertaining to two

large open source communities. We analyze the characteristics

of design degradation across reviews and within reviews.

Moreover, we assess how reviews with design discussion tend

to impact design degradation. Finally, we analyze a compre-

hensive suite of metrics to support our observations regarding

the relationship between certain code review practices and the
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combat (or amplification) of design degradation.

Our contributions include: (i) findings on the character-

ization of the code review impact on design degradation,

(ii) findings on how design degradation evolves along with

code reviews, and (iii) statistical analyses concerning the

relationship between certain code review practices and design

degradation. We summarize our study findings as follows:

1) When developers have an explicit concern with design,

the effect on design degradation is usually positive or

invariant. However, the sole presence of design discus-

sions is not a decisive factor to avoid degradation;

2) During the revisions of each single review, there is

often a wide fluctuation of design degradation. This

fluctuation means that developers are both introducing

and removing symptoms along a single code review.

However, at the end of the review, such fluctuations often

result in the amplification of design degradation, even in

the context of reviews with an explicit design concern;

3) Certain code review practices increase the risk of design

degradation, including long discussions and a high rate

of reviewers’ disagreement. The finding on long discus-

sions shows that long discussions are introducing more

than removing degradation symptoms.

II. BACKGROUND AND RELATED WORK

A. Design Degradation

Design degradation is a phenomenon in which developers

progressively introduce design problems in a system [23].

The degradation is caused by design decisions that negatively

impact quality attributes such as maintainability and extensi-

bility [13], [18]. An example of degradation is when a class

is overloaded with multiple unrelated functionalities, making

it difficult to use and increasing the chances of causing ripple

effects on other classes. Given the potential harmfulness of

design degradation, developers need to identify and refactor

source code locations impacted by design degradation.

Empirical studies on design degradation. There are mul-

tiple studies about design degradation [17]–[21], [24]–[27].

Oizumi et al. [21], for example, investigated if degradation

symptoms appear with higher density and diversity in classes

refactored by developers. The authors observed that despite not

being removed by refactorings, some types of symptoms might

be indeed strong indicators of design problems. Ahmed et

al. [26] analyzed how open source projects get worse in terms

of design degradation. The authors identified strong evidence

that the density of design problems build up over time.

None of the aforementioned studies have analyzed how code

changes performed by developers during code reviews impact

on design degradation. In this work, we fill this gap in the

literature by investigating two categories of symptoms, which

are fine-grained (FG) and coarse-grained (CG) smells [28].

FG smells are indicators of structural degradation in the scope

of methods and code blocks [28]. For instance, the Long

Method is a FG smell that occurs in methods that contain too

many lines of code. This smell usually indicates modifiability

and comprehensibility problems. CG smells are symptoms that

may indicate structural degradation related to object-oriented

principles such as abstraction, encapsulation, modularity, and

hierarchy [28], [29]. An example of CG smell is Insufficient

Modularization [28]. This symptom occurs in classes that are

large and complex due to the accumulation of responsibilities.

B. Modern Code review

Modern code review is typically a lightweight, informal,

asynchronous, and tool-assisted practice aimed at detecting

and removing issues that were introduced during development

tasks [1]. Major companies, such as Facebook [30] and Mi-

crosoft [1] use modern code review on a daily basis. Supported

by tools such as Gerrit, the modern code review process is

initiated by one developer referred to as the code owner that

modifies the original codebase and submits a new code change
to be reviewed. These code changes are reviewed by other

developers, i.e., code reviewers, that will inspect it [31]. The

code reviewers inspect the code change to detect issues such

as bugs, design problems, and violations of style [9], [32].

After that, the code reviewers provide their review feedback,

in the form of code review comments, to the code owner.

In turn, the code owner applies fixes and forwards the new

version of the source code for inspection, which can be

followed by another code review comment. This cycle is

iterative and ends up with either the acceptance or rejection

of the integration of the change into the codebase [9], [31].

In our study, we use review to indicate the entire process of

a single code review, from submitting a new code change for

review to approving or rejecting the integration of the change

into the codebase. In addition, we use revision to indicate each

iteration of this process during a single review.

Empirical studies on the impact of modern code review.

Multiple studies have investigated the impact of code review

on software quality [4], [7], [8], [11], [33]. Morales et al. [7]

investigated the relation between code review and code smells.

The authors observed that software components with limited

review coverage and participation are more prone to the

occurrence of code smells compared to components whose

review process is more active. Pascarella et. al [8] investigated

if and how code review influences the severity of six types of

code smells in seven Java open-source projects. The authors

observed that active and participative code reviews have a

significant influence on the reduction of code smell severity.

Another study [11] has investigated the impact of code review

on the structural high-level design. The authors observed that

only 31% of the reviews with design discussions have a

noticeable impact on the structural high-level design. In this

work, we investigate the same set of systems analyzed by

them. Nevertheless, we focused on assessing the impact of

modern code reviews on design degradation. In addition, we

conducted multiple new analysis, as summarized below.

In a nutshell, our work differs from the existing ones in the

following points: (1) we investigated how the occurrence of

design discussions during a review may affect the evolution

of design degradation; (2) while most studies are focused in
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analyzing the degradation as single events, we investigated the

manifestation and evolution of the design degradation process

(increase and reduction) under different aspects, which are

across reviews and along with revisions of each review; and

(3) we used a multiple logistic regression model to evaluate

the impact of code review practices on design degradation.

III. MOTIVATING EXAMPLE

We adopt review 53,827 [34] from the jgit system to

motivate our study and depict the phenomenon we investigate.

The goal of the reviewed task was to “delete non empty

directories before checkout a path”. The task was developed

by one developer and reviewed by two reviewers. As showed

in Figure III, through the course of this particular review,

different aspects of the code change have been discussed. The

main focus of the discussions was related to the functional

requirements. Reviewers were concerned, e.g., with possible

side effects that the change could introduce. Besides that, there

was also great concern about automated testing.

revision
1

revision
6

revision
11

revision
15

revision
16

revision
22

jgit - Review 53827

org.eclipse.jgit.util.FileUtils
org.eclipse.jgit.dircache.DirCacheCheckout 56

4

Discussions about functional
requirements, side effects, and tests.

# of
Symptoms

org.eclipse.jgit.util.FileUtils
org.eclipse.jgit.dircache.DirCacheCheckout 57

16

Disagreement between author and
reviewer regarding structural design.

...

Fig. 1. Example of a code review that introduced degradation symptoms.

Only after 16 revisions, there was a comment about struc-

tural design. The reviewer complained about the use of a

boolean parameter in the method checkoutEntry from the

DirCacheCheckout class. However, the author disagreed with

the reviewer’s comment, arguing that there would be no

problem with the use of the boolean parameter. After that,

the reviewer said that he would not insist, implying that he

continues to disagree with the design decision being discussed.

After that, no other comments regarding the structural design

were made by the reviewers. As a possible consequence of

this disagreement between those involved, we observed that

many symptoms of potential degradation were ignored.

For example, we observed several occurrences of a fine-

grained smell called Magic Number. This type of smell occurs

when literal numbers are used in the code. The use of a

literal number in code structures – such as if statements

and assignments – are not advisable because it does not

make explicit what the number really means. Instead, the

recommended practice is to use constants or enumerations

that make the meaning of numbers explicit. Instead of using

the recommended practice, the author chose to comment on

the code with an explanation of the meaning of the numbers

involved. Although the use of comments is a valid approach, it

could be combined with the use of constants or enumerations

to obtain a higher quality design and to prevent the same

number, and its respective explanatory comment, from having

to be repeated in several parts of the code. This is a problem

that could be identified and removed during code review.

In addition to not seeing possible degradation in the changed

code, new degradation symptoms emerged throughout the

review. For instance, new occurrences of Long Statement,
Complex Method, Empty Catch Clause, and Magic Number list

were introduced in methods of the FileUtils class. Moreover,

other classes that were changed also presented more symp-

toms of possible degradation. Thus, it would be important to

effectively assess the design of changed classes during code

review as design problems may arise or become more severe.

IV. STUDY SETTINGS

A. Research Questions

RQ1: To what extent do modern code reviews impact
design degradation? RQ1 aims at providing evidence on the

impact of code reviews on the evolution of design degradation.

To achieve this goal, we focus on exploring the evolution

of two degradation characteristics: density and diversity of

symptoms. We analyze such characteristics in the context of

two categories of degradation symptoms, which are the fine-

grained and coarse-grained smells. Finally, we analyze the

impact on design degradation caused by two code review

factors. The first factor is the presence of explicit intent of

improving the design. The second one is the presence of

explicit design discussions along with the revisions of a review.

We provide more details about such factors in Section IV-B.

RQ2: How does design degradation evolve along with each
code review? RQ2 aims at investigating how degradation

characteristics evolve along with the revisions that occur along

with each code review. To answer RQ2, we identified and

investigated four different evolution patterns for degradation

characteristics (i.e., density and diversity). Such investigation

provides us with new insights about the evolution of design

degradation throughout the reviewing process.

RQ3: How do code review practices influence design
degradation? RQ3 aims at exploring in depth the relation-

ship of different code review practices with the evolution of

degradation characteristics. A correlation between these two

variables may evidence that certain code review practices

can be used as indicators of increased design degradation.

Also, by answering RQ3, we will be able to reveal whether

according to previous studies [5], [8], [35], [36] code reviews

that are intensely scrutinized, with more team participation,

and reviewed for a longer time, usually has a positive effect

on design degradation.

B. Study Steps and Procedures

Step 1: Select software systems that adopt modern code
review. We selected systems provided by the Code Review

Open Platform (CROP) [37], an open-source dataset that links

code review data with their respective code changes. CROP
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currently provides data for 11 systems, extracted from two

large open source communities: Eclipse and Couchbase. All

systems in CROP employ Gerrit as their code review tool.

Hence, by using CROP, we have access to a rich dataset of

source code changes that goes beyond other platforms, such as

Github. We selected only Java systems included in the CROP

dataset due to the limitations of the DesignateJava tool [38]

(see Step 2). We considered only merged reviews, since they

represent changes that were integrated into the systems. In

addition, we discarded reviews that did not change Java files.

Table I provides details about each selected system, where the

Eclipse and Couchbase systems are presented in the upper

and bottom half of the table, respectively. We also detail

the number of merged reviews and revisions in each system,

followed by the time-span of our investigation.

TABLE I
SOFTWARE SYSTEMS INVESTIGATED IN THIS STUDY

Systems # of Reviews # of Revisions Time span
jgit 3,736 10,718 10/09 to 11/17
egit 3,607 9,937 9/09 to 11/17
platform.ui 3,072 10,282 20/13 to 11/17
linuxtools 2,947 9,149 6/12 to 11/17

java-client 642 2,064 11/11 to 11/17
jvm-core 629 1,851 4/14 to 11/17
spymemcached 338 1,010 5/10 to 7/17

Step 2: Detect degradation symptoms during code re-
view. We used the DesigniteJava tool [38] to detect a total

of 27 degradation symptoms types: 17 coarse-grained (CG)

smells, and 10 fine-grained (FG) smells. Hence, for each sys-

tem under study, we identified these degradation symptoms by

considering each review and submitted revisions that have un-

dergone the code review process. For each submitted revision,

we used CROP to access the versions of the system before and

after the revision took place. Hence, we guaranteed that the

introduced degradation symptoms between each version were

solely introduced by the code changes in the revisions. Table II

lists the 27 symptoms types investigated in our study, where

the CG and FG smells are presented in the upper and bottom

half of the table, respectively. We provide all descriptions,

detection strategies, and thresholds for each type of symptom

in our replication package [39].

TABLE II
DEGRADATION SYMPTOMS INVESTIGATED IN THIS STUDY

Coarse-grained Smells
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction,
Unnecessary Abstraction, Deficient Encapsulation, Unexploited Encapsulation,
Broken Modularization, Insufficient Modularization, Hub Like Modularization,
Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy,
Broken Hierarchy.

Fine-grained Smells
Abstract Function Call From Constructor, Complex Conditional, Complex Method,
Empty Catch Block, Long Identifier, Long Method, Long Parameter List,
Long Statement, Magic Number, Missing Default.

Step 3: Compute degradation characteristics for each
symptom category during code review. We rely on an

existing grounded theory [18] that explains that developers

tend to consider multiple degradation characteristics. We take

into account two characteristics, namely density and diversity,

as metrics to measure the level of design degradation. For

each selected system, we computed these characteristics in

the context of each symptom category (CG and FG smells),

for all the collected reviews and revisions. For each review

and revision, we also used CROP to access the versions of the

system before and after each review and revision. Density was

computed for each version of the system, before and after each

revision, as the sum of the number of symptom instances in the

set of source code files. Similarly, we computed the diversity
as a sum of the number of different symptom types in the set

of source code files.

The computation of density and diversity before and after

revisions, allowed us to generate four different indicators of

design degradation for each revision, where each indicator

represents the differences in density and diversity of FG and

CG smells. In summary, when the degradation characteristic,

either density or diversity, after the revision, is larger than the

characteristic before the revision there is an increase in the
degradation as a result of the revision. Similarly, when the

degradation characteristic after the revision is smaller than the

characteristic before, there is a reduction of the degradation
as a result of the revision. In total, we have computed the four

indicators for 14,971 code reviews and 45,011 revisions.

Step 4: Identify design degradation evolution patterns
across reviews. We identified the design degradation evolution

across reviews by adapting a recent state-of-the-art classifi-

cation provided by a previous work [11]. To find evolution

patterns, we considered only reviews, identified, and filtered in

Step 3, which presented an increase or decrease of degradation.

For this purpose, we considered reviews that: (i) have more

than one revision, and (2) present symptoms of degradation.

We firstly identified the last merged revision of each review,

which represents the degradation evolution that was, in fact,

incorporated into the system. After that, we compared the

degradation characteristics of the last merged revision with

all the other previous revisions of each code review. This

procedure enabled us to investigate how design degradation

evolves across the revisions of each review.

Step 5: Calculate code review activity metrics. Table III

shows the 16 metrics that we used to measure the code

review activity. The first part of Table III describes the control

variables that we computed to avoid some factors that may

affect our outcome if not adequately controlled. As control

variables, we used Product and Process metrics, which have

been shown by previous research to be correlated with design

degradation [40], [41]. The second part of Table III describes

the metrics that we considered as independent variables to

measure the code review activity. We have grouped each

metric in three dimensions. Review Intensity measures the

scrutiny that was applied during the code review process. Re-
view Participation measures how much the development team

invests in the code review process. Finally, Reviewing Time
measures the duration of a code review. We emphasize that

these metrics are extensively used by previous works (e.g., [5],

[7], [36]) to measure the code review activity. Moreover, all

three dimensions investigated in our study suggest practices

that may be favorable or not to combat design degradation.

Step 6: Assess the influence of multiple code review
practices on software degradation. To assess the influence
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TABLE III
INDEPENDENT AND CONTROL VARIABLES USED IN OUR STUDY. THE RATIONALE OF EACH METRIC IS DESCRIBED IN OUR REPLICATION PACKAGE [39]

Type Metric Description
Control variables

Product

DiffComplexity (DC) The difference of the sum of the Weighted Method per Class metric computed on the version before and after review of all
classes being subject of review.

DiffSize (DS) The difference of the sum of the Lines of Code metric computed on version before and after review of all classes being subject
of review.

Patch Size (PS) Total number of files being subject of review.
Process Patch Churn (PC) Sum of the lines added and removed in all the classes being subject of review.

Independent variables

Review
Intensity

Number of Revisions (NR) The number of revisions for a patch prior to its integration.
Discussion Length (DL) Number of general comments and inline comments written by reviewers.
Proportion of Revisions without Feedback
(PRWF)

The proportion of iterations without discussions started by a reviewer, neither posting a message nor a score.

Churn during Review (CDCR) Number of lines that were added and deleted between revisions.

Review
Participation

Number of Reviewers (NR) Number of developers who participate in a code review, i.e., posting a general comment, or inline comment, and assigning a
review score.

Number of Authors (NA) Number of developers who upload a revision for proposed changes. Changes revised by many authors may introduce more
degradation into the system [42], [43].

Number of Non-Author Voters (NNAV) Number of developers who assign a review score, excluding the patch author.
Proportion of Review Disagreement (PRD) A proportion of reviewers that vote for a disagreement to accept the patch, i.e., assigning a negative review score.

Reviewing
Time

Review Length (RL) Time in days from the first patch submission to the reviewers’ acceptance for integration [44], [45].
Response Delay (RD) Time in days from the first patch submission to the posting of the first reviewer message [44].
Average Review Rate (ARR) Average review rate (KLOC/Hour) for each revision.
Typical Review Window (TRW) The length of time between the creation of a review and its final approval for integration, normalized by the size of the change.

of the code review activity metrics in design degradation, we

created a statistical model using the multiple logistic regression
technique. In this model, we used all code review metrics

presented in Table III as predictors of the likelihood of a

code review to impact design degradation; i.e., whether each

code review has either a decreasing or increasing impact

in the degradation characteristics. We used multiple logistic
regression because we are dealing with multiple possible

predictors, and we have a binary variable as a response. To

avoid the effect of multicollinearity on our data, we remove

the code review metrics which have a pair-wise correlation

coefficient above 0.7 [46]. Moreover, we used odds ratios to

report the effect of the metrics over the possibility of a review

impacting design degradation. Odds ratios are the increase or

decrease in the odds of a review degradation impact occurring

per “unit” value of a predictor (metric). An odds ratio < 1
indicates a decrease in these odds, while > 1 indicates an

increase. Most of our metrics presented a heavy skew, to

reduce it, we applied a log2 transformation on the right-

skewed predictors and a x3 transformation on the left-skewed.

Furthermore, we normalized the continuous predictors in the

model to provide normality. As a result, the mean of each

predictor is equaled to zero, and the standard deviation to one.

Finally, to ensure the statistical significance of the predictors,

we employed the customary p-value of 0.05 for each predictor

in the regression model.

Step 7: Manually analysis and classify reviews. In this

step, we used a subset of code reviews that were manually

classified in the work of Paixao et al. [11]. We performed a

cross-check analysis of such reviews considering the commit

messages, discussions between developers, and source code.

We also filtered the reviews according to the criteria presented

in Step 1, which resulted in a subset of 1,779 manually

analyzed reviews. Based on this analysis, we conducted two

classifications. In the first one, we classified reviews as design-
related or design-unrelated, according to the developers’ intent

of improving the structural design of the system. Reviews were

tagged as design-related when design improving intent was

explicit either in the review’s descriptions or in discussions.

The second classification consisted in identifying reviews in

which explicit design discussions occurred. We considered as

reviews with design discussions those in which developers

have demonstrated awareness of the possible impact of their

changes in the system’s design.

We performed such classifications according to the fol-

lowing definition of design: software design is the result of
design decisions that affect structural quality attributes, either
positively or negatively. The manual classification process was

performed by two authors. Each author was responsible for

analyzing the 1,779 code reviews and manually classifying

them. We employed a two-phase process: 1) Each author solely

and separately inspected and classified the same code reviews;

2) the author discussed all the reviews for which there was a

disagreement in the classification until a consensus is reached.

All the data collected in the aforementioned steps as well

as the set of manually classified code reviews are available in

our replication package [39].

V. RESULTS AND DISCUSSIONS

A. Manifestation of Design Degradation

We address RQ1 by analyzing the impact of merged re-

views on two degradation characteristics: (1) density and (2)

diversity of symptoms. Table IV shows the frequency of each

type of impact in all target systems. Columns represent the

symptom characteristics. We decomposed those characteristics

into four distinct groups: Density of Coarse-grained Smells

(CG Density), Density of Fine-grained Smells (FG Density),

Diversity of Coarse-grained Smells (CG Diversity), and Di-

versity of Fine-grained Smells (FG Diversity). They represent

the amount and heterogeneity of degradation symptoms at

different granularity levels. We also categorized the impact

of reviews into positive, negative, and invariant. Positive are

those that end up reducing the degradation characteristic,

while negative ones are those that contribute to increasing

the degradation characteristic. Finally, invariant reviews are

those that do not affect the degradation characteristic.

Invariant reviews are predominant. Table IV shows that

most merged reviews are invariant regarding the evaluated
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TABLE IV
TYPE OF IMPACT OF MERGED CODE REVIEWS

Number of Merged Reviews Per Type of Impact
Impact CG Density FG Density CG Diversity FG Diversity
Positive 1,879 (12%) 2,155 (15%) 101 (<1%) 11 (<1%)

Negative 4,876 (33%) 7,081 (47%) 137 (<1%) 49 (<1%)

Invariant 8,216 (55%) 5,735 (38%) 14,733 (99%) 14,911 (99%)

characteristics. The only case in which the proportion of

invariant reviews is below 50% is for the density of fine-

grained smells. In this case, most of the reviews (47%) had

a negative effect. This result suggests that either (i) modern

code review is not enough to avoid design degradation or (ii)

code review is enough despite being predominantly invariant.

In Section V-B, we explore these two possibilities in detail.

Low impact on the diversity of symptoms. The last two

columns of Table IV reveal that most reviews do not impact

on the diversity of both categories of symptoms. This happens

because the diversity is only impacted when all occurrences

of a smell type are removed from the changed code or when a

new smell type is introduced. We noticed that the introduction

of new types of smell usually occurs in the early stages of

development since the codebase is still small and less complex.

Complete removals of specific smell types usually occur when

significant changes are made to the design structure of the

system. An example of this occurred in the review number

11,099 [47] of the spymemcached system.

Impact of reviewing design related tasks. As explained

in Section IV, we classified a sub-set of reviews into two

groups: design-related and design-unrelated reviews. We used

the Chi-Square test to compare the impact of both groups

of reviews on the degradation characteristics. Table V shows

the results for the density of coarse-grained and fine-grained

smells. We will not discuss the results for diversity as they

were not statistically significant. Nevertheless, all the results

are available in our replication package [39].

TABLE V
CHI-SQUARE RESULTS FOR EVALUATING THE DEPENDENCY BETWEEN

THE TYPE OF IMPACT AND THE RELATION WITH DESIGN

CG Density FG DensityImpact Design Related Design Unrelated Design Related Design Unrelated
Positive 190 (156.35) [7.24] 125 (158.65) [7.14] 151 (131.53) [2.88] 114 (133.47) [2.84]
Negative 443 (477.98) [2.56] 520 (485.02) [2.52] 535 (566.33) [1.73] 606 (574.67) [1.71]
Invariant 250 (248.67) [0.01] 251 (252.33) [0.01] 197 (185.14) [0.76] 176 (187.86) [0.75]

Chi Square X2 = 19.4775, p-value = .000059 X2 = 10.672, p-value = .004815

The last line of Table V shows the Chi-Square factors (X2)

and the p-values. The other lines represent the impact type

(positive, negative, and invariant) of classified reviews. The

2nd and 3rd columns show the distribution of reviews into the

two compared groups regarding their impact on the density of

coarse-grained smells, while the last two columns show the

same information for the density of fine-grained smells. The

numbers in parentheses represent the number of reviews that

are statistically expected in each cell, given their classification

regarding impact (lines) and design-relation (columns). Out-

side of the parentheses is the number of reviews that, in fact,

were observed in each cell. Finally, in brackets is a value that

represents how much each the observed number of reviews

contributed to the composition of the Chi-Square factor. The

higher the difference between expected and observed number

of reviews in the cell, the higher will be the value.

Table V shows that the number of design-related reviews

with a positive or invariant impact on the density of smells is

higher than expected. Moreover, the number of design-related

reviews with negative impact is also lower than expected.

Conversely, there were more design-unrelated reviews with

a negative impact than would be expected. This result is

consistent and statistically significant for both coarse-grained

and fine-grained smells. We interpret this result as evidence

that design-related reviews tend to have a more positive and

neutral impact than other types of review. This means that

when there is an explicit intention to improve the design, the

degradation can be reduced or at least remain invariant.

Impact of design discussions. To better characterize the

reviews, we conducted another comparison. In this case, we

compared reviews where there were explicit design discussions

(With DD) with reviews without discussions related to design

(Without DD). Once again, we applied the Chi-Square test to

compare both groups regarding their impact on the density and

diversity of symptoms. The results were not statistically sig-

nificant for the diversity of CG smells and for both symptoms

of FG smells. Table VI shows the result of this comparison

for the density of coarse-grained smells.

TABLE VI
CHI-SQUARE RESULTS FOR EVALUATING THE DEPENDENCY BETWEEN

THE TYPE OF IMPACT AND THE PRESENCE OF DESIGN DISCUSSIONS

Coarse-grained SmellsImpact With DD Without DD
Positive 63 (64.10) [0.02] 252 (250.90) [0.00]

Negative 235 (195.96) [7.78] 728 (767.04) [1.99]

Invariant 64 (101.95) [14.12] 437 (399.05) [3.61]

Chi-Square X2 = 27.5229, p-value <.001

Our results reveal that design discussions tend to be associ-

ated with a negative impact on the density of coarse-grained

smells. We hypothesize that this result occurred as structurally

degraded code usually draws more attention from reviewers,

often causing some type of design discussion. Nevertheless,

as we observed in our manual analysis, such discussions may

not contribute to the reduction of severe design problems.

Finding 1: Reviews with explicit intents of design im-

provement tend to reduce or avoid design degradation.

However, the sole presence of design discussions is not

enough for avoiding design degradation.

B. Degradation Evolution along a Single Review

We address RQ2 by identifying four patterns of design

degradation evolution along with a single review. The pro-

cedure that we followed to identify these patterns is defined

in Section IV-B (Step 4). For each degradation characteristic

(density and diversity), we classified reviews into four patterns:

invariant, positive, negative, and mixed. Such patterns can be

summarized as follows. Invariant is composed of reviews

in which the characteristic remained the same across all the

revisions submitted during the code review. Positive is the

pattern for reviews in which the last revision reduces the

degradation characteristic when compared to the previous

ones. Negative groups reviews for which the last revision
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presents an increase in the degradation characteristic when

compared to the previous ones. Finally, mixed is composed

of reviews with signs of reduction and an increase of the

characteristic along the revisions.

Table VII shows the degradation evolution within reviews

grouped by symptom category, i.e., coarse-grained and fine-
grained smells, and by characteristic, i.e., density and diver-
sity. We also group the reviews by type, i.e., design-related or

design-unrelated, and different levels of design discussion. In

this table, we show information about a subset composed only

of reviews that improved (Improvement columns) or degraded

(Degradation columns) the structural design, according to the

degradation characteristics. For each case, we present the ratio

of reviews classified into the four aforementioned patterns:

invariant (Inv), positive (Pos), negative (Neg), and mixed (Mix).
Degradation characteristics and their variation across

revisions. For design-related reviews that presented signs of

reduction in degradation characteristics (3rd and 5th main

columns of Table VII), we observed that density and diversity

of coarse-grained smells remain invariant in 71% and 60%

of the cases, respectively. A similar observation applies when

we consider fine-grained smells. The density and diversity of

such category of smells are invariant in 62% and 100% of

the cases, respectively. On the other hand, for design-related

reviews with signs of degradation (4th and 6th main columns

of Table VII), the ratio of invariant reviews for coarse-grained

smells is 54% for both density and diversity. For fine-grained

smells, the values of density and diversity are invariant in 52%

and 56% of the cases, respectively.

These observations indicate that 64% of design-related

reviews, tend to remain invariant, i.e., preserve the same design

impact throughout all revisions. Conversely, 52% of design-

unrelated reviews tend to remain invariant. We also observed

that, for reviews with signs of improvement, the degradation

impact tends to change more when the reviewers provide

design feedback. In such cases, for design-related reviews, the

impact on the density and diversity of coarse-grained smells of

the latest merged revision was different than the previous ones

in 88% and 50% of the cases, respectively. For fine-grained

smells, we observed that in 88% of the cases, the density

changed in the latest merged revision. A similar pattern was

observed in reviews that presented signs of degradation.

Finding 2: For design-related and design-unrelated re-

views, the degradation impact on the latest merged revi-

sion in comparison with all previous ones tends to remain

invariant in 64% and 52% of the cases, respectively.

Signs of degradation reduction. Table VII presents other

observations. For design-related reviews that reduce the den-

sity or diversity of coarse-grained smells (3rd and 5th main

columns), we did not observe any positive evolution, i.e.,

changes that improve the structural quality. This happens even

when the reviewers provide feedback on the design quality.

On the other hand, for the density of fine-grained smells, we

observed positive and negative evolution patterns in 4% and

1% of the cases, respectively. Such results are surprising since

the ratio of reduction of 4% only for fine-grained smells was

below expectations and different from studies that investigate

the impact of refactoring, i.e., a technique that is commonly

used during code review [11], [12], [48].

As expected, the ratio of design-related reviews with a

negative evolution is higher in reviews that present signs of

degradation (4th and 6th main columns of Table VII). In such

cases, for the density of coarse-grained smells, we observed

positive and negative evolution patterns in 1% and 2% of

the cases, respectively. Conversely, we observed a negative

evolution pattern in 8% of degradation reviews for diversity.

Regarding the density of fine-grained smells, we observed

positive and negative evolution patterns in 1% and 3% of the

cases, respectively. Again, we did not observe any positive or

negative evolution related to diversity.

We also observed that for design-related reviews with signs

of either improvement or degradation, in which the design

is discussed in both the description and comments, there

were not successive decreases of the density of coarse-grained

smells. Conversely, we observed an increase in the density

of coarse-grained smells with a ratio of negative evolution is

14%. This is a surprising finding as we expected that design

feedback during code review would lead to improvements,

i.e., a reduction of the design degradation. On the other hand,

considering the level of design discussion in reviews with fine-

grained smells, we observed that when the reviewers provide

design feedback during code review, the evolution patterns are

predominantly positive (22%) and mixed (67%).

These results indicate that design discussions during code

review may influence the review’s impact on degradation

characteristics. However, such impact tends to be positive only

for the density of fine-grained smells, indicating that design

discussions provided by developers during code review do not

help the developers to decrease coarse-grained smells, i.e.,

such symptoms are often aggravated rather than minimized.

In fact, fine-grained smells are simpler to remove and refactor

as they represent smaller readability and understandability

problems [10]. Conversely, coarse-grained smells are often

hard to remove as they represent more severe problems,

requiring more complex refactorings [12].

Finding 3: Code reviews usually do not reduce coarse-

grained smells, even when there is design feedback.

Degradation symptoms and their fluctuation during code
review. Finally, we observed that the ratio of design-related

reviews with a sign of improvement in density and diversity of

coarse-grained smells are often classified as mixed evolution

in a ratio of 27% and 40% of the cases, respectively. Regarding

the impact on the density of fine-grained smells, the ratio of

reviews with a mixed evolution is also the highest in 33%

of the cases when compared to the reviews with positive and

negative evolution. Surprisingly, this pattern of evolution holds

even when the developer provides some feedback on the design

quality. A similar observation applies when we consider the
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TABLE VII
THE RATIO OF REVIEWS GROUPED BY TYPE, LEVEL OF DESIGN DISCUSSION, SYMPTOM CATEGORY, CHARACTERISTIC AND DEGRADATION EVOLUTION

Coarse-grained Smells
Density Diversity

Improvement Degradation Improvement DegradationType Design discussion
Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix

Never 77% 0% 1% 22% 60% 0% 1% 38% 50% 0% 0% 50% 50% 0% 0% 50%
Description 77% 0% 0% 23% 65% 3% 0% 32% 100% 0% 0% 0% 100% 0% 0% 0%
Comments 11% 0% 0% 89% 17% 0% 6% 77% 50% 0% 0% 50% - - - -
Both 29% 0% 14% 57% 25% 3% 5% 68% - - - - 0% 0% 100% 0%

Design-related

All 71% 0% 1% 27% 54% 1% 2% 43% 60% 0% 0% 40% 54% 0% 8% 38%

Never 69% 4% 5% 21% 61% 1% 3% 35% 71% 0% 7% 21% 71% 0% 0% 29%
Description 60% 40% 0% 0% 65% 0% 0% 35% - - - - 0% 0% 0% 100%
Comments 0% 0% 0% 100% 20% 0% 0% 80% - - - - 100% 0% 0% 0%
Both 33% 0% 0% 67% 17% 0% 0% 83% - - - - - - - -

Design-unrelated

All 66% 6% 5% 24% 57% 1% 3% 40% 71% 0% 7% 21% 71% 0% 0% 29%

Fine-grained Smells
Density Diversity

Improvement Degradation Improvement DegradationType Design discussion
Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix Inv Pos Neg Mix

Never 73% 1% 1% 25% 59% 1% 2% 39% 100% 0% 0% 0% 67% 0% 0% 33%
Description 59% 9% 0% 32% 56% 0% 4% 40% - - - - 100% 0% 0% 0%
Comments 11% 22% 0% 67% 14% 0% 0% 86% - - - - - - - -
Both 13% 0% 0% 88% 24% 3% 8% 66% - - - - 0% 0% 0% 100%

Design-related

All 62% 4% 1% 33% 52% 1% 3% 44% 100% 0% 0% 0% 56% 0% 0% 44%

Never 52% 2% 4% 41% 52% 2% 4% 41% 0% 0% 0% 100% 43% 0% 0% 57%
Description 60% 40% 0% 0% 34% 3% 3% 59% 0% 0% 0% 100% 0% 0% 0% 100%
Comments 38% 0% 0% 63% 14% 0% 0% 86% - - - - 0% 0% 0% 100%
Both 100% 0% 0% 0% 13% 0% 0% 88% - - - - - - - -

Design-unrelated

All 68% 1% 5% 26% 48% 2% 4% 46% 0% 0% 0% 100% 30% 0% 0% 70%

design-related reviews that presented signs of degradation, in

which nearly 42% of reviews are classified as mixed.

In our manual analysis, we observed that mixed evolution

usually occurs as a side effect of two factors: (i) deleting

of duplicated or unnecessary code; and (ii) reorganizing the

code to make it more reusable. For instance, consider the code

review 9,015 from the linuxtools, which caused a significant

improvement regarding coarse-grained smells. This review has

a total of 11 revisions, in which fluctuation occurred after

the following feedback provided by reviewer: “This class
and ProviderOptionsTab are almost identical except for a few
small differences [...]. Would it be possible to define some
abstract class and have these inherit override just what they
need?“. Such suggestion led to an increase in smells that affect

abstraction and encapsulation issues.

These observations suggest that even if the developers

identify and remove fine- and cross-grained smells, they still

will not be able to see all the ramifications of the impact of

their changes along revisions. However, at the end of the code

review process, i.e., in the last merged revisions, the developers

tend to preserve the positive impact on the system’s internal

structure. We conjecture that this happens because the existing

modern code review tools still lack a mechanism to provide

developers a just-in-time recommendation about the impact of

their changes on software design degradation [49].

Finding 4: Nearly 34% of design-related reviews present

a mixed evolution. This happens even in reviews that

present signs of improvement and degradation. This result

motivates the proposition of recommenders to better

support developers, in the improvement of design quality

and prevention of design problems during code review.

C. Code Review Practices and Design Degradation

We address RQ3 by assessing the influence of code re-

view practices on software degradation. We have applied a

multiple logistic regression to support this assessment (Step

6 of Section IV-B). Table VIII summarizes the main results.

Each row represents the results for each project, separated by

symptom category (coarse-grained (CG) and fine-grained (FG)

smells) and degradation characteristic (density and diversity).

The “all” row represents the results for the data of all projects

combined. The gray cells represent the metrics that presented

statistical significance relation in a specific combination of

symptoms and characteristics. Moreover, we used the ↑ symbol

to indicate a degradation risk-increasing effect, and the ↓
symbol to indicate a degradation risk-decreasing effect.

The data of three projects were omitted from the Table VIII,

but can be fully seen on our replication package [39]. We

removed these data because only a few metrics were statis-

tically significant, but they are considered on the “all” row.

Additionally, the control variables (Section III) were omitted,

but when applied on the model, only the DiffComplexity
and DiffSize variables were statistically significant across

projects. To understand if the control variables were collinear

with the code review metrics, we executed the model only with

the control variables, and the results were similar. This implies

that our code review metrics were capable of working as a

standalone model to verify the risk-increase or risk-decrease

effect on degradation in each system. Next, considering only

statistically significant cases, we discuss the code review prac-

tices by risk-increasing and risk-decreasing effects as follows.

Risk-increasing effect on software degradation. We ob-

served that the metrics DL, PRWF, NNAV, PRD, RL, TRW, ARR,

and RD presented a risk-increase tendency. By analyzing each

metric individually, we observed that four metrics sustained

a risk-increasing tendency across projects: Discussion Length

(DL), Proportion of Revisions without Feedback (PRWF), Pro-

portion of Review Disagreement (PRD), and Review Length

(RL). Such behavior was expected for the PRWF and PRD
metrics, since they confirm the rationale presented in Table III.

Conversely, the results for the DL, RL and TRW metrics are
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TABLE VIII
CODE REVIEW ACTIVITY METRICS OF REVIEWS WITH POSITIVE AND NEGATIVE IMPACT, GROUPED BY SYSTEM, SYMPTOM, CHARACTERISTIC AND

DIMENSION. THE ↑ SYMBOL TO INDICATE A RISK-INCREASING EFFECT, AND THE ↓ SYMBOL TO INDICATE A RISK-DECREASING EFFECT

Review Intensity Review Participation Review TimeSystem Symptom Characteristic DL PRWF CDCR NA NNAV PRD RL TRW ARR RD
Density 1.023 1.129 1.713 1.008 0.772 ↓ 1.143 1.191 0.856 1.127 1.04CG Diversity 1.046 1.134 1.705 1.007 0.768 ↓ 1.132 1.181 0.865 1.118 1.034
Density 1.334 1.04 1.472 1.014 0.777 ↓ 0.93 1.028 1.279 ↑ 0.897 1.035

jgit
FG Diversity 1.334 1.04 1.472 1.014 0.777 ↓ 0.93 1.028 1.279 ↑ 0.897 1.035

Density 1.497 ↑ 0.941 0.342 ↓ 0.97 1.116 1.01 1.306 ↑ 0.701 ↓ 1.094 1.018CG Diversity 1.321 0.994 0.4 ↓ 0.961 1.107 1.075 1.279 ↑ 0.587 ↓ 1.294 ↑ 1.009
Density 1.416 ↑ 0.976 0.743 0.956 0.76 ↓ 1.012 1.322 ↑ 1.069 0.903 1.169 ↑egit

FG Diversity 1.354 ↑ 0.974 0.701 0.961 0.767 ↓ 1.025 1.366 ↑ 1.069 0.903 1.153 ↑
Density 1.112 1.569 ↑ 0.864 1.166 1.257 ↑ 0.912 1.249 0.713 ↓ 1.118CG Diversity 1.116 1.582 ↑ 0.854 1.151 1.268 ↑ 0.898 1.216 0.732 ↓ 1.14
Density 0.873 1.533 ↑ 0.842 ↓ 1.231 ↑ 1.394 ↑ 0.94 1.021 0.826 1.11

linuxtools
FG Diversity 0.873 1.533 ↑ 0.842 ↓ 1.231 ↑ 1.394 ↑ 0.94 1.021 0.826 1.11

Density 1.073 1 0.723 ↓ 0.971 1.175 0.932 1.032 0.827 1.268 0.872 ↓CG Diversity 1.071 1 0.717 ↓ 0.946 1.176 0.938 1.031 0.82 1.275 ↑ 0.877 ↓
Density 1.051 0.998 0.737 ↓ 0.984 1.053 0.979 1.265 ↑ 0.899 1.272 ↑ 0.909

platform.ui
FG Diversity 1.051 0.998 0.737 ↓ 0.984 1.053 0.979 1.265 ↑ 0.899 1.272 ↑ 0.909

Density 1.115 ↑ 1.145 0.96 ↓ 1.16 1.005 1.045 ↑ 0.887 1.076 ↑ 0.917CG Diversity 1.106 ↑ 1.162 0.948 ↓ 1.158 1.016 1.037 ↑ 0.845 ↓ 1.12 ↑ 0.913
Density 1.155 ↑ 1.092 0.962 1.043 1.025 ↑ 1.079 ↑ 1.101 0.957 0.954

All
FG Diversity 1.144 ↑ 1.091 0.963 1.045 1.028 ↑ 1.084 ↑ 1.102 0.955 0.953

unexpected, since they differ from that were reported by

related studies [7], [44], [45], we will discuss latter in this

section. By considering the degradation symptoms, all metrics

presented themselves as good predictors for all symptoms and

characteristics, except for a few metrics: the Number of Non-

Authors Votes (NNAV) metric, that on the project linuxtools

was only related to fine-grained smells, as a risk-increasing

factor; and Average Review Rate (ARR) that was related to

coarse-grained smells on 66% of the cases as a risk-increasing

factor. Moreover, the Proportion of Revisions without Feed-

back (PRWF) metric stood out as the metrics with the highest

risk-increasing effect, followed by the Discussion Length (DL)

metric, reaching values of 1.58, and 1.49, respectively.

Long discussions are not reflected as concerns about
structural degradation. By considering the intensity dimen-

sion metrics (Table VIII), we observed that two of the three

metrics presented a degradation risk-increase tendency in at

least one project. The metrics Discussion Length (DL) and

Proportion of Revisions without Feedback (PRWF) preserved

this behavior in most of the significant cases. This observation

indicates that developers tend to introduce more instances and

more types of degradation symptoms in reviews that either has

longer discussions or do not have any discussions started by

human participants. As illustrated in our motivating example

(Section III), and also confirmed in our manual analysis,

long discussions do not necessarily indicate that developers

and reviewers are concerned about the structural quality of

the code. Reviewers can often be concerned with functional

aspects of the system, paying less attention to possible signs

of degradation. Thus, when there are extensive discussions

about specific features, the code tends to undergo further

modifications that increase design degradation.

Finding 5: Reviews for which the practice of long

discussions was applied are often associated with a higher

risk of software degradation.

A high proportion of review disagreement leads to
a degradation risk-increasing effect. By considering the

metrics of the participation dimension, only the Proportion of

Review Disagreement (PRD) metric presented a risk-increase

tendency across all projects. Nevertheless, the Number of Non-

Author Voters (NNAV) metric raised some concerning results

on the linuxtools system. As illustrated in our motivating

example (Section III), this result indicates that reviews with

a high rate of acceptance discrepancy tend to introduce more

instances and more types of degradation symptoms.

Finding 6: Reviews following the practice of participa-

tion with a higher rate of review disagreement lead to a

higher risk of software degradation.

Lack of reviewers’ attention and code review speed
increase the risk of degradation. Table VIII also shows that

the longer (RL) and faster (ARR) review takes to be finished,

the higher the risk of degradation. At first, this result seems

to be counter-intuitive. However, in our manual analysis, we

observed that certain reviews often take a longer time due

to the lack of attention of the reviewers during the code

review. This observation suggests that reviewers will be able to

identify more design problems that are overlooked during the

code review, whether they perform a careful code inspection

with an appropriate code review rate. By considering our

motivating example again, we can observe that this review

takes a long time from the first patch submission to the

reviewer’s acceptance for integration (Aug 16, 2015 to Oct

9, 2015). Moreover, we observed a lack of attention from the

reviewer of revision 7 to revision 10. For instance, the code

author has addressed the reviewer’s lack of attention with the

following comment: “[...] do you have time for a review?“.

After that comment, the code author only got a response from

the reviewer after 16 days. Within this time, the code author

continued to modify the source code without feedback from

the reviewers.

Finding 7: Reviews tend to be longer due to the lack of

attention from the reviewer during the code review pro-

cess, and this increases the risk of software degradation.

Risk-decreasing effect on software degradation. Ta-

ble VIII shows that the Churn During Code Review (CDCR),
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Number of Authors (NA), Number of Non-Authors Votes

(NNAV), Time Review Window (TRW), Average Review Rate

(ARR), and Response Delay (RD) metrics present a risk-

decreasing tendency. Moreover, the metrics NA, and NNAV
also presented consistent results, as the NNAV showing a

risk-decreasing likelihood for most target systems, except

for the linuxtools system. Moreover, this metric was risk-

decreasing in 75% of the statistically significant cases. Thus,

it can be considered as a reliable predictor of reduction in

structural degradation. CDCR showed good results on egit

and platform.ui projects, performing very good results on egit

(0.34). Looking over the dimensions, there is evidence that

the CDCR metric is a reliable predictor of risk-decreasing for

the Intensity Dimension, the NNAV represents the Participation

Dimension, on Time Dimension no metric really outcome as

a reliable predictor. We can see a minor difference between

symptoms; the risk-decreasing appeared more (60%) on the

coarse-grained symptom.

Active engagements of multiple reviewers decrease the
risk of degradation. By considering the participation di-

mension, the Number of Authors (NA), and the Number of

Non-Authors Votes (NNAV) metrics showed to be reliable

predictors of risk-decreasing. However, only the NA preserved

this behavior across projects. Thus, the higher the number of

authors, the higher will be the likelihood of degradation risk-

decreasing. This observation is aligned with previous stud-

ies [5], [8], [35], [36], by suggesting the greater the number

of authors revising the proposed changes during reviews, the

more design issues could be identified and removed, especially

coarse-grained smells, whose identification and removal often

required a better understanding of the codebase.

Finding 8: Reviews with active engagements of multiples

reviewers tend to present a degradation risk-decreasing

effect, especially for coarse-grained smells.

VI. THREATS TO VALIDITY

Construct and Internal Validity. Aspects such as the preci-

sion and recall of degradation symptoms may have influenced

the results of this study. We tried to mitigate this threat by

selecting a detection tool that has been successfully used in

recent studies involving design degradation [21], [38], [50].

We have selected a set of 12 code review activity metrics

that helped us measure different dimensions of code review

practices, i.e., intensity, participation, and time. The rationales

for using metrics are supported by previous studies (e.g., [7],

[36]). We wrote scripts to automate the design degradation

evolution pattern computation and code review metrics. These

scripts were validated by two of the paper authors. Regarding

the code review activity metrics, we measured some metrics

based on heuristics. For instance, we have assumed that the

review length is the time that elapses between the time a

patch has been uploaded and when it has been approved for

integration. Thus, although there is a limitation of measuring

the code review practices, we rely on state-of-the-art practices

based on heuristics to recover this kind of information.

Conclusion and External Validity. We carefully performed

our descriptive and statistical analysis. About the descriptive

analysis, four paper authors contributed to the analysis of

code review impact on design degradation. For the statistical

analysis, we rely on the Multiple Logistic Regression, as

previously stated in Section V-C, we reduced the heavy skew

of our metrics applying a log2 transformation on the right-

skewed predictors and a x3 transformation on the left-skewed.

Moreover, we normalized the continuous predictors in the

model to provide normality, and, to ensure the statistical

significance, we employed the customary p-value of 0.05 for

each predictor in the regression model. Furthermore, in our

statistical model, we controlled some factors that may affect

our outcomes via product and process metrics.

Regarding the qualitative analysis of design-related reviews,

we employed a two-phase manual classification procedure. In

the first, all reviews were classified by two authors. In the

second phase, for all reviews in disagreement, both authors

discussed to reach a unified classification. Finally, the analysis

of code review impact on design degradation is based on

two degradation characteristics – density and diversity of

symptoms. One might expect different results using other

characteristics. We relied on density and diversity because they

are widely-adopted for design degradation analysis and have

been evaluated in previous studies [18], [21], [51].

VII. CONCLUSION AND FUTURE WORK

In this work, we analyzed the impact of modern code review

on evolution of design degradation, by mining code review

data from two large open source communities. Our findings

pointed out that design discussions may not be enough for

avoiding design degradation. Conversely, reviews with explicit

intent to improve the design tend to have a positive or invariant

impact on design degradation. We also observed that, during

the revisions of each review, there is often a wide fluctuation

of design degradation. Such fluctuations often result in the

amplification of design degradation, even in design-related re-

views. Finally, we observed that certain code review practices

might increase the risk of design degradation, including long

discussions, and a high rate of reviewers’ disagreement.

As future works, we aim to (i) evaluate the effect of

code reviews on other types of degradation symptoms, and

different characteristics of design degradation; (ii) expand the

code review metrics and dimensions to understand their role

on software degradation, and (iii) investigate mechanisms to

better support developers, in the continuous improvement of

design quality during code review.
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exploratory study of the impact of antipatterns on class change-and fault-
proneness,” Emp. Softw. Eng. (ESE), vol. 17, no. 3, pp. 243–275, 2012.

[42] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng. (TSE),
vol. 26, no. 7, pp. 653–661, 2000.

[43] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code! examining the effects of ownership on software quality,” in
19th FSE, 2011, pp. 4–14.

[44] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in 36th ICSE. ACM,
2014, pp. 356–366.

[45] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the sources
of variation in software inspections,” ACM Trans. Softw. Eng. Methodol.
(TOSEM), vol. 7, no. 1, pp. 41–79, 1998.

[46] C. F. Dormann, J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré,
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