
Few-Shot Guided Mix for DNN Repairing

Xuhong Ren1∗, Bing Yu2∗, Hua Qi2, Felix Juefei-Xu3, Zhuo Li2, Wanli Xue1†, Lei Ma2†, Jianjun Zhao2

1 School of Computer Science and Engineering, Tianjin University of Technology, China
2Kyushu University, Japan 3Alibaba Group, USA

Abstract—Although deep neural networks (DNNs) achieve
rather high performance in many cutting-edge applications (e.g.,
autonomous driving, medical diagnose), their trustworthiness on
real-world scenarios still posts concerns, where some specific
failure examples are often encountered during the real-world
operational environment. With the limited failure examples col-
lected during the practical operation, how to effectively leverage
such failure cases to repair and enhance DNN so as to generalize
to more potentially suspicious samples is challenging, but of
great importance. In this paper, we formulate the failure-data-
driven DNN repairing as a data augmentation problem, and
design a novel augmentation-based repairing method, which
to the best extent leverages limited failure cases. To realize
the DNN repairing effects that generalize to specific failure
examples, we originally propose few-shot guided mix (FSGMix)
that augments training data with the guidance of failure examples.
As a result, our method is able to achieve high generalization to
the collected failure examples and other similar suspicious data.
The preliminary evaluation on CIFAR-10 dataset demonstrates
the potential of our proposed technique, which automatically
learns to resolve the potential failure patterns in the DNN
operational environment.

Keywords-Deep neural network; repair; data augmentation

I. INTRODUCTION

Deep neural network (DNN) based software systems are

becoming more and more pervasive nowadays, which are

deployed across many application domains, ranging from per-

ception and decision making in autonomous driving, to identity

verification for various access control bottlenecks such as the

ones used by the airport customs worldwide, mobile facial

authentication for payment verification, and object tracking

and control capabilities for heavy-duty camera drones, etc.
However, sometimes we, whether as DNN software developers

or end-users of a DNN-based product, often overestimate the

trustworthiness of DNN software. Unfortunately, the fact is that

the current DNN software systems are far from being perfect

and its erroneous behavior may lead to detrimental outcomes,

especially for those deployed in safety- and security-critical

scenarios. For example, ever since the inception of assisted and

semi-autonomous driving capability, numerous car accidents

occurred [21]. Another common victim example of failed DNN

software is financial fraud due to identity authentication failure

when the attackers try to spoof the DNN-based authentication

systems [18], and the list goes on and on.

However, how to effectively repair DNN software after

observing failure cases under its operational environment

∗ Xuhong Ren and Bing Yu contribute equally to this work. † Wanli
Xue (xuewanli@tjut.edu.cn) and Lei Ma (malei@ait.kyushu-u.ac.jp) are the
corresponding authors.

Failure Cases

Deployment &

Operation

Training /

Validation

FSGMix

Training

Data

Training

Program

DNN

DNN Repair

Fig. 1: The workflow of FSGMix for DNN repair.

remains an open research question. In traditional software

repair pipeline, fault localization is necessary to perform any

types of repairs. However, unlike traditional software, the

logic of any DNN-based software is not coded line by line,

but rather manifested through the weights and connections

between the neurons which are evolved from pure randomness

to meaningful states before and after the training of such a DNN

software, given abundant training data, for a particular task,

be it recognition [7], detection [20], or even more complicated

policies such as playing the game of Go.

A promising path of repairing DNN-based software is data-

driven, i.e., retrain or fine-tune the DNNs with failure cases

so that the DNNs would hopefully make correct decisions

when similar data is observed. However, two major challenges

still remain. (1) In many applications where DNN software is

deployed, the failure cases are quite scarce. The total number

of failure cases amounts to only a tiny portion of the training

corpus, making the repair through fine-tuning based on failure

cases almost futile. (2) Even if the failure cases were sufficient,

there exists another big challenge due to the fact that any well-

trained DNNs can only deal with data within the bounds of

certain high-dimensional distribution, as captured roughly by

the training data. Such a distribution captures the amount of

variation found in the training corpus. However, the real-world

operational environment is usually much more complex, full

of unseen data, and data that lie outside of such distribution

(i.e., distribution shift). A gap exists between the data variation

in the real-world environment and that of the training corpus.

Therefore, it still remains unclear how successfully fixing these

known failure cases can generalize to prevent the repaired

DNNs from failing on similar future unseen cases in the wild.

In this work, we propose a novel DNN repair method that

aims at solving the aforementioned two challenges, i.e., the

717

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00079

scarcity issue and the generalization issue. Specifically, we

formulate the failure-data-driven DNN repairing as a data

augmentation problem, and design a novel augmentation-

based repairing method while achieving high data efficiency,

i.e., to the best extent leveraging limited failure cases. Data

augmentation not only solves the scarcity problem by allowing

the limited amount of meaningful retraining data to be perturbed

into many folds of usable ones, but also leads to better

generalization on these failure cases. To further make the

failure case augmentation more data-efficient, we devise a

novel learning mechanism for the augmenter itself guided by

the failure cases. In this way, how the retraining data are

augmented for repairing the DNNs is directly supervised by

the error signals provided by the failure cases. We call this

method few-shot guided mix (FSGMix) that augments training
data with the guidance of failure examples. As a result, our

method is able to achieve high generalization to the collected

failure examples and other similar suspicious data.

The DNN development and enhancement are an iterative and

incremental process as depicted in Figure 1. After collecting the

failed examples, how to, to the best extent, leverage the failure

case information to guide the DNN repairing process efficiently

and effectively by means of learnable data augmentation on

the training data for the next development iteration, would a

be a promising direction that this paper tries to explore. We

conduct preliminary evaluations on CIFAR-10 dataset and the

results demonstrate the potential of our proposed technique,

which automatically learns to resolve the potential failure

patterns in the DNN operational environment. To the best

of our knowledge, this work is the first that learns to repair of

DNN guided by failure case driven augmentation.

II. FEW-SHOT GUIDED MIX

A. Data Augmentation for DNN Repairing

Given a labeled dataset Do for classification, we can

train a DNN that is denoted as fθ(·) with θ representing

its parameters. A well-trained DNN usually achieves high

classification accuracy on the testing dataset that has similar

distribution with Do. However, some failure examples would

often occur when deploying the DNN in the operational

environment, since the training dataset Do could hardly cover

all possible and diverse data, as well as the potential noise

patterns that occur in the real world. Even though, it is not

difficult to collect a set of failure examples and construct a small

dataset denoted as Df , after some operation time. To better

adapt to the real-world operational environment, we should

properly repair the DNN on the collected failure examples

so far, while trying to generalize to future similar data. The

continuous DNN repairing and enhancement on the given

limited data while achieving high generalization capability

is rather challenging but of great importance for real-world

applications. A DNN is often iteratively improved through

continuous enhancement.

A straightforward repairing solution is to fine-tune the DNN

with Df . However, such a fine-tuned model easily overfits

the failure examples and hardly generalizes to similar data.

Although recent works demonstrate the effectiveness of random

augmentation to improve DNNs generalization on degradation

data, existing augmentation solutions are unable to repair a

DNN on a target set of failure examples. Inspired by the recent

AugMix method [9], we introduce FSGMix, a failure-example

guided data augmentation technique for repairing of a DNN on

a given failure set while trying to achieve certain generalization

capability. Next, we first formulate the DNN repairing as a

data augmentation problem. In general, the data augmentation

problem consists of two key parts: augmentation operation set
(i.e., O = {Oi}N1 including N augmentation operations, e.g.,
rotation and colorization, and an operation weighting strategy,
i.e., w = [w0, . . . , wi, . . . , wN] = S(φ). φ denotes the random

sampling distributions and wi ∈ [0, 1] represents the weight

for each operation. When training a DNN (e.g., fθ(·)), the data

augmentation often follows the steps below:

(i) Randomly sampling an example I from training set Do.

(ii) Sampling the operation through S(φ).
(iii) Augmenting data I with all operations {Oi|wi > 0,Oi ∈

O}, obtaining the augmented examples {Îi = Oi(I)|Oi ∈
O}.

(iv) Mixing all augmented examples with their weights into a

final augmented example, i.e., Î =
∑N

i=1 wiÎi.

The augmented examples are packed with the original ex-

ample I for training, to improve the DNN quality. Considering

the whole process of the data augmentation, we observe

that the random sampling distribution (i.e., φ) can directly

affect the augmentation results when we have a fixed set of

augmentation operations (i.e., O = {Oi}N1). For example, when

φ is a uniform distribution, we have {wi =
1
N }Ni=1, where all

augmentation operations share the same weight. Obviously, a

fixed and pre-defined distribution could not sample weights that

perfectly adapt to a specific dataset containing failure examples

collected from the real-world environment. As a result, we need

to develop a new operation sampling method by considering

the failure examples and generating suitable {wi}Ni=1.

B. Repairing by Few-Shot Guided Mix Augmentation

In this paper, we propose a few-shot guided mix method

for DNN repairing given a target failure sample set. FSGMix
generates the operation weights {wi}Ni=1 according to collected

failure examples and can be embedded into the data augmen-

tation method introduced in Section II-A.

In particular, for the jth example Ij in the collected

failure dataset Df , we first learn its operation weights wj =
[wj

1, . . . , w
j
N] to enable the augmented version (i.e., Îj =∑N

i=1 w
j
i Î

j
i), to be correctly classified by the DNN. To this

end, we solve the following problem:

argmin
{wj

i }N
i=1

J(fθ(
N∑

i=1

wj
i Î

j
i), y

j) (1)

where J(·) is the cross-entropy loss for image classification

and yj is the annotation of Ij ∈ Df . For each failure example,

we obtain its corresponding weights wj = [wj
1, . . . , w

j
N]. As

a result, we collect a total of M weight vectors and construct

718

Algorithm 1: Few-shot Guided Mix (FSGMix)

Input: Training dataset Do with K images, collected failure
examples Df with M images, a pre-trained DNN fθ(·),
augmentation operation set O.

Output: Repaired DNN fθ̄(·).
Few-shot operation sampling
for j = 1 to M do

• Loading the jth image Ij from Df ;

• Randomly initializing wj ;

• Calculating wj by solving Eq. (1)
via the gradient descent ;

Calculating the GMM φgmm on W with EM algorithm;
Data augmentation for DNN repairing
for k = 1 to K do

• Loading the kth image Ik from Do ∪ Df ;

• Sampling two weight vectors wk
aug1 = S(φgmm) and

wk
aug2 = S(φgmm);

• Calculating two augmented images:
Îkaug1 = Augment(Ik,wk

aug1) , and

Îkaug2 = Augment(Ik,wk
aug2)

1;
• Calculating the loss function:

J(fθ(I
k), yk) + λJS(fθ(I

k), fθ(Î
k
aug1), fθ(Î

k
aug2), y

k);
• Updating the parameters of fθ(·);

a set W = {wj}Mj=1 with M being the size of Df . Then, we

use the W to fit a N -dimensional Gaussian mixture model

(GMM) denoted as φgmm via the expectation maximization

(EM) algorithm. Finally, we can replace the φ in section II-A

by φgmm and realize the few-shot guided mix (FSGMix).

C. Algorithm

We summarize the whole process of FSGMix in Algorithm 1.

To be specific, we first perform few-shot operation sampling
and use the collected failure examples (i.e., Df), to estimate

the GMM distribution φgmm. The Eq. (1) is then minimized via

the gradient descent algorithm. After this, the GMM is used to

produce random weights for different augmentation operations

and two augmented images are generated for each image in

the original training dataset Do. Finally, the DNN’s parameters

are updated by minimizing the cross-entropy loss and Jensen-

Shannon divergence loss (simplified as JS(·)). Intuitively, our
FSGMix uses the failure examples to estimate the augmentation

operation sampling distribution, thus is able to indicate how

to generate augmented examples to repair the DNN.

III. PRELIMINARY EVALUATION

A. Subject Model and Dataset.

Model architecture. In this paper, we validate the effective-

ness of our method via the image classification task with a

state-of-the-art DNN architecture as fθ(·), i.e., wide residual

network (WideResNet)[24] that is constructed by a series of

residual blocks and benefits from avoiding vanishing gradient

during training process.

Training dataset. We select CIFAR-10 dataset as the subject

dataset, containing 10 classes of 32 × 32 × 3 color natural

1Augment denotes process of augmenting an image with a given weight
vector, corresponding step (iii) and (v) in section II-A.

images where each class has 5,000 images for training. Then,

we regard all 50,000 images as the training dataset, i.e., Do in

the Algorithm 1 with K=50,000.

Testing dataset. To validate whether our method could help

the DNN generalize well to specific failure examples and other

similar suspicious data, we modify the CIFAR-10’s testing

dataset containing 10,000 images.

Specifically, we use the augmentation operations introduced

in section III-A with a randomly generated weight vector

(denoted as wdeg) to degrade all images in the testing dataset.

The degradation process could be formulated as: Îtest =∑N
i=1 w

k
deg,iOi(Itest) where Itest is a testing image and Îtest

denotes the corresponding degraded image.

Then, we use the model fθ(·) pre-trained on Do to classify all

degraded images and get mis-classified images. We randomly

select 1,000 images as the ‘specific’ failure examples and

obtain Df . The rest images serve as the testing dataset, i.e.,
Dt, to validate whether the model trained with our method

could achieve higher accuracy than the models with baseline

training methods. Note that, for different wdeg, we would obtain

different degradation testing datasets.

B. Evaluation Setups

Augmentation operations. For the augmentation operation

set O, we consider three typical augments (i.e., autocon-
trast, rotate, solarize) and their four combinations (auto-
contrast◦rotate, autocontrast◦solarize, rotate◦solarize, and

autocontrast◦rotate◦solarize) as seven augments.

Hyperparameters for training. We train WideResNet with

SGD optimizer using a cosine learning rate which is initially

set as 0.1. After 100 epochs of training, we save the best model,

that achieves the highest testing accuracy.

Baselines. We consider the following baseline methods: 1)

using the collected failure examples to fine-tune the DNN model

without data augmentation, and we denote this method as ‘FT-

woAug’. 2) using the state-of-the-art augmentation method

AugMix [9] augmented examples to fine-tune the DNN model,

and we denote it as ‘AugMix’.2 3) We consider three variations

of our method: 1) the first one uses the GMM for modeling

sampling distribution. 2) the second one uses multivariate

normal distribution (MVN) where all weights have independent

distributions. 3) the third one uses a fixed weight vector for data

augmentation. We name the three methods as ‘FSGMix(GMM)’,

‘FSGMix(MVN)’, and ‘FSGMix(Fixed)’, respectively. Since

all augmentation methods contain random module, we run ten

repetitions for each configuration and report the average results.

Metric. In general, with the CIFAR-10’s training dataset

(i.e., Do), we first obtain a pre-trained WideResNet model

which misclassifies all images in Df . Then, our goal is to

repair this model with baselines and our methods, and enhance

the testing accuracy, i.e., Dt whose images are similar to the

images in Df , is regarded as the evaluation metric.

2For a fair comparison, we make the AugMix use the same augmentation
operation set but independent sampling distribution with our method.

719

Training set Accuracy

Pre-trained model Do 0

FT-woAug Df 0.1371
AugMix Df 0.2230
FSGMix(Fixed) Df 0.2098
FSGMix(MVN) Df 0.2205
FSGMix(GMM) Df 0.2689

FT-woAug Do+Df 0.1542
AugMix Do+Df 0.2630
FSGMix(Fixed) Do+Df 0.2285
FSGMix(MVN) Do+Df 0.2693
FSGMix(GMM) Do+Df 0.2717

TABLE I: Comparison results with baseline methods by fine-

tuning the pre-trained model. The comparison is conducted

under two training sets: Df and Do+Df, respectively.

C. Preliminary Results

We show the comparison results with baselines and our

method’s variations in Table I containing two setups: 1) only

using collected failure examples, i.e., Df, for fine-tuning the

pre-trained model. 2) using both training dataset, i.e., Df+Do.

Comparison with baselines. In general, our method FS-

GMix(GMM) obtains the highest accuracy under different

sizes of training set. Obviously, the naive fine-tuning method

without any data augmentations, i.e., FT-woAug, has limited

generalization on the testing dataset, although the images are

similar to the collected failure examples. Compared with the

SOTA data augmentation method, i.e., AugMix, our methods

FSGMix(GMM) achieves higher accuracy, which demonstrates

its advantages in generalizing to specific failure examples.

Considering the results on training sets having different

size, we observe that all methods with the larger training

set (i.e., Df+Do) achieve higher accuracy than the results

on smaller one (i.e., Df). However, the accuracy difference

of our FSGMix(GMM) is much smaller than that of other

methods. It demonstrates that our method could still keep high

generalization with a small dataset.

Ablation study. According to the results of our three varia-

tions, we observe that: 1) using fixed weights for combining

augmented examples get low accuracy. 2) jointly modeling all

weights with GMM could achieve much better accuracy than

using MVN that modeling each weight independently.

D. Analysis

Toleration to different kinds of failure examples. As

introduced in section III-A, we use wdeg to degrade testing

images, which represents a kind of failure examples that

cause DNN misclassification. Then, it is meaningful to study

whether our repaired model relying on wdeg could still work

under failure examples relying on other wdeg. To this end, we

randomly generate three wdeg, i.e., wdeg-1, wdeg-2, and wdeg-3,

resulting in three testing sets of failure examples. Then, we

use the repaired models in Table I to classify the three testing

sets and report the results in Table II. Compared with the

results in Table I, although the accuracy of all our methods

becomes lower than the results in Table I, our FSGMix(GMM)

Training set wdeg-1 wdeg-2 wdeg-3

FSGMix(Fixed) Df 0.0985 0.0951 0.0868
FSGMix(MVN) Df 0.1762 0.1524 0.189
FSGMix(GMM) Df 0.2186 0.2249 0.2231

FSGMix(Fixed) Do+Df 0.1093 0.1232 0.1154
FSGMix(MVN) Do+Df 0.1996 0.2043 0.2055
FSGMix(GMM) Do+Df 0.2313 0.2108 0.189

TABLE II: Toleration to different kinds of failure examples.

still achieves the highest accuracy on wdeg-1 and wdeg-2 while

obtaining slightly accuracy than FSGMix(MVN) on wdeg-3.

IV. RELATED WORK

Testing and repairing. Recently, we have witnessed the

rapid progress of the testing DNNs [27, 1]. Several structural

testing adequacy criteria (e.g., neuron coverage, surprise

adequacy) for DNNs are proposed to approximately measure

the testing sufficiency. With the guidance of these criteria,

automated test generation techniques are also proposed, with

intention to to effective detect the DNN errors (e.g., DeepX-

plore [17], DeepTest [21], DeepHunter [23], DeepGauge [13],

Surprise Adequacy [11], DeepCT [14], DeepMutation [15],

etc.), among which metamorphic relations are widely used as

the test oracle. However, it is still unclear how to effectively

improve the capability and repair the incorrect behaviors,

which potentially occur in the operational environments of

a DNN. MODE [16] and Arachne [19] first identify the

DNN elements (e.g., weights) that mostly impact the incorrect

behavior, and leverage data selection for retraining and search-

based method to repair the tentative errors. One caveat of weight

manipulation without training is that it heavily relies on the

fault localization of DNN’s weights. However, in practice, such

pinpointing of the faulty weights can be difficult, especially

for DNNs with complex neural and layer connections by

residual connections, skip connections, and advanced typologies

designed by neural architecture search (NAS). In particular,

when the DNN topology is complicated, the influence of the

‘faulty weights or neurons’ propagates easily throughout the

entire network, rendering fault localization futile. Also, there is

no principled way of performing such a fault localization task

efficiently in a complex neural network. Apricot [25] leverages

multiple DNNs and incrementally repairs the DNN candidate

by adjusting the weights under the consideration of the made

multiple DNNs. Md Johirul et al. [10] discuss the challenges

and common fix patterns for DNN repair. Being orthogonal to

existing repairing work, this paper adopts a blackbox approach

and resorts to a data-level repair solution through learning, to

effectively and efficiently repair the DNN as a whole.

Data augmentation. This paper adopts a black-box ap-

proach without leveraging internal information of DNNs.

Instead, it follows a different perspective of DNN repairing

by failure-case-guided data automation. Data augmentation

is a common approach, which has the potential to improve

the capability and repair incorrect behavior of DNN in the

operational environment. Due to the huge data augmentation

720

space, how to effectively search and select augmented data for

(re-)training becomes a big challenge. Arbitrarily augmenting

data is quite expensive, and might not be able to repair

and enhance the potential failure cases in a concrete DNN

operational environment. To generally improve the quality of

a DNN, some recent progress has been made through data

augmentation. For example, previous work shows that random

augmentation through transformations (e.g., occlusion, rotation)
is useful to improve DNN quality [7, 3, 8]. Recently, data

mixing based augmentation shows its advantage in improving

the general quality of a DNN. Mixup [26] performs an element-

wise convex combination of two images from input space for

data augmentation and training. AugMix extends this idea

one step further, which performs mixing of multiple images

under multiple steps of transformation [9], achieving state-of-

the-art performance in enhancing DNN quality. Even though,

the data augmentation space can still be quite large, which

might also be limited without knowing the concrete failure

patterns. Compared with existing techniques, this paper is

the first to propose failure-guided data augmentation method,

aiming to learn and resolve failure patterns of DNN in the

real-world operational environment. Our technique leverages

the important failure information, and effectively guides the

data augmentation direction, so as to potentially repair unseen

similar failures in the real-world environment. The preliminary

evaluation demonstrates the promising of our technique.

Few shot learning (FSL). FSL is a hot topic to address

problems for data-intensive applications when the dataset is

small. FSL was first proposed to learn from a small scale of

examples with supervised information [12, 5] and achieved big

breakthrough in learning high-performance models on small

datasets. In parallel, FSL also contributes to light the burden of

collecting large-scale supervised data. The representative works

include image classification [22], neural architecture search

[2]. Benefit from the growing up industrial demand and the

progress of inexpensive learning, many related machine learning

approaches have been proposed, including meta-learning [6]

and generative modeling [4]. Our method takes advantage of

FSL and is the very first to apply it to DNN repair.

V. CONCLUSION

In this paper, we recast the failure-data-driven DNN repair as

a data augmentation problem, and design a novel augmentation-

based repair method, which to the best extent leverages

the limited failure cases. To realize the DNN repairing that

generalizes to specific failure examples, we originally propose

few-shot guided mix (FSGMix) that augments training data with

the guidance of failure examples. As a result, our method is

able to achieve high generalization capability to the collected

failure examples and other similar suspicious data, making the

first attempt to solve the scarcity and generalization problems

surrounding the limited amount of failure cases. By carefully

designing the learning mechanism for the augmentor with

guidance from the failure cases, our method provides a feasible

solution towards data-driven DNN repair. The preliminary

evaluation on CIFAR-10 dataset demonstrates the potential

of the guided data-driven direction for DNN repair.

VI. ACKNOWLEDGMENT

This work was supported by JST-Mirai Program Grant

No. JPMJMI18BB, JSPS KAKENHI Grant No. 20H04168,

19K24348, 19H04086, and 18H04097 of Japan. It was also

supported by the National Natural Science Foundation of China

(NSFC) under Grant No. 61906135, 61871258 and U1703261.

REFERENCES

[1] H. B. Braiek and F. Khomh. On testing machine learning programs. J.
Syst. Softw., 164:110542, 2020.

[2] A. Brock, T. Lim, J. Ritchie, and N. Weston. Smash: One-shot model
architecture search through hypernetworks. 08 2017.

[3] T. Devries and G. W. Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[4] H. Edwards and A. Storkey. Towards a neural statistician. 06 2016.
[5] M. Fink. Object classification from a single example utilizing class

relevance pseudo-metrics. 01 2004.
[6] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for

fast adaptation of deep networks, 2017.
[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. CVPR, pages 770–778, 2016.
[8] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness

to common corruptions and perturbations. ICLR, 2019.
[9] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-

shminarayanan. AugMix: A simple data processing method to improve
robustness and uncertainty. ICLR, 2020.

[10] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan. Repairing deep neural
networks: Fix patterns and challenges. arXiv preprint arXiv:2005.00972,
2020.

[11] J. Kim, R. Feldt, and S. Yoo. Guiding deep learning system testing using
surprise adequacy. In ICSE, pages 1039–1049, 2019.

[12] Li Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object
categories. IEEE TPAMI, 28(4):594–611, 2006.

[13] L. Ma, F. Juefei-Xu, J. Sun, C. Chen, T. Su, F. Zhang, M. Xue, B. Li,
L. Li, Y. Liu, J. Zhao, and Y. Wang. DeepGauge: Multi-Granularity
Testing Criteria for Deep Learning Systems. In ASE, 2018.

[14] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao. DeepCT:
Tomographic Combinatorial Testing for Deep Learning Systems. SANER,
2019.

[15] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang. DeepMutation: Mutation Testing of Deep
Learning Systems. In ISSRE, 2018.

[16] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama. Mode: automated
neural network model debugging via state differential analysis and input
selection. In ESEC/FSE, pages 175–186. ACM, 2018.

[17] K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore: Automated whitebox
testing of deep learning systems. In SOSP, pages 1–18, 2017.

[18] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding
for face recognition and clustering. In CVPR, pages 815–823, June 2015.

[19] J. Sohn, S. Kang, and S. Yoo. Search based repair of deep neural
networks. arXiv preprint arXiv:1912.12463, 2019.

[20] G. Tao, S. Ma, Y. Liu, and X. Zhang. Attacks meet interpretability:
Attribute-steered detection of adversarial samples. In NeurIPS, pages
7728–7739, 2018.

[21] Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated testing of
deep-neural-network-driven autonomous cars. In ICSE, pages 303–314,
2018.

[22] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra.
Matching networks for one shot learning. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, NeurIPS, pages 3630–
3638. 2016.

[23] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin, and S. See. DeepHunter: A Coverage-Guided Fuzz Testing
Framework for Deep Neural Networks. In ISSTA, 2019.

[24] S. Zagoruyko and N. Komodakis. Wide residual networks, 2016.
[25] H. Zhang and W. K. Chan. Apricot: A weight-adaptation approach to

fixing deep learning models. In ASE, page 376–387, 2019.
[26] H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz. mixup: Beyond

empirical risk minimization. ArXiv, abs/1710.09412, 2018.
[27] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning

testing: Survey, landscapes and horizons. IEEE Transactions on Software
Engineering, 2020.

721

