
WebRTS: A Dynamic Regression Test Selection
Tool for Java Web Applications

1st Zhenyue Long
GuangDong Power Grid, GuangDong

State Key Laboratory of Computer Science
Beijing, China

2nd Zeliu Ao
University of Chinese Academy

of Sciences, Beijing, China

3rd Guoquan Wu∗
State Key Laboratory of Computer Science
University of Chinese Academy of Sciences

Nanjing Institute of Software Technology, ISCAS

4th Wei Chen
State Key Laboratory of Computer Science, ISCAS

University of Chinese Academy of Sciences
Nanjing Institute of Software Technology, ISCAS

5th Jun Wei
State Key Laboratory of Computer Science, ISCAS

University of Chinese Academy of Sciences
Nanjing Institute of Software Technology, ISCAS

Abstract—Regression testing is an expensive activity in soft-
ware development. To speed it up, regression test selection
(RTS) is a promising approach by selecting a subset of tests
which are affected by code changes. Although there are lots of
regression test selection tools, most of them aim to unit tests,
require direct code dependency between tests and code under
test, and cannot be applied to Web applications to select end-to-
end web tests. This paper presents WebRTS, a dynamic RTS
tool for regression testing of Web applications. By tracking
the process of Http request and object construction in the
server, WebRTS can collect accurate test dependencies for each
test in isolation, and supports parallel regression testing of
distributed Web application. The design of WebRTS is also
flexible, and it can be combined with different web testing
frameworks. The experimental results show that WebRTS is
effective and can be used to select regression tests for Java Web
applications. Video: https://youtu.be/OlAsvrX7HXc. Source code:
https://gitlab.com/aozeliu18/webrts

I. INTRODUCTION

Regression testing is a well-established software testing

technique, which is commonly used in industry to ensure that

incremental updates to software do not break existing function-

ality. Regression Test Selection (RTS) [11] techniques opti-

mize regression testing by skipping tests that are not impacted

by the changes introduced since the last test execution. To

this end, test dependencies are automatically tracked between

executions. Dependency tracking can be done at different level

of granularity– statement, method, file, or module – leading to

different trade-offs. Tests whose dependencies did not change

since the last test execution can safely be skipped. An RTS

technique is safe if it does not miss to select any affected tests

and precise if it selects only affected tests.

RTS can collect dependencies statically or dynamically.

Recently, both Ekstazi (a dynamic RTS technique) [3] and

STARTS (a static RTS technique) [8] show that performing

RTS at the class level gives better speedup than performing

RTS at the method level. Ekstazi [3] instruments the test code

and the code under test to collect class-level test dependencies

∗ Corresponding Author. Email: gqwu@otcaix.iscas.ac.cn

while running tests. Practitioners have adopted Ekstazi [3] and

integrated it in the build systems of some open-source projects

(e.g., Apache Camel).

Despite recent progress made in the RTS techniques, most

of them aim to unit testing, and cannot be applied to end-to-

end (E2E) Web application testing directly for the following

reasons: 1) In unit testing, each test has direct dependency

with the code under test. Web application tests, on the other

hand, run in a separate environment from System Under Test

(SUT), and communicate with SUT through Http messages.

Such dependencies cannot be obtained directly; 2) To improve

efficiency, it is common to run tests in parallel during the

regression testing. For unit testing, the test code and the code

under test run in the same process. As the test environments are

isolated from each other for different tests, it is easy to support

parallel test execution without affecting test dependencies

collection. However, in the web domain, all tests share the

same SUT. It is non-trivial to collect correct test dependencies

for each test when running them in parallel; 3) For Java-based

Web applications, some popular frameworks (e.g., Spring)

support to load objects eagerly during the startup of SUT, or

initialize them lazily until they are firstly used. These objects

will be shared across different user/test requests. Applying ex-

isting class-level dependencies collection technique (proposed

by Ekstazi for unit testing) directly on web tests selection may

not be safe, as it assumes the codes under test are independent

from each other for different unit tests, which does not hold for

E2E web application testing. To improve safety, one possible

way is to add all objects created during the startup of SUT

as the dependencies of each test case. However, this approach

will make RTS techniques select excessive tests, reducing their

efficiency.

To address above challenges, in this paper, we designed

WebRTS, a novel dynamic RTS tool for Web applications.

WebRTS has four unique features: 1) it supports to track

test dependencies when running tests in parallel; 2) it can be

applied for distributed Web applications, in which the modules

are deployed in distributed environment; 3) it considers object

822

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00102

sharing in SUT between different tests, and can accurately

select web tests by tracking the construction process of the

objects; 4) different from existing dynamic RTS techniques

which are tightly coupled with the testing framework (e.g.,

jUnit), WebRTS can be easily integrated with different web

testing frameworks (e.g., Selenium, Robotium).

In our current implementation, WebRTS aims to regression

tests selection for Java Web applications as they are widely

deployed in the enterprise. However, the basic idea of WebRTS

can be applied to Web applications implemented in other

languages.

II. WEBRTS

In this section, we introduce the system architecture and the

implementation of main components in WebRTS.

A. System Overview

In order to adapt to different web testing frameworks,

WebRTS is designed to be loosely coupled with web testing

framework. Figure 1 shows its overall architecture, which

mainly consists of four components: Agent, Collector, Selector
and CheckSum.

Fig. 1. Overall Architecture of WebRTS

A typical RTS has three phases: the analysis phase selects

the tests to run in the current version, the execution phase

runs selected tests, and the collection phase collects test

dependencies for the next revision.

In practice, as Web applications are usually deployed on

distributed nodes, WebRTS Agent needs to be installed on each

server node, and it will record the execution information of

http request in the sever during the execution phase. After all

tests are completed, Collector will pull the recorded execution

information from each node, and compute the dependencies

for each test. Similar to Ekstazi [3], WebRTS computes test

dependencies at the class/file level granularity. It invokes

CheckSum to compute the checksum of each dependent file,

and then save them to the dependency storage. When a new

version of SUT is deployed, WebRTS enters into the analysis

phase, and it invokes Selector to select tests affected by

code changes based on the recorded dependencies in the old

version. In the following, we first introduce the designed test

dependency format for regression web tests selection before

depicting each component in detail.

B. Test Dependency Format

WebRTS computes test dependencies at the file level.

However, different from existing RTS techniques for unit

testing, which collects test dependencies for each test directly,

in WebRTS, web test runs in a separate environment from

SUT, and interacts with backend server through Http requests.

Therefore, we designed two-layer test dependency format for

each web test (see Figure 2), in which each test depends on

a list of triggered http requests, and each request maintains a

list of class/file level dependencies.

Fig. 2. Dependency format in WebRTS

The designed dependency structure also brings the following

two advantages: 1) it explains why code changes of a file

impact a web test by specifying the associated http request;

2) it can avoid repeatedly collect test dependencies for the

same http request (e.g., the login request) which exists in

multiple test cases, and thus can improve the overall efficiency

of WebRTS. An example of recorded test dependency is shown

in Figure 3.

Fig. 3. An example of recorded test dependency

C. Agent

The Agent will track the execution of HTTP request (sent

by the web test) in the server. Figure 4 shows its overall

architecture, and it is further divided into five modules:

Interceptor, Constructor Monitor, Http Request Processor,

Http Call-chain Tracer and Execution Info. Container. Note

that, for E2E web testing, some objects in SUT will be

shared across different tests. To avoid missing dependencies

caused by objects sharing, all methods in the classes will be

instrumented, and Agent will further track the construction

process of all objects during the process of http request.

1) Interceptor: It is implemented based on JVM-

SANDBOX [7], which is a dynamic instrumentation tool

based on JVMTI and ASM technology. Interceptor uses JVM-

SANDBOX to dynamically instrument SUT to collect execu-

tion information. Interceptor instruments the following code

823

points for each class: 1) start and end of a constructor; 2) start
and end of the entry method of http request processing; 3) start

of the remaining normal methods. Besides, we also instrument

standard Java library methods that may open a file (e.g.,

FileInputStream) to record accessed files (e.g., javascript/css

file) during the process of a test request.

2) Constructor Monitor: For E2E web application testing,

some objects in SUT will be shared across different tests.

To record such dependencies, this module is responsible for

tracking the construction process of each object. As it is

common to use thread model to handle each request in Java

Web application, this module initializes a hashmap structure

(called objDepdency) in the ThreadLocal context to maintain

the dependent classes for each object construction, where key
is the reference of object, and value is a set which stores all

dependent classes (the class names) to construct this object.

When the start event of a constructor is received, Con-
structor Monitor starts to track the construction process of

this object by initializing a set, which saves the class of

this object and all its superclasses. Note that, it is possible

that a new internal object will be constructed during the

construction of one object. This module uses a stack structure

(called RecordStack) to maintain the nested relationship in the

object construction. When the end event of internal object’s

constructor is received, its dependency set will be removed

from the top of the RecordStack and added into objDepdency.

Note that, this dependency set (of internal object) will also be

merged into the corresponding one of its outer object, as the

outer object depends on its internal object.

For a normal method invocation (including file access),

it will be handled by both Constructor Monitor and Http
Request Processor. Constructor Monitor will check whether

there exists any object being constructed (by checking whether

RecordStack is empty). If true, this event will be discarded.

Otherwise, Constructor Monitor will determine the object that

invokes this method, try to get its dependencies by querying

objDepdency and merge it with the dependencies of the top

element in the RecordStack.

3) Http Request Processor: It is responsible for tracking

all involved objects that handle a http request by monitoring

all methods invocation. After entering the entry method of

http request, this module will initialize a set (called reqObjs)

in the ThreadLocal context, which records all used objects

by monitoring normal method invocation (that handle this

request). At the end of the entry method (of http request

processing), this module will save reqObjs and objDepdency
to the module Execution Info. Container.

In order to facilitate the computation of test dependencies,

WebRTS needs to distinguish which test that each HTTP re-

quest belongs to. To achieve this, we embed a proxy (currently

we use BrowserMob-Proxy [2]) into each test case, which will

intercept http request to insert a test ID in the header before

the request is sent to the server.

4) Http Call-chain Tracer: For distributed web application,

one server may need to send a http request to another one

during the process of a test request. To correlate the distributed

calls belonging to the same test request, this module leverages

existing distributed tracing tool to transmit transaction ID (in-

serted into the request header) along the call chain. Currently,

we choose pinpoint [9], but other tools (e.g., ZipKin, Jaeger)

are also applicable.

5) Execution Info. Container: After receiving the pull com-

mand from the Collector, this module will traverse reqObjs,

and compute the dependent classes by querying objDepdency
merged from different threads. Note that, it is possible that

shared object also exists in the objDepdency, and in this

case, WebRTS will query objDepdency recursively to retrieve

dependent classes.

6) Optimization: To reduce the overhead caused by depen-

dency tracking, for each test request sent from the testing

framework, WebRTS will first check whether this request has

been tracked in other tests. If true, it will not track this request.

To implement this, WebRTS modifies the transaction ID to

append a special string (e.g., -notrack). Then each Request
Processor in the call chain will first check the transaction ID,

and if it contains a special string, it will not initialize reqObjs
to track this request.

Fig. 4. Architecture of Agent

D. Collector

The Collector component is responsible to compose tracking

information retrieved from Agents which are deployed in

multiple servers after all tests are completed. It first correlates

the dependencies collected from multiple nodes belonging

to the same request according to transaction ID, and then

converts the recorded classes into file dependencies. After that,

it calculates a checksum for each class file, and saves the

calculated dependencies into the storage.

E. Selector

This component is responsible for checking whether the

checksum of each file in the revision has changed compared

with corresponding one in the old version. If it is true, the

dependent test is selected. The computation of checksum for

each file is similar to the technique used in Ekstazi [3].

Note that, by interpreting some common configuration files

(e.g., applicationContext.xml in Spring, mapper.xml in My-

Batis) to associate configuration items with the class files,

WebRTS also supports to select tests caused by configuration

changes. For space limitation, we do not describe it in detail.

III. EVALUATION

WebRTS is implemented using Java language. To evaluate

its effectiveness, we chose two widely RTS metrics: selected

824

TABLE I
DETAILS OF THE SUBJECTS USED IN OUR EMPIRICAL EVALUATION.

Subject #File #KLoc #TC [avg] #Ver.
Time (minutes) WebRTS WebRTS∗

avg. total e% t% e% t%

JPetStore 240 13.5 10 4 2.0 8 20 25 60 64

Agilefant 389 26.3 65 8 8.7 70 17 23 33 39

PAM (core) >1000 >300 90 5 288 1,443 23 28 47 53

eSMM(core) >10,000 >2,000 142 8 327 2,613 18 25 43 45

tests and testing time, and compared WebRTS with RetestAll

strategy (which runs all tests without WebRTS integration). To

evaluate the proposed object construction tracking technique,

we also implemented a modified version of WebRTS (called

WebRTS∗ in the following), which instruments the same

code points as Ekstazi (e.g., the start of a constructor) and

adds all constructed objects during the startup of SUT to

the dependencies of each test (similar to Ekstazi’s method-

level selection granularity by appending dependencies col-

lected during constructor invocation and setUp methods to the

dependencies of each test method).

For the evaluation, we selected 4 subjects, in which JPet-
Store [6] and Agilefant [1] are two open source Java Web

applications, and eSMM and PAM are two enterprise Web

applications from our industrial partner (a large power grid

company in China). The basic information of these projects

can be found in Table 1. For JPetStore and Agilefant, they

are deployed on a 4-core 1.6GHz intel i7 CPU with 16GB

memory running Ubuntu Linux 18.04 LTS, and for eSMM

and PAM, they are deployed on a clustering environment

consisting of 23 nodes in our industrial partner. For JPetStore,

it contains 10 E2E tests, and we selected 4 iterations from the

commits history in which the source code changes, and for

Agilefant, we generated 65 tests based on the test scenarios

described in the work [5], and selected 8 releases from v3.3.2

to v3.5.3. For eSMM and PAM, we selected the revisions

released in the last 2 months. Note that, in the experiment,

we only consider core tests for eSMM and PAM, as running

all tests (>700 for eSMM and >500 for PAM) will spend

more than 24 hours using single machine. For Time column,

Avg./Total represent the average/total execution time of all

tests across selected revisions for each subject. The last 4

columns in Table 1 show the percentage of selected tests (e%)

and the execution time normalized by time of RetestAll (t%)

for WebRTS and WebRTS∗, respectively. It can be seen that

WebRTS is effective in reducing selected tests and testing

time during the regression. For example, for eSMM subject,

WebRTS selects on average 18% of tests, and the time that

WebRTS takes is 25% of RetestAll strategy. For WebRTS∗,

it selects more tests than WebRTS as more dependent classes

(the class files of initialized objects during the startup of SUT)

are added to the dependencies of each test, leading to more

tests being selected (if any of these class files change), and

more testing time being spent.

IV. RELATED WORK

Regression test selection has been studied for several

decades [11] [3] [13] [8]. Early RTS techniques select tests

based on fine-grained block level [11] or method level [10]

granularity, which may incur large overhead. Recently, Glig-

oric et al. [3] proposed file level RTS for Java projects, which

outperforms method-level RTS in terms of end-to-end testing

time. Zhang [13] presented hybrid RTS, which combines

method and file level granularity to increase precision of RTS.

For regression testing of Web application, Xu et al. [12]

proposed an RTS technique based on slicing, which models

Web applications as system dependency graph and selects tests

that execute the potentially affected web elements. Huang et al.

[4] proposed RTS for J2EE application, which analyzes both

code files and configuration files. TestSage [14] is a dynamic,

method level RTS technique for large-scale Web services. All

these work do not consider object sharing across tests and they

are also not friendly to parallel testing.

V. CONCLUSION

This paper presents WebRTS, a novel dynamic regression

tests selection tool for Java Web application. By tracking the

process of the objects construction and HTTP requests call

chain in the server, it can compute accurate test dependencies,

and support regression testing of distributed Web application.

One limitation of the current tool is that it considers JavaScript

files running in the browser as resource files, and if the file

changes, all tests that use it will be selected. We plan to support

fine-grained dependencies collection for JavaScript files in the

future.

VI. ACKNOWLEDGMENTS

This work is supported by GuangDong Power Grid Com-

pany Limited under Project 037800KK52180009.

REFERENCES

[1] Agilefant. https://github.com/agilefant/agilefant.
[2] browsermob proxy. https://github.com/lightbody/browsermob-proxy.
[3] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test

selection with dynamic file dependencies. In ISSTA, 2015.
[4] S. Huang, Z. J. Li, J. Zhu, Y. Xiao, and W. Wang. A novel approach to

regression test selection for j2ee applications. In ICSM. IEEE, 2011.
[5] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. Service

candidate identification from monolithic systems based on execution
traces. IEEE TSE, 2019.

[6] JPetStore. https://github.com/mybatis/jpetstore-6.
[7] JVM-Sandbox. https://github.com/alibaba/jvm-sandbox.
[8] O. Legunsen, A. Shi, and D. Marinov. Starts: Static regression test

selection. In ASE. IEEE, 2017.
[9] Pinpoint. https://github.com/naver/pinpoint.

[10] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool
for change impact analysis of java programs. In OOPSLA, 2004.

[11] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. TOSEM, 6(2), 1997.

[12] L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. Regression testing for
web applications based on slicing. In COMPAC. IEEE, 2003.

[13] L. Zhang. Hybrid regression test selection. In ICSE. IEEE, 2018.
[14] H. Zhong, L. Zhang, and S. Khurshid. Testsage: Regression test selection

for large-scale web service testing. In ICST. IEEE, 2019.

825

